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A B S T R A C T   

A variety of reoviruses have been described in crustacean hosts, including shrimp, crayfish, prawn, and especially 
in crabs. However, only one genus of crustacean reovirus - Cardoreovirus - has been formally recognized by ICTV 
(International Committee on Taxonomy of Viruses) and most crustacean reoviruses remain unclassified. This 
arises in part from ambiguous or incomplete information on which to categorize them. In recent years, increased 
availability of crustacean reovirus genomic sequences is making the discovery and classification of crustacean 
reoviruses faster and more certain. This minireview describes the properties of the reoviruses infecting crusta-
ceans and suggests an overall classification of brachyuran crustacean reoviruses based on a combination of 
morphology, host, genome organization pattern and phylogenetic sequence analysis.   

1. Introduction 

1.1. Genera of Reoviridae family 

Reoviridae is the largest and the best studied family of all the double- 
stranded RNA (dsRNA) virus families (Mertens, 2004). Viral particles of 
reoviruses have icosahedral symmetry, with diameters of 55–85 nm and 
can be subdivided into two subfamilies, the ‘turreted’, and ‘non- 
turreted’ viruses, depending on whether they have projections at the 12 
vertices (Attoui et al., 2012). Reoviruse genomes are composed of 
segmented dsRNA; the number of genome segments (9, 10, 11 or 12) is 
characteristic of viruses within a single genus (Attoui et al., 2012). In 
addition to the structural classification, the level of sequence diver-
gence, particularly in the more conserved genome segments and pro-
teins, are important criteria for the classification of genera and species. 
For example, amino acid identities of RNA dependent RNA polymerase 
(RdRps) within a single genus are usually >33% (Lefkowitz et al., 2018). 
In total, 97 species in the Reoviridae family have been classified into 15 
genera and divided between two subfamilies. The subfamily Spinar-
eovirinae (turreted) contains 9 genera: Aquareovirus, Coltivirus, Cypovi-
rus, Dinovernavirus, Fujivirus, Idnoreovirus, Mycoreovirus, Orthoreovirus 
and Oryzavirus. The subfamily Sedoreovirinae (non-turreted) includes 6 
genera: Rotavirus, Phytoreovirus, Orbivirus, Seadornavirus, Mimoreovirus 
and Cardoreovirus (Walker et al., 2019). Reoviruses have been isolated 
from a wide range of host species, including mammals, birds, reptiles, 

fish, crustaceans, marine protists, insects, ticks, arachnids, plants and 
fungi (Attoui et al., 2005; Shields et al., 2015). Host range and disease 
symptoms are also important indicators that help to identify viruses of 
different genera (Attoui et al., 2012). 

1.2. Reoviruses in aquatic hosts 

The Reoviridae family contains four distinct groups of aquatic reo-
viruses, two of which infect teleost fish: Aquareovirus with 11 genome 
segments (Lupiani et al., 1995; Attoui et al., 2012), and isolates of the 
newly discovered piscine orthoreovirus (PRV) with 10 genome segments 
in the genus Orthoreovirus (Palacios et al., 2010; Godoy et al., 2016; 
Kibenge and Godoy, 2016). The Micromonas pusilla reovirus (MpRV) has 
11 genome segments, infects a picophytoplankton species, and is the 
founding member of the genus Mimoreovirus (Brussaard et al., 2004). 
The only ICTV-recognized genus of crustacean reoviruses is Cardor-
eovirus with 12 genome segments and infects Chinese mitten crab Erio-
cheir sinensis (E. sinensis) (Zhang et al., 2004; Attoui et al., 2012). 
However, since the first discovery of a reo-like virus from a marine crab 
Macropipus depurator (M. depurator) in 1966 (Vago, 1966), diverse reo-
viruses have been reported in crustacean hosts, particularly in Portuni-
dae and Varunidae crabs, as well as other crustaceans such as crayfish, 
shrimp and prawn (Johnson, 1984; Bateman and Stentiford, 2017; 
Shields et al., 2015). The classification of these crustacean reoviruses is 
less well developed than reoviruses of vertebrates, in part because of the 
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diversity of hosts, and lack of cell culture methods for propagation. In 
some cases, the lack of viral genome sequences upon first discovery 
resulted in different names being given to the same virus. With more 
genomic and metagenomic sequences of crustacean reoviruses 
becoming available, now is a good time for a taxonomic overview of 
brachyuran crustacean reoviruses. In this minireview, we present a 
comprehensive overview of reoviruses recorded in crustaceans, host 
ranges, geographic distribution and pathology. We emphasize the di-
versity and classification of brachyuran crustacean reoviruses based on 
their genome organization pattern and sequence phylogenetic analysis. 
From these lines of evidence, we propose a hypothetical classification of 
reoviruses in brachyuran crabs that clarifies some of the ambiguities in 
their naming. 

2. Reoviruses in brachyuran crustaceans 

2.1. Host range and geographic distribution 

Fourteen reoviruses have been reported from seven crab species 
within Portunidae and Varunidae families along the coasts of Asia, 
Europe, North America and South America (Table 1; Fig. 1). In fact, the 
first virus discovered in a marine invertebrate was a reo-like virus from 
M. depurator on the French coast of the Mediterranean (Vago, 1966). 
Bonami (1973) described a virus infecting M. depurator in the same area 
and designated it as reovirus based on its morphological characteristics 
and named as P virus (P for paralysis). Both viruses have similar viral 
particles with a size of ~60 nm forming paracrystalline arrays in the 
connective tissue and hemocytes (Vago, 1966; Bonami et al., 1976). At 
the French Mediterranean coast near Seté, two reoviruses (W2 and 
RC84) were observed in diseased shore crabs Carcinus mediterraneus 
(C. mediterraneus) (Mari, 1987; Mari and Bonami, 1986; 1987; 1988). 
W2 was named based on its ultrastructural similarities with W virus, 
which has little available information except that it infects Carcinus 
maenas (Bonami and Zhang, 2011). W2 virus is 65–70 nm in diameter 
and forms rosettes in connective tissue of the hepatopancreas, digestive 
tract, gills and hemocytes, while RC84 has paraspherical 70–75 nm vi-
rions, infecting B-cells and R-cells of the digestive epithelium of the 
hepatopancreas (Mari and Bonami, 1986; 1987; 1988). 

At the same time that P virus was discovered in the Mediterranean, a 
pathogenic reovirus (RLV = reo-like virus) was identified in Callinectes 
sapidus (C. sapidus) on the other side of the Atlantic Ocean (Johnson and 
Bodammer 1975; Johnson, 1977). A similar reovirus was discovered in 
C. sapidus captured from the Chesapeake Bay in 2009 and was present in 
>50% of dead or dying soft-shell crabs but fewer than 5% of healthy 
hard crabs (Bowers et al., 2010; Spitznagel et al., 2019), and designated 
as Callinectes sapidus reovirus (CsRV) (Tang et al., 2011). These cyto-
plasmic viruses with icosahedral capsid are ~55 nm in diameter (Fig. 2). 
CsRV was renamed as CsRV1 (Flowers et al., 2016a; 2016b; 2018; Zhao 
et al., 2020) when a second reovirus was discovered in C. sapidus 
collected from southern Brazil and provisionally named CsRV2 (Fig. 3A) 
(Zhao et al., 2021). CsRV2 was discovered solely by the presence of its 
dsRNA genome in RNA extracts from C. sapidus, and nothing else is 
known about its potential pathogenicity or prevalence in this host. More 
recently, CsRV2 was discovered infecting Callinectes danae (C. danae) in 
Brazil and is the subject of ongoing investigations (Tavares et al., 
unpublished). 

Half of the brachyuran crustacean reoviruses have been identified 
infecting aquaculture crabs in China, including MCRV and SsRV 
infecting mud crab Scylla serrata (S. serrata) (Weng et al., 2007; Zhang 
et al., 2007; Ma et al., 2016); EsRV905, EsRV816 and EsRV WX-2012 
identified in E. sinensis (Bonami and Zhang, 2011; Shen et al. 2015; 
Zhang et al., 2002; Zhang and Bonami, 2012) and SCRV infecting Por-
tunus trituberculatus (P. trituberculatus) (Fang et al., 2015; Zhang et al., 
2015). The viral particle of both MCRV and SsRV is 70 nm, icosahedral 
and nonenveloped (Weng et al., 2007; Chen et al., 2011). Deng et al. 
(2012) suggested MCRV belongs to a new genus of the Reoviridae family, Ta
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named Crabreovirus, which has yet to be recognized by ICTV. Both 
EsRV905 and EsRV816 were described in E. sinensis afflicted with 
“trembling disease” (TD) in southern China. Non-enveloped icosahedral 
viral particles infect connective tissue but of different diameters, 55 nm 
and ~60 nm for EsRV905 and EsRV816, respectively (Zhang et al., 
2002; Zhang and Bonami, 2012). A third virus, EsRV WX-2012 was also 
identified from Chinese E. sinensis exhibiting “TD”; it has a typical 
reovirus icosahedral structure and a diameter of 60–70 nm (Shen et al. 

2015). The swimming crab reovirus (SCRV) (Fang et al., 2015; Li, 2012; 
Li et al., 2012; Zhang et al., 2015) was isolated from P. trituberculatus in 
China. The complete SCRV particle is reported to be 30 ± 10 nm, which 
is smaller than most reoviruses (Zhang et al., 2015). 

2.2. Pathology of reoviruses in brachyuran crustaceans 

2.2.1. Clinical signs and mortality 
The typical clinical signs caused by reovirus infections in brachyuran 

crustaceans are lethargy, anorexia, trembling and paralysis at late 
phases of the infection (Vago, 1966; Johnson, 1977; Bonami and Zhang, 
2011). For most crab reoviruses, disease signs and mortality were 
reproduced in experimentally infected crabs through injection or oral 
inoculation (Bonami et al., 1976; Bonami and Zhang, 2011; Bowers 
et al., 2010; Mari and Bonami, 1988; Weng et al., 2007). Experimental 
injection of purified P virus caused trembling of 60% M. depurator, fol-
lowed by paralysis and a mortality of 70–80% in 9 days (Bonami et al., 
1976). W2 virus was detected in crabs 5 days after exposure and 
diseased crabs died within 20 days (Mari and Bonami, 1988). Injection 
of RLV/CsRV1 caused 100% mortality and resulted in the appearance of 
viral RNA and virus inclusions in hemocytes (Johnson, 1977; Bowers 
et al., 2010). CsRV1 was also present at high prevalence in a majority of 
wild crabs that died in soft-shell production systems (Spitznagel et al., 
2019). Experimental infection of S. serrata with MCRV by intramuscular 
injection, bath inoculation and oral inoculation led to 100% mortality, 
while cohabitation caused 80% mortality (Weng et al., 2007). However, 
experimental infection of E. sinensis using purified EsRV905 or EsRV816 
caused only 30% mortality without signs of trembling, and the virus 
could be detected in surviving crabs (Bonami and Zhang, 2011; Zhang 
et al., 2002). SCRV can provoke severe hemorrhaging in P. trituberculatus 
and causes up to 100% mortality (Zhang et al., 2015). No experimental 
infection has been conducted for RC84, EsRV WX-2012, CsRV2 and 
SsRV, but SsRV was discovered infecting S. serrata with “waterclear 
disease (CD)”, which caused ~80% mortality at the infected farms in 
Zhejiang province (Chen et al., 2008) (Table 1). 

Fig. 1. Geographic distribution and host ranges of crustacean reoviruses. Reoviruses infecting crabs are shown in red and other crustaceans (shrimp, prawn and 
crayfish) in green. Cartoon images are obtained from https://ian.umces.edu/. Note: RLV is a specific name for the reovirus infecting C. sapidus (same to CsRV/ 
CsRV1); Reo1, Reo2, Reo3, Reo4 are used here only for specifying that these are different reo-like virus. 

Fig. 2. Electron microscopic image of CsRV1. The size of CsRV1 is ~55 nm. 
Muscle of an infected crab was homogenized, clarified by centrifugation, and 
filtered through 0.2 µm filter. Virus particles were concentrated by centrifu-
gation at 22,000g, suspended in Tris and adsorbed to Formvar/copper coated 
grids and stained with phosphotungstic acid. Samples were visualized using a 
FEI Tecnai TM T12 transmission electron microscope. 
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2.2.2. Reoviruses infecting different hosts – “Cross infection” 
Host range has been an important facet of reovirus characterization. 

Very few of the crustacean reoviruses have been tested for infectivity in 
species other than the original host. Experimental cross infection of P 
virus and W2 in their respective crab hosts was not successful: P virus 
did not replicate in C. mediterraneus and conversely W2 not replicate in 
M. depurator (Bonami, 1980; Mari, 1987). However, P virus has >98% 
nucleotide sequence identity with CsRV1 (GenBank accession no. 
MW088922; NC_037581) (Flowers et al., 2016), suggesting that these 
two viruses are likely different variants of a same reovirus infecting 
different crab species - M. depurator and C. sapidus in Mediterranean and 
Atlantic coasts, respectively. CsRV2, while first discovered in C. sapidus, 
appears to also infect C. danae in Brazil (Zhao et al., 2021; Tavares et al., 
unpublished). It has not been established whether CsRV2 is pathogenic 
to either C. sapidus or C. danae. 

2.2.3. Hosts infected by different reoviruses - “Multi-infection” 
It is not uncommon for the presence of two or more pathogens to be 

detected in wild or captive diseased crustaceans. Indeed, some of the 
early descriptions of the blue crab reovirus by Johnson (1984) included 
discussion of baculo- or rhabdo-like co-infections. Multi-infection of 
reoviruses in brachyuran crustaceans has also been verified in several 
crab species. C. sapidus was found to harbor two different reoviruses 
simultaneously- RLV/CsRV1 and CsRV2 (Bowers et al., 2010; Zhao et al., 
2021). W2 and RC84 were both identified from the same crab species - 
C. mediterraneus (Mari and Bonami, 1986; 1987; 1988). EsRV905 and 
EsRV816 were isolated from the same study of E. sinensis afflicted with 
TD (Zhang et al., 2002). In 2005, a novel E. sinensis reovirus WX-2012 
(EsRV) was also identified from cultured E. sinensis exhibiting TD 
(Shen et al., 2015). Co-infection of related segmented RNA reoviruses, 
such as CsRV1 and CsRV2, in a host cell could provide chances for viral 
reassortment, result in the shuffling of gene segments to generate 
progeny viruses with novel genome combinations. In addition, the 
likelihood of co-infection of reoviruses in crustaceans might result in 
cumulative pathogenicity of each virus and be a potential threat to 
crustacean aquaculture. 

3. Classification of brachyuran crustacean reoviruses 

3.1. Genome organization pattern 

Except for EsRV816, which has a genome with 10 linear dsRNA 
segments (Zhang et al., 2002), all known brachyuran crustacean reovi-
ruses have 12 segmented dsRNA genomes (no information is available 
for SCRV). The pattern (number and sizes) of genome segments is an 
informative criterion for the classification of reoviruses. According to 
their genome organization patterns based on either agarose gel elec-
trophoresis or segments derived from genome sequences, the bra-
chyuran crustacean reoviruses can be divided into 3 groups (Fig. 3B): 1) 
Crabreovirus: P virus, W2, EsRV WX-2012, CsRV1, MCRV and SsRV have 
a pattern of 1/5/6 (1 large, 5 medium and 6 small sized segments); 2) 
Cardoreovirus: EsRV905 and CsRV2 have a 3/4/2/3 pattern; 3) and 
Crustareovirus: the genome pattern of EsRV816 is 5/3/2 (Bowers et al., 
2010; Chen et al., 2011; Chen et al., 2012; Deng et al., 2012; Flowers 
et al., 2016; Montanie et al., 1993; Shen et al., 2015; Weng et al., 2007; 
Zhang et al., 2004; Zhang and Bonami, 2012). 

3.2. Genome-based phylogenetic analyses 

Genome sequence comparisons are a powerful way to understand the 
relationships between related viruses. Whole genome sequences are 
available for CsRV1 (Flowers et al., 2016), CsRV2 (Zhao et al., 2021), 
MCRV (Deng et al., 2012), SsRV (Chen et al., 2011; Chen et al., 2012), 
and EsRV WX-2012 (Shen et al., 2015). The genome sizes of these reo-
viruses are all between 23 and 25 kbp (Table 1). The genome sequence of 
SsRV has 67 nucleotide variations compared to MCRV, of which only 11 
result in amino acid changes. Thus, Chen et al. (2012) suggested the two 
pathogens are likely to belong to the same species. The genome of CsRV2 
identified from C. sapidus was recently sequenced (Zhao et al., 2021). 
The P virus genome is largely un-described, except for a ~700 bp region 
used to construct a dot-blot probe and represents the first published 
sequence of a crab reovirus (Walton et al., 1999). Partial RdRp gene 
sequence is available for EsRV905 and EsRV816 (Zhang et al., 2004; 
Zhang and Bonami, 2012). No sequence data is publicly available for 
most of the reoviruses detected during the 1970s and the first half of the 
1980s, such as the reovirus discovered by Vago (1966), W2, RC84 and 
RLV (Table 1). 

The RdRp gene has been used to elucidate the evolutionary 

Fig. 3. Taxonomic grouping of reoviruses infecting brachyuran crabs based on agarose gel electrophoresis. A. Agarose gel electrophoresis of CsRV2 (Zhao 
et al., 2021); B. Schematic of the dsRNA banding patterns of all available crab reoviruses. Three different genera are suggested as “Crabreovirus” “Cardoreovirus” and 
“Crustareovirus”. 
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relationships among viruses in the genera of the family Reoviridae 
because the polymerase enzyme is the most conserved of the viral pro-
teins. To date, only EsRV905 has been officially accepted by ICTV in 
Cardoreovirus genus (Attoui et al., 2012), and all other crustacean reo-
viruses have not been assigned into any genus. Nevertheless, a phylo-
genetic tree could provide insights into the relationships of crab 
reoviruses to each other and to reovirus genera in other hosts. An 
alignment of protein sequences for RdRp shows that CsRV2 shares 
~80% identity in RdRp amino acid sequences with EsRV905, and so 
appears to be a 2nd member of the Cardoreovirus. The remaining crab 
reoviruses cluster into two different clades (Fig. S1; Fig. 4). The most 
populated clade, Crabreovirus, consists of MCRV, SsRV, CsRV1 and EsRV 
WX-2012, which encode RdRp proteins that share >85% amino acid 
identity. Because the RdRp proteins encoded by MCRV and SsRV are 
>99% identical (Chen et al., 2012; Zhang et al., 2007), it is likely that 
these two viruses are variants of the same species. 

The available RdRp amino acid sequences of EsRV816 shows less 
than 15% identity with members of the Crab- or Cardoreovirus genera. 
The RdRp of EsRV816 does however share 60% and 45% identity with 
two putative reoviruses described in a metagenomic analysis of crusta-
ceans: Wenling Reo-like virus 1 (WLR1) and Beihai Reo-like virus 2 
(BHR2) (Zhang and Bonami, 2012; Shi et al., 2016). These three se-
quences may therefore represent a new genus, which we propose a 
provisional name of Crustareovirus (Fig. 5). However, future studies of 
virus particle characteristics, host species, pathogenesis, and genome 
organization of WLR1 and BHR2 will be needed to support this classi-
fication (Shi et al., 2016). 

Although no RdRp sequence of P virus is available for phylogenetic 

analysis, Walton et al. (1999) reported 700 nt of the genome which was 
recognized later to be 97% identical to CsRV1 segment 4 (Flowers et al., 
2016), suggesting that these two viruses could be variants of a same 
reovirus species. The size difference between P virions (Bonami, 1973) 
and CsRV1 (Fig. 2) could be caused by different purification protocols 
since the outer capsid proteins could have been lost or degraded during 
the centrifugation, or different measurement methods. Additionally, P 
virus and W2 virus have been suggested to constitute a genus, based on 
their dsRNA electrophoretic pattern (1/5/6) (Montanie et al., 1993) 
(Fig. 3B). Therefore, P virus and W2 virus could be added into the genus 
Crabreovirus, which extends the genus to 6 members (Fig. 5). 

4. Reoviruses in other crustacean hosts: shrimp, crayfish and 
prawns 

Reoviruses have been identified from 6 different species of shrimp, 
crayfish and prawn, including Penaeus monodon (P. monodon), Penaeus 
japonicus (P. japonicus), Penaeus vannamei (P. vannamei), Palaemon ele-
gans (P. elegans), Cherax quadricarinatus (C. quadricarinatus), and Mac-
robrachium nipponense (M. nipponense) (Table 2). Most of these 
reoviruses were described prior to the development of molecular tools to 
make sequencing and analysis of virus genomes rapid and inexpensive, 
and partial genome sequences are available only for the reoviruses re-
ported from C. quadricarinatus and M. nipponense. 

4.1. Reovirus in Penaeidae 

A reo-like virus, showing intracytoplasmic reoviral arrays comprised 

Fig. 4. Neighbor-joining phylogenetic 
tree of crustacean reoviruses and other 
reoviruses based on amino acid sequences 
of RdRp gene. Accession numbers and ab-
breviations are available in Supplementary 
Table S1. RdRp sequences were aligned and 
phylogenetic tree was constructed using CLC 
Workbench 7 (Qiagen). Bootstrap support 
with 1000 replicates is shown above the 
branches. The three genera of brachyuran 
crustacean reoviruses within Reoviridae fam-
ily are shown in red: Crabreovirus, Cardor-
eovirus and Crustareovirus.   
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of non-enveloped icosahedral or paraspherical particles measuring 
50–70 nm, was identified from moribund and dying juvenile P. monodon 
in Malaysia (Anderson et al., 1987). However, the pathogenesis of this 
reovirus was undetermined, since the P. monodon was co-infected with 
baculovirus, rickettsia and gram-negative bacterial (Nash et al., 1988). 
Tsing and Bonami (1987) discovered typical reoviral non-enveloped, 
icosahedral particles with a diameter of 61 nm in cultured P. japonicus 
experiencing mass mortalities. Virions were observed to develop in the 
cytoplasm of hepatopancreatic R-cells without any crystalline arrange-
ment. This reovirus was thought to have limited pathogenicity as the 
virus can also be found in non-diseased shrimp (Lightner, 1988). A reo- 
like virus was found infecting P. vannamei concurrently with experi-
mental infection of Baculovirus penaei (BP) (Krol et al., 1990). Both vi-
ruses occurred occasionally in the same epithelia1 cells of the anterior 
midgut and in R- and F-cells of the hepatopancreas. It is not clear 
whether the pathogen was introduced along with BP virus during the 
exposure or was latent and manifested only due to stress induced by the 
BP exposure study. Compared to reovirus in P. monodon and P. japonicus, 
reovirus in P. vannamei is smaller and occurred in non-paracrystalline 
arrays. It occurred as unordered aggregates in the cell cytoplasm with 
paraspherical and non-enveloped virions ~50 nm diameter (Krol et al., 
1990). 

4.2. Reovirus in P. elegans 

A reo-like virus was reported infecting the B cells but not R and F 
cells of the hepatopancreas of P. elegans collected from the Mediterra-
nean Sea near Piran (Vogt, 1992), named Palaemon B-cell reo-like virus 
(PBRV). PBRV has similar size (52–55 nm in diameter), morphology, 
and localization to other reoviruses. Interestingly, the virus was 
observed in 2 out of 5 wild shrimp inspected and the pathogenicity of it 
remains unexplored. 

4.3. Reovirus in C. quadricarinatus 

The first reported reovirus in crayfish was detected from 
C. quadricarinatus in Australia by Edgerton et al. (2000). Chronic mor-
talities in C. quadricarinatus in the study were associated with a pre-
sumptive reovirus in the hepatopancreas and a putative parvovirus in 
the gills. The virion (35–40 nm in diameter) in this study was smaller 
than most reoviruses and similar to the size of reovirus cores. The au-
thors suggested that the observed virions could be immature reovirus 
without double shell capsid (Edgerton et al., 2000). Another study also 
detected reovirus infection in the hepatopancreas of C. quadricarinatus, 
with ~55 nm diameter icosahedral viral particles (Hayakijkosol and 
Owens, 2011). Reovirus infected crayfish showed lethargy, poor appe-
tite, a weakened tail-flip response, and reddish appendages and 

mouthparts. Juvenile C. quadricarinatus showed low mortality when 
challenged with reovirus by injection (~20%), or by feeding (5%), 
which is similar to what is reported for reovirus infections in P. monodon 
and P. japonicus (Hayakijkosol and Owens, 2011). Partial RdRp sequence 
of C. quadricarinatus reovirus (GenBank accession: QIJ55897) had 33% 
amino acid identity to Beihai reo-like virus 1 (BHR1) sequence that was 
detected by metagenomics of mantis shrimp in China (GenBank acces-
sion: APG79086) (Hayakijkosol et al., 2021; Shi et al., 2016). 

4.4. Reovirus in M. nipponense-MnRV (2016) 

M. nipponense reovirus (MnRV), a new pathogenic agent of the 
freshwater prawn, was reported by Zhang et al. (2016). Diseased 
shrimps were a little smaller than healthy animals, but no other clinical 
sign was noted. Infection signs were observed only in epithelial cells of 
hepatopancreas. Viral particles had typical reovirus characteristics: non- 
enveloped, icosahedral virus with 60 nm in diameter. MnRV genome, 
with full length of ~23.6 kbp, revealed 10 distinctive bands with an 
electrophoretic pattern 5/2/3 (Zhang et al., 2016). A partial (33 residue) 
deduced RdRp amino acid sequence (GenBank accession: AKA43761) 
shared 35% identity with Kadipiro virus (Seadornaviridae) in insects 
(GenBank accession: AWE75154; APG79130) (Shi et al., 2016; Zhang 
et al., 2016; Zhang et al., 2018). 

5. Conclusions and future directions 

Since the first crustacean virus was described using electron micro-
scopy (EM) in 1966, discovery of crustacean reoviruses has accelerated 
with the development of new discovery techniques and the increased 
observation of crustaceans in aquaculture. In the pre-genomics era, 
novel reoviruses were usually first identified in diseased animals by EM 
inspection of infected tissue or filtered homogenates of infected animals, 
such as P virus, RLV, EsRV905 and EsRV816 (Bonami, 1973; 1976; 
Johnson, 1977; Zhang et al., 2002). Histological examination and 
agarose gel electrophoresis of virus RNA have also been applied to 
characterize reovirus infections in crustaceans (e.g., Montanie et al. 
1993; Bowers et al., 2010; Tang et al., 2011; Zhang and Bonami, 2012). 
For example, CsRV2 was discovered solely by agarose gel electropho-
resis during a study of CsRV1 infections in C. sapidus collected from 
Brazil (Fig. 3A) (Zhao et al., 2021). Other standard molecular detection 
methods, such as RNA hybridizations and RT-qPCR, were then devel-
oped to rapidly detect and quantify specific viruses during an infection 
(Walton et al., 1999; Tang et al., 2011; Flowers et al., 2016; Zhao et al., 
2020; Hayakijkosol et al., 2021). In recent years, with the development 
of PCR and high throughput Next Generation Sequencing (NGS), ad-
vances in metagenomics, ever-growing genome databases, and more 
user-friendly bioinformatics tools, vast numbers of viral genomes have 

Fig. 5. Theoretical classification of bra-
chyuran crab reoviruses based on 
phylogenetic analysis, genome organi-
zation pattern and sequence identity. 
The tree was drawn from subset of the RdRp 
alignmnet used in Fig. 4, and viruses for 
which no RdRp sequence data is available 
were added based on criteria listed in the 
text. Sequences were aligned and phyloge-
netic tree was constructed with CLC Work-
bench 7 (Qiagen). Bootstrap support with 
1000 replicates is shown above the 
branches.   
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been identified and characterized, such as crustacean reoviruses-WLR1, 
BHR1 and BHR2 (Shi et al., 2016). Metagenomics and bioinformatics 
will have an increasing effect on identification and characterization of 
new viruses, which will certainly soon expand reovirus diversity in a 
wider range of crustaceans. These approaches are not a substitute for the 
essential tools of histology, EM, and infection studies to discover and 
characterize the biology of new viruses. So, rather than being replace-
ment for these skill sets (knowledge base), genomics will only increase 
the need for resources and training to continue these crucial biological 
studies. 

The development of virus genomics and metagenomics has provided 
a universal and quantifiable basis for virus classification. Traditionally, 
virus classifications have been based on properties such as virion 
morphology, genome organization, serology, host range, replication and 
transmission mechanism, and pathogenicity (Bao et al., 2008). Today, 
almost all new viral genomes are either sequenced when they are first 
discovered, or even have been assembled from metagenomic datasets 
which have scant biological data such as viral characteristics, host range 
and pathogenecity. A recent publication makes the case for integrating 
such assembled virus genomes into the ICTV classification scheme even 
in the absence of other data (Simmonds et al., 2017). 

Virus classification based on phylogenetic analysis of genome se-
quences has been used increasingly in recent years (Gorbalenya and 
Lauber, 2017). In this minireview, a phylogenetic analysis of different 
Reoviridae genera was conducted to give a hypothetical classification of 
the diverse brachyuran crustacean reoviruses. Three clades of bra-
chyuran crustacean reoviruses are evident in the RdRp amino acid-based 
phylogenetic tree, with new species added to two previously suggested 
genera -Cardoreovirus (Zhang et al., 2004) and Crabreovirus (Deng et al., 
2012), and a new genus designated as Crustareovirus (Fig. 4). Based on 
the genome organization pattern and other partial sequence compari-
sons, P virus and W2 appear to be members of Crabreovirus, and 
EsRV816 was added to the genus Crustareovirus (Fig. 5). Further studies 
on whole genome sequencing of more brachyuran reoviruses (P virus, 
W2, RC84, EsRV816, SCRV) as well as reoviruses in other custacean 
hosts, and more viral sequences identified from metagenomics, will 
surely strengthen and extend the classification of crustacean reoviruses. 

Going forward, the ease of generating genome sequence when 
describing a novel virus and timely sharing of the sequences in public 
databases will help to avoid confusion about virus identities. Further-
more, genomic data may bring surprising new insights into crustacean 
virus ecology and evolution. For example, genomic sequences helped 
reveal the global movements and evolutionary origin of White Spot 
Syndrome Virus (WSSV) (Marks et al., 2004; Kawato et al., 2019). The 
similarity of P virus to CsRV1 (a.k.a, RLV or CsRV) suggests an intrguing 
possibility that they are variants of a single reovirus species infecting 
different hosts on different continents. Although P virus was identified 
from M. depurator in the Medditerranean, the host of CsRV1 (C. sapidus) 
was introduced to the Mediterranean as an invasive species since at least 
1949 (Mizzan, 1993). This would raise questions about whether the 
virus made one or more trans-Atlantic journeys, either in C. sapidus, 
which is an invasive species throughout the Mediterranean, or in an 
unknown crustacean that travelled from east to west. An investigation of 
P virus in C. sapidus and other crab species in the Mediterranean can 
address this question and help us better understand the interactions of 
invasive species and viral diseases in the ocean as well as marine in-
fectious disease ecology. 
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Thèse Doct. Etat. Univ. Sci. & Tech., Languedoc, Montpellier, France.  

Bonami, J.R., Comvs, M., Veryunes, J.C., 1976. Etude histopathologique et 
ultrastructurale de la paralysie virale du crabe Macropipus depurator L. Rev. Trav. 
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