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A low-cost
telerehabilitation paradigm for bimanual training

Roni Barak-Ventura, Manuel Ruiz-Maŕın, Oded Nov, Preeti Raghavan, Maurizio Porfiri, Fellow, IEEE

Abstract—The COVID-19 pandemic has transformed daily life, as
individuals engage in social distancing to prevent the spread of the dis-
ease. Consequently, patients’ access to outpatient rehabilitation care
was curtailed and their prospect for recovery has been compromised.
Telerehabilitation has the potential to provide these patients with
equally-efficacious therapy in their homes. Using commercial gaming
devices with embedded motion sensors, data on movement can be col-
lected toward objective assessment of motor performance, followed by
training and documentation of progress. Herein, we present a low-cost
telerehabilitation system dedicated to bimanual exercise, wherein the
healthy arm drives movements of the affected arm. In the proposed
setting, a patient manipulates a dowel embedded with a sensor in front
of a Microsoft Kinect sensor. In order to provide an engaging environ-
ment for the exercise, the dowel is interfaced with a personal computer,
to serve as a controller. The patient’s gestures are translated into inter-
active actions in a custom-made citizen-science project. Along with the
system, we introduce an algorithm for classification of the bimanual
movements, whose inner workings are detailed in terms of the proce-
dures performed for dimensionality reduction, feature extraction, and
movement classification. We demonstrate the feasibility of our system
on eight healthy subjects, offering support to the validity of the algo-
rithm. These preliminary findings set forth the development of precise
motion analysis algorithms in affordable home-based rehabilitation.

Index Terms—data science, inertial measurement unit, Microsoft
Kinect, motion analysis, rehabilitation.

I. INTRODUCTION

The COVID-19 pandemic has led to extraordinary paradigm shifts

in healthcare systems worldwide. Human and material resources

have been majorly reallocated for treatment of those stricken by the

disease and non-urgent treatments have been suspended indefinitely

[1]. Social distancing and other measures taken to minimize the

spread of COVID-19 have further disrupted patients’ access to

healthcare services, negatively impacting their quality of life. For

example, the number of stroke patients admitted for outpatient therapy

plummeted by 50%-80%, suggesting that many patients who need

rehabilitation care were not receiving it [2]. This state of emergency

has highlighted the growing demand for telemedicine solutions that

enable professionally-supervised home-based healthcare.

The most common cause of post-stroke disability is hemiparesis,

or weakness on one side of the body, which limits limb mobility and
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encumbers the performance of daily activities. Consequently, many

stroke survivors experience reduced functional independence and

require costly caregiving. In order to recover muscle strength and

regain self-reliance, stroke survivors must adhere to a rehabilitation

regimen consisting of frequent high-intensity exercises [3], [4]. In

particular, rehabilitation during the first six months post-stroke has

been shown to be crucial for optimal recovery. Within this period,

stroke survivors achieve the greatest improvements in upper limb

function, ambulation, and speech [5], [6], [7]. Therefore, preserving

access to rehabilitation care at the beginning of the regimen is

especially important for stroke rehabilitation outcomes.
The need for a stroke telerehabilitation framework was recognized

over twenty years ago, when advancements in information technolo-

gies made the notion of telerehabilitation realizable [8], [9]. One of the

first examples of a web-based telerehabilitation system was presented

in 2002 by Reinkensmeyer et al. [10]. Java Therapy consists of a

haptic joystick interfaced with a series of recreational exercises that

quantify movement toward remote assessment of coordination and

motor control. Altogether, the system trains shoulder internal rotation

along with shoulder and elbow flexion. Another telerehabilitation

system, InMotion2 (the commercial version of the MIT Manus robot),

can operate interactively where the patient can train cooperatively

with a therapist or with another patient online [11]. This robot aims

to rehabilitate shoulder and elbow movements and can target the wrist

joint and fingers upon coupling with dedicated modules [12], [13].

Similarly, teleAutoCITE is a tabletop workstation affixed with an array

of tools for training of functional manual tasks [14]. Sensors embedded

in the tools measure the user’s performance, and a camera and a per-

sonal computer enable videoconferencing with a therapist. The system

provides constraint-induced therapy whereby exercise is performed

with the affected limb while the unaffected limb is constrained.
In contrast, bimanual training emerged as an effective clinical

approach for the recovery of coordinated movements using both

hands whereby the intact limb facilitates movement of the paretic

limb [15]. In spite of its proven effectiveness, few examples of

bimanual training exist in telerehabilitation of upper limb movement.

Empirical evidence shows that bimanual training helps reacquire

voluntary motion in paretic limbs through several physiological

mechanisms. Passive movement of an impaired limb could impart

“overflow” of electrical impulses to the affected muscles, thereby

promoting muscle activity and strength [16], [17]. Similarly, neural

pathways underlying bilateral movements may project to regions

of the primary motor cortex contralateral to the unaffected limb

and increase the likelihood of voluntary movement in the impaired

limb [18], [19]. Bimanual training is also advantageous for practical

reasons: bimanual skills are more abundant in activities of daily living

and relearning how to use both hands cooperatively will help patients

regain their independence more quickly [20].
Here, we present a low-cost telerehabilitation system dedicated to

bimanual training. The system consists of a Microsoft Kinect sensor,

and a wooden dowel embedded with an inertial measurement unit









BARAK-VENTURA et al.: A LOW-COST TELEREHABILITATION PARADIGM FOR BIMANUAL TRAINING 5

of movement and the type of movement performed. To standardize

the selection of segment boundaries and avoid false identification

of noise as movement, segments where defined as instances where

IMU rotational velocity exceeded 2 deg/s.
Within segment k, the time series of each of the 25 variables was

normalized with respect to its own standard deviation throughout

the segment; We use (̃·) to denote the normalized time series. The

normalized time series were used to create a covariance matrix for

segment k, denoted Uk (Figure 7b), that is,

Uk
ij=(ũki −¯̃uki )

T(ũkj−¯̃ukj ) (1)

where i,j=1, 2, ..., 25; 1, 2, ..., 25, and ¯̃u is the average value of

the time series of variable ũ.

The principal components of covariance matrix Uk were given

by the eigenvectors νk
n associated with its largest eigenvalues λkn,

Uk
ν
k
n=λknν

k
n, (2)

with n = 1,...,Nk
PCA where Nk

PCA is the number of eigenpairs

(eigenvalues and corresponding eigenvectors) that were retained for

further analysis. To pinpoint the dominant eigenvalues, a spectral

gap was identified as the largest difference between consecutive

eigenvalues sorted in a descending order (Figure 7c). Nk
PCA was

taken as the number of eigenvalues that preceded the gap, which

typically was equal to 1.

Once the dominant eigenvalues have been identified, we explored

the role of their corresponding eigenvectors. We sorted the absolute

values of the components of each eigenvector in a descending order

and defined a gap as the largest difference between consecutive

values. We retained for analysis the components of the eigenvector

that appeared before the gap (Figure 7d). In principle, the number

of components that preceded the gap could vary between subjects,

since individuals move very differently from one another.

Once the components were identified for all segments in all

subjects, we determined the most common components. Focusing

Sensor Variable Observation Notation

Microsoft
Kinect

u1 right shoulder abduction angle θ1,R
u2 right shoulder flexion angle θ2,R
u3 right elbow flexion angle θ3,R
u4 right wrist flexion angle θ4,R
u5 left shoulder abduction angle θ1,L
u6 left shoulder flexion angle θ2,L
u7 left elbow flexion angle θ3,L
u8 left wrist flexion angle θ4,L
u9 right shoulder abduction velocity θ̇1,R
u10 right shoulder flexion velocity θ̇2,R
u11 right elbow flexion velocity θ̇3,R
u12 right wrist flexion velocity θ̇4,R
u13 left shoulder abduction velocity θ̇1,L
u14 left shoulder flexion velocity θ̇2,L
u15 left elbow flexion velocity θ̇3,L
u16 left wrist flexion velocity θ̇4,L

IMU

u17 roll angle γ
u18 pitch angle β
u19 yaw angle α
u20 rotational velocity about u-axis ωx

u21 rotational velocity about y-axis ωy

u22 rotational velocity about z-axis ωy

u23 gravitational acceleration along x-axis gx
u24 gravitational acceleration along y-axis gy
u25 gravitational acceleration along z-axis gz

TABLE I: Summary

of the variables collected by the Microsoft Kinect and inertial

measurement unit. A subscript L or R indicates the left or right arm.

Movement Performed Associated Variables
Shoulder abduction (left) θ1,R, θ1,L

Shoulder abduction (right) θ1,R, θ1,L

Shoulder flexion θ2,R, θ2,L

Shoulder extension θ2,R, θ2,L

Vertical rotation (counterclockwise) α

Vertical rotation (clockwise) α

Wrist flexion β

Wrist extension β

Elbow flexion θ3,R, θ3,L

TABLE II: Summary

of the PCA results. The number of prominent variables is determined

based on the relative size of the eigenvector’s components.

on one movement type at a time, we aggregated the principal

components from all segments and all subjects and kept a count

of the number of times each was observed (Figure 7e). We then

selected two components, one for each arm, to describe bimanual

movements. For example, 261 components were aggregated from

all subjects for horizontal shoulder abduction to the left. The most

common component in the right arm was θ1,R (observed 32 times)

and the most common component in the left arm was θ1,L (observed

31 times). Therefore, those components were deemed principal for

left horizontal shoulder abduction. In the case where the most salient

variables were associated with the IMU on the dowel, we retained only

one of them toward a minimalistic representation of the movements.

Results of the PCA are summarized in Table II. We found that

shoulder abduction in either direction is characterized by changes in

θ1,L and θ1,R. Shoulder flexion and extension were strongly associ-

ated with changes in θ2,R and θ2,L. As expected, variations in α were

predominant in the vertical rotation of the dowel in either direction.

Wrist flexion was characterized by variation in β. Finally, elbow

flexion was characterized by appreciable changes in θ3,R and θ3,L.

B. Feature extraction

The PCA informed us of the salient variables in each movement.

Variables carrying the highest value explained the majority of variance

and therefore contained the most information in each movement. We

used these characteristic variables to create discriminating statistics,

which would serve as the features to train the classification algorithm

with. Given knowledge of the movement that was performed, the

algorithm would explore different relationships between the features

that distinguish one movement from another [49].

Importantly, we observed that the eigenvector components

associated with α were prominent during clockwise and

counterclockwise vertical rotation. Similarly, β was prominent

during wrist flexion and extension. These variables may be uniquely

characteristic for the aforementioned movements, and therefore, their

ranges were selected to serve as features. The remaining movements

performed in this study were associated with changes in horizontal

shoulder abduction, shoulder flexion and extension, or elbow flexion

angles. The ranges for these six variables were also selected to serve

as features, reaching a total of eight range values.

To distinguish between the movements with a few features that

encapsulate in part these combinations, we chose to use correlation

coefficients, relating two variables at a time as additional features.

We considered the correlations between each of the joints with their

counterparts in the other arm (θ1,R and θ1,L, θ2,R and θ1,L, and θ3,R
and θ3,L). We also assessed the correlations between ipsilateral and
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C. Movement classification

We used the Classification Learner app on MATLAB to train the

algorithm. We entered the frames’ true classes and the features asso-

ciated with them as the training data set and included all 15 features

as predictors. We opted for K-fold cross-validation specifying K=5,

and selected ensemble classifier Bagged Trees for the model type.

Bagged Trees emerged as a method of choice to overcome the

high variance of classification trees by means of bootstrapping and

aggregation [50], [51]. Briefly, through this algorithm, a multitude of

decision trees are generated by re-sampling the data set with replace-

ment. The majority vote of their predictions (the mode classification)

is recorded as the predicted response class. One of the advantages

of using Bagged Trees is the possibility of scoring the importance of

each feature in the classification process by estimating “out-of-bag”

error. In this approach, the instances that were not sampled when a

tree was generated are used to make a prediction. The mean prediction

error of this “out-of-bag” sample is computed and the variables which

produce the minimum error are considered the most important ones.

Classification was performed for features aggregated across

subjects, as well as for each subject individually. Our model reached an

accuracy of 93.1%. The true positive rate (TPR) was highest for elbow

flexion, reaching 92.9% success in classification (Table III). The algo-

rithm was least favored in classification of shoulder abduction to the

right and shoulder extension, where TPR reached 85.4%. The majority

of false negatives (66.5% of all false negatives and 4.5% of all obser-

vations) resulted from classification of movements as non-movements.

Out-of-bag analysis showed that the ranges of β and θ1,L were

critical in the classification of movements (Figure 8). Among the

correlation coefficients, the one between θ1,L and θ1,R was most

important. The remaining correlations between joint angles and their

counterparts in the other arm were scored least important. Among

the ranges, θ3,R contributed the least to classification.

Subject-specific results for the classification are summarized in

Table IV. For each subject, we report the accuracy of the classification

and the TPR for each movement. As expected, the classifier’s

performance in Table III was similar to the mean of its performance

on individual subjects in Table IV. The standard deviations extended

from 1.1% to 6.3%, suggesting robustness with respect to inter-subject

variability. The standard deviation was lowest for identification of

a static pose (1.1%) and then for counterclockwise vertical rotation

(2.2%). It was highest for wrist flexion (6.3%) followed by shoulder

abduction to the right and shoulder extension (5.7% for both).

Interestingly, even though the first author (Subject 1) had the most

experience with the system, the performance of the algorithm on her

data was virtually indistinguishable from others.

The classifier’s accuracy for individual subjects was generally

higher than 93.1%, with the exception of Subject 6 and Subject 8, who

reached 90.5% and 92.9% accuracy, respectively. In particular, these

subjects had the lowest TPR values for the majority of movements:

shoulder abduction to the left, shoulder abduction to the right, shoulder

extension, counterclockwise vertical rotation, and wrist extension.

V. USABILITY AND ENGAGEMENT

Subjects completed a questionnaire assessing the usability of the

system and their enjoyment from interacting with it. Specifically,

subjects were asked to score the extent to which they agree with the

following statements, on a 7-point Likert scale: “The platform was

intuitive to use”, “I learned easily how to use the platform”, and “I

enjoyed the activity”. The responses from Subject 1, the first author,

were excluded from the analysis. On average, subjects easily learned

how to use the system (5.7 ± 1.1; mean ± standard deviation) and

found that it was intuitive to use (4.8 ± 0.7). The subjects also

enjoyed the activity and rated it as 5.1 ± 0.9.

VI. DISCUSSION

The COVID-19 pandemic has placed unprecedented strain on

healthcare systems across the globe. In efforts to mitigate the spread

of the virus among healthy populations, in-person medical services

have been heavily restricted. Among the patients who were affected

by the COVID-19 decrees are stroke survivors with hemiparesis,

who require long term outpatient rehabilitation to regain muscle

strength, motor skill, and self-reliance. It has been known for several

decades that access to rehabilitation care is critically important for

recovery from stroke, yet, the unusual circumstances of COVID-19

accentuate this issue. To meet the rising demand for affordable

and accessible telerehabilitation, we developed a novel low-cost

system for telerehabilitation of stroke-induced disability. The system

mediates bimanual training, such that the intact limb aids movement

of the paretic limb. A Kinect sensor would track the patient’s skeleton

and an IMU would record the dowel’s orientation, toward objective

assessment of motor performance.
The data drawn from these sensors is used for implementation

of a natural user interface, enabling the user to participate in

engaging activities while performing bimanual movements. Bimanual

training is proven to effectively recover voluntary movements among

hemiparetic patients. It offers physiological and practical advantages,

and it is commonly prescribed for home-based rehabilitation [41],

[42]. Our system serves as one of the first examples for low-cost

telerehabilitation systems that employ this clinical approach. The

interface we created translates the user’s bimanual gestures to actions

in an environmental citizen science project. Specifically, the user is

able to analyze images of a polluted canal and help scientists map

important landmarks in its area [27], [28]. This approach capitalizes

on human intellect as an intrinsic motivator, and adds a sense of

accomplishment and empowerment to the actions performed, thereby

enhancing adherence to the rehabilitation regimen.
Importantly, we supplemented our system with a robust data

science-principled classification algorithm. Automating classification

of human movements represents another step toward a genuine

telerehabilitation paradigm, where sensor data that is sent to

practitioners is already processed and analyzed. The algorithm

classified bimanual movements objectively and reliably, reaching

93.1% accuracy. Notably, the 6.8% inaccuracy does not stem from

misclassification of movements as other movements but rather from

lack of sensitivity with respect to the existence of a movement. That

is, inaccuracy was majorly caused by classification of movements

as instances of no movement. For example, out of 1,936 instances of

shoulder abduction to the right, 275 were classified as no movement,

and only seven were erroneously misclassified as shoulder abduction

to the left or shoulder extension. Such an imperfect sensitivity likely

emerged from our use of a moving window scheme in the algorithm

training. Specifically, the true class of a window was defined by the

mode of the true classes it covered. At the beginning and ending of

each movement, it is tenable that time steps’ true classes within the

window were marginally divided (that is, eight time steps belonged to

one class and seven time steps belonged to another class). Classifying

the window as one of two classes introduces some arbitrariness into

the training. Therefore, the accuracy of our approach may be further

improved by refining this scheme and eliminating false negatives.
Reaching an accuracy of 93.1% offers compelling evidence in

favor of our approach. Notably, the position and angle of the Kinect
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[58], diffusion maps [59], and principal manifolds [60] may better

identify the variables that distinguish one movement from another.

Furthermore, features that are based on complexity measures such as

fractal dimensions may be more distinctive and informative in assess-

ment of rehabilitation progress, and should be considered [61], [62].

Optimally, our system would solely rely on a Kinect sensor and a

dowel, without the need of an IMU sensor. While IMUs are affordable,

their incorporation requires customization, which would reduce

patients’ accessibility to our system. Unfortunately, our analysis of

feature importance indicated that measurements of the IMU pitch

and yaw were essential in the classification process. To overcome this

limitation, in our future efforts we will also explore alternative sets

of classifiers and features that are independent of the IMU, and can

maintain accuracy in its absence [49]. We may also explore alternative

interfaces. For example, strapping a smartphone to the dowel may

replace both the Kinect and IMU. Smartphones are embedded with

a multitude of sensors, including an IMU, which provide rich and

highly sensitive data. In this case, we will test the capacity of features

drawn from the sensors embedded in smartphones alone.

The use of the Kinect sensor in our system is central to our proposed

paradigm. Being a natural user interface, the Kinect offers great

flexibility with respect to the movements that can be implemented in

our system. In its current setting, the system aims to improve patients’

range of motion through bimanual training. However, one can take

advantage of the engaging citizen science software and tailor it to

task-oriented rehabilitation exercise [63]. Conceivably, users could

control cursor movements by practicing different gross motor skills

such as reaching, pulling, and sitting and standing, thereby providing

patients the multi-faceted treatment they require.

Finally, the feasibility of our approach must be challenged in a

clinical setting. Stroke patients may exhibit movement disorders

such as segmentation, spasticity, chorea, and adoption of maladaptive

movements [64], [65], [66]. Although studies have shown that

the Microsoft Kinect is highly precise [23], it remains unknown

whether stroke-related disorders can be automatically detected and

characterized. It is possible that more classification algorithms will be

required to distinguish between healthy and pathological movements.

We are presently conducting tests with patients and will promptly

implement our approach.

VII. CONCLUSION

Ubiquitous home-based rehabilitation is becoming increasingly

inevitable. We presented a low-cost telerehabilitation system that

can facilitate bimanual exercise in patients’ homes. We tested the

feasibility of our approach with eight healthy subjects, demonstrating

a strong promise toward future studies with both healthy individuals

and patients. In the next steps, we will conduct a study with stroke

patients to test the proposed approach in a clinical setting. The data

presented herein will serve as measures of healthy movement to

compare against pathological movements.

The efforts put forth represent a great stride in the field of rehabilita-

tion medicine. First of all, the telerehabilitation system we developed

focuses on bimanual training in a home-setting. Although bimanual

therapy is effective, it has not been tested in a telerehabilitation

paradigm. The system itself is affordable, intuitive to use, and easy

to set up by a patient independently at home. Second, the system

consists of an interactive and engaging natural user interface. Through

this design, we aim to add motive to exercise movements and enhance

patients’ adherence to their prescribed regimen. Third, a classification

algorithm is integrated into the system toward automatic assessment

of motor performance. Introducing data science methodologies into

human motion analysis could improve accuracy and benefit current

medical practices in telerehabiliation where data is acquired without

supervision. Although presented here in the context of stroke reha-

bilitation, the application of our technology is generalizable to other

conditions that require rehabilitation. Ultimately, it could accelerate

assessment and provide patients with more frequent feedback from

a therapist at a lower cost, thereby improving rehabilitation outcomes.
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