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A low-cost
telerehabilitation paradigm for bimanual training
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Abstract—The COVID-19 pandemic has transformed daily life, as
individuals engage in social distancing to prevent the spread of the dis-
ease. Consequently, patients’ access to outpatient rehabilitation care
was curtailed and their prospect for recovery has been compromised.
Telerehabilitation has the potential to provide these patients with
equally-efficacious therapy in their homes. Using commercial gaming
devices with embedded motion sensors, data on movement can be col-
lected toward objective assessment of motor performance, followed by
training and documentation of progress. Herein, we present a low-cost
telerehabilitation system dedicated to bimanual exercise, wherein the
healthy arm drives movements of the affected arm. In the proposed
setting, a patient manipulates a dowel embedded with a sensor in front
of a Microsoft Kinect sensor. In order to provide an engaging environ-
ment for the exercise, the dowel is interfaced with a personal computer,
to serve as a controller. The patient’s gestures are translated into inter-
active actions in a custom-made citizen-science project. Along with the
system, we introduce an algorithm for classification of the bimanual
movements, whose inner workings are detailed in terms of the proce-
dures performed for dimensionality reduction, feature extraction, and
movement classification. We demonstrate the feasibility of our system
on eight healthy subjects, offering support to the validity of the algo-
rithm. These preliminary findings set forth the development of precise
motion analysis algorithms in affordable home-based rehabilitation.

Index Terms—data science, inertial measurement unit, Microsoft
Kinect, motion analysis, rehabilitation.

1. INTRODUCTION

The COVID-19 pandemic has led to extraordinary paradigm shifts
in healthcare systems worldwide. Human and material resources
have been majorly reallocated for treatment of those stricken by the
disease and non-urgent treatments have been suspended indefinitely
[1]. Social distancing and other measures taken to minimize the
spread of COVID-19 have further disrupted patients’ access to
healthcare services, negatively impacting their quality of life. For
example, the number of stroke patients admitted for outpatient therapy
plummeted by 50%-80%, suggesting that many patients who need
rehabilitation care were not receiving it [2]. This state of emergency
has highlighted the growing demand for telemedicine solutions that
enable professionally-supervised home-based healthcare.

The most common cause of post-stroke disability is hemiparesis,
or weakness on one side of the body, which limits limb mobility and
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encumbers the performance of daily activities. Consequently, many
stroke survivors experience reduced functional independence and
require costly caregiving. In order to recover muscle strength and
regain self-reliance, stroke survivors must adhere to a rehabilitation
regimen consisting of frequent high-intensity exercises [3], [4]. In
particular, rehabilitation during the first six months post-stroke has
been shown to be crucial for optimal recovery. Within this period,
stroke survivors achieve the greatest improvements in upper limb
function, ambulation, and speech [5], [6], [7]. Therefore, preserving
access to rehabilitation care at the beginning of the regimen is
especially important for stroke rehabilitation outcomes.

The need for a stroke telerehabilitation framework was recognized
over twenty years ago, when advancements in information technolo-
gies made the notion of telerehabilitation realizable [8], [9]. One of the
first examples of a web-based telerehabilitation system was presented
in 2002 by Reinkensmeyer et al. [10]. Java Therapy consists of a
haptic joystick interfaced with a series of recreational exercises that
quantify movement toward remote assessment of coordination and
motor control. Altogether, the system trains shoulder internal rotation
along with shoulder and elbow flexion. Another telerehabilitation
system, InMotion2 (the commercial version of the MIT Manus robot),
can operate interactively where the patient can train cooperatively
with a therapist or with another patient online [11]. This robot aims
to rehabilitate shoulder and elbow movements and can target the wrist
joint and fingers upon coupling with dedicated modules [12], [13].
Similarly, teleAutoCITE is a tabletop workstation affixed with an array
of tools for training of functional manual tasks [14]. Sensors embedded
in the tools measure the user’s performance, and a camera and a per-
sonal computer enable videoconferencing with a therapist. The system
provides constraint-induced therapy whereby exercise is performed
with the affected limb while the unaffected limb is constrained.

In contrast, bimanual training emerged as an effective clinical
approach for the recovery of coordinated movements using both
hands whereby the intact limb facilitates movement of the paretic
limb [15]. In spite of its proven effectiveness, few examples of
bimanual training exist in telerehabilitation of upper limb movement.
Empirical evidence shows that bimanual training helps reacquire
voluntary motion in paretic limbs through several physiological
mechanisms. Passive movement of an impaired limb could impart
“overflow” of electrical impulses to the affected muscles, thereby
promoting muscle activity and strength [16], [17]. Similarly, neural
pathways underlying bilateral movements may project to regions
of the primary motor cortex contralateral to the unaffected limb
and increase the likelihood of voluntary movement in the impaired
limb [18], [19]. Bimanual training is also advantageous for practical
reasons: bimanual skills are more abundant in activities of daily living
and relearning how to use both hands cooperatively will help patients
regain their independence more quickly [20].

Here, we present a low-cost telerehabilitation system dedicated to
bimanual training. The system consists of a Microsoft Kinect sensor,
and a wooden dowel embedded with an inertial measurement unit



Fig. 1: Set-up of the proposed system, integrated with a citizen-science
project. The user holds the dowel with both hands and manipulates
it in space to control an application that is launched on a monitor
(a custom-made citizen science project, in this case). A Kinect sensor
is positioned below the monitor and records the user’s movements.

(IMU). The Microsoft Kinect is a commercial entertainment device
that enables a natural user interface by means of skeleton tracking. The
Kinect records the position of 15 joints in three dimensions, without
the need for markers [21], [22]. Its precision was evaluated in several
studies and the device was found suitable for objective analysis of
human motion in rehabilitation [23]. Our proposed system implements
a natural user interface in which the user manipulates the dowel while
facing the Kinect (Figure 1). By fusion of data collected through the
Kinect and the IMU, intuitive input gestures with the dowel translate
into actions on a computer screen. In this manner, the dowel can serve
as a controller for a wide variety of serious games [24].

Although often overlooked, the manner in which rehabilitation
exercises are presented to patients is essential to their rehabilitation
outcomes. Framing the exercise in an intrinsically motivating context

can inspire patients to adhere to their rehabilitation program [25], [26].

Thus, our system enables the user to participate in a custom-made
citizen science project. Specifically, the user analyzes 360° images
of a polluted canal, taken by a robotic boat that monitors the quality
of water [27], [28]. Pre-defined bimanual gestures allow the user to
explore the picture, move the cursor, and click buttons. Hence, the role
of the Kinect in our system is twofold. First, it provides information
on the user’s posture and movement to assess the quality of motion
during exercise. Second, it relays control commands based on body

gestures that it captures, enabling an engaging natural user interface.

In conjunction with the physical system, we propose the application
of a movement classification algorithm, which is a considerable
component of our system’s novelty. The algorithm is used to classify
the movements the user performs toward a genuine telerehabilitation
practice, where one’s motor performance can be truly assessed by
a therapist remotely. Such an automatic classification of movements
is expected to reduce the amount of time and effort practitioners
spend inspecting and interpreting kinematic data. In addition, as
the algorithm records data continuously throughout a regimen, it
could provide objective assessment of the rehabilitation progress as
classification becomes more distinct.

Automatic classification of movements in telerehabilitation is
still underdeveloped. Past studies have applied principles from data
science for motion analysis in rehabilitation medicine, however, the
vast majority of this research focused on lower limbs. Early work
on recognition of gait patterns utilized neural networks [29] and fuzzy
clustering techniques [30]. These methods were soon replaced by
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hidden Markov chains, which became the exemplary approach for gait
detection and classification [31], [32], [33]. Machine learning was
utilized in this domain as well. For example, Begg and Kamuzzaman
[34] used a support vector machine classifier to uncover the kinematic
underpinnings of falls among the elderly. Similarly, Novak et al. used a
support vector machine algorithm to identify phases of gait at different
speeds [35]. For rehabilitation of the upper limbs, statistical pattern
recognition algorithms were used to quantify motor performance
of the upper limb from data collected by vision-based sensors [36]
or inertial sensors [37]. Apart from that, data-driven algorithms
remain underutilized in the assessment of upper limb movement, and
completely unutilized in the evaluation of bimanual movements.

Herein, we present a simple, yet effective, data-driven algorithm to
automatically assess bimanual movements. The algorithm implements
dimensionality reduction, followed by an ensemble classifier. The
algorithm automates the classification of movement with high
accuracy and could ultimately reduce the time and cost of post-stroke
rehabilitation assessment by a therapist.

II. PROTOTYPE DESIGN

The low-cost system consists of a Microsoft Xbox 360 Kinect
sensor (Microsoft Corporation, Redmond, Washington) and a 3/4
inch diameter standard wooden dowel. A custom-made cubic box
is 3D printed and installed at the center of the dowel. The box houses
an IMU (MPU-6050, InvenSense Inc., Sunnyvale, California), an
Arduino Nano microcontroller (Arduino, Italy), and HC-05 Bluetooth
module to transmit the IMU recordings in real time. The IMU is
fixed in the box such that when the box is placed on a flat surface
and the dowel is horizontal, its z-axis is perpendicular to the ground,
the z-axis is perpendicular to the dowel and parallel to the ground,
and the y-axis is parallel to the dowel (Figure 2).

Although the Kinect can record motion with sufficient accuracy
for application in rehabilitation [23], it has certain limitations [38].
Primarily, when joints are occluded, the Kinect estimates a skeleton
model and introduces noise and errors into the measurements [39]. In
our system, a user may hold the dowel and flex their shoulders to 90°,
thereby occluding the Kinect’s view of the elbow and shoulder joints
with their hands. In such a case, the Kinect may erroneously interject
elbow flexion and shoulder abduction ([39]; Figure 3). To overcome
this issue, the simultaneous use of multiple Kinect sensors has been
proposed [40]. The use of multiple Kinect sensors simultaneously
in a home setting comes with a few limitations. For example, multiple
devices would require a larger space, as the distance of a user from
the sensor needs to be a minimum of four feet. For these practical

Fig. 2: Orientation of the IMU
when fixed to the dowel, at the baseline pose. The y-axis is parallel
to the dowel and the z-axis extends perpendicular to it, parallel
to the ground. The x-axis completes an orthogonal coordinate system.
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Fig. 3: The user from
the Kinect’s point of view. When the user keeps their elbows straight
and flexes their shoulders, the hands could occlude the Kinect’s view
of the elbows and shoulders. As a result, the Kinect will estimate
these joints’ positions and introduce an error into the measurement.

reasons and in the interest of maintaining a low cost, we chose to
incorporate an IMU into the system.

The Kinect is used for assessment of motor performance as well as
for implementation of a natural user interface, whereby bimanual ma-
nipulation of a dowel in front of the sensor would translate to in-game
functions. An environmental citizen science project is displayed, where
the user explores 360° images of a polluted canal, selects labels, and
allocates them onto objects of interest such as potential pollutants and
notable landmarks. If the user aims to move the cursor on the screen
to the left, they should abduct their left shoulder and adduct the right
shoulder, moving the dowel to the left while keeping it parallel to the
ground (Figure 4a). Similarly, to move the cursor to the right, the user
should perform shoulder adduction and abduction in the opposite direc-
tion, moving the dowel to the right while maintaining it horizontal (Fig-
ure 4a). To move the cursor upward, the user should flex both shoul-
ders and lift the dowel (Figure 4b). To move the cursor downward, the
user should extend both shoulders and lower the dowel (Figure 4b).
To explore the 360° images, the user should tilt the dowel clockwise
or counterclockwise to turn left or right (Figure 4c), and flex or extend
their wrists (Figure 4d) to look up or down. Finally, to select a label or
allocate it, the user should flex and then extend their elbows, pushing
the dowel away from their body along the transverse plane (Figure 4e).

The proposed movements employ most joints of the upper limbs
and are commonly prescribed for home-based rehabilitation [41],
[42]. Typically, stroke patients tend to not use their affected limb and
reinforce maladaptive, non-physiological movements [43]. Learnt
non-use impedes recovery and perpetuates disability [44]. Thus, it
is of high interest to promote motion of the limb, whether it is moved
actively or passively [45]. The support of bimanual exercise by a
dowel can be beneficial for reducing compensatory movements, as
well as for recovering the affected arm’s passive range of motion [46].

The natural user interface implementation was achieved with a
simple fuzzy logic scheme so that in-game response would not lag.
Specifically, the fuzzy logic scheme was applied with respect to the
relative position of joints. For example, the cursor would move to the
left if the left elbow’s position relative to the left shoulder’s position
along the z-axis exceeded a certain threshold, and simultaneously,
the right elbow’s position relative to the right shoulder’s position
along the z-axis exceeded a different threshold. The thresholds were
determined in a calibration phase, where the user was instructed
to move their arms to the extents of their range of motion. In this
manner, the system’s responsiveness to the user’s movements could
be adapted to accommodate for a compromised range of motion.

III. DATA COLLECTION

To demonstrate our system, we collected data on healthy subjects
who interacted with the system. The study was conducted in
compliance with the guidelines and regulations set forth by New York
University’s institutional review board, the University Committee on
Activities Involving Human Subjects (UCAIHS; IRB FY2019-2828).

Eight subjects were recruited (three female and five male; average
age of 24.1 £ 4.6). Each subject was escorted to a private room where
they were introduced to the project and the system. The Kinect sensor
was re-positioned and its angle was adjusted between experiments to
strain the developed approach and assess its robustness to unavoidable
variations in real-world applications.

The experiment began with calibration to measure the subject’s
range of motion and adjust the system’s sensitivity to their movements.
First, the subject performed horizontal shoulder abduction. Starting
from a baseline pose with their arms held straight and parallel to the
ground, they first performed horizontal shoulder abduction toward
their left side and returned to the center, repeating this movement
five times. Then, the subject performed horizontal shoulder abduction
to the right and returned to the center five times. In the same manner,
the subject performed shoulder flexion and extension, rotated the
dowel counterclockwise and clockwise parallel to the coronal plane,
performed wrist flexion and extension, and performed elbow flexion
and extension, in this order. The subject repeated each movement
five times consecutively and returned to the original position after
each excursion. A video illustrating the calibration is available in
the supplementary material.

After calibration, the subject completed a five-minute tutorial
which taught them how to use the dowel as a controller. Then, they
analyzed images of a polluted canal for as long as they wished. When
the subject quit the application, they filled out a short questionnaire,
assessing the intuitiveness of the interface, its ease of use, and the
engaging nature of the citizen science activity.

Three data sets were generated during this exercise for each subject.
The first data set was produced by the Kinect and logged the subject’s
joint positions in three dimensions. The second data set comprised the
IMU measurements and recorded its Tait-Bryan angles (yaw about
the z-axis, «; pitch about the y-axis, 3; and roll about the z-axis, ),
rotational velocities (wy, wy, and w,), and gravitational acceleration
along the axes (g, gy, and g, ), obtained through the built-in function
dmpGetGravity available on MPU-6050. These two data sets were
collected synchronously at a sampling rate of 18 measurements per
second. The third data set contained the subjects’ responses to the
questionnaire.

The data sets were processed in MATLAB (MATLAB R2020a,
The MathWorks, Inc., Natick, Massachusetts, United States). Given
the three-dimensional position of each joint from the Kinect, a
skeleton model of the user’s body was reconstructed. We defined
the reference frame with its origin fixed at the shoulder-center joint
([47], [48]; Figure 5). The X -axis was parallel to the ground and
the Y-axis was perpendicular to the ground. Both axes lay in the
plane containing the left and right shoulder joints. The Z-axis was
orthogonal to this plane, following the right-hand rule. The vectors
that corresponded to limb segments were computed by subtraction of
the coordinates of a joint at one end of the limb from the coordinates
of the joint at the other end of the limb.

For each time step, four instantaneous joint angles were computed
for each arm: shoulder horizontal abduction (f; 1, and 6 r), shoulder
flexion (62,1, and 65 ), wrist flexion (651, and 65 r), and elbow
flexion (041, and 04 r), where L and R denote the left and right
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Fig. 4: Illustration of the movements implemented in the natural
user interface. The user is able to perform actions on a computer through (a) horizontal abduction and adduction of the shoulders (moving
the cursor left or right), (b) flexion and extension of the shoulders (moving the cursor up or down), (c) rotation of the dowel clockwise and
counterclockwise (rotating the image left or right), (d) flexion and extension of the wrists (rotating the image up or down), or (e) flexion and
extension of the elbows (selection of objects). The blue square represents the 3D-printed cube that contains the IMU and electronic circuits.
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Fig. 5: Schematic of the skeleton model
constructed from Kinect data, while the subject performed shoulder
abduction. The black lines represent segments and the red circles
represent the 20 articular joints between them. The reference frame is
placed at the neck, colored in blue. The X-Y, X-Z, and Y-Z planes
correspond to the coronal, transverse, and sagittal planes, respectively.

arms, respectively. Instantaneous shoulder abduction angles were
inferred by projecting the model’s arm onto the transverse plane
and computing the angle it formed relative to the ground through the
inverse tangent (Figure 6a). Similarly, shoulder flexion angles were
computed from projection of the model’s arm onto the sagittal plane
through the inverse tangent (Figure 6b). Elbow angles were computed
using the scalar product between the model’s arm and forearm. Since
grasp of the dowel blocked the wrist from the Kinect’s view, wrist

(a) (®)

Y Sagittal plane

|, S

Fig. 6: Illustration of computation of (a) shoulder
abduction angle (6;) and (b) shoulder flexion angle (6>). The dashed
line represents the projection of the arm’s vector onto the transverse

and the sagittal planes (depicted with grey rectangles) to form angles
01 and 05 with a vector that is parallel to the ground, respectively.

flexion angles were inferred from the IMU pitch measurements. A
third-order median filter was applied to remove noise. Data points
above and below the top and bottom percentiles were removed.
For added insight on the kinematics of movements, instantaneous
angular velocities for each joint movement (01 1,, 01 r, 02,1., O2.R.
@37L, 93,R, @)47L, and 943) were computed by applying a central
difference scheme on angle measurements. Overall, the time series
of 25 variables were considered in the analysis (Table I).

IV. MOTION ANALYSIS

In the analysis, we focused on the calibration phase, where the
movements subjects performed were known. We aimed to classify
these movements using the measurements captured by the Kinect
and the IMU through a data-driven methodology. Our approach
unfolded along three distinct steps: principal components analysis
(PCA), feature extraction, and movement classification via a bagged
tree algorithm.

A. Principal components analysis

As afirst step, we identified the salient variables which characterize
each movement among the available 25 variables through PCA
(Figure 7a). Time series were visually inspected to identify segments
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of movement and the type of movement performed. To standardize
the selection of segment boundaries and avoid false identification
of noise as movement, segments where defined as instances where
IMU rotational velocity exceeded 2 deg/s.

Within segment £, the time series of each of the 25 variables was
normalized with respect to its own standard deviation throughout
the segment; We use (-) to denote the normalized time series. The
normalized time series were used to create a covariance matrix for
segment k, denoted U k (Figure 7b), that is,

Uy = (i 1) " (i ) )
where 7,7 =1, 2, ..., 25; 1, 2, ..., 25, and « is the average value of
the time series of variable «.

The principal components of covariance matrix U* were given
by the eigenvectors ¥ associated with its largest eigenvalues A%,

Utvn =X, 0
with n = 1,...,NE -, where NE_ , is the number of eigenpairs
(eigenvalues and corresponding eigenvectors) that were retained for
further analysis. To pinpoint the dominant eigenvalues, a spectral
gap was identified as the largest difference between consecutive
eigenvalues sorted in a descending order (Figure 7c). N& , was
taken as the number of eigenvalues that preceded the gap, which
typically was equal to 1.

Once the dominant eigenvalues have been identified, we explored
the role of their corresponding eigenvectors. We sorted the absolute
values of the components of each eigenvector in a descending order
and defined a gap as the largest difference between consecutive
values. We retained for analysis the components of the eigenvector
that appeared before the gap (Figure 7d). In principle, the number
of components that preceded the gap could vary between subjects,
since individuals move very differently from one another.

Once the components were identified for all segments in all
subjects, we determined the most common components. Focusing

Sensor Variable Observation Notation

up right shoulder abduction angle 01 r
ug right shoulder flexion angle 9273
u3 right elbow flexion angle 03 R
Uug right wrist flexion angle 04 R
us left shoulder abduction angle 011
ug left shoulder flexion angle 021,
w7 left elbow flexion angle 031,

Microsoft us left wrist flexion angle 041,

Kinect ug right shoulder abduction velocity 01,r
u10 right shoulder flexion velocity 02 R
U1l right elbow flexion velocity 03 R
U2 right wrist flexion velocity 94,R
u13 left shoulder abduction velocity 01
Ui4 left shoulder flexion velocity 021,
u1s left elbow flexion velocity 93L
ulg left wrist flexion velocity 041,
U7 roll angle oY
U18 pitch angle B
u19 yaw angle «
u20 rotational velocity about u-axis Wy

MU U1 rotational velocity about y-axis wy
U922 rotational velocity about z-axis wy
uU23 gravitational acceleration along x-axis gz
U4 gravitational acceleration along y-axis 9y
U5 gravitational acceleration along z-axis gz

TABLE I: Summary
of the variables collected by the Microsoft Kinect and inertial
measurement unit. A subscript L or R indicates the left or right arm.

Movement Performed Associated Variables

Shoulder abduction (left) 01 R, 01L
Shoulder abduction (right) 01r. 01,1
Shoulder flexion 02,R 02,1,
Shoulder extension 02 R, 021
Vertical rotation (counterclockwise) a
Vertical rotation (clockwise) a
Wrist flexion B
Wrist extension B8
Elbow flexion 03 R, 031

TABLE II: Summary
of the PCA results. The number of prominent variables is determined
based on the relative size of the eigenvector’s components.

on one movement type at a time, we aggregated the principal
components from all segments and all subjects and kept a count
of the number of times each was observed (Figure 7e). We then
selected two components, one for each arm, to describe bimanual
movements. For example, 261 components were aggregated from
all subjects for horizontal shoulder abduction to the left. The most
common component in the right arm was ; r (observed 32 times)
and the most common component in the left arm was 6; 1, (observed
31 times). Therefore, those components were deemed principal for
left horizontal shoulder abduction. In the case where the most salient
variables were associated with the IMU on the dowel, we retained only
one of them toward a minimalistic representation of the movements.

Results of the PCA are summarized in Table II. We found that
shoulder abduction in either direction is characterized by changes in
61,1 and 01 r. Shoulder flexion and extension were strongly associ-
ated with changes in 65 g and 65 1,. As expected, variations in o were
predominant in the vertical rotation of the dowel in either direction.
Wrist flexion was characterized by variation in 5. Finally, elbow
flexion was characterized by appreciable changes in 63 and 65 1..

B. Feature extraction

The PCA informed us of the salient variables in each movement.
Variables carrying the highest value explained the majority of variance
and therefore contained the most information in each movement. We
used these characteristic variables to create discriminating statistics,
which would serve as the features to train the classification algorithm
with. Given knowledge of the movement that was performed, the
algorithm would explore different relationships between the features
that distinguish one movement from another [49].

Importantly, we observed that the eigenvector components
associated with a were prominent during clockwise and
counterclockwise vertical rotation. Similarly, 5 was prominent
during wrist flexion and extension. These variables may be uniquely
characteristic for the aforementioned movements, and therefore, their
ranges were selected to serve as features. The remaining movements
performed in this study were associated with changes in horizontal
shoulder abduction, shoulder flexion and extension, or elbow flexion
angles. The ranges for these six variables were also selected to serve
as features, reaching a total of eight range values.

To distinguish between the movements with a few features that
encapsulate in part these combinations, we chose to use correlation
coefficients, relating two variables at a time as additional features.
We considered the correlations between each of the joints with their
counterparts in the other arm (A  and 0; 1, 02 r and 0; 1, and 05 g
and 03 ). We also assessed the correlations between ipsilateral and
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Fig. 7: Schematic of the PCA process. First, segments where a movement takes place are identified. An examplary time series of right
shoulder flexion angle for one of the subjects (Subject 8) is displayed in (a). The blue segments in the time series were identified as instances of
movements, corresponding to the nine different movements the subject performed sequentially (five times each): shoulder abduction to the left,
shoulder abduction to the right, shoulder flexion upward, shoulder extension downward, counterclockwise vertical rotation, clockwise vertical
rotation, wrist flexion upward, wrist extension downward, and elbow flexion, respectively. For a time segment k, the time series of each of the

25 variables are used to generate a 25 X 25 covariance matrix. In (b), a

segment where horizontal shoulder abduction to the left was performed is

selected in a box and the covariance matrix is computed. The spectrum of the covariance matrix is used to infer NV ijc 4 the number of eigenvalues
that were retained in the analysis. In (c), only one eigenvalue, A, precedes the gap (reflected with a dashed line). The components of /¥ are
plotted in (d), which indicates that only two components in this eigenvector are important, corresponding to variables u; and us (61 r and 61 1,).
After the same process is carried out for all segments of wrist flexion in all subjects, the important components of eigenvectors are aggregated, as
seen in (e). The two variables that are most common across subjects are then identified (6, r and 6 1,, in this case) and used to devise features.

contralateral horizontal shoulder abduction and shoulder flexion angles
(91‘R and 927]4, 91,L and 9271{, 91)3 and 02,R’ and 917]4 and 927[,). For
a complete representation of the IMU data, the correlation between
[ and o was added to the analysis, thereby resulting in a total of eight

correlation coefficients to be included alongside the eight range values.

We applied the algorithm using a moving window, such that we
evaluated the 16 selected features within a window of several time
steps, shifted the window by a time step, evaluated the features
again, and so on. In this manner, the evolution of the features can
be explored in future endeavors with pathological movements. The
short duration of certain movements (that is, wrist flexion had an
average duration of 1.1 seconds) raised concerns that the window
could contain more than a single movement. Therefore, the length of

the moving window was limited to 15 time steps, equivalent to 0.83
seconds. This duration guaranteed that the moving window would
not contain more than a single movement, yet was sufficiently long
for distinguishable computation of the selected features.

In order to apply a supervised machine-learning technique, a robust
classification must be defined for each window, and labeled with the
corresponding movement performed. We visually inspected the time
series and identified which movement was performed (if any) at each
time step. Then, as the window moved one step at a time, we classified
it based on the mode movement of the time steps it contained. That is,
the window’s true class matched the class of the majority of time steps.
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C. Movement classification

We used the Classification Learner app on MATLAB to train the
algorithm. We entered the frames’ true classes and the features asso-
ciated with them as the training data set and included all 15 features
as predictors. We opted for /-fold cross-validation specifying K =5,
and selected ensemble classifier Bagged Trees for the model type.

Bagged Trees emerged as a method of choice to overcome the
high variance of classification trees by means of bootstrapping and
aggregation [50], [51]. Briefly, through this algorithm, a multitude of
decision trees are generated by re-sampling the data set with replace-
ment. The majority vote of their predictions (the mode classification)
is recorded as the predicted response class. One of the advantages
of using Bagged Trees is the possibility of scoring the importance of
each feature in the classification process by estimating “out-of-bag”
error. In this approach, the instances that were not sampled when a
tree was generated are used to make a prediction. The mean prediction
error of this “out-of-bag” sample is computed and the variables which
produce the minimum error are considered the most important ones.

Classification was performed for features aggregated across
subjects, as well as for each subject individually. Our model reached an
accuracy of 93.1%. The true positive rate (TPR) was highest for elbow
flexion, reaching 92.9% success in classification (Table III). The algo-
rithm was least favored in classification of shoulder abduction to the
right and shoulder extension, where TPR reached 85.4%. The majority
of false negatives (66.5% of all false negatives and 4.5% of all obser-
vations) resulted from classification of movements as non-movements.

Out-of-bag analysis showed that the ranges of 3 and 6; ;, were
critical in the classification of movements (Figure 8). Among the
correlation coefficients, the one between 6, ;, and 6; r was most
important. The remaining correlations between joint angles and their
counterparts in the other arm were scored least important. Among
the ranges, 03 r contributed the least to classification.

Subject-specific results for the classification are summarized in
Table IV. For each subject, we report the accuracy of the classification
and the TPR for each movement. As expected, the classifier’s
performance in Table III was similar to the mean of its performance
on individual subjects in Table IV. The standard deviations extended
from 1.1% to 6.3%, suggesting robustness with respect to inter-subject
variability. The standard deviation was lowest for identification of
a static pose (1.1%) and then for counterclockwise vertical rotation
(2.2%). It was highest for wrist flexion (6.3%) followed by shoulder
abduction to the right and shoulder extension (5.7% for both).
Interestingly, even though the first author (Subject 1) had the most
experience with the system, the performance of the algorithm on her
data was virtually indistinguishable from others.

The classifier’s accuracy for individual subjects was generally
higher than 93.1%, with the exception of Subject 6 and Subject 8, who
reached 90.5% and 92.9% accuracy, respectively. In particular, these
subjects had the lowest TPR values for the majority of movements:
shoulder abduction to the left, shoulder abduction to the right, shoulder
extension, counterclockwise vertical rotation, and wrist extension.

V. USABILITY AND ENGAGEMENT

Subjects completed a questionnaire assessing the usability of the
system and their enjoyment from interacting with it. Specifically,
subjects were asked to score the extent to which they agree with the
following statements, on a 7-point Likert scale: “The platform was
intuitive to use”, “I learned easily how to use the platform”, and “I
enjoyed the activity”. The responses from Subject 1, the first author,
were excluded from the analysis. On average, subjects easily learned

how to use the system (5.7 & 1.1; mean =+ standard deviation) and
found that it was intuitive to use (4.8 £ 0.7). The subjects also
enjoyed the activity and rated it as 5.1 £ 0.9.

VI. DISCUSSION

The COVID-19 pandemic has placed unprecedented strain on
healthcare systems across the globe. In efforts to mitigate the spread
of the virus among healthy populations, in-person medical services
have been heavily restricted. Among the patients who were affected
by the COVID-19 decrees are stroke survivors with hemiparesis,
who require long term outpatient rehabilitation to regain muscle
strength, motor skill, and self-reliance. It has been known for several
decades that access to rehabilitation care is critically important for
recovery from stroke, yet, the unusual circumstances of COVID-19
accentuate this issue. To meet the rising demand for affordable
and accessible telerehabilitation, we developed a novel low-cost
system for telerehabilitation of stroke-induced disability. The system
mediates bimanual training, such that the intact limb aids movement
of the paretic limb. A Kinect sensor would track the patient’s skeleton
and an IMU would record the dowel’s orientation, toward objective
assessment of motor performance.

The data drawn from these sensors is used for implementation
of a natural user interface, enabling the user to participate in
engaging activities while performing bimanual movements. Bimanual
training is proven to effectively recover voluntary movements among
hemiparetic patients. It offers physiological and practical advantages,
and it is commonly prescribed for home-based rehabilitation [41],
[42]. Our system serves as one of the first examples for low-cost
telerehabilitation systems that employ this clinical approach. The
interface we created translates the user’s bimanual gestures to actions
in an environmental citizen science project. Specifically, the user is
able to analyze images of a polluted canal and help scientists map
important landmarks in its area [27], [28]. This approach capitalizes
on human intellect as an intrinsic motivator, and adds a sense of
accomplishment and empowerment to the actions performed, thereby
enhancing adherence to the rehabilitation regimen.

Importantly, we supplemented our system with a robust data
science-principled classification algorithm. Automating classification
of human movements represents another step toward a genuine
telerehabilitation paradigm, where sensor data that is sent to
practitioners is already processed and analyzed. The algorithm
classified bimanual movements objectively and reliably, reaching
93.1% accuracy. Notably, the 6.8% inaccuracy does not stem from
misclassification of movements as other movements but rather from
lack of sensitivity with respect to the existence of a movement. That
is, inaccuracy was majorly caused by classification of movements
as instances of no movement. For example, out of 1,936 instances of
shoulder abduction to the right, 275 were classified as no movement,
and only seven were erroneously misclassified as shoulder abduction
to the left or shoulder extension. Such an imperfect sensitivity likely
emerged from our use of a moving window scheme in the algorithm
training. Specifically, the true class of a window was defined by the
mode of the true classes it covered. At the beginning and ending of
each movement, it is tenable that time steps’ true classes within the
window were marginally divided (that is, eight time steps belonged to
one class and seven time steps belonged to another class). Classifying
the window as one of two classes introduces some arbitrariness into
the training. Therefore, the accuracy of our approach may be further
improved by refining this scheme and eliminating false negatives.

Reaching an accuracy of 93.1% offers compelling evidence in
favor of our approach. Notably, the position and angle of the Kinect



8 IEEE TRANSACTIONS ON MECHATRONICS, VOL. TBD, NO. TBD, MONTH 2021
Predicted class
No movement Shm}lder ‘t‘hr Should!er " Sho}llder Shoulder Vertical m[aﬁnrf Vertical B tation ‘Wrist flexion ‘Wrist extension Elbow flexion
duction (right) abduction (left) flexion extension
No movement 81 61 90 58 78 57 33 86
(0.4%) 0.3%) 0.5%) (0.4%) 0.3%) 0.4%) 0.3%) 0.2%) (0.5%)
Shoulder 275 6 6 1
abduction (right) (14.2%) (0.3%) 0.1%)
Shoulder 201 12
abduction (left) (11.4%) (0.7%) 87.9
% Shoulder flexion &9 il
< (9.5%) 89.8 (0.7%)
o Shoulder extension 2k 16 o 2 1 5
[} (13.2%) (1.0%) (0.1%) 0.1%) (0.3%)
= Vertical rotation 126 2 1 5 2
= (counterclockwise) (10.7%) (0.2%) (0.1%) (0.4%) (0.2%)
Vertical 127 1 2 3 5
rotation (clockwise) (10.0%) (0.1%) 02%) 9 (0.2%) (0.4%)
Wist flexion 4 2
(14.3%) (0.2%)
‘Wrist extension @ 6675 %) ( 1.132/‘;)
. 68 2 4
Elbow flexion (6.6%) 02%) (04%) 92.9

TABLE III: Table of confusion summarizing the success of the classification algorithm on all the subjects. Each row summarizes classification
for one movement whereby it breaks down classes to which its instances were assigned. For example, shoulder abduction to the right side
of the body was accurately identified as such in 1,654 of 1,936 instances. Thus, the TPR with respect to this movement is 85.4%. Across
all movements, 28,499 out of 30,571 instances were classified correctly, such that the algorithm reached a TPR of 93.1%.
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Fig. 8: Feature importance based on “out-of-bag” error estimation.

Subiect Accurac No Shoulder ab- Shoulder Shoulder ~ Shoulder  Vertical rotation Vertical rotation Wrist Wrist Elbow
) Y movement  duction (right) abduction (left) flexion extension  (counterclockwise) (clockwise) flexion extension  flexion
1 94.4% 96.9% 87.9% 93.7% 93.4% 81.8% 89.3% 90.9% 84.6% 96.8% 93.4%
2 94.0% 96.0% 88.0% 91.2% 91.7% 93.0% 89.4% 96.1% 80.0% 96.6% 96.3%
3 94.1% 96.2% 92.3% 93.4% 90.8% 83.6% 90.8% 94.9% 97.2% 96.2% 98.4%
4 94.1% 96.2% 95.7% 92.7% 95.1% 88.1% 91.5% 90.9% 89.4% 94.2% 93.3%
5 93.5% 96.8% 83.7% 90.9% 86.8% 88.0% 90.3% 89.3% 88.8% 86.8% 89.9%
6 90.5% 93.9% 76.7% 80.4% 87.0% 75.3% 87.0% 86.0% 94.2% 90.8% 87.3%
7 95.1% 97.9% 88.8% 94.1% 93.6% 90.6% 90.4% 82.1% 79.4% 88.1% 87.2%
8 92.9% 96.6% 89.2% 85.8% 88.9% 81.8% 84.9% 85.1% 86.4% 85.9% 95.8%

mean 93.5% 96.3% 87.8% 90.0% 90.1% 85.3% 89.2% 89.4% 87.5% 91.9% 92.7%
(std) (1.4%) (1.1%) (5.7%) (4.8%) (3.1%) (5.7%) (2.2%) (4.8%) (6.3%) (4.9%) (4.2%)
TABLEIV:

Subject-specific classification results. Accuracy refers to the overall success of the algorithm, computed as the number of instances that were
correctly classified, divided by the number of all instances. The remaining values refer to the TPR of each movement, computed as the number
of instances the specific movement was classified correctly, divided by the number of instances of that movement. Subject 1 is the first author.

sensor was shifted between experiments. In spite of this, inter-subject
variation was low, thereby suggesting that accurate and objective
classification can be achieved with our system in various settings.
Furthermore, inaccuracies are not due to familiarity with the system (or
lack thereof), as the algorithm did not perform significantly better with
data on the first author’s movements, relative to data on other subjects.

Surprisingly, we found that shoulder abduction, shoulder flexion,
and vertical rotation were classified with similar accuracy, even though
vertical rotation involves shoulder abduction and shoulder flexion to
some extent. While one would expect that this movement would be
most misclassified, this was not the case, offering further demonstra-
tion of the viability of data science-principled approaches in the study

of complex processes. Decision trees in particular, are capable of unrav-
eling unique, nonlinear relationships between a feature and a response
[52]. Future research could test the efficacy of alternative classifiers
such as Support Vector Machines [53], RUSBoot [54], and Subspace
K-Nearest Neighbor [55] in classifying bimanual movements.

A possible caveat in our use of PCA is its linear nature, which
may prompt the consideration of additional methods to extract
features. While literature posits that human motion consists of linearly
superimposed motor primitives [56], [57], nonlinear relationships may
arise between primitives in bimanual movements and in abnormal,
pathological movements in particular. Therefore, under these circum-
stances, nonlinear dimensionality reduction methods such as Isomap
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[58], diffusion maps [59], and principal manifolds [60] may better
identify the variables that distinguish one movement from another.
Furthermore, features that are based on complexity measures such as
fractal dimensions may be more distinctive and informative in assess-
ment of rehabilitation progress, and should be considered [61], [62].

Optimally, our system would solely rely on a Kinect sensor and a
dowel, without the need of an IMU sensor. While IMUs are affordable,
their incorporation requires customization, which would reduce
patients’ accessibility to our system. Unfortunately, our analysis of
feature importance indicated that measurements of the IMU pitch
and yaw were essential in the classification process. To overcome this
limitation, in our future efforts we will also explore alternative sets
of classifiers and features that are independent of the IMU, and can
maintain accuracy in its absence [49]. We may also explore alternative
interfaces. For example, strapping a smartphone to the dowel may
replace both the Kinect and IMU. Smartphones are embedded with
a multitude of sensors, including an IMU, which provide rich and
highly sensitive data. In this case, we will test the capacity of features
drawn from the sensors embedded in smartphones alone.

The use of the Kinect sensor in our system is central to our proposed
paradigm. Being a natural user interface, the Kinect offers great
flexibility with respect to the movements that can be implemented in
our system. In its current setting, the system aims to improve patients’
range of motion through bimanual training. However, one can take
advantage of the engaging citizen science software and tailor it to
task-oriented rehabilitation exercise [63]. Conceivably, users could
control cursor movements by practicing different gross motor skills
such as reaching, pulling, and sitting and standing, thereby providing
patients the multi-faceted treatment they require.

Finally, the feasibility of our approach must be challenged in a
clinical setting. Stroke patients may exhibit movement disorders
such as segmentation, spasticity, chorea, and adoption of maladaptive
movements [64], [65], [66]. Although studies have shown that
the Microsoft Kinect is highly precise [23], it remains unknown
whether stroke-related disorders can be automatically detected and
characterized. It is possible that more classification algorithms will be
required to distinguish between healthy and pathological movements.
We are presently conducting tests with patients and will promptly
implement our approach.

VII. CONCLUSION

Ubiquitous home-based rehabilitation is becoming increasingly
inevitable. We presented a low-cost telerehabilitation system that
can facilitate bimanual exercise in patients’ homes. We tested the
feasibility of our approach with eight healthy subjects, demonstrating
a strong promise toward future studies with both healthy individuals
and patients. In the next steps, we will conduct a study with stroke
patients to test the proposed approach in a clinical setting. The data
presented herein will serve as measures of healthy movement to
compare against pathological movements.

The efforts put forth represent a great stride in the field of rehabilita-
tion medicine. First of all, the telerehabilitation system we developed
focuses on bimanual training in a home-setting. Although bimanual
therapy is effective, it has not been tested in a telerehabilitation
paradigm. The system itself is affordable, intuitive to use, and easy
to set up by a patient independently at home. Second, the system
consists of an interactive and engaging natural user interface. Through
this design, we aim to add motive to exercise movements and enhance
patients’ adherence to their prescribed regimen. Third, a classification
algorithm is integrated into the system toward automatic assessment

of motor performance. Introducing data science methodologies into
human motion analysis could improve accuracy and benefit current
medical practices in telerehabiliation where data is acquired without
supervision. Although presented here in the context of stroke reha-
bilitation, the application of our technology is generalizable to other
conditions that require rehabilitation. Ultimately, it could accelerate
assessment and provide patients with more frequent feedback from
a therapist at a lower cost, thereby improving rehabilitation outcomes.
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