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Stacking two graphene layers twisted by the magic angle θ ≈ 1.1◦ generates flat energy bands, which in turn
catalyzes various strongly correlated phenomena depending on filling and sample details. At charge neutrality,
transport measurements reveal superficially mundane semimetallicity (as expected when correlations are weak)
in some samples yet robust insulation in others. We propose that the interplay between interactions and disorder
admits either behavior, even when the system is strongly correlated and locally gapped. Specifically, we argue
that strong interactions supplemented by weak, smooth disorder stabilize a network of gapped quantum valley
Hall domains with spatially varying Chern numbers determined by the disorder landscape—even when an
entirely different order is favored in the clean limit. Within this scenario, sufficiently small samples that realize a
single domain display insulating transport characteristics. Conversely, multidomain samples exhibit re-emergent
massless Dirac fermions formed by gapless domain-wall modes, yielding semimetallic behavior except on the
ultralong scales at which localization becomes visible. We discuss experimental tests of this proposal via local
probes and transport. Our results highlight the crucial role that randomness can play in ground-state selection of
twisted heterostructures, an observation that we expect to have further ramifications at other fillings.
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I. INTRODUCTION

The discovery of superconductivity and correlated insula-
tors in magic-angle twisted bilayer graphene (mTBG) [1,2]
opened a fascinating new chapter in the field of strongly inter-
acting quantum matter. The “magic” stems from the fact that
upon twisting the two graphene layers by an angle θ ≈ 1.1◦

from one another, the bands immediately above and below
the charge neutrality point become exceptionally flat [3,4]—
bringing interactions center stage. Accounting for spin and
valley degrees of freedom, each of these two flat bands is
essentially fourfold degenerate. Correlated physics, including
superconductivity, thus naturally arises when the number of
charge carriers per moiré unit cell is between ν = −4 (four
holes) and ν = +4 (four electrons).

The observed phenomenology of mTBG depends sensi-
tively on sample details. Cao et al. [1,2] originally observed
correlated insulating states at ν = ±2 along with supercon-
ducting domes upon doping away from the ν = −2 insulator.
Near the charge neutrality point at ν = 0, the conductance ex-
hibited a V-shaped suppression indicative of semimetallicity.
Noninteracting band-theory calculations [4] predict massless
Dirac fermions at charge neutrality, provided the system pre-
serves C2T symmetry, with C2 a twofold rotation and T time
reversal [5–8]; the latter observation thus at first sight suggests
weak correlations at ν = 0. The magic-angle device examined
by Yankowitz et al. [9] additionally exhibited superconductiv-
ity adjacent to the ν = +2 insulator and a resistive correlated
state at ν = +3. Near charge neutrality, transport again ap-

peared consistent with the semimetallic behavior expected
from band theory.

A second class of mTBG systems arises upon aligning
the hexagonal boron nitride (hBN) substrate with one of
the graphene sheets [10,11]. The alignment appears to un-
derlie strikingly different correlated physics: an absence of
superconductivity, removal of the ν = −2 insulator, weak
resistive peaks at ν = +2 instead of robust insulation, and
a quantum anomalous Hall state at ν = +3. Furthermore,
at charge neutrality, the system becomes strongly insulating
instead of semimetallic. The behavior at charge neutrality
is, however, yet again consistent with band theory. Indeed,
alignment-induced breaking of the C2 symmetry renders the
Dirac fermions massive, yielding a band gap at ν = 0. Ex-
plicit C2 breaking has also been proposed as a catalyst for the
observed quantum anomalous Hall state [12,13].

Still different phenomenology emerges in the ultra-
homogeneous samples studied by Lu et al. [14]. These sam-
ples featured resistive peaks evincing either well-developed or
incipient insulators at all integer fillings ν = 0,±1,±2,±3,
as well as additional superconducting domes beyond those
reported previously. Notably, the strongest insulating state
within the flat band manifold occurred at charge neutrality,
naively suggesting alignment with the hBN substrate as in
Refs. [10,11]. Several factors challenge this interpretation,
however. First, Lu et al. made no attempt to align the hBN,
and it is unlikely to occur at random. Second, hBN-aligned
samples and those of Lu et al. realize a largely disparate set of
phenomena, suggesting against a commonmicroscopic origin.
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Finally, the gap reported by Lu et al. [14] dwarfs by roughly
an order of magnitude that measured in hBN-aligned mTBG
[11], making its formation by explicit symmetry-breaking
seem unlikely in comparison. Thus the insulating behavior
observed at all of the fillings indicated above—including ν =
0—seems most naturally rooted in strong correlations.

A conservative interpretation of the available charge-
neutrality transport data is that greater inhomogeneity in
the samples from Refs. [1,2,9] merely obliterates the strong
correlations operative at ν = 0 in the Lu et al. samples.
Such a viewpoint is supported by the fact that significant
“twist-angle disorder” has been observed by multiple groups
[1,2,9,15–19]; moreover, deviations from the magic angle
locally enhance the flat band dispersion [20], potentially di-
minishing correlation effects. Scanning tunneling microscopy
(STM) measurements from Refs. [15–18], however, do not
simply fit this picture. All these STM studies observed lo-
cal correlation effects at charge neutrality, manifested by a
pronounced splitting of the flat band van Hove peaks upon
approaching ν = 0 and, in Ref. [18], evidence of a hard gap
at charge neutrality.1 Much subtler signatures of correlated
states were also seen at other integer fillings (typically most
prominently at ν = +2). From a local perspective, it therefore
appears that correlations in the STM samples are actually
strongest at ν = 0.

In this paper, we propose a unifying explanation for the
diverse phenomenology observed to date in mTBG at charge
neutrality. Our scenario posits that strong correlations are
ubiquitous—even in samples that observe the semimetallic
behavior expected from band theory—with disorder playing
a secondary but still crucial role. We specifically assume
that in a perfectly clean infinite system, interactions favor, or
very nearly favor, correlated states that spontaneously break
C2T symmetry in a way that yields Chern number C = ±1
for a given spin/valley sector. This assumption is bolstered
by existing numerical simulations [14,16,21,22] and justified
further below. Among the many possible insulators, only two
preserve translation symmetry, spin rotation symmetry, and
time reversal: the pair of quantum valley Hall (QVH) states
[23–31] withC = +1 for both spins in one valley andC = −1
for both spins in the other valley or vice versa. Note that C2
transforms the QVH states into one another; hence they are
exactly degenerate provided C2 is not explicitly broken.

Imagine now turning on smooth, nonmagnetic disorder
(arising from twist-angle inhomogeneity, strain, etc.) that
explicitly violates the infinite system’s C2 symmetry but pre-
serves it in an average sense. Within the manifold specified
above, QVH states are unique in that their order parameter
directly couples to the disorder potential—allowing the sys-
tem to efficiently gain energy by locally forming one of those
two phases. We further assume that the energy gain outweighs
any energy cost (should one exist) for forming QVH order in
the clean limit. Under these circumstances, the infinite system

1The issue of hBN alignment is subtle given the different nature of
these experiments. Nevertheless, alignment is expected to enhance
the van Hove peak splitting independent of filling, whereas the split-
ting observed by STM is significantly larger at charge neutrality
compared to when the bands are fully filled.

(a)

(b)

FIG. 1. Random tiling of quantum valley Hall states in a system
where C2 is (a) preserved on average and (b) explicitly broken (e.g.,
by hBN alignment). For simplicity, we show the domain structure
only for a single valley. Blue regions carry Chern number C = +1
for both spins, whereas orange regions carry Chern number −1. The
arrows represent the two chiral edge modes (per spin) that traverse
the domain boundaries. The domain structure corresponding to the
valley sector not depicted here is simply obtained by exchanging the
colors and reversing edge modes in (a) and (b).

exhibits a random tiling of the two QVH states, details of
which are determined by the interplay between interactions
and the disorder landscape; see Fig. 1(a) for an illustration.
Similar domain structures have been discussed in several
other contexts, e.g., in systems with valley Hall nematic order
[32,33] or as a source of non-Abelian PH-Pfaffian topological
order [34–36].

Crucially, the infinite system is locally gapped within the
QVH domains but is not entirely electrically inert. Each
domain wall binds four right-moving and four left-moving
charge-carrying modes, reflecting the fact that the Chern num-
bers for the spin/valley sectors change by ±2 upon passing
between adjacent domains. Smoothness of the disorder po-
tential suppresses scattering among these modes and thus
justifies treating the spin/valley sectors as decoupled (to a first
approximation). In this limit, the system realizes four copies
of a Chalker-Coddington network model [37] describing an
integer-quantum-Hall (IQH) plateau transition at which the
Hall conductivity changes by δσxy = ±2e2/h [38,39]. This
set of plateau transitions can be described by eight massless
Dirac fermions (two per sector) with disorder acting within
each cone [40,41]. Hence, essentially the same low-energy
physics expected from band theory emerges from a strongly
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Dirac-like network modeluniform quantum valley Hall

 

Anderson localized
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FIG. 2. Phase diagram versus system size L for a given disorder landscape. Left panel: With L below the typical domain size ξdom, a single
domain is realized. Here each valley exhibits Chern number C = +1 (depicted in blue) or C = −1 (depicted in orange) throughout the entire
sample, yielding insulating transport as observed by Lu et al. [14]. Central panel: When L � ξdom, multiple domains may be present within a
single sample. The domain structure results in a percolating network of gapless edge modes that underlies the Dirac-like conductance seen by
Cao et al. [1,2] and Yankowitz et al. [9]. Right panel: When L exceeds the localization length ξloc the sample localizes and ceases to conduct.

correlated framework! Residual scattering among the domain-
wall modes generates intercone disorder that produces local-
ization, but the localization lengths can be arbitrarily long.

We emphasize that strong correlations form the bedrock of
the scenario outlined above. Without interactions and in the
absence of explicit net C2T -breaking, the fate of the system
depends sensitively on the nonuniversal details of the disorder.
The QVH state is but one among many potential phases,
both gapped and gapless, that disorder could locally favor.
Moreover, even if local QVH order happened to develop, the
gap would be set by disorder and could be exceedingly small.
In contrast, by inducing the spontaneous breaking of C2T ,
interactions select a small subset of energetically competitive
states in our scenario. Disorder then plays a subordinate role
by favoring one of the two QVH orders in that set, thereby
generating the domain structure. The local gap protecting the
insulating domains is determined primarily by interactions
rather than disorder.

Let us now revisit experiments in light of our proposed
picture. Locally probing the QVH domains should reveal
signatures of a correlation-driven gapped spectrum (possibly
dressed with disorder-induced subgap states), consistent with
STM experiments [15–18]. The outcome of global transport
measurements depends on the ratio of sample size L to the typ-
ical domain size ξdom that would occur in an infinite system.
For homogeneous systems such that L/ξdom � 1, transport
probes essentially a single domain, yielding insulating be-
havior as observed by Lu et al. [14]. (Strong intervalley
scattering induced by the sample boundary is expected to
suppress edge conduction). Conversely, for more-disordered
samples with L/ξdom � 1, transport probes many domains;
here the massless Dirac fermions emerging from the gapless
domain walls underpin semimetallic conduction as measured
in Refs. [1,2,9]. See Fig. 2 for a summary. We can also
make contact with the alignment-induced insulation observed
in Refs. [10,11]. Turning on hBN alignment supplements
the disorder landscape with a uniform C2-breaking potential
that shrinks the area occupied by one of the QVH states
and expands the area of the other, as shown in Fig. 1(b).
Domain walls then no longer percolate, thereby gapping the
re-emergent massless Dirac fermions and producing insulat-
ing transport when L/ξdom � 1.

The arguments outlined above are justified through a
Landau-Ginzburg theory describing the QVH order parame-
ter. With the inclusion of disorder, we arrive at a classical 2D
random-field Ising model (RFIM), which allows us to estimate
the scaling of the typical domain size as a function of system
parameters. Through a simple extension of this formulation,
we can further study what occurs when a different phase that
does not couple directly to disorder is energetically favored
over the QVH state in the clean limit. As expected, when the
(clean) ground-state energy splitting between the two states is
sufficiently small—in a sense that we quantify with our Ising
formulation—QVH order prevails throughout the majority of
the sample.

Our scenario for ubiquitous strong correlations at charge
neutrality is not only compatible with existing charge-
neutrality data but further leads to falsifiable predictions both
for STM and transport as described in Sec. VI. We also
propose that two elements of this work may have broader
applications in the study of mTBG. First, disorder can play a
key role in discriminating among nearly degenerate correlated
states. And second, disorder need not obliterate correlations
but can mask them as seen by global transport experiments.

The rest of the paper is organized as follows. We begin by
reviewing the low-energy theory and establishing our conven-
tions for twisted bilayer graphene in Sec. II. Next, Sec. III
describes the fate of noninteracting mTBG Dirac fermions at
charge neutrality in the presence of disorder. We then discuss
the clean interacting theory in Sec. IV. The interaction form
is first outlined (Sec. IVA), and then used to argue that the
QVH state is energetically competitive at charge neutrality
[Secs. IVB and IVC]. Our main thesis is presented in detail in
Sec. V, where each of the three regions illustrated in Fig. 2 is
described in turn. We conclude in Sec. VI by summarizing and
highlighting future directions. Supplemental details appear in
numerous Appendices.

II. REVIEW OF LOW-ENERGY THEORY

In this section, we set the stage by reviewing the low-
energy physics of mTBG at charge neutrality in the absence
of interactions and disorder.
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(a) (b)

(c)

FIG. 3. (a) Cartoon representation of twisted bilayer graphene.
The top and bottom graphene sheets are, respectively, represented
by the orange and turquoise honeycomb lattices. The light, orange-
tinted AA regions form a triangular superlattice, each of which is
surrounded by a darker hexagonal rim whose vertices correspond
to alternating AB and BA stacking regions. (b) Representation of
the microscopic and moiré Brillouin zones. The large orange and
turquoise hexagons represent the microscopic Brillouin zones of the
underlying graphene layers. The moiré Brillouin zones, shown in
purple, are defined by the distance between the theK points of the top
and bottom layers. The size of the twist angles in both (a) and (b) has
been exaggerated for clarity. (c) Flat bands corresponding to one K-
valley as calculated using the continuummodel along the momentum
line cut shown in purple in (b). Here, we took θ = 1.05◦. Lattice
relaxation is mimicked by decreasing the AA tunneling amplitude
w0 relative to the AB tunneling amplitude w1. In particular, we have
w0 = 85meV and w1 = 110meV [6,42,43]. The inset zooms in on
the Dirac cones at κ and −κ.

A. Continuum model

Consider two monolayer-graphene sheets stacked such that
they are twisted relative to one another by an angle θ , as
shown in Fig. 3(a) (for an arbitrary angle θ ). The twist dramat-
ically reduces the system’s translational symmetry. While true
translational symmetry requires special commensurate angles,
when the twist angle is small, an effective moiré translational
symmetry emerges; the resulting triangular superlattice of
orange AA regions, each surrounded by a hexagon of alter-
nating AB and BA regions, is clearly visible in the cartoon of
Fig. 3(a). In this case, the band structure at charge neutrality
descends from the band structure of the individual graphene
layers in a relatively straightforward manner when described
in momentum space [3,4]. Figure 3(b) shows the Brillouin
zones (BZs) of the top and bottom graphene monolayers after
applying a rotation by an angle +θ/2 and −θ/2, respectively.
The reciprocal lattice vectors of the resulting moiré pattern
are given by G� = Rθ/2[G�] − R−θ/2[G�] where G1,2 denote

the reciprocal lattice vectors of the unrotated graphene sheets
and Rφ[v] rotates a vector v by an angle φ. The length of the
moiré reciprocal lattice vectors, |G�|, is therefore suppressed
relative the graphene reciprocal lattice vectors by a factor of
2 sin (θ/2) ∼ θ , making it very small by assumption. Equiva-
lently, the moiré lattice constant is enlarged by ∼1/θ relative
to the graphene lattice constant. We let ±Kt = Rθ/2[±K]
and ±Kb = R−θ/2[±K] denote the ±K points of the top and
bottom layers, respectively.

As tunneling between the two layers turns on, states at
momentum Kt + k on the top layer mix with those at mo-
mentum Kb + k + q� + G on the top layer, where G is a
moiré reciprocal lattice vector and q� = R2π (�−1)/3[Kt − Kb],
� = 1, 2, 3 [see Fig. 3(b)]. Since the moiré BZ is much smaller
than the BZ of monoloyer graphene, mixing states proximate
to K with those proximate to −K is an extremely high-order
tunneling process; the two valleys of the original graphene
monolayers thus effectively decouple. This decoupling is par-
ticularly convenient as it allows us to express the full band
HamiltonianHcont as a sum of terms for the K and−K valleys:
Hcont = H+ + H−. For convenience, we explicitly reproduce
H+ in Appendix A. Our ability to decompose the Hamiltonian
into K-valley sectors is equivalent to the emergence of a U(1)
“valley” symmetry, which we denote U(1)v .

In addition to moiré translations and U(1)v , the continuum
model preserves the SU(2)s spin rotation symmetry (neglect-
ing spin-orbit coupling), time reversal T , C2 rotations by π ,
C3 rotations by 2π/3, and a mirror symmetry My that takes
(x, y) → (x,−y) and interchanges the two layers. The latter
three should be regarded as emergent symmetries similar to
U(1)v . In our conventions, the time-reversal operator T does
not flip the electronic spins and accordingly obeys T 2 = +1.
Both T and C2 interchange the two valleys and hence are not
symmetries of the individual single-valley Hamiltonians H±.
Rather than keep track of these two symmetries separately, it
is therefore convenient to consider T along with the compos-
ite operation C2T —which commutes with U(1)v .

The momenta Kt and Kb map to the corners of the moiré
BZ. In what follows, we denote these momenta by ±κ to
distinguish them from the ±K-valleys of the microscopic
graphene layers. Provided the C2T and C3 symmetries are
present, the massless Dirac cones at Kt,b for the microscopic
graphene layers evolve into massless Dirac cones at ±κ even
once tunneling is turned on. This crucial property follows
from the fact that the Berry phase enclosed within any loop
is quantized to 0 or π (mod 2π ) when C2T is preserved. Since
a Dirac point necessarily exhibits Berry phase π , the Dirac
cones at +κ and −κ are locally protected against a mass [5,6].
Breaking C3 can shift the location of the Dirac cones, but
cannot gap them. Importantly, since both cones in H+ (H−)
descend from the Dirac cones at Kt,b (−Kt,b) in a continu-
ous fashion, they possess the same chirality [7,8]—thereby
obstructing the development of a two-band, single K-valley
tight-binding model in which all symmetries are realized in a
local fashion [6,44,45].

B. Flat bands

The previous subsection highlighted generic features of
small-angle twisted bilayer graphene. At the magic angle,
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the velocity of the massless Dirac fermions becomes very
small, and the bands immediately above and below the charge
neutrality point separate from the remaining bands by a finite
energy (provided lattice relaxation is incorporated [6,42,43]);
see Fig. 3(c). The resulting energetically isolated “flat bands”
are each (essentially) fourfold degenerate, reflecting spin and
valley degrees of freedom. We now describe the flat band
Hamiltonian by first focusing on the +K valley and subse-
quently incorporating the −K valley.

Let cα j (k) denote momentum-space annihilation operators
associated with the flat bands at valley +K; here α = ↑,↓
is a spin index and j = 1, 2 is a band index. Reference [46]
showed that these operators can be defined such that they
transform under C2T via

C2T : c(k) → ηxc(k), i → −i, (1)

with Pauli matrices ηx,y,z that act on the band indices. (Here
and below we often suppress indices for notational simplic-
ity). It follows that the C2T -invariant flat band Hamiltonian
takes the form

H0 =
∫
k∈BZ

c†(k)[h0(k) + hx(k)ηx + hy(k)ηy]c(k). (2)

Next we project onto the massless Dirac fermions at ±κ in the
moiré BZ by defining Dirac spinors ψ1α j (q) ∼ cα j (+κ + q)
andψ2α j (q) ∼ cα j (−κ + q) and retaining only small qmodes.
The fact that the massless Dirac cones exhibit the same chiral-
ity at ±κ implies that hx(±κ + q) ∼ +qx and hy(±κ + q) ∼
+qy. Upon shifting the energy such that h0(±κ) = 0 and
reverting to real space, the low-energy Hamiltonian becomes

HD = −
∫
r
vFψ†(i∂xη

x + i∂yη
y)ψ. (3)

The Fermi velocity vF has been assumed isotropic and iden-
tical for both ±κ Dirac cones, which is guaranteed when all
symmetries outlined earlier are present.

An insulating phase at charge neutrality may only be ob-
tained by either breaking the C2T symmetry or by closing
the gap separating the flat bands and the dispersing bands
[5,6]. We focus entirely on the former scenario, which is
straightforward to represent using the Dirac theory. Let τ x,y,z

and σ x,y,z denote Pauli matrices that respectively act on κ-
valley indices and spin indices. Mass terms then take the form
ψ†ηzMψ with M = {1, σ i, τ i, τ iσ j}. The Chern number for
a given spin/valley sector depends on the relative sign of the
masses gapping the κ and −κ Dirac cones. When both cones
have the same-sign mass, the sector acquires Chern number
C = ±1, whereas opposite-sign masses yield C = 0. Conse-
quently, mass terms with M = 1, σ i yield insulating bands
with nonzero Chern number, while masses withM = τ i, τ iσ j

yield trivial insulating bands.2

2Given the HamiltonianHD, the above conclusions regarding Chern
number hold true regardless of the details of the high-energy the-
ory from which it was derived. It is worth noting that for a single
graphene sheet, expanding in small q the functions analogous to
hx,y(±κ + q) would not yield the low-energy Hamiltonian of Eq. (3).
Instead, the two Dirac cones would possess opposite chirality.

We now restore the −K valley. In terms of the low-
energy Dirac Hamiltonian, the chirality of the massless Dirac
fermions in the −K valley is opposite that of the +K valley.
Defining the spinor� = (ψ+, ψ−)T , whereψ± describe Dirac
fermions in valley ±K, the full Dirac Hamiltonian may be
written

HD,tot = −
∫
r
vF�†(i∂x μzηx + i∂y ηy)�, (4)

where we introduced Pauli matrices μx,y,z that act on K-valley
indices. The presence of μz in the first term above implements
the opposite-chirality requirement. Our discussion of the mass
terms and the associated Chern numbers extends straightfor-
wardly to the � fermions. For details see Appendix B. A
notable consequence of the opposing chiralities of the ±K
valleys is that a mass term �†ηz� = ψ

†
+ηzψ+ + ψ

†
−ηzψ−

generates an insulator with C = +1 for the +K valley and
C = −1 for the −K valley (or vice versa depending on the
overall sign of the mass term). These insulators correspond to
the QVH states that play a prominent role in this paper.

In the following sections, we use the operator ψ when
restricting our discussion to a single K-valley. We suppress
the ± indices in such cases but assume for concreteness that
the +K valley is being considered (as in the beginning of this
subsection). We reserve use of � for occasions when both
valleys are discussed simultaneously.

III. FREE FERMIONS WITH DISORDER

Next, we discuss the physics of noninteracting twisted
bilayer graphene with disorder at charge neutrality.

A. Sources of disorder in twisted bilayer graphene

It is useful to review the specific types of disorder that
are believed to be most relevant to experiments, though
we attempt to keep the majority of our discussion as gen-
eral as possible. Charge disorder appears to be quite low:
Refs. [2,9,19] estimate charge-carrier inhomogeneity in the
range δn ∼ 1 − 2 × 1010 cm−2. Yankowitz et al. [9] further
considered the observation of fractional quantum Hall states
at magnetic fields as low as 4 T as additional proof of the high
purity of their sample.

Twist-angle disorder is perhaps the most prevalent type
of inhomogeneity in mTBG systems. Due to strain, different
regions of a given sample may correspond to different twist
angles, as directly imaged in STM [15–17]. From topography,
the AA regions of the moiré structure are very clear, allowing
one to locally establish the moiré lattice constants and thus the
twist angle. Twist-angle variations were more recently char-
acterized by Uri et al. [19] using a superconducting quantum
interference device on a tip. Under an applied magnetic field,
these authors measured the electron density of the sample as
a function of the tip location, which in turn allowed them to
map out the twist angle throughout the entire sample. Such
measurements indicated local twist angles varying within a
range δθ ∼ 0.1◦. Both samples they studied developed corre-
lated insulating states, but only the sample with a continuous
magic-angle region percolating across the sample displayed
clear signs of superconductivity.
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While transport measurements cannot access such local
information, by comparing two-terminal conductance mea-
surements between different pairs of contacts, Cao et al. [1,2]
and Yankowitz et al. [9] nevertheless note that some regions
require different electron densities to achieve the band insula-
tor at full-filling, again implying that unit cells differ between
regions. Similar measurements by Lu et al. [14] returned a
much more uniform signal across the sample. Disorder sig-
natures are also observable from within the superconducting
states. Both Cao et al. and Yankowitz et al. observe phase-
coherent Fraunhofer interference, indicating the coexistence
of superconducting and normal regions. Conversely, the in-
terference patterns measured by Lu et al. are comparatively
weak, which they take as further indication of the high degree
of sample homogeneity.

The hBN substrate may serve as yet another source of
disorder. When uniformly aligned with one of the graphene
monolayers, C2T symmetry is explicitly broken and a gap at
charge neutrality is opened [12,13]. While the explicit gapping
naturally explains the ν = 0 insulator and anomalous Hall
effect observed by Sharpe et al. [10] and Serlin et al. [11]
at ν = +3, hBN-alignment is believed to be an otherwise
small effect in the majority of samples studied. Nevertheless,
it is possible that a local alignment of the substrate, differing
between regions, could weakly break the C2T symmetry—just
as for twist-angle disorder—even though it may be present on
average.

B. Theoretical modeling of disorder

Motivated by the preceding discussion, we now incorpo-
rate weak, smooth disorder that preserves time-reversal and
spin-rotation symmetries. We model such disorder by cou-
pling spatially varying (but static) fields to fermion bilinears
of the non-interacting Dirac theory reviewed in Sec. II B.
The most relevant forms of disorder couple to bilinears that
do not contain derivatives, and so we focus our study on
this subset.3 Time-reversal invariance and spin symmetry fur-
ther reduce the number of bilinears capable of coupling to
disorder; we enumerate all such symmetry-preserving terms
in Appendix B. Collectively denoting the set of symmetry-
allowed operators by {�†T i�}, the most general disorder
Hamiltonian takes the form

Hdis =
∫
r

∑
i

Ri(r)�†(r)T i�(r). (5)

We assume Gaussian-distributed Ri(r) with zero mean and
variance:

Ri(r)Rj (r′) = δi jg
2
i Ki((r − r′)/ξi ). (6)

Here, gi is the disorder strength with units of energy, ξi is the
disorder correlation length, and Ki is a dimensionless function
that characterizes the spatial correlations of the disorder and

3In particular, we neglect disorder-induced variation in the Fermi
velocity. This omission is supported by the numerics of Ref. [20],
which show that the velocity remains largely unaffected by the pres-
ence of twist-angle disorder.

obeys Ki(0) = 1. We frequently specialize to the case where
the spatial correlations are Gaussian, i.e.,

Ki(r/ξi ) = e−r2/(2ξ 2
i ). (7)

Weakness of the disorder implies that gi are small relative to
the other scales of the theory, enabling a perturbative treat-
ment. Smoothness of disorder is imposed by requiring that
ξi � aM , with aM the moiré lattice constant. We assume that
the correlation lengths corresponding to different forms of
disorder do not differ substantially and simply set ξi = ξdis for
all i.

The smoothness condition is physically very natural given
that the existence of the moiré superlattice and the resulting
band structure is predicated on the absence of fluctua-
tions on the scale of the graphene lattice constant a. In
momentum space, smoothness implies the suppression of
inhomogeneities mediating momentum exchanges of order
∼|K|, i.e., disorder processes that couple to bilinears of the
form �†μx,yM�. In fact, we demonstrate in Appendix C
that given Gaussian-correlated disorder [Eq. (7)], the disorder
strengths corresponding to inter-K-valley scattering are expo-
nentially suppressed relative the intra-K-scattering disorder
strengths: if g is the magnitude of a typical intra-K-valley
disorder field, then

gKK ′ ∼ ge−K2ξ 2
dis/4 = ge−4π2ξ 2

dis/a
2

(8)

is the typical amplitude of an inter-K-valley scattering event.
Neglecting such exponentially suppressed events for now, we
focus on a single K-valley and couple disorder to the ψ

fermions described by HD.
Since time-reversal interchanges K-valleys, it is not a sym-

metry of the single-K-valley theory, implying that the system
is described by the Wigner-Dyson class A [47,48]. Disorder
can thus couple to all spin-rotation-invariant bilinears and
takes the form

H smooth
dis =

∫
r
ψ†(r)

{
M0(r)ηz + M�(r)ηzτ �

+
∑
i=x,y

[
Ai,0(r)ηi +

∑
�=x,y,z

Ai,�(r)ηiτ �
]

+ V0(r) +
∑

�=x,y,z

V�(r)τ �
}
ψ (r), (9)

where M, A, and V , respectively, represent various forms of
mass, vector potential, and scalar potential disorder.

It is also useful to consider the limit where disorder is
sufficiently smooth relative to the moiré lattice scale that inter-
κ-valley scattering may also be neglected. We can then further
restrict our attention to one of the Dirac cones in the moiré
BZ—say +κ. Denoting the spinor describing the Dirac cone
at +κ by χ (r), the disorder Hamiltonian becomes simply

Hultra-smooth
dis =

∫
r
χ†(r)

[
m(r)ηz

+
∑
i=x,y

ai(r)ηi + v(r)
]
χ (r), (10)

where the random mass m, vector potential ax,y and scalar
potential v satisfy Eq. (6) with Ri = m, ax,y, v. Since each
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moiré unit cell encompasses ∼10 000 carbon atoms, distilling
the disorder Hamiltonian down to Eq. (10) is significantly
more suspect than merely omitting inter-K-valley scattering
terms. Moreover, though it might naively appear that inter-
κ-scattering should be suppressed in a manner analogous
to Eq. (8), we only expect such an effect to be manifest
for extremely large correlation lengths ξdis relative to aM as
discussed at the end of Appendix C. We nevertheless argue
in Sec. V that interactions greatly enhance the validity of
Eq. (10) over a broader parameter regime.

C. Free Dirac fermions coupled to disorder

While we are interested in the situation where the disorder
strength is subleading relative to interactions, it is instructive
to review the expected fate of the free Dirac theory at charge
neutrality in several limits. Consider first the single-Dirac-
cone theory with disorder described by Hultrasmooth

dis . Having
restricted to this minimal theory, it is convenient to aban-
don smooth disorder and instead take white-noise correlations
such that Ki(r/ξdis) = ξ 2

disδ
2(r). Physically, this simplification

implies that we are probing the system at long enough scales
relative to ξdis that all correlations in Ri are washed away. The
disorder correlation length is then encoded in the dimension-
less (up to factors of h̄ and vF ) disorder strength parametrized
by g2i ξ

2
dis.

Ludwig et al. [49] analyzed the effect of each of the three
remaining disorder fields— m(r), ax,y(r), and v(r). In the
absence of all other types of disorder, the randommass, vector
potential, and scalar potential fields were individually found
to be marginally irrelevant, exactly marginal, and marginally
relevant in turn. Ludwig et al. further postulated that when
all three disorder types are simultaneously present, the system
flows to the IQH plateau transition fixed point.

The correspondence between Landau-level physics and
disordered Dirac theories may be understood from the per-
spective of a Chalker-Coddington network model [37]. This
model can be employed to efficiently study the transition
between a trivial insulator with Landau-level filling ν̃ = 0 an
IQH state with ν̃ = 1 (the tilde distinguishes Landau-level
filling from the mTBG filling). The system is assumed to
locally prefer either ν̃ = 0 or ν̃ = 1—thus forming domains
of trivial and IQH states whose detailed structure depends on
the total filling and the disorder potential. As the total filling
varies, either the trivial state percolates, with small “lakes”
of ν̃ = 1, or vice versa. At some critical value, the system
transitions between these two limits and becomes gapless. The
network model exploits the fact that each boundary between
ν̃ = 0 and ν̃ = 1 regions binds a chiral edge mode, and maps
the problem onto one of directed links scattering at different
nodes.

The key observation for our purposes is that the network
model may be directly mapped onto a massless Dirac cone
coupled to random fields m(r), ax,y(r), and v(r) [40,41]. The
correspondence between a lone disordered Dirac cone and
the IQH plateau transition has been studied more recently
in the context of monolayer graphene [50], where reducing
the problem to that of a single Dirac cone only requires that
disorder correlations are smooth on the scale of the micro-
scopic lattice. When the effective time-reversal symmetry of

the single Dirac cone is broken by strain [51], the appropriate
nonlinear σ -model was shown to possess a topological term
with θ = π ; consequently, the system exhibits universal con-
ductivity, just as predicted for the IQH plateau transition by
Pruisken [52,53].

Upon resurrecting inter-κ-valley scattering in mTBG, dis-
order is instead described byH smooth

dis . Here the theory localizes
in the thermodynamic limit, and the conductivity accordingly
approaches zero even at charge neutrality [54,55]. Neverthe-
less, the localization length is expected to be extremely long
since the scaling theory of Anderson localization indicates
a lower critical dimension of d = 2 [56,57]. The conduc-
tance thus only vanishes logarithmically with system size,
suggesting that the localization length may be exponentially
long, at least for a typical metal. Fradkin studied the fate of
a system featuring Nf massless Dirac cones in the large-Nf

limit [58,59]. Denoting the disorder strength for all processes
simply by g, he obtained an exponentially large mean free
path,

�mfp ∼ aM exp

[
π

2

(
h̄vF
gξdis

)2]
, (11)

and a still-larger localization length, ξloc∼�mfp exp(64N2
f /9).

IV. INTERACTIONS IN THE CLEAN LIMIT

Turning away from the question of disorder, we now in-
vestigate the effect of interactions in a homogeneous sample
(though we occasionally allude to disorder effects). We be-
gin with a discussion of the general form and magnitude of
the interactions. Drawing on numerical results, experimental
observations, and symmetry considerations, we then argue
that the QVH state is energetically competitive in interacting
mTBG at charge neutrality.

A. Coulomb interaction

The Coulomb Hamiltonian HC,tot = 1
2

∫
qV (q)ρ(q)ρ†(q)

encodes the leading interaction. Here V (q) is the Fourier-
transform of the long-range Coulomb potential (which
technically depends on both the layer and sublattice, but these
microscopic corrections can be ignored for the purpose of
our discussion). The operator ρ(q) represents the Fourier
transform of the full microscopic density. Specifically, we
write ρ(q) =∑�

∫
k f̃ †� (k) f̃�(k + q), where f̃�(k) denotes the

annihilation operator corresponding to one of the decoupled
graphene monolayers, with � a combined index labeling both
layer and sublattice and k taking values across the full mi-
croscopic BZ. As explained in Sec. II A, to a high degree
of accuracy, the flat band wave functions are composed en-
tirely of states originating proximate to the Dirac cones of
the decoupled monolayers. We focus on these important mo-
menta by introducing operators f�,n=±(k) ≡ f̃�(k ± K ) that
are defined for |k| � |K|; note that this “small k” condi-
tion does not necessarily imply that k resides within the
moiré BZ. It follows that only the density operators ρ(q) and
ρ(q ± K ) with q small are physically relevant to the flat band
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physics:

ρ(q) ∼=
∑
�,n

∫
k small

f †�,n(k) f�,n(k + q),

ρ(q + K ) ∼=
∑

�

∫
k small

f †�,+(k) f�,−(k + q)

= ρ†(−q − K ). (12)

Inserting these definitions into our expression for HC,tot , we
find HC,tot

∼= HC + H ′
C where

HC = 1

2

∫
q small

V (q)ρ(q)ρ†(q),

H ′
C =

∫
q small

V (q + K )ρ(q + K )ρ†(q + K ). (13)

There is a vast separation of energy scales between HC and
H ′
C . Since V (q) ∝ 1/|q|, the largest contribution to HC comes

from momenta q within the moiré BZ, i.e., |q| � |κ|. On the
other hand, in H ′

C , the smallness of the internal momentum q
impliesV (q + K ) ≈ V (K ). It follows that the relative strength
of HC and H ′

C is V (K + q)/V (q) � V (K )/V (κ) ∼ |κ|/|K| ∼
θ � 1. Hereafter, we focus our attention on the dominant
term, HC . Reverting to real space, the Coulomb potential
is V (r) = e2/(4πε|r|). For graphene on hBN, we estimate
the dielectric constant to be ε ∼ 8ε0 with ε0 denoting the
permittivity of free space. Using the moiré lattice spacing,
aM = a/(2 sin(θ/2)), where a = 0.246 nm is the lattice con-
stant of monolayer graphene as a typical length scale, one
finds a characteristic interaction energy V (aM ) ∼ 14meV at
the magic angle θ ∼ 1.05◦.

Theory estimates the bandwidth of the flat bands to be
about 10meV and the splitting between van Hove peaks
within those bands to be ∼5meV [43,60]. The above
Coulomb-interaction scale thus raises natural questions re-
garding the validity of our expansion about the Dirac cones
at ±κ in Sec. II B. It appears that the entirety of the flat bands
and perhaps even neighboring energy bands should be con-
sidered. Non-interacting simulations of mTBG systems with
twist angle disorder, however, have been shown to increase the
bandwidth with little change to the Dirac character at charge
neutrality [20]. Moreover, STM measurements of the fully
filled flat bands (i.e., in a regime where correlations are pre-
sumably less important) measure van Hove peak splittings of
∼10 − 20meV [15,16]—several times larger than the above
theoretical estimate. The full bandwidth of the flat bands may
therefore significantly exceed V (aM ), supporting our use of
the Dirac theory.

B. Preferred ground state of single-flavor theory

Before turning to the full theory, it is useful to examine
interaction effects at charge neutrality in a minimal, single-
flavor model that includes only one spin and one K-valley.
References [14,16,21,22] addressed this problem numerically
via self-consistent Hartree-Fock calculations. Liu et al. [21]
incorporated Coulomb interactions in the continuum model
while Choi et al. [16] studied a ten-band lattice model [44]
with a simplified local interaction. Both analyses find a C2T -

breaking gapped state with Chern number C = ±1 as the
lowest-energy solution.

References [14,22] also predict an interaction-induced
gapped phase at charge neutrality. However, while certain
parameter regimes again return a C2T -breaking state with
nonzero Chern number, other regimes yield a C2T -preserving,
trivial insulator. The latter statement may seem at odds with
our assertion in Sec. II A that C2T protects the masslessness
of the Dirac cones, but this protection only holds when the
flat bands are energetically isolated. In the calculations of
Refs. [14,22], interactions close the gap separating the flat
and dispersive bands, thus negating the protection conferred
upon the Dirac cones by C2T symmetry. It is worth noting that
STM measurements show that the flat bands indeed remain
isolated as a function of filling [15–18], and yet still resolve
correlation effects. We therefore view the formation of the
C2T -symmetric insulator as a less likely outcome.

Returning to the C2T -breaking gapped states, we re-
mark that from the perspective of the Dirac theory, it is
natural to expect the phase with C = ±1 to be energeti-
cally favorable relative to the C2T -breaking trivial insulator
with C = 0. Recall from Sec. II B that the mean-field order
parameter for the C = ±1 state is ψ†ηzψ , which in prin-
ciple can arise from a momentum-independent microscopic
perturbation. The trivial C = 0 phase instead corresponds
to an order parameter ψ†ηzτ zψ that yields opposite-sign
masses for the Dirac cones at ±κ—and hence cannot arise
from a momentum-independent microscopic perturbation.
In monolayer graphene the converse situation arises: the
momentum-independent staggered sublattice potential gen-
erates a trivial insulator whereas the relatively baroque,
momentum-dependent Haldane mass [61] is instead required
to enter aC = ±1 phase. (This distinction reflects the fact that
the Dirac cones at ±κ exhibit the same chirality in mTBG,
while the Dirac cones at ±K in monolayer graphene have
opposite chirality [46]). Spontaneously generating a Haldane
mass in monolayer graphene is thus unnatural—see, e.g., Ref.
[62]—and it is analogously difficult to spontaneously enter the
C = 0 phase in mTBG.

C. Inclusion of spin and K-valley flavors

We have so far argued that the single-flavor version of
interacting, charge-neutral mTBG prefers to enter a gapped
phase with Chern number C = ±1. Inclusion of spin and
K-valley degrees of freedom not only allows for many distinct
possible phases depending on the Chern numbers assigned to
each sector, but further allows for additional phases that do not
naturally descend from the single-flavor theory. Let us begin
by discussing the former.

We specifically focus on four natural candidate insulators
that we refer to as quantum valley Hall (QVH), quantum spin-
valley Hall (QSVH), quantum Hall (QH), and quantum spin
Hall (QSH) phases. Figure 4 depicts these states along with
their corresponding mass terms. These insulators carry dif-
ferent symmetry properties as summarized in Table I. While
all four phases break C2T symmetry, they do so in different
ways: the QVH and QSVH states break C2 while preserving
time reversal T , whereas the converse is true of the QH and
QSH states. They are further distinguished by the action of
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FIG. 4. Four natural C2T -breaking insulators at charge neutral-
ity. In order from top to bottom: quantum valley Hall (QVH),
quantum spin-valley Hall (QSVH), quantumHall (QH), and quantum
spin Hall (QSH). The direction of the arrow indicates spin, while the
sign, + or −, labeling the arrow indicates the K-valley.

the SU(2)s spin symmetry, which is preserved (broken) by
the QVH and QH (QSVH and QSH) states. Note that because
of the additional K-valley flavor index, our QSH state differs
from the 2D topological insulator realized, e.g., in the Kane-
Mele model [63]. We nevertheless adopt this nomenclature
since the state breaks spin-rotation symmetry and preserves
the physical electronic time reversal operation Telec ≡ iσ yT
that obeys T 2

elec = −1.
It is useful to highlight some physical differences between

these states and thus their compatibility with experimental ob-
servations. Neither the QVH nor QSVH insulator is expected
to possess gapless edge modes at a sample boundary. Our
discussion has made significant use of the approximate U(1)v
valley symmetry, but this symmetry is violently broken by the
edge itself, which naturally occurs on the microscopic length
scale a of the underlying graphene monolayers. As a result,
the edge modes from the two valleys scatter strongly, resulting
in a purely insulating state. By contrast, the QH state hosts
robust gapless edge modes that are completely immune from
scattering by virtue of their chirality. Edge modes of the QSH
insulator, while nonchiral, are nevertheless also robust since
backscattering at a sample boundary must be accompanied by
a spin flip. The sample studied by Lu et al. [14] displayed
insulating transport with no signs of edge conduction. Among
the four insulators, QH and QSH states thus appear unlikely,
at least in that platform.

As a result of the separation of scales between K val-
leys and the SU(2)s symmetry, all four insulating states have
very similar energies. In Appendix D, we compare the QVH
ground-state energy against the other three insulators using
a simple Hartree-Fock variational approach. We show that

TABLE I. Symmetry-breaking pattern of the four topological
states. Note that the QSH phase violates T but preserves the physical
electronic time reversal operation Telec = iσ yT .

T C2 SU(2)s

QVH � ✗ �
QSVH � ✗ ✗

QH ✗ � �
QSH ✗ � ✗

all four states are exactly degenerate in the chiral model
[64], a version of the continuum model that possesses an
exact particle-hole symmetry that renders it exactly solvable.
Nevertheless, for more realistic versions of the continuum
model (where particle-hole symmetry is absent), we find that
the QVH state is actually disfavored relative to the other
insulators. However, when computed numerically, we find the
energy difference to be extremely small, less than ∼10−5 meV
per electron, implying that the explicit breaking of particle-
hole symmetry has little effect.

We turn now to alternative phases. Polarized phases—for
which the flat bands of two flavors are fully occupied—
represent one class of competing ground states. In general,
both spin- and valley-polarized phases are degenerate at
charge neutrality when H ′

C [Eq. (13)] is neglected [65,66]. Liu
et al. [21] find that, within the chiral model, these polarized
states have identical Fock energies to the C2T -breaking insu-
lators with nontrivial Chern number in each flavor. They also
obtained self-consistent versions of these solutions numeri-
cally using a more realistic version of the continuum model;
while no longer exactly degenerate, these states remained
close in energy. Adding explicit C3-breaking strain—as ob-
served in multiple STM experiments [15–17]—was, however,
found to promote the C2T -breaking insulators over the polar-
ized states. Another proposed state is the intervalley coherent
phase (IVC) [6], which spontaneously breaks U(1)v symmetry
by coupling the +K and −K bands. General considerations
[65] as well as calculations using the analytically tractable
chiral model [21] indicate that IVC order is disfavored at
the Hartree-Fock level. Other numerics nevertheless challenge
these conclusions [67].

Importantly, among the gapped phases discussed here, only
the QVH order parameter directly couples to disorder that is
smooth and preserves T and SU(2)s spin symmetry. Time
reversal and spin symmetry forbid coupling to the order pa-
rameters for QSVH, QH, QSH, and polarized phases, whereas
smoothness of disorder prohibits coupling to an IVC order
parameter. Hence, even if one of the latter states is energet-
ically favorable in a perfectly clean system, the unavoidable
presence of inhomogeneity in any physical sample may never-
theless stabilize the QVH phase, a possibility that we explore
in Sec. VC.

V. INTERPLAY OF INTERACTIONS AND DISORDER

We are now in a position to explore the fate of charge-
neutral mTBG in the presence of interactions and smooth
disorder. Let us first recapitulate the expected behavior in the
disordered, noninteracting limit (Sec. III) and in the clean but
strongly interacting regime (Sec. IV):
(1) In the absence of interactions, disorder localizes the

massless Dirac fermions when any form of inter-κ-valley
scattering is present in a manner that is formally analogous
to physics of monolayer graphene. However, while
monolayer graphene only requires that disorder be long
ranged on the scale of the microscopic lattice to avoid
localization, disorder must be long ranged on the scale
of the moiré lattice to suppress localization in twisted
bilayer graphene.
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(2) We have argued that in the strongly interacting, clean
limit, the QVH phase that spontaneously breaks C2
symmetry constitutes (at the very least) an energetically
competitive state that is compatible with experimental
observations. Moreover, we observed that among various
other candidate ground states, QVH order uniquely
couples to smooth disorder respecting spin and time-
reversal symmetries.

To simultaneously incorporate interactions and disorder be-
low, we start with the assumption that the QVH state is the
true ground state of the clean, interacting Hamiltonian. We
construct an Ising formulation of the system in the presence
of disorder, which allows us to systematically consider the
crossover between the first and second panels of Fig. 2. We
discuss the titular recovery of the massless Dirac cones before
showing that even when the QVH insulator is not the true
ground state in the clean theory, disorder may nevertheless tip
the balance back in its favor. We close with some comments on
the eventual localization of the Dirac fermions, as illustrated
in the final panel of Fig. 2.

A. Ising model formulation and domain formation

Suppose that the interaction energy scale dominates the
physics, preferring to spontaneously break the C2 symmetry
and form a QVH insulator. Disorder terms that do not couple
to the QVH order parameter can then be neglected, leaving
only the random fieldM0(r) that couples to ψ†ηzψ in Eq. (9)
(or, in the full theory, a random scalar field that couples to
�†ηz�). A randommass cannot produce localization but does
compete against long-range order. In fact, we show that even
when disorder is weak and uncorrelated, the system always
loses long-range order in the thermodynamic limit due to the
formation of domains, as sketched in the central panel of
Fig. 2. Destruction of long-range order only becomes observ-
able, however, once the linear extent of the system, L, exceeds
the typical domain size, ξdom. The goal of this subsection is to
demonstrate that ξdom is finite and to determine its size as a
function of the physical parameters of the theory.

We approach the problem in the standard fashion, via the
formulation of a Landau-Ginzburg theory. The order param-
eter for the C2 symmetry breaking is simply an Ising field φ

obtained by coarse graining the bilinear ψ†ηzψ , i.e.,

φ(r) ∼
∫
r′∈R(r)

ψ†ηzψ (r′) ∼ �2UVψ†ηzψ (r), (14)

where R(r) is a spatial region centered at r of typical size �2UV
and �UV is an ultraviolet cutoff quantified below. Since we are
interested in the physics deep within the ordered phase with
〈φ〉 �= 0, a classical Ising model suffices:

HIsing =
∫
r

[
K(∇φ)2 + r

2
φ2 + u

4!
φ4
]
. (15)

The mass r is clearly assumed to be negative.
The scales of the original fermionic Hamiltonian ultimately

determine parameters of the Ising model, though this as-
signment is not necessarily straightforward. Consider first K.
Since φ is dimensionless, K has units of energy, and hence
K ∼ U , with U a characteristic energy scale of the system.
Both the rough estimate for the Coulomb potential, V (aM ) ≈

14meV, given at the end of Sec. IVA, and the experimentally
measured transport gap at charge neutrality, �CNP ≈ 1meV
[14], provide natural candidates for U . Given uncertainties
in our calculation of V (aM ) related to screening from other
bands, we view the latter option as a more reasonable and
conservative estimate. We stress, however, that this choice has
little direct bearing on the discussion that follows.

It is also important to assign a length scale to the interac-
tions and hence the Ising theory. Since our primary goal is to
describe domain-wall physics, the most natural scale is

ξint ∼ h̄vF
�CNP

, (16)

which corresponds to the decay length of a Dirac fermion of
mass �CNP/v

2
F . In our context, these fermions are the chiral

modes that bind to the domain walls at which the Chern
numbers for each flavor change signs, identifying ξint as the
domain boundary width. Any physics occurring on scales
smaller than ξint necessarily includes these fermionic degrees
of freedom, and hence lies outside our Ising formulation’s
regime of validity. The interactions length scale therefore
defines a UV cutoff.4 As a consistency check, we must verify
that ξint exceeds the moiré lattice constant, aM ≈ 12.8 nm.
Inserting vF ≈ 0.15 × 106 m/s [2] and �CNP ≈ 1meV [14]
into Eq. (16), we indeed find ξint ≈ 100 nm ∼ 10 aM . We are
therefore permitted to set �UV ∼ ξint. In turn, dimensional
analysis gives r, u ∼ U/ξ 2

int.
Because disorder breaks C2, it should couple to the Ising

field in a manner that breaks the Z2 Ising symmetry. In other
words, disorder appears as a random “magnetic” field,

Hφ,dis =
∫
r
B(r)φ(r), (17)

whereB(r) ∼ ∫r′∈R(r) M0(r′)/ξ 4
int. The random fieldM0 is de-

fined by the disorder strength δm, correlation length ξdis, and
correlation function K (r/ξdis) (in the notation of Sec. III B,
these quantities correspond to gM0 , ξM0 , and KM0 , respec-
tively). We focus on the situation where the disorder is
Gaussian correlated: K (r/ξdis ) = e−r2/(2ξ 2

dis ). Our assertion that
the interaction energy scale dominates the disorder energy
scale can now be more precisely stated as δm/U � 1.

In summary, the Hamiltonian controlling the ordering of
φ is HRFIM = HIsing + Hφ,dis, which is none other than the
much-studied random-field Ising model (RFIM)5 [69–71]. As
claimed, the RFIM in 2D is generically disordered [72,73],
and so ξdom is finite. The mechanism of domain formation
depends largely on the magnitude of the ratio:

α = δm

U

ξdis

ξint
· (18)

This result and the scenarios we outline below are derived and
further explained in Appendix E.

4The definition of ξint and �UV is largely independent of our choice
ofU .
5This theory and its derivation should not be confused with the fact

that a free Dirac fermion with random mass disorder maps onto the
random bond Ising model [49,68].
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We first examine what occurs when α � 1. Since U/δm is
already presumed large, for α to be larger than unity, this limit
corresponds to that of extremely smooth disorder: ξdis/ξint �
1. In this scenario, the energy gained by having φ align in
the direction preferred by B(r) is larger than the interaction
energy cost associated with the misalignment of φ along the
domain boundary. The Ising field therefore directly tracks the
disorder potential, implying that

ξdom ∼ ξdis, α � 1. (19)

The situation is more subtle when α � 1. With stronger in-
teractions, we naturally expect larger domains. At some point,
the domains are large enough that the correlated nature of the
disorder is washed away, allowing us to treat it as white noise:
M0(r)M0(r′) ∼= δm2ξ 2

disδ
2(r − r′). In this case, the destruc-

tion of long-range order occurs through the condensation of
domain walls. An evaluation of the domain-wall roughening
yields a lower bound for their size of [72]

ξdom � max(ξint, ξdis) e
c/α2

, α � 1, (20)

where c ∼ O(1) is a nonuniversal constant. We can verify that
when α � 1 the domain length scale is indeed far greater than
the disorder correlation length, i.e., ξdom � ξdis.

B. Recovery of massless Dirac fermions

Next we discuss the physical consequences of the Ising
model outlined above in the regime where the system size L
exceeds the typical domain size ξdom. For now, we continue to
assume suppression of both inter-κ- and inter-K-valley scat-
tering. At least close to the crossover scale ξdom, the Ising
formulation should remain valid: the system is character-
ized by multiple domains of opposing Chern numbers with
typical size ξdom, as the central panel of Fig. 2 illustrates.
In this regime, the system can be described by eight inde-
pendent Chalker-Coddington network models [37]—one for
each of the two Dirac cones within the four spin/valley sec-
tors. As mentioned briefly in the Introduction and more fully
in Sec. III C, each network model may be mapped directly
onto that of a single gapless Dirac cone [40,41], thus giving
the promised restoration of massless Dirac fermions from a
strongly correlated starting point.

We can alternatively motivate the recovery of massless
Dirac cones without relying on network models. Let us re-
turn to the full disordered Dirac theory described by Eqs. (4)
and (5), which includes all spin and valley degrees of free-
dom. Notably, here we additionally allow for weak intervalley
scattering terms. Upon including strong correlations at a
mean-field level, interactions dramatically enhance the effec-
tive strength of the random field that couples to the QVH
order parameter �†ηz�. All other disorder fields, by contrast,
remain weak and can be neglected to a first approximation.
The problem then reduces to a set of independent Dirac cones,
each governed by the far simpler disorder Hamiltonian in
Eq. (10) with only random mass disorder. As noted earlier,
the random mass is a marginally irrelevant perturbation to the
clean Dirac theory when it is the sole source of disorder [49].
Massless Dirac fermions thus naturally re-emerge from this
viewpoint as well.

At sufficiently low energy scales, however, the additional
disorder fields neglected above eventually kick in. The dom-
inant corrections are expected to arise from intra-κ-valley
scattering processes, encoded by the vector- and scalar-
potential terms in Eq. (10). When these terms are also present,
the theory is believed to flow to the IQH plateau transition,
which is characterized by a finite a density of states with both
universal longitudinal and Hall conductances (here, valley
Hall). At still lower energy scales, inter-κ-valley scattering
is expected to produce localization, as Sec. VD discusses in
more detail.

Nevertheless, the perspective just outlined should be
viewed as a consistency check and not a proof of concept.
Crucially, it cannot account for the energy scales separating
the Dirac fermions of the clean, noninteracting mTBG system
from the recovered Dirac cones of the interacting, disordered
network model.

C. Competing phases

So far in this section, the QVH insulator has been taken as
the true ground state of mTBG at charge neutrality, even in
the absence of disorder. We now address the possibility that
interactions prefer a different state. To simplify the problem,
we consider the situation in which a single competing phase
is energetically favorable relative to the QVH insulator. In
accordance with the conventions of Sec. VA, this competition
can be quantified through the energy difference δε in an area
of size �2UV = ξ 2

int:

δε

ξ 2
int

≡ EQVH − EC � 0, (21)

where EQVH and EC, respectively, denote the ground-state
energy densities of the QVH state and competing phase. We
further assume that the competing order may be described
by an Ising field, �, that does not linearly couple to any
disorder field; recall the discussion at the end of Sec. IVC.
Generalizing our arguments to include continuous order pa-
rameters (as needed for the QSH and QSVH insulators) is
straightforward, and we therefore leave the competing phase’s
identity unspecified. Note, however, that properties of domain
walls separating the QVH order and the competing phase may
depend on the precise nature of the latter.

We again work in a regime where strong interactions obvi-
ate the need to include all disorder fields save for the random
mass M0 that linearly couples to the QVH order parameter
via Eq. (17). Importantly, this type of disorder locally pro-
motes the QVH state by lowering its energy relative to the
competing phase, even though—as we saw earlier—it gener-
ally destroys true long-range order. When δε is small enough,
we expect the majority of the sample to realize the QVH phase
and the scenario outlined in the previous section to hold. In
terms of the Ising theory devised in the previous section, we
can express this condition as[

1

vol

∫
r

〈
φ2(r)

〉]1/2
� 1

2
, (22)

where vol denotes the sample volume. When this equation
holds, we say the system is φ ordered; otherwise, the system
is � ordered.
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FIG. 5. Schematic phase diagram as a function of disorder, α,
and ground-state energy difference. The dashed line indicates the
“critical” energy difference δεc(α) that characterizes the crossover
from samples that are primarily φ-ordered to those that are primarily
�-ordered. There are two distinct φ-ordered regimes. In the blue
region, α � 1, 〈φ〉 tracks the disorder so that domains are of the
same size as the disorder correlation length, ξdom ∼ ξdis. Conversely,
in the orange region, α � 1, the correlated nature of the disorder is
unimportant, and domains are exponentially large, ξdom � ξdisec/α

2

[here, we assume that ξdis > ξint ; see Eq. (20)]. In the white region
above the dashed line, the competing phase prevails and 〈�〉 �= 0
throughout most of the sample.

Appendix F explores this problem in depth, ultimately de-
riving the schematic phase diagram shown in Fig. 5. We again
find that the primary control parameter is the ratio α [recall
Eq. (18)] corresponding to the horizontal axis. Motivated by
the notion that �-ordered regions may be viewed as annealed
vacancies, we begin with a dilute Ising-model description.
At the lattice level, the theory is conveniently formulated by
promoting the Ising variables σ z = ±1 to three-state spin-
1 variables s, where s = ±1 corresponds to the two QVH
phases and s = 0 corresponds to the competing phase. We
present a simple mean-field solution to the classical Blume-
Capel model for these spin-1 degrees of freedom [74–77] in
Appendix F 1. While the phase diagram we obtain resembles
the one shown in Fig. 5 in many respects, it erroneously
predicts long-range φ-order when δε < 0 and disorder is
sufficiently small, α � 1; as discussed in Sec. VA and Ap-
pendix E, in reality, long-range order is unstable to the
addition of any finite disorder. This failure of mean-field the-
ory is not unprecedented given the low dimensionality.

In Appendix F 2, we therefore return to the Imry-Ma-type
arguments of Sec. VA (see also Appendix E), which allow us
to derive a “critical” energy difference δεc(α) that character-
izes the crossover scale separating φ- and �-ordered regimes.
We plot δεc(α) with a dashed line in Fig. 5. In the white region
above the line, δε � δεc(α), the competing phase is realized
throughout the majority of the system, and the network picture
we propose is no longer relevant. Conversely, Eq. (22) holds in
regions where δε � δεc(α) (including the trivial case, δε < 0,
where QVH states minimize the energy in the clean limit).
Just as we found above, depending on the strength of disor-
der, the destruction of long-range QVH order occurs in two
fashions. In Fig. 5, the parameter regime where 〈φ〉 tracks the
disorder field is shown in turquoise. The orange area indicates
the opposite limit, where long-range order is eliminated by

domain-wall condensation. The intermediate regime where
α ∼ 1 is shown in neutral grey.

Notably, these considerations imply that disorder may not
only be responsible for selecting which QVH order is locally
realized, but that it may also determine whether or not QVH
order is realized at all. In particular, our proposal admits a
scenario in which the clean samples of Lu et al. [14] are �-
ordered, while the less homogeneous samples of Cao et al.
[1,2] and Yankowitz et al. [9] realize the QVH network picture
displayed in the central panel of Fig. 2—even supposing that
the two sets of systems differ solely in the amount of disorder
they present.

D. Localization

In the absence of any special symmetries, all two-
dimensional systems are generically expected to localize in
the thermodynamic limit, and our platform is no exception.
Localization is likely irrelevant for the previously studied
mTBG samples, whose linear dimensions are ∼2 − 8μm ∼
150 − 600aM . It is nevertheless instructive to briefly discuss
localization within our proposed scenario. The precise manner
in which localization occurs in the presence of interactions
poses a notoriously difficult and subtle problem that we will
not wade into in detail. Rather, our goal is to discuss some
general features of the problem that can be deduced given
some reasonable simplifying assumptions.

When discussing localization, one can imagine either in-
creasing the system size or increasing the disorder strength.
In the latter case, the situation rapidly becomes unwieldy:
as the disorder strength approaches the interaction energy
(δm/U → 1) or the disorder correlations become ultra-short-
ranged (aM/ξdis → 1), our Ising formulation breaks down.
By contrast, the Ising-model perspective remains valid when
we instead consider progressively larger samples with an
otherwise identical set of parameters. Interactions can still,
of course, pose complications; for instance, in the network-
model picture, localization involves a network of gapless
domain-wall modes that generically form Luttinger liquids
[78]. We do not address such subtleties, instead postulating
that the primary effect of interactions is to catalyze the spon-
taneous breaking of C2T .

The most straightforward manner by which the re-
emergent Dirac fermions can localize is through inter-κ-valley
scattering. Such scattering events can also localize the original
Dirac cones that appear in the free-fermion band structure for
mTBG, but the physics is not quite identical: the network
picture underlying the re-emergent Dirac cones effectively
postpones localization by renormalizing the UV scale at
which it occurs. That is, if ξloc, fr is the localization length
in the free case, we have ξloc ∼ ξdomξloc, fr/aM with interac-
tions. One can intuitively understand this rescaling from the
perspective of the gapless domain-wall modes in the net-
work model. As Fig. 6 illustrates, in a given K valley, the
domain-wall modes corresponding to ±κ copropagate, and
hence non-forward-scattering processes can only occur at
nodes where multiple domain walls intersect (see red arrows).

Inter-K-valley scattering can also prompt localization [25].
Disorder coupling the two K-valleys has so far been com-
pletely ignored since it is exponentially suppressed relative

125138-12



RECOVERY OF MASSLESS DIRAC FERMIONS AT CHARGE … PHYSICAL REVIEW B 103, 125138 (2021)

FIG. 6. Edge modes of the +K and −K valley sectors at a node
connecting four domains. The orange and turquoise arrows represent
the chiral modes at the domain boundaries. Red arrows at the node
indicate U(1)v-preserving, inter-κ-valley scattering processes, which
result from inhomogeneities at the moiré lattice scale, aM ≈ 12.8 nm.
The U(1)v-breaking inter-K-valley scattering events are indicated
by the purple arrows. While this type of scattering is exponentially
suppressed [see Eq. (8)], it can occur at any point along a domain
boundary.

to intra-κ-scattering [see Eq. (8)]. However, inter-K-valley
scattering can occur at any point along the domain walls, as
illustrated in Fig. 6, making it a fundamentally one-
dimensional process. For very large domains, such intra-
domain-wall scattering thus inevitably becomes the dominant
localization mechanism. The localization length is then ex-
pected to be proportional to the mean free path of the domain-
wall modes [79], which is ξloc ∼ h̄vF/gKK ′ ∼ h̄vFe4π

2ξ 2
dis/a

2
/g,

and hence an exponentially large function of the disorder
correlation length.

VI. DISCUSSION

We have presented a theory that reconciles the seemingly
conflicting experiments on charge-neutral mTBG by invoking
a nontrivial interplay between strong interactions and weak
disorder. In our proposed picture, uniform order (QVH or
otherwise) is realized throughout ultrahomogeneous samples,
like those of Lu et al. [14], whereas QVH domains with
opposite spin/valley Chern numbers appear in systems with
more disorder, like the experiments of Cao et al. [1,2] and
Yankowitz et al. [9]. In the latter samples, gapless edge modes
at domain boundaries form a network that may be mapped
onto a theory of massless Dirac fermions, thereby explaining
their semimetallic transport measurements. By contrast, since
a physical sample boundary strongly breaks the U(1)v sym-
metry protecting the edge modes, a uniformly ordered QVH
state is an insulator at charge neutrality, in agreement with the
observations of Lu et al. Both sample classes exhibit a local
gap determined by the interaction strength—in harmony with
STM experiments [15–18].

The network model outlined in this paper is somewhat rem-
iniscent of proposals aimed at describing minimally twisted
bilayer graphene (minTBG) [80–83]. When θ � 1◦, it be-
comes energetically favorable for the microscopic lattices to
distort such that the AB and BA regions occupying the moiré
honeycomb sites enlarge at the expense of the AA regions

situated at the center of each moiré hexagon [42,84–89]; see
Fig. 3(a) for an illustration of the undistorted case. Under
the application of a displacement field, AB and BA regions
develop QVH order with opposing Chern numbers [29–31],
yielding four edge modes per spin at the AB/BA boundaries.
While both our theory for mTBG and the theory proposed
for minTBG are built on network models comprised of QVH
domains, there are key qualitative distinctions that we wish to
underscore. The local QVH order in minTBG arises entirely
as a single-particle effect, whereas the development of QVH
order in our scenario relies principally on strong interactions.
Moreover, the shape and size of the AB and BA regions in
minTBG are fixed; together, they comprise a single moiré unit
cell. The QVH domains discussed in this paper instead result
from the smooth disorder background and typically extend
over many moiré unit cells.

Our proposal is supported by available experimental data
and crucially can be further tested in future experiments. One
natural direction is to employ large-area STM scans to locally
probe both gapped domains and gapless domain-wall modes.
(To our knowledge, evidence of the latter in mTBG has not yet
been reported in the literature). Samples that are simultane-
ously amenable to STM and transport would offer additional
insight; for instance, the presence of gapless domain-wall
modes should correlate with semimetallic transport, whereas
such modes should be absent in homogeneous insulating sam-
ples. Some caveats are warranted, however. First, discussions
of local phenomena in STM measurements are often compli-
cated, e.g., by disorder- or tip-induced localized states, and
it may be difficult to unambiguously distinguish the domain
physics we propose from such effects. Additionally, the sam-
ples studied by Refs. [1,2,9,14] are enclosed on both sides by
hBN, preventing STM study. The nature of transport in mTBG
with hBN only on the bottom side, as in the samples studied
by STM in Refs. [15–18], poses an interesting open question.

One can also investigate our scenario entirely within trans-
port [90]. Consider a single mTBG sample etched into a
series of strips of varying widths w, as shown in Fig. 7(a).
Transport through a given strip depends sensitively on the
value of w relative to the typical domain size, ξdom. When
w � ξdom—the limit presumably relevant to the experiments
of Refs. [1,2,9]—semimetallic transport should occur. In the
opposite limit,w � ξdom, no edge modes connect the contacts
and the strip should appear insulating. This experiment may
be modified to preclude possible variations in the conductivity
resulting from intrinsic variations between the strips, such as
their local twist angle. Instead of physically cutting the sam-
ple, a strip can be electrostatically generated through spatially
varying gate voltages: Within a channel of width w, the sys-
tem is locally tuned to charge neutrality, whereas elsewhere
the Fermi energy is tuned to lie within the gap separating the
flat and dispersive bands. One could then study the conductiv-
ity as a function of width w for all regions within the sample.
Figure 7(b) illustrates this refined version of the experiment.

Finally, although we have emphasized the validity of our
proposal even in the eventuality that the clean system does
not realize a QVH insulator, the observation of this state
at charge neutrality in ultraclean, insulating samples would
of course serve as support for our scenario. Unquantized
valley Hall currents have been observed through nonlocal
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)b()a(

FIG. 7. Schematic illustration of a proposed transport experiment. The domain structure of one of the valley sectors is shown: regions
carrying Chern number C = +1 are depicted in blue, whereas those carrying C = −1 are depicted in orange. The other valley sector is
not shown explicitly. The grey rectangles above and below the sample indicate contacts through which the conductance is measured. (a) A
single mTBG sample is sliced into multiple subsystems of varying width w. When w � ξdom, as shown on the left, Dirac-like conductance
is observed. Once the width is smaller than the typical domain size, w � ξdom, the sample appears insulating, as shown on the right. (b) An
alternate experiment in which the mTBG sample remains intact. The taupe rectangles aligned in a row along the center of the sample represent
individually tunable gates through which the chemical potential may be locally varied. In regions where these gates are opaque, the chemical
potential lies within the superlattice band gap, i.e., the flat bands are either completely empty or full (ν = ±4). The system is tuned to charge
neutrality in all other regions (either the gates are transparent or no gates are shown). On the left, w � ξdom, and a semimetallic conductance
should be observed. Conversely, since w � ξdom, a large resistance is expected on the right.

resistance measurements [91] in hBN-aligned graphene [26]
and Bernal stacked graphene with an out-of-plane electric
field [27–29], and the realization of the QVH insulator in TBG
at charge neutrality could therefore be demonstrated through
an analogous set of measurements. The application of a small
magnetic field parallel to the sample represents a more com-
mon probe of the correlated insulating states in twisted bilayer
graphene. Because the QVH state is a spin singlet, this field
is unlikely to have a substantial effect. Nevertheless, ignoring
both interactions and modifications to the interlayer tunneling
due to the magnetic field, a mean-field perspective would
suggest that the gap at charge neutrality should decrease with
increasing magnetic field.

Our proposal also spotlights various other avenues for fu-
ture study. The fate of the network under an applied magnetic
field poses a particularly interesting problem. One possibility
is that the magnetic field simply stabilizes a different compet-
ing phase, thereby destroying the network. If this transition
occurs at fields strengths close to or below 1 T, where quantum
oscillations are first clearly resolved, the re-emergent Dirac
theory is unlikely to produce observable Landau-fan phenom-
ena. The occurrence of such a transition is neither necessary
nor expected, however. In the case where the QVH network
survives a broader magnetic-field window, there are two limits
to consider. When the magnetic length �B far exceeds the
typical domain size ξdom, quantum oscillations are expected
to be insensitive to the re-emergent nature of the fermions,
implying that a Landau fan corresponding to massless Dirac
fermions should be observed at low fields. Given that the mag-
netic length is already quite large at 1 T, �B ≈ 25 nm ≈ 2aM ,
this regime may be difficult to access experimentally (recall
that the UV cutoff for our network model was ξint ∼ 100 nm).
The opposite limit, �B � ξdom, appears to be more subtle. It
is conceivable that the gapless edge modes do not affect the
quantum oscillations, resulting in a Landau level spectrum

similar to that of massive Dirac cones associated with the
gapped QVH domains. Alternatively, the system could exhibit
physics reminiscent of the Hofstadter butterfly [92], though
it seems likely that nonuniformity of the domain sizes may
hinder any clear signal. Quantifying these issues could shed
additional light on the experimental relevance of our scenario.

The role of interactions at the edges of the domains is an-
other topic that we have not touched on. The edge modes may
display interesting interacting phenomena that could be stud-
ied through the well-controlled bosonization formalism. In
fact, Wu et al. [81] analyzed this problem in the context of the
minimal twist angle samples described above. Further, while
disorder is generically expected to localize the edges, the
inclusion of interactions may have nontrivial consequences
[78].

We have said little regarding transport away from the
charge neutrality point. While its semimetallic nature dictates
that the conductivity σ increase with doping, it can do so
in different ways. If transport is ballistic, far enough away
from charge neutrality, the conductivity should essentially
track the density of states: σ ∝ √|n|, where n is the electron
density [93,94]. Provided inter-κ-scattering is the most impor-
tant form of disorder, we expect the mean free path of the
network model to be rescaled, implying that ballistric trans-
port may not be unreasonable. That is, letting �mfp, fr be the
mean free path of the noninteracting Dirac fermions, we may
postulate that the mean free path of the recovered network
Dirac fermions is �mfp ∼ ξdom�mfp, fr/aM . On the other hand,
in monolayer graphene, the linear dependence of the con-
ductivity on density away from charge neutrality, σ ∝ |n|, is
largely ascribed to long-range Coulomb scattering [95–102].
While it seems unlikely that a similar mechanism would play
an important role in mTBG, it is possible that twist-angle
disorder (which can also be long-range) could have a similar
effect [103].
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Finally, exploring the interplay between interactions and
disorder at other integer fillings constitutes perhaps the most
interesting future direction. The charge-neutrality regime that
we examined here offers the virtue that the system is almost
insulating even at the band-structure level—thereby facili-
tating the study of (at least certain) correlated insulators.
Accessing correlated insulating states at other fillings requires
a far more drastic modification of the band fillings. Generaliz-
ing our analysis to such cases could provide valuable insight
into the observed phenomenology of mTBG.
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APPENDIX A: CONTINUUM MODEL

We briefly outline the continuum model in this section.
Spin indices are completely suppressed below. We first de-
compose the microscopic graphene operators as

f̃�(r) = eiK·r f+,�(r) + e−iK·r f−,�(r), (A1)

where � indicates both layer and sublattice. As discussed in
Sec. II A, the continuum model Hamiltonian decouples into
K-valley sectors Hcont = H+ + H−, where H± act on f±,�.
For the moment, we consider H+. We express f+,� as a vec-
tor ( ft,A(r), ft,B(r), fb,A(r), fb,B(r)), where the + has been
dropped for convenience, t , b denote layer, and A, B denote
sublattice. In this basis, H+ acts as

H+ =
(
iv0ηθ/2 · ∇ T (r)

T †(r) iv0η−θ/2 · ∇
)

, (A2)

where ηφ = e−iφηz/2(ηx, ηy)eiφηz/2 act on the sublattice space
and ∇ = (∂x, ∂y). The tunneling matrix T (r) is given by

T (r) =
∑

�=1,2,3

t�e
−iq�·r, q� = R2π (�−1)/3[Kt − Kb] (A3)

where Rφ[v] rotates the vector v by φ and the matrices t� are
defined through

t� = e2π i(�−1)ηz/3

(
w0 w1

w1 w0

)
e−2π i(�−1)ηz/3. (A4)

The physical parameters of the model are the twist angle θ ,
the velocity of the microscopic graphene layers v0, and the
tunneling amplitudes, w0 and w1. We take the angle to be
close to the magic angle, θ = 1.05◦, and the graphene velocity

to be v0 = 9.1 × 105 m/s. The tunneling amplitudes are typi-
cally taken to be (w0,w1) = (85, 110) meV [4]. However, for
the chiral version [see Sec. D 5] of the model, we set w0 = 0,
keeping w1 = 110meV [64].

The Hamiltonian corresponding to the other valley, H−,
may be obtained by acting time-reversal (T ) or by rotating by
180◦ (C2).

The continuum Hamiltonians maybe also be expressed in
momentum space. Returning to second quantized notation, it
may be written

Hμ =
∑

G,G′,�,�′

∫
k∈BZ

f †μ,�(k + G)H (μ)
G,�;G′,�′ (k) fμ,�′ (k + G′),

(A5)

where μ = +,− labels the K valley and the Gs are moiré
reciprocal lattice vectors. Here, H (μ)(k) may be thought of
as an infinite matrix taking values within the moiré BZ with
indices (G, �). It can be diagonalized through the unitary
rotation

c†μ,i(k) =
∑
G,�

uμ,i;G,�(k) f
†
μ,�(k + G),

f †μ,�(k + G) =
∑
i

u∗
μ,i;G,�(k)c

†
μ,i(k), (A6)

where i indexes the band. In terms of the cμ,i(k) operators Hμ

is

Hμ =
∑
i

∫
k∈BZ

c†μ,i(k)εi(k)cμ,i(k). (A7)

We note that invariance of cμ,i(k) under shifts of k by a re-
ciprocal lattice vector, k → k + G, implies uμ,i;G,�(k + G′) =
uμ,i;G+G′,�(k).

APPENDIX B: SPIN AND TIME-REVERSAL
SYMMETRIC BILINEARS

Here, we enumerate some of the symmetries of the Dirac
theory. It is convenient to express them in terms of a large, un-
physical, SU(8) symmetry generated by theK-valley, κ-valley,
and spin symmetries. The generators of these symmetries are

SU(2)s : (σ x, σ y, σ z ), SU(2)κ : (τ x, τ y, τ z ),

SU(2)K : (μxηy, μyηy, μz ). (B1)

Since the SU(2)K triplet does not take a particularly simple
form, we define μ̄i = (μxηx, μyηx, μz ). Finally, the γ matri-
ces are γ μ = (μzηz, iηy,−iμzηx ). By combining the γ μ, σ i,
τ i, μ̄i, we can generate all bilinears (pairing terms are not
considered).

We are interested only in those bilinears that preserve the
spin and time-reversal symmetries. Clearly, spin-conservation
requires that disorder not couple to any bilinear containing σ i,
so we ignore it completely, treating � as a spinless fermion.
Time reversal then acts as

T : � → μxτ x�, i → −i. (B2)
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It follows that the SU(2)κ , SU(2)K triplets and the γ matrices
map as

(τ x, τ y, τ z ) → (τ x, τ y,−τ z ),

T : (μxηy, μyηy, μz ) → −(μxηy, μyηy, μz ),

(γ 0, γ x, γ y) → (−γ 0, γ x, γ y) (B3)

These transformation properties result in the following time-
reversal invariant bilinears:

�̄M�, M ∈ {μ̄i, μ̄iτ x,y, τ z},
�̄γ 0M�, M ∈ {1, τ x,y, τ zμ̄i},

�̄γ x,yM�, M ∈ {μ̄i, μ̄iτ x,y, τ z}, (B4)

where �̄ = �†γ 0. We are most concerned the mass bi-
linears, shown on the first line. We note that �̄μ̄i� =
�†(μyηz,−μxηx, ηz )�. The last term, �†ηz�, is the order
parameter for the QVH state. For completeness, we also list
the bilinears that break time-reversal symmetry:

�̄M�,M ∈ {1, τ x,y, τ zμ̄i},
�̄γ 0M�,M ∈ {μ̄i, μ̄iτ x,y, τ z},

�̄γ x,yM�,M ∈ {1, τ x,y, τ zμ̄i}. (B5)

APPENDIX C: SUPPRESSION OF INTER-K-VALLEY
SCATTERING

We briefly outline a schematic argument for the expo-
nential suppression of inter-K-valley scattering processes.
We begin by considering the operators on the microscopic
graphene lattice. Suppose disorder couples as

Hmicro =
∑
�,�′

∫
r
R(r) f̃ †� (r)T��′ f̃�′ (r). (C1)

Here, � labels both the layer and sublattice of the fermion
f̃�(r), T��′ is a matrix whose precise form is unimportant, and
R(r) is the disorder field with values drawn from a Gaussian
probability distribution:

R(r) = 0, R(r)R(r′) = g2 e−(r−r′ )2/(2ξ 2
dis ). (C2)

In momentum space, we find

Hmicro =
∫
k
R(q) f̃ †� (k)T��′ f̃�′ (k + q), (C3)

where

R(q)R∗(q′) = δ2(q − q′) g2ξ 2
dis e

−q2ξ 2
dis/2. (C4)

We now wish to expand about the +K and −K points. Letting
f̃n=±,�(k) = f�(±K + k), the Hamiltonian divides into two
pieces:

HKK =
∑
n=±

∫
k,q

R(q) f †n (k)T fn(k + q),

HKK ′ =
∫
k,q

3∑
j=1

R(q + Q j ) f
†
+(k)T f−(k + q) + H.c. (C5)

where Q j are the three (smallest) momenta such that −K +
Q j = +K, each of which has magnitude |K| = 4π/3a, where

a is the lattice constant of monolayer graphene. We have also
suppressed the summation over the � indices of the fermions
and matrix T . Letting R(+−)(q) =∑ j R(q + Q j ), we then
see

R(+−)(q)R∗
(+−)(q

′)

= δ2(q − q′)ξ 2
disg

2
∑
j

e−(q+Q j )
2ξ 2

dis/2

= δ2(q − q′)ξ 2
disg

2e−K2ξ 2/2e−q2ξ 2
dis/2
∑
j

e−q·Q jξ
2
. (C6)

Ignoring the anisotropic term on the right, the disorder field
corresponding toK → −K scattering has the same correlation
length, ξdis, but with an exponentially suppressed amplitude:
gKK ′ ∼ ge−4π2ξ 2

dis/a
2
.

These arguments may appear to carry over directly to the
case of inter-κ-scattering, i.e., we may wish to conclude that
the typical inter-κ valley scattering amplitude gκκ ′ is expo-
nentially suppressed relative to the typical intra-κ scattering
amplitude g: gκκ ′ ∼ ge−4π2ξ 2

dis/a
2
M . However, in this case, there

are additional subtleties to take into account. While the con-
tinuum Hamiltonian does not mix the f fermions on the scale
of the large BZ, ∼1/a, they are mixed on the scale of the
moiré BZ, ∼1/aM . In particular, the flat band operator c (or,
equivalently, the Dirac operator ψ) at a momentum quantum
number k in the moiré BZ is composed of a superposition of
f fermions with momenta k + G (in the microscopic BZ),
where the Gs are moiré reciprocal lattice vectors, as indi-
cated in Eqs. (A6). With the exception of G = 0, all such
reciprocal lattice vectors are already of order |κ| or larger.
Importantly, this mixing is responsible for the very flatness
of the bands and therefore constitutes a nonnegligible effect.
As a result, unless ξdis is much, much larger than aM , these
higher moments may nevertheless contribute substantially to
the κ → −κ scattering processes. We therefore emphasize
that the analysis and proposal presented in this paper is not
predicated on the assumption that gκκ ′ is small.

APPENDIX D: MEAN FIELD ANALYSIS
OF INSULATING PHASES

Based on numerical results, we argued in Sec. IVB that
the ground state of a single flavor theory with interactions
is a Chern insulator. Upon including valley and flavor in-
dices in Sec. IVC, we identified four natural insulating states
distinguished by their symmetry action, as summarized in
Table I. Further, we noted that only the order parameter for
the QVH insulator could couple to disorder, which is vital for
the scenario we propose.

Here, we discuss the circumstances under which the QVH
insulator is or is not energetically preferred compared to the
QSH, QH, and QSVH. We determine the band structure using
the continuum model (see Appendix A), and, in spite of the
concerns raised at the end of Sec. IVA, we model the inter-
actions using HC , as written in Eq. (13). Moreover, to further
simplify the calculation, we project HC onto the flat bands,
a simplification that may admittedly neglect relevant contri-
butions from the dispersive bands. We therefore view this
exercise mainly as a guide intended to expose trends rather
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than provide rigorous quantitative energetics. Nevertheless,
we show that within a simple mean-field analysis, the Fock
terms are not expected to distinguish these phases. While it
appears that the Hartree terms favor the QSH, QSVH, and QH
insulators over the QVH phase, we find that this preference
is not the case for the chiral model [64]—they remain de-
generate. We next calculate the energy difference between the
QVH and other phases numerically for a more realistic set of
parameters and demonstrate that while the energy difference
is no longer zero, it remains negligibly small.

1. Flat band projection

The Hamiltonian HC of Eq. (13) is still quite complicated:
it includes all bands of the model, whereas we are only inter-
ested in what happens to the flat bands. Since these bands are
separated from the dispersive bands by a gap Eg by assump-
tion, the latter states can be integrated out to give an effective
Hamiltonian acting only on the flat band subspace. The lead-
ing order contribution is obtained simply by projecting HC to
the flat bands:

HC,1 =
∫
q small

V (q)ρfl (q)ρfl (−q), (D1)

where ρfl (q) is the density operator projected onto the flat
bands.

We show that the mean-field decoupling of H0 + HC,1

[where H0 is given in Eq. (2)] is independent of the sign of
the Dirac mass. To do so, we define the variational Hamil-
tonian HMF({Mμ}) =∑μ H (μ)

MF (Mμ) where μ = (n, α) sums
over both K valleys, n = ±, and spin, α =↑, ↓. The individual
mean-field Hamiltonians are

H (μ)
MF (Mμ) =

∫
k∈BZ

c†μ(k) [hμ(k) + Mμηz]︸ ︷︷ ︸
h̄μ(k;Mμ )

cμ(k),

hμ(k) = hμ,0(k) + hμ,x(k)ηx + hμ,y(k)ηy. (D2)

We study the dependence of 〈{Mμ} |H0 + HC,1 | {Mμ}〉 on
the signs of Mμ, where |{Mμ}〉 denotes the ground state of
HMF({Mμ}).

2. Density operator and form factors

One complication of this calculation is the presence of
form factors in the definition of the densities and thus HC,1

as well. In particular, we have

ρfl (q) =
∑

μ

ρμ(q),

ρμ(q) =
∑
μ,�

∫
k small

f †μ,�(k) fμ,�(k + q), (D3)

where fμ,�(k) = fn=±,α,�(k) denotes the electron operator
with spin α =↑, ↓ and total momentum ±K + k. As in
Sec. IV and Appendix A, � labels both layer and sublattice.
In what follows, we omit the label fl. Recall that neither the
momentum of the density operator, q, nor the momentum
being summed over, k, is required to lie within the moiré BZ.

We therefore instead write

ρμ(q + G′) =
∫
k∈BZ

∑
G,�

f †μ,�(k + G) fμ,�(k + q + G + G′),

(D4)

where G and G′ are moiré reciprocal lattice vectors and both
k and q lie within the moiré BZ. Using the definition of cμ,i

in relation to fμ,� given in Eq. (A6), the density may now
be expressed directly in terms of the flat band creation and
annihilation operators:

ρμ(q + G) =
∑
i j∈fl

c†μ,i(k)λμ;i j

× (k, k + q + G)cμ, j (k + q),

λμ;i j (k, k + q + G) =
∑
G′,�

u∗
μ,i;G′,�(k)uμ, j;G′,�(k + q + G).

(D5)

We frequently refer to the functions λμ,i j as form factors
in what follows. We have used the fact that the band op-
erators are invariant under reciprocal lattice translations up
to a phase, cμ, j (p+ G) = eiφcμ, j (p). From the fact that
uμ,i;G,�(k + G′) = uμ,i;G+G′,�(k), we also have λμ;i j (k, k

′ +
G) = λμ,i j (k − G, k′). Finally, with this notation, the flat band
Coulomb interaction is

HC,1 =
∫
q,k,k′

∑
G

∑
μ,ν

c†μ(k)λμ(k, k + q + G)cμ(k + q)

× ·c†ν (k′ + q)λν (k
′ + q + G, k′)cν (k

′). (D6)

3. Symmetry constraints

We begin by discussing the symmetry properties of the
mean-field kernel h̄μ(k;Mμ). We begin with the symmetry
transformations

T : c(k) → μxc(−k),

C2T : c(k) → ηxc(k), (D7)

where μx acts on the K-valley indices and ηx acts on the
(flat) band indices. Both are anti-Hermitian, taking i → −i.
In terms of the mean-field Hamiltonian, they imply

h̄+,α (k;M ) = h̄∗
−,α (−k;M ), h̄μ(k;M ) = ηxh̄∗

μ(k;−M )ηx.

(D8)

Obviously, since hμ(k) = h̄μ(k;M = 0), these relations also
hold for the noninteracting part of the flat band Hamiltonian.

We now define the projector:

Pμ;i j (k;M ) = 〈c†μ, j (k)cμ,i(k)
〉
M . (D9)

The subscript M is used as shorthand to denote which mean-
field Hamiltonian the ground state being used to compute
the expectation value is associated with. The equalities of
Eq. (D8) then imply

P+,α (k;M ) = PT
−,α (−k;M ), (D10a)

Pμ(k;M ) = ηxPT
μ (k;−M )ηx. (D10b)

125138-17



ALEX THOMSON AND JASON ALICEA PHYSICAL REVIEW B 103, 125138 (2021)

Note that P†
μ(k;M ) = Pμ(k;M ). Similarly, we find that the

form factors must satisfy

λ+,α (k, k + q) = λT
−,α (−k − q,−k), (D11a)

λμ(k, k + q) = ηxλT
μ(k + q, k)ηx. (D11b)

4. Evaluation of mean field Hamiltonian

We wish to compute the expectation value
〈{Mμ} |H0 + HC,1 | {Mμ}〉. This function may be separated
into three pieces:

〈{Mμ} |H0 + HC,1 | {Mμ}〉
= 〈H0〉{Mμ} + HF ({Mμ}) + HH ({Mμ}), (D12)

where HF and HH are the Fock and Hartree decouplings of
the Coulomb interaction. These three terms are discussed in
the following subsections.

a. Quadratic term: 〈H0〉
We write the quadratic part of the Hamiltonian as a sum

over the valleys and spins, H0 =∑μ H (μ)
0 , where

H (μ)
0 =

∫
k
c†μ(k)hμ(k)cμ(k). (D13)

The kernel hμ(k) is defined in Eq. (D2). Taking the expecta-
tion value, we find〈

H (μ)
0

〉
Mμ

=
∫
k
tr
[
Pμ(k;Mμ)hμ(k)

]
. (D14)

Inserting the relations given in Eqs. (D10b) and (D11b), we
arrive at〈

H (μ)
0

〉
Mμ

=
∫
k
tr
[
ηxPT

μ (k;−Mμ)η
xηxhTμ (k)η

x]

= 〈H (μ)
0

〉
−Mμ

. (D15)

Hence, we have verified that 〈H0〉 is independent of the signs
of the mass terms.

b. Fock term: HF

The Fock term is

HF ({Mμ}) =
∑

μ

H (μ)
F (Mμ),

H (μ)
F (Mμ) = −

∫
k,p

∑
G

V (p− k + G)tr

× [λμ(k, p+ G)Pμ(p;Mμ)λμ

× (p+ G, k)Pμ(k;Mμ)]. (D16)

Inserting the relations from Eqs. (D10b) and (D11b), we find

H (μ)
F (Mμ) = −

∫
k,p

∑
G

V (p− k + G)tr

× [λT
μ(p+ G, k)PT

μ (p;−Mμ)λ
T
μ

× (k, p+ G)PT
μ (k;−Mμ)]

= H (μ)
F (−Mμ). (D17)

TABLE II. Relative signs of the mass terms corresponding to the
four phases depicted in Fig. 4.

M+,↑ M+,↓ M−,↑ M−,↓

QVH 1 1 1 1
QSVH 1 −1 1 −1
QH 1 1 −1 −1
QSH 1 −1 −1 1

We again conclude that the Fock contribution is independent
of the sign Mμ takes.

c. Hartree term: HH

The Hartree term can be written

HH ({Mμ}) =
∑
G

V (G)
∑
μ,ν

〈ρμ(G)〉Mμ
〈ρν (−G)〉Mν

. (D18)

We therefore begin by calculating 〈ρμ(G)〉M :

〈ρμ(G)〉M =
∫
k
tr[Pμ(k;M )λμ(k, k + G)]. (D19)

We use the constraints imposed by time reversal [Eqs. (D10a)
and (D11a)] to relate the expectation values of the densities of
the two valleys to one another:

〈ρ+,α (G)〉M =
∫
k
tr
[
PT

−,α (−k;M )λT
−,α (−k − G,−k)

]
=
∫
k
tr[P−,α (k;M )λ−,α (k, k + G)]

= 〈ρ−,α (G)〉M . (D20)

We see that the expectation value of the density operator is
independent of the valley and spin degree of freedom, moti-
vating us to define the function

R(M;G) ≡ 〈ρμ(G)〉M . (D21)

Note that the identity ρμ(G) = ρ†
μ(−G) implies R(M;G) =

R∗(M;−G). The C2T symmetry [Eqs. (D10b) and (D11b)]
then gives

〈ρμ(G)〉M =
∫
k
tr
[
PT

μ (k;−M )λT
μ(k + G, k)

]
=
∫
k
tr[Pμ(k;−M )λμ(k, k − G)]

= 〈ρμ(−G)〉−M = 〈ρμ(G)〉∗−M . (D22)

We conclude that R(−M;G) = R∗(M;G).
The Hartree term is therefore

HH ({Mμ}) =
∑
G

V (G)
∣∣∣∑

μ

R(Mμ;G)
∣∣∣2. (D23)

The relative signs of the mass terms of the four states under
consideration are shown in Table II. Separating R(M;G) into
real and imaginary parts, R(M;G) = R′(M;G) + iR′′(M;G),

125138-18



RECOVERY OF MASSLESS DIRAC FERMIONS AT CHARGE … PHYSICAL REVIEW B 103, 125138 (2021)

we conclude that

HQVH
H = 16

∑
G

V (G)[R′(M;G)2 + R′′(M;G)2],

HQSVH
H = HQH

H = HQSH
H = 16

∑
G

V (G)R′(M;G)2. (D24)

It follows that the QVH state is higher in energy than the other
three insulating states by 16

∑
GV (G)R′′(M;G)2.

We note that since λ(k, k) = 1, for G = 0 we necessarily
have R′′(M; 0) = 0, implying that for this term at least, there
is no difference in energy between the QVH insulator and
the other three. In a typical tight-binding model, the G = 0
term accounts for the entirety of the Hartree energy. For the
continuum model, however, the internal spatial structure of
the wave functions also affects the Hartree energy. Neverthe-
less, the form factors λμ(k, k + G) decay quite quickly as a
function of G [21]—implying that the spatial variation of the
density within the unit cell is not too large. As we discuss

in the next two sections, the contribution from R′′(M;G) is
essentially negligible.

5. Chiral model

We show that in the chiral model [64], the functions
R(M;G) are purely real, implying that the Hartree terms are
all degenerate. The chiral model is a particular case of the con-
tinuum model in which hopping only occurs between A and B
sites both within and between graphene layers. This constraint
is implemented by setting w0 in Eq. (A4) to zero. The result is
an exact particle-hole (chiral) symmetry � that interchanges
positive and negative energy states. We follow the discussion
in the Appendix of Ref. [21]. � may be assumed to act as

� : c(k) → ηzc(k). (D25)

In fact, in this basis, the sublattice index of the c(k)’s can be
identified with the A and B sublattices of the two layers. It’s
then convenient to reinterpret the wave functions written in
Eq. (A6), uμ,i;G,�(k). We explicitly identify the index i = A,B
with the sublattice, leaving � to denote the layer. It then fol-
lows that the form factor may be written

λμ,i j (k, k
′ + G) = [λ(0)

μ (k, k′ + G)12×2 + iλ(z)
μ (k, k′ + G)ηz

]
i j, (D26)

where both λ(0)
μ and λ(z)

μ are real functions.
An additional symmetry allows one to rotate the two layers in opposite directions. The authors of Ref. [64] use this observation

to simplify the problem substantially, resulting in an exact expression for the ground-state wave function at the magic angle. For
any angle, however, it implies that the Hamiltonian of Eq. (A2) satisfies(

iv0ηθ/2 · ∇ T (r)
T †(r) iv0η−θ/2 · ∇

)
= ηzτ z

(−iv0ηθ/2 · ∇ T (r)
T †(r) −iv0η−θ/2 · ∇

)
τ zηz, (D27)

where Pauli operators ηz and τ z act on the sublattice (A,B) and
layer (t, b) indices, respectively. The continuum representa-
tion of the wave function given in Eq. (A6) therefore satisfies

uμ,i;G,�(k) = eiϕk
∑
i′,�′

ηz
ii′τ

z
��′uμ,i′;−G�′ (−k), (D28)

which in turn implies

λμ(k, k
′ + G) = λμ(−k,−k′ − G). (D29)

Similarly, the mean-field Hamiltonian must give h̄μ(k;M ) =
h̄μ(−k;M ) and therefore

Pμ(k;M ) = Pμ(−k;M ). (D30)

These relations provide an additional constraint on the form
of 〈ρ(G)〉M :

〈ρμ(G)〉M =
∫
k
tr[Pμ(k;M )λμ(k, k + G)]

=
∫
k
tr[Pμ(−k;M )λμ(−k,−k − G)]

=
∫
k
tr[Pμ(k;M )λμ(k, k − G)]

= 〈ρμ(−G)〉M = 〈ρμ(G)〉∗M . (D31)

That is, R(M;G) is real: R′′(M;G) = 0. From Eqs. (D24), we
conclude that the Hartree energies corresponding to all four
insulating states are fully degenerate in the chiral limit:

HQVH
H = HQSVH

H = HQH
H = HQSH

H . (D32)

6. Numerical evaluation of Hartree term

We now return to the nonchiral version of the model. In
Fig. 8(a), we plot the energy difference per electron of the
Hartree term for the model using the parameters given in
Appendix A as a function of the Dirac mass M. Even for
a mass M = 3 meV, the energy difference is as small as
2.5 × 10−6 meV— certainly our rough model is not expected
to be reliable for such small energy differences.

We can understand the smallness in several ways. As men-
tioned at the end of Appendix D 4 c, the form factors λ(k, k +
G) decay quite quickly as a function of G. We can further
show that R′′(M;G) = 0 for all G such that G = My[G],
G = C3My[G], or G = C2

3My[G]. To do so, we start by using
the fact that a basis exists in which Eqs. (D8) hold and the
mirror symmetry acts as [46]

My : c(k) → ηxc(My[k]). (D33)

Since hμ(k) satisfies the symmetry whereas the mass term
Mηz does not (e.g., h̄μ(k;M ) = ηxh̄μ(My[k];−M )ηx), we
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FIG. 8. (a) Energy difference as a function of the variational mass M between the QVH phase, HQVH
H , and the other three phases, Hother

H =
HQSH

H = HQH
H = HQSVH

H , per electron at charge neutrality: �EH/Nel = (HQVH
H − Hother

H )/Nel. (b) Color plot of | ∫k λ(z)
μ (k;G)| as a function of

the moiré reciprocal lattice vector G. Each hexagon represents a different G, with the central hexagon outlined in turquoise corresponding to
G = 0. Noticeably, | ∫k λ(z)(k;G)| = 0 along all mirror axes, as we showed in the main text.

must have

Pμ(k;M ) = ηxPμ(My[k];−M )ηx, λμ(k, k + G) = ηxλμ(My[k],My[k + G])ηx. (D34)

We therefore find

〈ρμ(G)〉M =
∫
k∈BZ

tr[ηxPμ(My[k];−M )ηxηxλμ(My[k],My[k + G])ηx]

=
∫
k∈BZ

tr[Pμ(k;−M )λμ(k, k + My[G])]

= 〈ρμ(My[G])〉−M = 〈ρμ(My[G])〉∗M . (D35)

It follows that 〈ρμ(G)〉M is real for all moiré reciprocal lattice vectors such that G = My[G]: R′′(M;G = My[G]) = 0. The
reflection axis chosen for My was actually arbitrary—by C3 rotational symmetry, the same should hold for the two equivalent
axes given by C3My and C2

3My. Notably, this means that R′′(M;G) = 0 for the shortest set reciprocal lattice vectors.
We can quantify the size of R′′(M;G) for arbitraryG through the following set of observations. First, we note that the energies

of the flat bands may be written as Eμ,±(k) = hμ,0(k) ± εμ(k), where ε2μ(k) = h2μ,x(k) + h2μ,y(k). This allows us to express the
projection matrix as

Pμ(k;M ) = 1

2

⎛
⎝1 − 1√

ε2μ(k) + M2
(hμ,x(k)ηx + hμ,y(k)ηy + Mηz )

⎞
⎠. (D36)

It then follows that

R′′(M;G) = 1

2

(〈ρμ(G)〉M − 〈ρμ(G)〉−M

) = −1

2

∫
k∈BZ

M√
ε2μ(k) + M2

tr[ηzλμ(k, k + G)]

= −
∫
k∈BZ

M√
ε2μ(k) + M2

λ(z)
μ (k;G), (D37)

where we’ve defined

λ(z)
μ (k;G) = − i

2
tr[ηzλμ(k, k + G)]. (D38)

We can verify through Eq. (D11b) and the identity λμ(k, k +
G) = λ†

μ(k, k − G) that tr[ηzλμ(k, k + G)] must be imagi-

nary. In limit thatM is large, Eq. (D37) implies

R′′(M;G) → −
∫
k∈BZ

λ(z)
μ (k;G). (D39)

Assuming that R′′(M;G) is a monotonically increasing func-
tion of M (which Fig. 8(a) verifies at least for the parameters
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FIG. 9. (a) Illustration of a domain D of linear size ∼L with 〈φ〉 < 0 (orange region) immersed within a region of 〈φ〉 > 0 (blue region).
The boundary region of the domain, ∂D, is indicated in white. Its width, ∼ξint , is shown with an arrow. The coordinates (r⊥, r‖) used to estimate∫
r K(∇φ)2 are shown to the right of the domain. (b) Schematic plot of domain size, ξdom, as a function of α [Eq. (18)] for Gaussian-correlated
disorder, Appendix E 3. The inset plots the logarithm of the domain size. In both, a = max(ξdis, ξint ). When α � 1, the disorder is effectively
local and the domains are exponentially large, as per Eq. (E25). On the other hand, for α � 1, the domain size is set by the disorder correlation
length ξdis. Coefficients of O(1) have been chosen by hand to smoothen the crossover between these two regimes. Since we assume that
δm � U , α � 1 implies that ξdis � ξint .

considered), we expect λ(z)
μ to supply an upper bound on R′′:

|R′′(M;G)| �
∣∣∣∣
∫
k∈BZ

λ(z)
μ (k;G)

∣∣∣∣. (D40)

In Fig. 8(b) we plot the right hand side of the above equation
as a function of G. The fact that

∫
k λ(z)

μ (k;G) vanishes for all
G such that G = My[G], G = C3My[G], and G = C2

3My[G]
follows from the symmetry analysis given at the beginning of
this section—as we see, the reciprocal lattice vectors with the
smallest amplitudes do not contribute to R′′(M;G).

More importantly, the largest value of
∫
k λ(z)

μ (k,G) is al-
ready incredibly small—its maximum value is ∼3.6 × 10−4.
Even when multiplied by the relatively large interaction scale
V (aM ), the energy difference between the QVH and the other
insulating phases remains small, as evinced by Fig. 8(a). We
conclude that, at least within the approximation considered
here, the QVH insulator is indistinguishable from its cousins,
the QSVH, QH, and QSH states.

APPENDIX E: RANDOM FIELD ISING MODEL
DOMAIN ESTIMATES

In this Appendix, we discuss the Imry-Ma [69] arguments
used in Sec. VA to obtain the estimates given in Eqs. (19) and
(20) for the minimal domain size ξdom. We consider the regime
where the homogeneous system would like to order—in this
sense, we are assuming that disorder is weak compared to
the interaction energy: δm � U . We next estimate the energy
cost Edom(L) of changing the sign of φ within a domain D
of linear extent ∼L, as depicted in Fig. 9(a). There are two
contributions to Edom: one from the interaction energy, Eint (L),
and another from the disorder potential, Edis(L). As reasoned
in the main text, we assume that |〈φ〉| ∼ O(1). Since we are
primarily interested in the relative scaling of the two energy
terms, coefficients of O(1) are not be included.

The interaction energy of the domain is determined by the
kinetic term of the Ising model:

Eint (L) ∼
∫

d2rK(∇φ)2. (E1)

The coefficient K should have units of energy, and so we
naturally set K ∼ U , as discussed in the main text. The Ising
field φ changes only within the boundary region ∂D of the
flipped domain D. Given our initial definition of φ [Eq. (14)],
this change can only occur on the scale of ξint [Eq. (16)],
implying that (∇φ)2 ∼ Uφ/ξ 2

int ∼ 1/ξ 2
int. Integrating over ∂D,

including its width, contributes a factor of ξintL so the total
cost is

Eint (L) = U
L

ξint
· (E2)

More concretely, this estimate can be obtained through the
ansatz φ(r) ∼ tanh (r⊥/ξint ), where r⊥ is the direction per-
pendicular to the domain boundary, with the boundary itself
occurring at r⊥ = 0 [see Fig. 9(a)]. Ignoring the effect of
curvature, we again find

Eint (L) ∼ U
∫

dr‖
∫

dr⊥
1

ξ 2
int

sech4
(
r⊥ − r0

ξint

)

∼ U · 1

ξ 2
int

· L · 4
3
ξint ∼ U

L

ξint
· (E3)

We now consider the contribution to the energy cost of the
domain due to the random field B(r) [as defined in and below
Eq. (17)]. For a given realization of disorder, we have

Edis(L) ∼
∫
r∈D

B(r). (E4)

Depending on where the domain is placed, disorder can either
increase or decrease the domain energy. For an arbitrarily
chosen D, Edis will average to zero, with a standard deviation
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given by

E2
rms ∼

[∫
r∈D

B(r)
]2

= δm2

ξ 4
int

∫
r,r′∈D

K

(
r − r′

ξdis

)
. (E5)

Importantly, however, the location of the domain is not arbi-
trary. We can choose to place our domain in a region where
this contribution is negative, taking the typical value

Edis ∼ −
√
E2
rms ∼ − δm

ξ 2
int

[∫
r,r′∈D

K

(
r − r′

ξdis

)]1/2
. (E6)

The total cost of the domain is therefore

Edom(L) ∼ U
L

ξint
− δm

ξ 2
int

[∫
r,r′∈D

K

(
r − r′

ξdis

)]1/2
. (E7)

If L∗ exists such that Edis(L∗) = 0, the formation of the
domain is energetically favorable and long-range order is
destroyed. This destruction occurs in all of the examples we
consider.

1. Long-range disorder

The simplest example actually turns out to be the case of
long-range disorder [104]:

K

(
r

ξdis

)
= ξdis

|r| · (E8)

We do not discuss this form of K in the main text since it is
unlikely to describe the physical system; it nevertheless serves
as a convenient example. We note that while ξdis is a length
scale, it does not truly represent a correlation length in this
context. Instead, it simply enters into the disorder strength as
a multiplicative factor:

B(r)B(0) = (δm2ξdis
) 1

ξ 4
int

1

|r| · (E9)

Inserting this definition into Eq. (E7), we find that the change
in energy expected for a (judiciously chosen) domain of size
L is

Edom(L) ∼ L

ξint

(
U − δm

√
ξdisL

ξint

)
. (E10)

For large L, it’s clear that the domain energy eventually
becomes negative, destabilizing the ordered phase. This de-
struction first occurs at the emergent length scale:

L∗ ∼
(
U

δm

ξint

ξdis

)2
ξdis. (E11)

We conclude that when the disorder is long range, domains
are expected to form once the system size is larger than L∗.

2. White noise (short-range) disorder

We now consider local, white noise disorder:

K

(
r

ξdis

)
= ξ 2

disδ
2(r). (E12)

As in the long-range case, the parameter ξdis enters only as
a multiplicative factor. Together with the disorder strength

δm and the Fermi velocity vF , they form a dimensionless
parameter δm ξdis/h̄vF discussed in Sec. III B.

Following the arguments above, an appropriately chosen
domain therefore contributes an energy

Edis(L) ∼ −δm
ξdisL

ξ 2
int

· (E13)

The total energy cost of the domain is

Edom(L) ∼ U
L

ξint
− δm

ξdisL

ξ 2
int

= U
L

ξint

(
1 − α

)
, (E14)

where we have defined

α ≡ δm

U

ξdis

ξint
, (E15)

as given in Eq. (18) of the main text. Notably, it is not
δm/U that controls the domain energy cost, but instead the
ratio α. This feature is related to our remark that the true
disorder strength is actually g = δm ξdis. The correct energy
scale is therefore obtained in units of the UV cutoff, giving
g/ξint = αU , from which it follows that α is the appropriate
tuning parameter, not δm/U . Equation (E14) simply tells us
that when disorder is larger than the interaction scale, α � 1,
there is no reason for the system to order. In this limit, the
domain structure and fate of the theory is complicated and
will not be relevant for us [105,106].

Conversely, for α � 1, Eq. (E14) may appear to imply that
that the system should order. However, while Eq. (E15) is
sufficient for large α, the analysis above omits the effect of
domain roughening. This effect should be included in general,
and it completely alters our conclusions when α is small.

Roughening in the context of the RFIM was first discussed
in Ref. [72], and we now summarize the reasoning made there.
We begin by considering a portion of a domain wall of linear
extent y, displacing it by a (small) length w, and determin-
ing the change in energy, δE (w, y). First, the displacement
increases the length of the boundary by δEint ∼ Uw/ξint. With
regard to the disorder field, we can choose to displace the
boundary to either the left or the right direction, each of
which has a 50% likelihood of decreasing the energy. There
is therefore a 75% probability that the displacement lowers
the energy by a typical amount δEdis ∼ −δmξdis

√
wy/ξ 2

int. In
total, the displacement results in a typical energy change:

δE (w, y) ∼ U
w

ξint
− δm

ξdis

ξ 2
int

√
wy. (E16)

We now minimize δE with respect to w, to obtain

w∗ ∼
(

δm

U

ξdis

ξint

)2
y = α2 y,

δE∗(y) ≡ δE (w∗, y) ∼ −α2U
y

ξint
· (E17)

Next, we note that this procedure may be performed for seg-
ments of all sizes along the domain boundary. In particular,
there are N (y�) = L/y� segments of size y� = e−�L, each
of which contributes an energy δE∗(y�). Summing over all
scales returns the total energy contribution from domain-wall
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roughening:

δEtot (L, a)=
∫ log (L/a)

0
d�N (y�)δE∗(y�)∼−

∫ L

a

dy

y

L

y
α2U

y

ξint

∼ −α2U
L

ξint
log
(L
a

)
. (E18)

Here, a is the smallest scale at which roughening may occur;
in this context, a ∼ ξint, though we will find otherwise in
the next section. (Note that this a should not be confused
with the microscopic lattice constant of monolayer graphene).
Throughout this derivation, we have assumed that a is sig-
nificantly smaller than L. Finally, the total energy cost of the
domain is

Edom(L) ∼ L

ξint

[
U − α2U log

(
L

ξint

)]
. (E19)

Solving for Edom(L∗) = 0, we find

L∗ ∼ ξint e
c/α2

, (E20)

where we have introduced the nonuniversal constant c ∼
O(1) to account for the imprecise nature of our scaling ar-
guments. Once more, for systems larger than L∗, multiple
domains should be apparent.

As we mentioned below Eq. (E18), our integration was
predicated on the assumption that the domain size L was much
larger than ξint. It is clear that this is only satisfied provided
the disorder is weak: α � 1. When the disorder is stronger,
the situation is more complicated.

3. Gaussian-correlated disorder

We now consider the situation considered in the main text,
that of Gaussian correlated disorder:

K

(
r

ξdis

)
= e

− r2

2ξ2dis . (E21)

Unlike the previous two cases, the scale ξdis is a true correla-
tion length in this scenario, as is clear from the form of the
disorder-induced energy reduction:

Edis(L) ∼ −δm
ξdisL

ξ 2
int

√
1 − e−L2/2ξ 2

dis . (E22)

While the domain size appeared as a ratio of the UV cutoff
�UV = ξint in the previous two examples, here Edis(L) is also a
function of L/ξdis.

There are two natural limits to consider. In the first, we take
the domain size to be small enough relative to ξdis that the
smoothness of the disorder is still important, i.e., we cannot
simply ignore the exponential in Eq. (E23). As an extreme
example, when L � ξdis,

Edis(L) ∼ −δm
L2

ξ 2
int

· (E23)

That is, the change in energy is proportional to the volume
of the domain. This observation makes sense given that B(r)
should be essentially constant for two points within a distance
ξdis of one another. In fact, it seems clear that an energetically
favorable domain should be at least ξdis in extent: L∗ � ξdis.

We therefore examine the threshold scenario given by L =
ξdis. We conclude that domain formation is favorable when

Edom(ξdis) ∼ U
ξdis

ξint

(
1 − δm

U

ξdis

ξint

)
= U

ξdis

ξint

(
1 − α

)
� 1.

(E24)

The parameter α that appeared in the white noise case,
Eq. (E15), has showed up again. When it is greater than unity,
α � 1, the disorder destroys long-range order, resulting in
domains of typical size ξdom ∼ ξdis.

When α � 1, the interaction energy cost associated with
the boundary of a domain of linear extent ξdis is greater than
the gain associated with aligning with the random field. For
domains larger than ξdis, the random field within the domain
is only weakly correlated. The exponential under the square
root may therefore be neglected, resulting in an expression
identical to our original estimate for the domain energy with
white noise disorder in Eq. (E14). As we discussed there, this
expression was not complete: the roughening of the domain
walls must also be taken into account, resulting in the contri-
bution given in Eq. (E18). The arguments made in Sec. E 2
follow through for weak, Gaussian-correlated disorder in all
respects save for one minor caveat. Unlike the white noise
disorder case, the roughening cutoff for Gaussian-correlated
disorder is not necessarily ξint. Instead, only scales down to at
most ξdis should be included, since this is where our omission
of the exponential ceases to be valid, i.e., a = max(ξint, ξdis).
Setting the domain energy to zero, we find

ξdom � max(ξint, ξdis ) e
c/α2

, (E25)

where c ∼ O(1) is again a nonuniversal constant. In Fig. 9(b),
we show ξdom for Gaussian-correlated disorder for both
regimes, α � 1 and α � 1.

APPENDIX F: COMPETING ORDERS

We now address the possibility considered in Sec. VC that
the QVH state is not the ground state of the clean theory at
charge neutrality—either one of the other three C2T -breaking
insulators (QSH, QH, or QSVH) or a completely different
order minimizes the energy of the homogeneous theory.

We are interested in studying the conditions under which
the QVH phase is realized. To simplify the analysis, we
assume that there is a single competing phase whose order
parameter does not couple to disorder, but whose ground-state
energy density, Ecomp, is lower than the energy density of
the QVH phase, EQVH, by a small amount. We measure this
distinction in terms of the energy difference δε within a region
of area �2UV = ξ 2

int:

δε

ξ 2
int

= EQVH − EC � 0. (F1)

Throughout this section, we assume that δε � U . While this
ground-state energy difference implies that the competing
phase is realized in a perfectly clean sample, disorder ex-
clusively favors the local realization of the QVH phase. We
therefore expect the majority of the sample to be in the QVH
phase when δε is sufficiently small. Using the Ising notation
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of Sec. VA and Appendix E, we quantify this expectation as[
1

vol

∫
r

〈
φ2(r)

〉]1/2
� 1

2
, (F2)

where vol denotes the sample volume.
We approach the problem in two complementary fashions.

The question of an Ising order parameter competing with
another phase may bring to mind dilute Ising physics, where
here vacancies represent regions where the Ising φ field is not
ordered. In Appendix F 1, we describe a mean-field solution
of a classical 2D lattice model formulated to tackle this type
of question.

While useful, because of the low-dimensionality of the
problem, mean-field theory is not particularly reliable. In par-
ticular, we are free to take the limit δε → −∞, effectively
removing the competing phase from the problem. In this limit,
our results should agree with those of Sec. VA and Appendix
E. There, we found that any disorder was sufficient to de-
stroy long-range order. In contrast, the mean-field calculation
falsely finds long-range order in this limit. We therefore devise
an Ising formulation of the problem in Appendix F 2, which
allows us to make Imry-Ma arguments similar to those of
Appendix E.

1. Blume-Capel description

In keeping with the Ising description of the QVH insulator,
we view the ordering of the competing phase as the presence
of an annealed vacancy. At finite temperature, this physics is
known to give rise to the tricritical Ising fixed point, though
this observation is not relevant for our discussion. While
continuum descriptions do exist, for our purposes, it is most
convenient to employ a lattice model. We therefore consider
the Blume-Capel model [74,75] on an (unspecified) lattice of
coordination number z with quenched random-field disorder,

HBC = −J

z

∑
〈r,r′〉

srsr′ + μ
∑
r

s2r +
∑
r

hrsr, (F3)

where the classical spins may take three values: sr ∈
{+1, −1, 0}. As above, the quenched disorder is represented
through a randommagnetic field hr. For simplicity, we assume
that hr satisfies Gaussian white noise disorder. The corre-
sponding probability distribution reads

P (hr) = e
− h2r

2h20√
2πh20

· (F4)

The use of this distribution is equivalent to our previous
definitions of the disorder distribution, entirely in terms of
moments:

hr = 0, hrhr′ = h20δr,r′ . (F5)

We associate sr = ±1 with the realization of the QVH phase,
i.e., 〈φ〉 ∼ ±1, and vacancies sr = 0 with competing phase.
The exchange energy J corresponds to the Coulomb inter-
action strength, J ∼ U , while the random field strength h0,
should be mapped to the disorder strength h0 ∼ δm ξdis/ξint
in units of the UV cutoff ξint [see the discussion below
Eq. (E15)]. Finally, the so-called crystal field, μ, can be

related to the energy splitting δε by establishing when the
competing phase (all sr = 0) and QVH phase (all sr = +1
or −1) are degenerate, indicating that μ = δε + J/2 ∼ δε +
U/2.

As discussed, we analyze this model in mean-field theory
[76,77]. Letting m ≡ 〈sr〉 be the average magnetization, the
mean-field free energy is

fBC(m) = 1

2
Jm2 − log(1 + e−βμ2 cosh [β(Jm + h)])

= 1

2
Jm2 −

∫
dh√
2πh0

e−h2/2h20

× log(1 + e−βμ2 cosh[β(Jm + h)]), (F6)

where β is the inverse temperature and we explicitly average
over the Gaussian distribution of Eq. (F4) in the second line.
Taking the zero temperature limit, β → ∞, the integral can
be evaluated exactly, giving

fBC(m) = 1

2
Jm2 + 1

2

[
(μ − Jm)Erfc

(
μ − Jm√

2h0

)

+(μ + Jm)Erfc

(
μ + Jm√

2h0

)]

− h0√
2π

(
e−(μ−Jm)2/2h20 + e−(μ+Jm)2/2h20

)
, (F7)

where Erfc(x) is the complementary error function. The mag-
netization is determined by extremizing fBC, resulting in the
self-consistency equation

m = 1

2

[
Erfc

(
μ − Jm√

2h0

)
− Erfc

(
μ + Jm√

2h0

)]
. (F8)

The expectation value of the spin squared, q ≡ √〈s2r 〉, is
directly analogous to the expression on the right-hand side
of Eq. (F2), i.e., when q � 1/2, QVH order prevails. It is
calculated by taking the derivative of fBC with respect to μ:

q2 = ∂

∂μ
fBC = 1

2

[
Erfc

(
μ − Jm√

2h0

)
+ Erfc

(
μ + Jm√

2h0

)]
.

(F9)

In Figs. 10(a) and 10(c), we plot m and q as functions of δε/U
and α, respectively. To make contact with the phase diagram in
the main text, Fig. 5, we also plotm and qwith the y axis given
by γ δε/δm, where γ = ξint/ξdis, in Figs. 10(b) and 10(d).

Figures 10(a) and 10(b) indicate that m orders for δε � 0
when disorder is sufficiently small. While these calculations
agree with our expectations when δm = 0, we showed in
Appendix E that any nonzero disorder destroys long-range
order. The presence of regions with m �= 0 is therefore an
artifact of the mean-field theory; given the low dimension, the
failure of mean-field theory in this regard is not surprising.
Nevertheless, we take it as a good sign that m approaches zero
close to α ∼ 0.8 ∼ 1 for δε < 0 since this condition defines
the crossover regime identified in Appendix E. We therefore
optimistically associate mean-field-ordered regions with those
that in reality possess exponentially large domains.

The density plots in Figs. 10(c) and 10(d) display q. Ob-
viously, when our mean-field prescription indicates that m is
ordered, q is nonzero as well, as a quick comparison with
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FIG. 10. (a), (b) Density plot of the (absolute value of the) magnetization, obtained by minimizing fBC(m) in Eq. (F7). (c), (d) Density plots
of q, as given in Eq. (F9). The color scheme for all plots, (a)–(d), is shown on the right, and, in (b) and (d), γ = ξint/ξdis. The solid pink line in
(c) and (d) indicates the first-order phase transition between regions with q small and regions with q ∼ 1 (as follows from having m ∼ ±1 in
that region). The dashed pink line, on the other hand, is the contour along which q = 1/2 and m = 0; we view it as demarcating a crossover
between regions where the competing phase percolates and regions where the QVH insulator percolates. It follows that for both (c) and (d),
the network scenario we propose should be valid in the regions below and to the right of the pink lines.

Figs. 10(a) and 10(b) clearly shows. Outside of these regions,
however, we find that q only vanishes exactly when δm → 0
(equivalently, h0 → 0) as well. From Eq. (F9), we verify that
when m = 0,

q(m = 0) =
√
Erfc

(
μ√
2h0

)
, (F10)

implying that contours of constant q are represented by
straight lines extending from the μ = 0 origin (not to be
confused with δε = 0 origin), as shown in Fig. 10(c). More
precisely, we can numerically solve for the line along which
q = 1/2,

1

2
=
√
Erfc

(
η1/2√
2

)
, (F11)

to obtain η1/2 ∼= 1.15. Then, provided δε/U and α are such
that m = 0, we find that q = 1/2 along the line

δε

U
= η1/2α − 1

2
· (F12)

We plot this contour with a pink dashed line in Fig. 10(c). It
follows that the system is primarily in the QVH phase when

either

δε � U

(
η1/2α − 1

2

)
or δε � 0. (F13)

The modification needed to obtain the crossover lines drawn
in Fig. 10(d) is straightforward:

δε � δm
ξdis

ξint

(
η1/2 − 1

2α

)
or δε � 0. (F14)

2. Competing Ising field description

The mean-field theory discussed above had the advantage
of simplicity but did not correctly capture the absence of
long-range order. We therefore employ an Imry-Ma descrip-
tion, similar to the analysis of Appendix E. The ordering
of both phases is now modeled by two distinct Ising fields.
As above, we associate φ with the QVH insulator (i.e.,
C2 symmetry breaking) and � with the competing phase.
The total energy is given by HIsing + H ′

Ising + Hφ� + Hφ,dis
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where

HIsing =
∫

d2r
[
K(∇φ)2 − |r|

2
φ2 + u

4!
φ4

]
,

H ′
Ising =

∫
d2r
[
K′(∇�)2 − |r′|

2
�2 + u′

4!
�4

]
,

Hφ� =
∫

d2r λ φ2�2,

Hdis =
∫

d2rB(r)φ(r). (F15)

Since both φ and � are dimensionless,K,K′ have dimensions
of energy. We assume that the interaction scales of the QVH
and competing phases are similar, prompting us to set both
to ∼U . Similarly, the remaining parameters describing HIsing

and H ′
Ising, r, r

′, u, and u′, have units of energy over length
squared. Their natural scale is therefore U/�2UV, where �UV is
the UV cutoff, which should in turn be approximately given
by ξint = h̄vF/�CNP, as discussed in Sec. VA. However, this
assignment of energy scales cannot be the entire story since
the difference in ground-state energies, Eq. (F1), has not yet
been included. Because δε is assumed to be much smaller than
U , and we ignore coefficients of O(1), the exact implementa-
tion is unimportant. Nevertheless, to be concrete, we note that
if one wishes to ensure that Eq. (F1) holds while also requiring
the magnitudes of φ and � to be identical in their respective
ordered phases, the following choice is sufficient:

|r′| ∼ |r| + 2|r|
3u

δε

ξ 2
int

, u′ ∼ u + 2

3

δε

ξ 2
int

· (F16)

The parameter λ in Hφ� is assumed to be larger than the other
scales of the theory to guarantee that 〈φ〉 �= 0 and 〈�〉 �= 0
do not occur within the same region. Finally, the last term,
Hdis, describes the behavior of disorder. We will consider both
white noise and Gaussian-correlated, as defined in Eqs. (E12)
and (E21), respectively.

We examine this system in several steps. Using Imry-Ma
type arguments similar to those of Appendix E, we begin
by studying the formation of a φ-ordered domain within
a uniformly �-ordered system for both white noise and
Gaussian-correlated disorder. As we did in Appendix E, co-
efficients of O(1) are ignored. Next, we argue that if the
physical parameters favor the formation of a single φ-ordered
domain, a macroscopically large fraction of the system should
also be φ-ordered. Our final result is a function of the ratio α

[see Eq. (E15)], δεc(α), that parametrizes a crossover between
the two regimes of interest: when δε � δεc(α), the system is
primarily φ-ordered, whereas when δε � δεc(α), the system
is primarily �-ordered. Figure 5 shows the resulting phase
diagram.

a. Single φ-domain formation: White noise disorder

To make contact with the mean-field theory of Appendix
F 1, we begin by considering white noise disorder. We assume
that the competing phase is realized, 〈�〉 �= 0, and examine
the energy cost associated with the formation of a φ-ordered
domain. As in Appendix E, there are energy contributions
from interactions along the domain boundary and from the
random field B(r). Since we assume that K ∼ K′ ∼ U , the

interaction energy cost Eint is identical to the expression given
in Eq. (E2).6 Similarly, the contribution from disorder, Edis,
follows from the expression in Eq. (E6), giving the same result
as in Eq. (E13). Unlike Appendix E, there is an important
additional cost associated with the difference in ground-state
energy. On general grounds, the cost must increase with the
domain area:

Ecomp(L) ∼ δε
L2

ξ 2
int

· (F17)

We could also have obtained this result from the Hamiltonian
defined in Eq. (F15) with the coefficients defined in Eq. (F16).
The total energy cost of a φ-ordered domain is given by the
sum of this expression with Eint and Edis:

Eφ-dom(L) ∼ δε
L2

ξ 2
int

+U
L

ξint
− δm

ξdisL

ξ 2
int

= δm
ξdisL

ξ 2
int

(
δε

δm

L

ξdis
+ 1

α
− 1

)
· (F18)

This result is the analog of Eq. (E14). There, we concluded
that when α � 1, disorder was “large” and the system would
not order. While this expression also indicates that α � 1 is
necessary to destroy the local order (here, �-order instead a
different type of φ-order), the energy cost of the φ domain
is also dependent on its size, L: the smaller the domain size,
the more favorable it is. A threshold value of δε can there-
fore be defined by the condition Eφ-dom(a) < 0, where a is
the smallest possible domain size. (Again, a should not be
confused with the microscopic lattice constant of monolayer
graphene here or below). For the current situation, clearly
a ∼ ξint; nevertheless, with an eye to the subsequent section,
it is convenient to leave a unspecified. That is, Eφ-dom(a) < 0
provided

δε � δεc(α), δεc(α) ≡ δm
ξdis

a

(
1 − 1

α

)
, when α � 1.

(F19)

Here, we have defined the critical energy difference δεc(α)
in the region where α � 1 for white noise disorder with a
minimal domain size a = ξint. We generalize this definition
to smaller values of α below.

We note that up to coefficients of O(1), this inequality
has the same dependence on α as our mean-field result in
Eq. (F14)! At least in the simple regime, the Blume-Capel and
Imry-Ma descriptions are in agreement.

As we saw in Appendix E 2, once α � 1, the effects of
domain-wall roughening become important and must be in-
cluded. Because roughening does not change the domain area
significantly, the roughening contribution Eq. (E18) remains
valid.7 We note that this situation is similar to what occurs
in the absence of a competing order when a small, uniform

6One might argue that it is more honest to define K′ ∼ K + δε ∼
U + δε in analogy with the definitions of Eq. (F16). However, since
δε � U by assumption, this difference is negligible.
7Alternatively, we can argue that since the displacement is equally

likely to increase or decrease the domain area, Eq. (E16) remains
valid on average.
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FIG. 11. Plot of the energy cost associated with adding a φ-
ordered domain to a uniformly �-ordered system when δε > δεc
(orange), δε = δεc (pink), and δε < δεc (turquoise). For δε < δεc,
we see that domain formation is energetically favorable, Eφ-dom < 0,
for domains with linear extent L satisfying L− < L < L+. Here, we
have set α ∼ 0.6, for which δεc ∼ 0.015 δm ξdis/a.

magnetic field is applied [72,106]. The resulting cost of a φ

domain is

Eφ-dom(L) ∼ δε

(
L

ξint

)2
+U

L

ξint
−U

(
δm

U

ξdis

ξint

)2 L

ξint
log
(L
a

)

= U
L

ξint

[
δε

U

L

ξint
+ 1 − α2 log

(L
a

)]
. (F20)

Again, a is the minimal domain size, which is equivalent to ξint
in this case. We can now define a critical energy difference
in the small α regime. We find that there exists a solution
Edom(L) = 0 provided δε satisfies

δε � δεc(α), δεc(α) ≡ ξdis

a
δm α e−c( 1

α2
+1) , when α � 1.

(F21)

In Fig. 11, we plot Eφ-dom(L) as a function L for several values
of δε. As indicated in the figure, when δε < δεc, there is an
entire region where Eφ-dom < 0 for L− < L < L+. Naturally,
as δε → 0, L− → L∗ [as defined in Eq. (E20)] while L+ →
∞.

b. Single φ-domain formation: Gaussian correlated disorder

We now repeat the exercise above for Gaussian-correlated
disorder. The energy cost of inserting a φ-ordered domain into
a uniformly �-ordered system is on average

Eφ-dom(L) ∼ δε

(
L

ξint

)2
+U

L

ξint
− δm

ξdisL

ξ 2
int

√
1 − e−L2/2ξ 2

dis .

(F22)

We first study the regime where the smoothness of the disorder
is important, i.e., the exponential under the square root is
important. In this case, we expect the φ domains to track the
disorder potential and therefore be of the same size as the
disorder correlation length ξdis. For this to be energetically
favorable, we must have

0 > Eφ-dom(ξdis) ∼ δε
ξ 2
dis

ξ 2
int

+U
ξdis

ξint
− δm

ξ 2
dis

ξ 2
int

= U

(
ξdis

ξint

)2[
δε

δm
+ 1

α
− 1

]
, (F23)

It follows that φ-ordered domains of linear extent ξdis should form once

δε � δεc(α), δεc(α) ≡ δm

(
1 − 1

α

)
, when α � 1. (F24)

This critical energy difference is nearly identical to the analogous expression obtained for white noise disorder in Eqs. (F14) and
(F19). The most notable difference between the two inequalities is the prefactor ξdis/ξint multiplying the right-hand side. Going
back to the previous section, we see that this coefficient originates from setting the minimal domain size to ξint. In contrast, for
Gaussian-correlated disorder, the smallest allowed domains are expected to be ξdis, and so δεc(α) contains no such prefactor.

As we saw in Appendix E, once α � 1, Gaussian-correlated disorder can be treated as local white-noise disorder, which
necessitates a treatment that includes the effects of domain-wall roughening. The relevant expression for Eφ-dom(L) is therefore
identical to the one given in Eq. (F20), save that the smallest domain size is given by a = max(ξint, ξdis). The inequality describing
the favorability of domain formation is now

δε � δεc(α), δεc(α) ≡ ξdis

a
δm α e−c( 1

α2
+1) , when α � 1. (F25)

c. Multiple φ-domains

The formation of a single domain does not necessarily imply the network model we propose as a description for mTBG at
charge neutrality. Instead, we want the φ-ordered regions to percolate throughout the sample, as implied by the condition given
in Eq. (F2). We argue that φ order should start dominating at a crossover set by the scale δεc(α). As discussed in Appendix F 2 a,
within our approximation, domain boundaries between different φ orientations have the same cost as domains between �- and
φ-ordered regions. As a result, we can imagine ‘tiling’ the φ-ordered regions into domains of some size ξ∗. For instance, when
α � 1, the energy difference between a uniformly �-ordered system and a (nonuniformly) φ-ordered system is

�E ∼ δε

(
L

ξint

)2
+
(
L

ξ∗

)2[
U

ξ∗
ξint

−U

(
δm

U

ξdis

ξint

)2
ξ∗
ξint

log

(
ξ∗
a

)]
= U

L2

ξintξ∗

[
δε

U

ξ∗
ξint

+ 1 − α2 log

(
ξ∗
a

)]
= L2

ξ 2∗
Eφ-dom(ξ∗),

(F26)
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where this expression is the same for both white noise and Gaussian-correlated disorder provided we recall that a = ξint in the
former case while a = max(ξdis, ξint ) in the latter. It follows that when the typical domain size ξ∗ is such that Eφ-dom(ξ∗) < 0
(i.e., L− < ξ∗ < L+), a wholly (but nonuniformly) φ-ordered sample may be considered energetically favorable. An identical
argument holds for α � 1 with ξ∗ = ξdis. If we now imagine fixing α and increasing δε, we expect Eq. (F2) to hold up to
some value, δε̃c(α), of the same order as δεc(α). Given the general lack of precision throughout this Appendix, we assume that
δε̃c(α) ∼ δεc(α). This identity sets the dashed line in Fig. 5.
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