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Abstract LSD1 (KDMA1) has gained attention in the last decade as a can-
cer biomarker and drug target. In particular, recent work suggests that LSD1
inhibition reduces tumor growth, increases T cell tumor infiltration, and com-
plements PD1/PDL1 checkpoint inhibitor therapy. In order to elucidate the
immunogenic effects of LSD1 inhibition, we develop a mathematical model of
tumor growth under the influence of the adaptive immune response. In par-
ticular, we investigate the anti-tumor cytotoxicity of LSD1-mediated T cell
dynamics, in order to better understand the synergistic potential of LSD1 in-
hibition in combination immunotherapies, including checkpoint inhibitors. To
that end, we formulate a nonspatial delay differential equation model, and
fit to the B16 mouse model data from Sheng et al.[Cell. 174, 3. (2018)]. Our
results suggest that the immunogenic effect of LSD1 inhibition accelerates
anti-tumor cytoxicity. However, cytotoxicity does not seem to account for the
slower growth observed in LSD1 inhibited tumors, despite evidence suggesting
immune-mediation of this effect.
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1 Introduction

The gene coding for the histone lysine-specific demethylase LSD1 (KDMAT1)
has gained attention in the last decade as a cancer cell biomarker. It has
been shown to mediate disease progression in multiple cancers, including acute
myeloid leukemia [15,32,37] as well as carcinomas of the breast [29,39], liver
[36], prostate, bladder, colon, and lung [16], among others. Thus, LSD1 has
become a promising drug target. By suppressing LSD1 transcription in cancer
cells, LSD1 inhibitors have demonstrated preclinical benefit, first in leukemia
[12,24] and more recently in carcinomas [48]. Moreover, LSD1 inhibitors have
demonstrated benefit in combination therapies [3], including immunotherapies.

In particular, LSD1 inhibitors have shown preclinical potential in over-
coming resistance to anti-PD1/PDL1 immune checkpoint inhibitors (ICIs)
[6,35,40]. ICIs are among the most promising developments in cancer research
of the past decade, as recognized by the 2018 Nobel Prize in Medicine. Despite
this potential, the clinical reality is that typically up to 60% of patients show no
response to single-agent ICI therapy [42,47]. Overlapping factors contributing
to resistance include lack of T cells at the tumor site, complementary im-
munosupressive mechanisms within the tumor microenvironment (TME), and
other tumor-intrinsic features that enable immunoescape [42]. Moreover, in
clinical combination therapies, ICIs are frequently administered concurrently
with other treatments, with little regard to the dynamics of the immune re-
sponse [47]. Sheng et al.demonstrated that LSD1 inhibition induces a type 1
interferon response, increasing T cell infiltration into the TME (Fig. 1). By
knocking out LSD1 in wvivo, they were able to overcome the poor immuno-
genecity of the B16-F10 melanoma cell line, increasing tumor infiltrating lym-
phocyte counts (TILs) and sensitizing the tumors to anti-PD1 treatment [40].
Similarly, Qin et al.combined clinical LSD1 inhibitors with anti-PD1 treatment
in xenograft models of triple negative breast cancer [35]. They likewise found
that LSD1 inhibition overcame the resistance observed in anti-PD1 treatment
alone.

Modeling the dynamics of tumor growth and therapeutic response is a
central focus of mathematical oncology, in which biological and biophysical
knowledge is used to construct a model amenable to quantitative investigation.
Among other possibilities, these models may offer a mechanistic explanation of
existing data and generate new hypotheses, allow for the optimization of some
experimental or clinical procedure, focus the scope or direction of future exper-
iments, or inform a speculative, theoretical understanding of cancer-immune
biology [11]. We refer to [11] for a recent review of mathematical models of
immunology, and [10] for non-spatial modeling of tumor-immune dynamics.
A broader overview of mathematical oncology can be found in [25,44]. We
briefly review the models that inspire our current work. Aligning with the
data from [40], we specifically considered non-spatial ODE models.

The classic model developed by de Pillis et alin [9] simulates immune-
mediated tumor-growth as the interaction of three populations: tumor cells,
natural killer (NK) cells, and CD8+ cytotoxic T cells. With only three equa-
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Fig. 1 The Proposed LSD1-Interferon Mechanism from [40]. LSD1 both suppresses
transcription of endogenous retroviruses (ERVs) and regulates the RNA-induced silencing
complex (RISC), which typically cleaves ERVs. Through both mechanisms, LSD1 inhibition
enables ERV transcription and dsRNA accumulation. Through MDAS5 and other sensors,
dsRNA stress activates a type 1 interferon response in the cell, leading to tumor immuno-
genicity.

tions, this model is powerful in its versatility in capturing the dynamics of
tumor growth under the influence of both innate and adaptive immune cy-
totoxicity. However, our focus in this work is on T cell dynamics specifically,
since these are the populations most relevant to PD1/PDL1 checkpoint thera-
pies and experimentally observed in [40]. Since the publication of the model [9]
in 2005, much has been learned about the complex interplay between different
CD4+ and CD8+ T cells populations. In particular, we wish to account for
the complex management of T cell cytotoxicity by CD4+Foxp3+ regulatory
T cells (Tregs).

Kim and Levy developed a model of the regulated adaptive immune re-
sponse to antigen in [22] and [23]. Their model includes both naive and ma-
ture compartments for antigen-presenting cells (APCs), CD8+ cytotoxic T
cells, and CD4+ helper and regulatory T cells. A key feature of their model is
the use of constant delay terms to account for the proliferative dynamics of T



4 Milzman, Sheng, and Levy

cells. The immune dynamics in our model are inspired by this work, although
we exclude both APCs and naive cell populations.

Part of our work is motivated by that of Gadhamsetty et alin [13,14].
In these works, they used cellular Potts models to investigate cytotoxic T
cell killing dynamics. Gadhamsetty et al.analytically derived their killing term
for simple, monogamous killing regimes, and demonstrated in silico that this
function extends to joint and mixed killing regimes [13]. The precise way in
which we use this work is explained in Section 2.2.

The model presented in this work simulates the regulated T cell response
to normal and LSD1-inhibited tumor growth, in order to further investigate
the immunogenic and anti-tumor effects of LSD1 inhibition observed in [40].
This immunogenicity underlies the synergistic potential of LSD1-inhibitors
combined with PD1/PDL1 ICIs.

The structure of this paper is as follows. In Section 2 we introduce our
model, its underlying biological assumptions, the data we are using to fit it,
and the alternative models considered. More technical detail is found in Ap-
pendix B. The results of our modeling are presented in Section 3. Our work
suggests that LSD1 inhibition accelerates the anti-tumor T cell response, but
does not necessarily enhance T cell cytotoxicity. Rather, LSD1 inhibition seems
to reduce tumor tumor through other immune-mediated mechanisms. We pro-
vide diagnostics and validation for our model in Section 4, comparing it fa-
vorably to simpler alternatives. We also explore our model’s robustness to the
removal of data points. Concluding remarks are provided in Section 5.

2 Model and Methods

2.1 Model Overview

We model T cell-mediated tumor growth as a system of delayed differential
equations, representing cancer and immune cell populations within the tumor
microenvironment (Fig. 2). Our model has five state variables, (C, H, K, R, P),
corresponding to tumor cells, helper and cytotoxic “killer” T cells, regulatory
T cells (Tregs), and pro-immune cytokine. The model equations are:
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In all equations, the superscripts correspond to the delay notation:

X0 =X(t—90).

The dimensionality of the populations in our model reflects the data pro-
vided by [40], which measures tumor volume (in mm?). Tumor volume is pro-
portional to tumor population, and there is little benefit in estimating cell
numbers in the absence of more immune data. Rather, for any of the immune
quantities present, we assume a scale comparable to the tumor volume. The
population scales should be understood as approximating an effective propor-
tionality, rather than absolute cell counts.

Note that our model has only a single compartment for pro-immune cy-
tokine signalling, following the example in [22]. This variable primarily models
the known functions of IL-2, e.g. from [31]. We acknowledge that many other
pathways are involved in typical T cell dynamics. However, this simplifica-
tion both limits model complexity while also allowing us to remain agnostic
regarding the topology of extraneous signalling pathways.

Our construction of this model was not agnostic. Nonetheless, we compared

it to simpler alternatives. We will consider the following three alternative mod-
els for tumor growth:
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Fig. 2 Nonspatial Population Model of Immunosurveilled Tumor Growth. Our
constant-delay ODE model of T cell-medaited tumor growth. The populations modeled are
tumor cells (T'), CD4+ helper T cells (H), CD8+ cytotoxic T cells (K), CD4+FOXP3+
regulatory T cells (R), and a simple pro-immune cytokine compartment (P).

C=aC(1—- %) } Logistic Growth (2)

= aC'log (%) } Gompertz Growth (3)
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For our results in Section 3, we simulate model (1) by solving Eqs. (1a)-
(1e) numerically. The parameters used for model (1) are given in Table 1. A
detailed discussion of parameter fitting and sensitivity is included in Section 4
and Appendix B.
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2.2 Model Features and Assumptions

1. Tumors intrinsically exhibit logistic growth. The first term in Eq. (1a)
models intrinsic tumor growth as logistic. We considered exponential, Gom-
pertzian, and logistic forms of the growth term, and additionally consid-
ered a distinct linear death term for each. We fit these terms to the tumor
growth data in immunodeficient (TCRa-KO) mice, from [40], in order to
get a sense of the growth inherent to the tumor independent of the immune
dynamics we seek to model. While other immunosuppressive mechanisms
may still be active in TCRa-KO tumors, those are beyond the scope of our
model. We found that the immunodeficient tumors were best modeled by
logistic growth, with no distinct death term.

2. Delayed T cell recruitment to tumor site following T cell devel-
opment program. In our model, both CD4+ helper and CD8+ cytotoxic
T cells are recruited to the tumor microenvironment in proportion to the
cancer population, represented in the first terms of Egs. (1b) and (1b). The
recruitment is delayed to account for the process of antigen-presenting cell
(APC)-induced program of T cell development and proliferation, as devel-
oped in [22,23]. In [22], antigen stimulation activates APC cell maturation.
APCs, in turn, migrate to the lymph node to activate the primary adaptive
response, which develops according to a program of minimal development
followed by APC-dependent expansion. Since we do not have any time
series data for immune populations, we do not model this full process,
excluding both APCs and naive T cells. Nonetheless, for each population
X = H or K, we disentangle the parameters sx, encompassing naive T
cell availability and stimulation rate, from the expansion multipliers 2.
Here, mx is the fixed number of divisions in the T cell development pro-
gram. Since the time delay ox also depends on the number of divisions
myx, it is desirable to allow direction manipulation of the length and mag-
nitude of the T cell development program in the model independently of
the other influences on supply and recruitment dynamics. For our current
work, we fix mx to the values from [22].

3. Helper T cells proliferate in dual-saturated response to tumor.
The second and third terms of Eq. (1b) model CD4+ helper cell prolifer-
ation dynamics. Our model assumes that CD4+ helper cells proliferate in
response to APCs in the TME, a process which we simplify to a more direct
cell-tumor interaction function 7 similar to the lysis function 1, discussed
further below. This saturation in the proliferative term has the added ben-
efit of mimicking acquired immune resistance, including mechanisms me-
diated by the PD1 and CTLA4 immune checkpoints. Unlike CD8+ cells,
IL-2 concentration does not seem to significantly modulate the proliferative
TCR response in CD4+ cells [1]. Thus, in our model, the proliferative dy-
namics of CD4+ helper cells are uncoupled from the pro-immune signalling
compartment. To account for proliferation time, the third term utilizes a
constant delay pg, set to 11/24, corresponding to an 11 hour cell cycle for
CD4+ helper cells.
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4. Cytotoxic and Regulatory T cells proliferate in mass action re-
sponse to pro-immune signalling. The second and third terms in Egs. (1¢)
and (1d) represent the proliferative dynamics of activated CD8+ and Treg
populations. Our model assumes that, unlike CD4+ helper cells, CD8+
cytotoxic and CD4+ regulatory cells proliferate via cytokine signalling,
according to a simplified mass action law. IL-2 modulates the prolifer-
ation of activated CD8+ population, without significant dependency on
further stimulation [1,19]. By contrast, low concentrations of IL-2 instead
promote the differentiation of memory phenotype in naive CD8+ cells, ob-
served both in vivo during viral infections [19] and in vitro during chimeric
antigen-receptor (CAR) T cell expansion [18]. We acknowledge that despite
many in vitro experiments suggesting the necessity of IL-2 for the expan-
sion of CD8+ cytotoxic cell response, it has been observed, in vivo for
IL-2R KO mice, that there seem to be redundant mechanisms for CD8+
proliferation [19]. As for Tregs, IL-2 has been well-documented as essential
for peripheral Treg function and expansion [5]. The induction of Tregs by
low-dose IL-2 has emerged in recent years as a promising new treatment for
autoimmune disease [49]. As an additional modeling benefit, the structure
we use captures cytokine competition between CD8+ cells and Tregs as
a distinct mechanism of immunosuppression, due to the fourth and fifth
terms in Eq. (1d). This is supported by the the work of Chinen et al., which
suggests that IL-2 competition is a significant component of Treg-driven
control of CD8+ populations, but not CD4+ populations [5]. Further, by
using an identical, non-saturated proliferative mechanism for CD8+ and
Treg populations, by design allowing them to proliferate at a greater rate
than CD4+ helper cells post tumorigenesis, our model dynamics align with
the proliferative patterns observed experimentally in [40]. Sheng et al.found
both Tregs and cytotoxic cells to be more proliferative than helper T cells.
At day 14, they found that up to 70% of Tregs and 60% of CD8+ cells
expressed the proliferative marker Ki67+, compared to only 30% of helper
CD4+ cells. We assume CD4+ regulatory cells have the same 11-hour pro-
liferation time as helper cells (pg), while CD8+ cells have a proliferation
time (pg) of 8 hours [1].

5. Helper and cytotoxic T cells produce inflammatory cytokine. Our
model assumes that helper T cells are primarily responsible for pro-immune
signalling, although CD8+ cytotoxic cells also produce pro-inflammatory
signals. Both populations produce cytokine at fixed linear rates py,px-.
For our present study, we fix these values to those from [22]. Thus, for
the moment, the dynamics of cytokine signalling in our model is rigidly
contingent on those of the other compartments. However, we expect the
interferon response induced by LSD1 inhibition to alter the dynamics of
the signalling compartment. We leave this for future work.

6. Differentiation of helper T cells into Tregs. In our model, CD4+
helper cells differentiate into CD4+4 Tregs at a fixed rate r, similar to
the Treg dynamics from [22]. Our model does not distinguish between
peripheral iTregs and thymal nTregs. We note the mechanisms of peripheral
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Treg differentiation are still unclear, as is the degree of plasticity between
helper and regulatory CD4+ cell lineages [27].

7. Decay of Immune Populations. We assume that CD4+ helper and
regulatory cells and CD8+ cytotoxic cells deactivate at fixed linear rates:
dg for both CD4+ populations and dx for CD8+ populations. Further,
positive growth signal decays at rate dp. We take these rates from [22].

8. Cytotoxic T cells lyse tumor cells with double-saturated sig-
moidal dynamics. The second term in Eq. (1a) represents anti-tumor
cytoxicity from CD8+ T cells. Saturated kill terms for T cell cytotoxic-
ity are standard in the literature [10]. more generally, sigmoidal functional
forms are typical for immune response to antigen, and have been used, for
instance, to faithfully model Potts-type lattice simulations of TCR-pMHC
binding dynamics [51]. It is desirable to use a function that saturates with
respect to both tumor and immune populations, as such a property allows
the function to handle the dynamics of both tumor growth and collapse.
We take our function from the work of Gadhamsetty et al., which simulates
T cell cytotoxicity in a Potts model framework [13,14]. They heuristically
derive a similar function when T cells follow a monogamous killing regime,
and demonstrated in silico that the function extends to joint and mixed
killing regimes [14].

9. Kinetic coefficient. All terms representing cell interactions in the TME
are multiplied by a kinetic coefficient, k. Adjusting this coefficient affects
the speed of population transitions in the transient immune dynamics. For
our current study, we fix k£ to a constant value of 10.

Our model has several limitations worth highlighting. We excluded these
dynamics due to their practical unidentifiability in this current work. In partic-
ular, as discussed above, we excluded T cell exhaustion, checkpoint-mediated
immune tolerance, the innate immune response, and myeloid cell dynamics.

2.3 Experimental Data

For data, we used three of the experimental data sets from [40]. First, our tar-
get for modeling was the experimental data set corresponding to [40, Fig. 5E]
which measured the tumor growth in 28 individual B16 murine xenografts.
These are divided into 4 experimental conditions of CRISPR gene silenc-
ing: LSD1-KO, MDA5-KO, LSD1+MDA5-DKO, and a scramble control (N =
7,7,6,8, respectively). Note that, as described in Fig. 1, MDAS5 is an impor-
tant mediating component for the pro-immunity interferon response produced
by LSD1 inhibition, and the mechanism of focus in [40]. Thus, our work, we
are looking for consistent differences between the LSD1-KO condition and
both the control and LSD14+MDA5-DKO conditions, which would implicate
the LSD1-IFN axis. In addition to this target data set, we also make use of
some of the growth data from [40, Fig. 5C] corresponding to scramble and
LSD1-KO tumors within immunodeficient TCRa-KO mice. Finally, in Fig. 4,
we use the flow cytometry T cell counts from [40, Fig. 6A] in Fig. 4 in order



10

Milzman, Sheng, and Levy

Table 1 Model Parameters. Parameter values replaced with an asterisk (*) were esti-
mated individually for each mouse model.

Parameter Name Description Value Reference
a Tumor growth rate Controls tumor-intrinsic logis- | * estimated
tic growth
dp CD4+ Death Rate Linear death rate for CD4+4 | 0.23 (22]
helper and regulatory T cells
di CD8+ Death Rate Linear death rate for CD8+ cy- | 0.4 [22]
totoxic T cells
dp Cytokine Decay | Linear decay rate for IL-2 5.5 [22]
Rate
k Kinetic Coeflicient Controls rate of immune inter- | 10 fixed
actions in the TME
1 Immune-tumor Lysis | Controls CD8+ T cell cytotox- | * estimated
Parameter icity in kill function ¢(C, K)
" Tumor carrying ca- | Limits tumor-intrinsic logistic | * estimated
pacity growth
mpy | CD44 Developmen- | Number of CD4+ cell divi- | 2 (22]
tal Divisions sions in APC-driven develop-
ment program in lymph node
my | CD8+ Developmen- | Number of CD8+ cell divi- | 7 (22]
tal Divisions sions in APC-driven develop-
ment program in lymph node
PH CD4+ Cytokine Se- | Controls production of IL-2 by | 100 [22]
cretion CD4+ helper T cells
PK CD8+ Cytokine Se- | Controls production of IL-2 by | 1 [22]
cretion CD8+ T cells
r Treg Differentiation | Fractional rate at which CD4+ | * estimated
Rate helper cells differentiate into
Tregs
PH CD4+ Division | Length of cell cycle for prolif- | 11 hr 8]
Time erating CD4+ helper and reg-
ulatory T cells
PK CD8+ Division | Length of cell cycle for prolifer- | 8 hr 8]
Time ating CD8+4 cytotoxic T cells
SH Supply rate of CD4+ | Controls delayed supply of | * estimated
cells CD4+ cells to TME in re-
sponse to tumor antigen
SK Supply rate of CD8+ | Controls delayed supply of | * estimated
cytotoxic cells. CD8+ cells to TME in re-
sponse to tumor antigen
oy CD4+ Development | Length of APC-driven CD4+ | 1.46 days | [22]
Time T cell development program in
lymph node (divisions x dou-
bling time)
oK CD4+ Development | Length of APC-driven CD4+ | 3 days (22]
Time T cell development program in
lymph node (divisions x dou-
bling time)

to provide circumstantial evidence for an earlier onset of the immune response

in LSD1-KO tumors.
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3 Results

We simulate

3.1 Immune Response Accounts for Interrupted Tumor Growth

Many of the mouse tumors from [40] have irregular growth in the second or
third week, usually in the 10-15 day range. A similar pattern can be observed in
other subcutaneous B16 models in [17,26,45]. After a week or two of tumorige-
nesis and steady growth, the tumor stagnates or even regresses for a few days.
Then, in typical B16 tumors, growth resumes, often at an accelerated rate. By
design, our model hypothesizes that we can account for this irregularity via
the tumor’s interaction with the primary adaptive immune response.

As described in Section 2 and Appendix B, we opted to parameterize in-
dependently for each tumor growth time series. In most tumor-specific simu-
lations of the immune response, a stereotypical script emerges, as seen in Fig
3. Both helper and cytotoxic T cells are recruited to the tumor site, although
helper T cells are usually recruited more quickly. Helper T cells proliferate
when stimulated by the tumor cells, and release pro-immune cytokines, in-
cluding IL-2. These cytokines stimulate cytotoxic T cell proliferation, induc-
ing significant cytotoxicity that interrupts steady tumor growth. Note that
this pattern conforms to the B16 immune data from [34], which saw CD4+
helper cells peak a few days before CD8+ cytotoxic cells. The helper T cell
population differentiates into Tregs at a fixed rate, and regulatory cells like-
wise proliferate in the presence of pro-immune signalling. The regulatory T
cells deactivate both the helper and cytotoxic populations while consuming
most of the remaining pro-immune signal for their own proliferation. Once
Tregs dominate the immune populations, tumor stagnation ends and growth
resumes.

3.2 Simulated Immune Response Activates and Peaks Earlier in LSD1-KO
Tumors

In our simulations, both the CD4+ helper and CD+-8 cytotoxic cell populations
tended to reach their peak earlier in the LSD1-KO condition, compared to both
control and LSD1/MDAS5 DKO tumors. On average, helper cells reached their
maximal helper (cytotoxic) T cell population at day 14.01 (14.2), while control
and DKO tumors peaked at day 17.11 (16.68) and 18.53 (17.62), respectively
(Fig. 4, A-B). However, after adjusting for multiple testing, only the difference
in timing between LDS1-KO and LSD1/MDAS DKO tumors rises to statistical
significance in our small sample. Even so, this agrees well with a separate
experiment from [40] under similar experimental conditions, in which flow
cytometry revealed elevated levels CD4+ and CD8+ T cells in LSD1 KO
tumors on day 14, relative to control and DKO tumors. (Fig. 4D, or Fig. 6A
from [40]).
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Fig. 3 Simulations of Immune-Mediated Tumor Growth. Our model (black) infers
an underlying adaptive immune response as responsible for temporary tumor growth stag-
nation, from linearly interpolated tumor growth data (red) from [40]. The graphs, from top
to bottom, show simulated dynamics over 30 days for tumor volume, CD4+ helper T cells,
CD8+ cytotoxic T cells, CD44+FOXP3+ regulatory T cells, and pro-immune cytokine.

We emphasize that this difference appears only in LSD1-KO tumors where
the dsRNA sensor MDAS5 has not likewise been knocked out. Thus, our model
suggests that the LSD1-dsRNA-IFN axis under investigation in [40] accelerates
the anti-tumor T cell response.

Interestingly, our model not demonstrate an increase in effective cytotoxic-
ity under LSD1 inhibition. At the time of peak immune response, we simulated
no difference in the fractional kill rate (C~'% in our model, Egs. 1a,1f), as seen
in Fig. 4D and Fig. 5. This coincides with unpublished experimental evidence
collected by Sheng et al. that LSD1 inhibition does not enhance the cyto-
toxicity of individual T cells. Moreover, as noted in [40], RNAseq revealed
that PD-L1 was upregulated in LSD1-KO tumors, possibly suppressing the
anti-tumor immunity of CD8+ T cells. This agreement between model and
experiment furhter supports the notion that LSD1 inhibition does not directly
enhance anti-tumor cytotoxicity. The significantly retarded tumor growth in
LSD1 inhibited tumors, as observed in [40] and [35], must be attributed to
other factors. Nonetheless, the process is likely to be immune-mediated, given
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Fig. 4 Inferred Dynamics of T Cell Response. In subfigures (A) and (B), we present
the time (days post-tumor injection) at which the CD4+ helper and CD8+ cytotoxic T cells
reach their maximum population within our model, grouped by experimental condition.

the rescuing effect of MDAS5 inhibition. Further, if LSD1-inhibition reduces
T cell cytotoxicity through a mechanism besides the upregulation of PD-L1,
then countering that mechanism and restoring full CD8+ functionality would
maximize the effect of combination anti-PD1 therapy.

3.3 Growth Dynamics

As noted in Section 3.2, the simulated cytotoxicity in our model suggests
that LSD1 inhibited tumors see a quicker onset of the adaptive immune re-
sponse, accounting for the increased number of tumor infiltrating lymphocytes.
However, this does not convincingly account for the decreased tumor growth
observed LSD1-KO tumors.

Beyond the immune dynamics incorporated into our model, LSD1 inhibi-
tion appears to slow tumor growth via other mechanisms. We see that, despite
comparable distributions for the carrying capacity parameter p, the tumor
growth rate parameter « is lower for LSD1 KO tumors, compared to both
control and LSD1/MDA5 DKO tumors. In our model, this difference mani-
fests in early tumorigenesis, when tumor volume is well below capacity and
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Effective Rate of Anti-Tumor Cytotoxicity (Modeled)
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Fig. 5 Effective Anti-Tumor Immunity in Model. In subfigures (A) and (B), we
present the simulated fractional and absolute kill rates (in our model, C~14(C, K) and
Y(C, K), respectively) over time. We do not see any consistent and appreciable difference
indicating that LSD1 inhibition increases anti-tumor immunity. For comparison, we include
the observed tumor growth data from [40], which demonstrates an appreciable reduction of
tumor-growth (C).
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growth is approximately exponential with rate «. Thus, when we remove T
cell dynamics, our model still has LSD1 KO tumors growing more slowly in
silico (see Fig. 6). Interestingly, this pattern does not appear in the immuno-
compromised mice from [40]. When Sheng et al.used mice without functioning
T cell receptor alpha (TCRa), they observed no difference in growth between
LSD1 KO and control tumors. Similarly, when we fit the logistic growth model
to the TCRa-KO data (Fig. 6D, Table 3), we do not observe the difference
captured in our T cell free model for immunocompetent mice.

Assuming that our model captures T cell dynamics accurately, we consider
two non-mutually-exclusive explanations for the ‘intrinsic’ reduction in tumor
growth within our model. First, our system does not comprehensively model
tumor-immune cytotoxicity. For instance, natural killer (NK) cells and memory
T cells are not accounted for in our model. Another possibility is that tumor
growth mechanisms themselves may be slowed by LSD1 inhibition, mediated
by the MDA5-dsRNA-immune stress response.

It is possible that the reduction in the growth parameter is at least partially
accounted for by the presence of continuous cytotoxic immunity not otherwise
included in our model. Indeed, RNAseq analysis in [40] found the innate im-
mune response to be upregulated. Innate cytotoxicty from, e.g., NK cells, is
not included in our model. The nature of model (1) is to specifically capture
the rapid-onset, well-regulated adaptive response to antigen. Although regu-
latory T cells do suppress NK cells in the TME [4], the timing for this will not
align with the immune dynamics of our model. Moreover, T cell cytotoxicity
itself is not limited to the sharp onset-regulation dynamic of our model. Our
work emphasizes peak T cell response, at the cost of both ongoing and memory
T cell dynamics, which are less clearly understood [46].

To explore this possibility, we could examine the two compartment model
(4), which, unlike our primary model, allows for sustained cytotoxicity. We do
see that that the difference in the growth parameter a between LSD1-KO and
control tumors is no longer significant in the two compartment model, despite
a greater magnitude (Fig. 6E). Nonetheless, we have reason to suspect the
ability of the two compartment model to capture T cell-independent tumor
growth. Inspection reveals that the two compartment model has a tendency to
estimate relatively high growth rates that do not, qualitatively, resemble tu-
mor growth in TCRa-KO mice (Fig. 6F). In particular, the two compartment
model tends to predict a higher rate of unencumbered tumor growth than we
observe both when we fit a logistic growth model to immune-compromised
(TCRa-KO) mice, and when we fit our other models to the primary dataset
of immunocompetent mice (Fig. 9).

We consider also tumor-intrinsic explanations for the reduced growth pa-
rameter. We considered EMT- and CSC-related pathways, looking at the
RNAseq data from [40], and found no convincing evidence for them. Alter-
natively, we consider that a major limiting factor on growth is proper tumor
angiogenesis. There is evidence that LSD1 regulates angiogenesis [20]. The
RNAseq data from [40] suggests that the Notch pathway is activated in LSD1
KO tumors (Fig. 7). Notch regulates angiogenesis via the VEGF pathway, bal-
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Fig. 6 T Cell Dynamics Alone Do Not Fully Account for Slowed Tumor Growth
in LSD1 KO Tumors. We present the T cell-independent growth dynamics of our model.
In the top two figures, we present the values of the model parameters for intrinsic growth
(A) and tumor capacity (B). In (C), we simulate T cell free tumor growth by eliminating
immune cell dynamics from our parameterized model (i.e. reducing our model to logistic
growth with parameters a, Mc). We see that, despite comparable carrying capacities, the
LSD1 KO tumors seem to exhibit slower ‘intrinsic’ tumor growth, separate from the model’s
T cell dynamics. This suggests that the anti-tumor effects of LSD1 inhibition include the
innate immune response and/or tumor-intrinsic factors. Since this pattern is not observed in
TCRa KO tumors (D, fit to simple logistic growth curves, see Table 3), the T cell response
is still implicated as a mediator, in either case.

ancing tip and stalk cell populations in the fomration of new blood vessels.
Its effect on tumor angiogenesis is context-dependent, e.g. [28] vs [38]. Re-
cently, Augurt et al.found that LSD1 inhibitors reactivate the Notch pathway
in small cell lung cancer, inhibiting tumor growth [2]. In the in vivo data col-
lected by Sheng et al., we see that the Notch activation in LSD1-KO tumors is
less pronounced in LSD1/MDA5-DKO tumors. Moreover, Notch was not acti-
vated in wvitro. This suggests the possibility that the LSD1-dsRNA-interferon
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Fig. 7 Notch pathway upregulated in vivo. NOTCHI1 is upregulated in vivo, but not
in vitro (not shown here), for LSD1 KO tumors, and VEGF-r4/FLT4 was downregulated.
This could potentially affect angiogenic sprouting, as in [41,43]. Dots represent pre-processed
log, counts from [40], rescaled by the average for the scramble control, and pluses represent
the estimated average log,FC, after smoothing and normalization. We assessed differential
gene expression among all significantly expressing genes, as described in Appendix A

axis induces Notch activation, which could restrain tumor growth. However,
the significance of Notch activation to anti-tumor LSD1 inhibition remains
unclear.

4 Model Fitting and Diagnostics
4.1 Model Fitting and Validation

For the DDE model described in Section 2.2, Egs. (1a)—(1g), we adapted many
of the parameters from [22], and fixed the kinetic coefficient & at an arbitrary
value. Thus, for the purposes of model fitting and validation, we limit our
degrees of freedom to six parameters: tumor growth parameters «, u, immune
recruitment parameters sy, sy, the cytotoxicity parameter ¢, and the rate of
Treg differentiation r. The full list of model parameters is given in Table 1.

For the one-dimensional models (2) and (3), we allowed our initial condi-
tion Cy to vary as a third parameter. For our main model (1) and the two
compartment model (4), we used a uniform initial condition for all tumors.
All immune populations were initialized at 0. For the main DDE model (1),
we assumed all state variables were 0 for ¢t < 0.
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For the one-dimensional curves, our models become the closed-form solu-
tions of the logistic and Gompertz equations. For our main model (1) and
the two compartment model (4), we solved our equations numerically. We fit
our model parameters using a Markov chain Monte Carlo, taking the point-
estimates from the posterior distribution. We linearly interpolated our data
prior to fitting. More details are provided in Appendix B. Figure 12 provides
a visualization of the prior and posterior distributions for one of our fittings.
As can be seen, although the posteriors are sometimes multimodal, the model
is locally identifiable.

We compare our model to the alternatives by computing the Bayesian In-
formation Criterion (BIC) for each model, using the point-estimated parame-
ters (Fig. 8). A lower BIC indicates a more explanatory and/or parsimonious
model. Using a signed rank test, we found that our model was generally fa-
vored over all three of the alternatives (Fig. 8). Unsurprisingly, model (1) was
heavily favored over the logistic and Gompertz models, with a mean BIC im-
provement of —40.2 and —40.3, respectively. More importantly, for 17 of the
28 tumors, model (1) was preferred to the two compartment model (4), albeit
with a more modest mean difference of —3.4. For 5 tumors, the magnitude
of BIC improvement was greater than 10, while for only one tumor was (4)
preferred by more than 4.

As an additional point of comparison, we consider the model-inferred rates
of intrinsic tumor growth. Both models (1) and (4) assume that, in the absence
of competitive immunity, tumor growth is logistic. Thus, parameterizing each
involves estimating a rate of ‘intrinsic’ growth apart from the model’s immune
dynamic. To validate these estimates, we can use the tumor growth data from
immunodeficient (TCRa-KO) as a rough experimental proxy of immune-free
growth. As previously discussed in Section 3.3 and Fig. 6F, we fit logistic
growth to the TCRa-KO mice tumors. In Fig. 9, we compare the growth
rates of models (1), (2), and (4), fit to our primary data set, to the growth
rates estimated for the TCRa-KO data. We see that the two compartment
model tends to estimate much higher growth rates than those estimated for
the immunodeficient control. By contrast, the primary model estimated growth
rates comparable to those of the TCRa-KO tumors. That is to say, they were
not statistically differentiable.

4.2 Model Sensitivity (Data Removal)

We examined the robustness of our model fitting to the exclusion of key data
points. To that end, we examined two specific time series from out data set:
tumor growth data from a control tumor and from an LSD1 KO tumor. For
each, we considered two modifications to the data.

First, for each time series, we removed an intermediate interval of data
corresponding to a single irregular observation. We chose the removed obser-
vation to be one that suggests a period of particularly irregular growth and
stagnation. This allows us to consider the possibility that an interruption in
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Fig. 8 Model Comparison For each of the 28 tumors, we computed the the BIC to eval-
uate the relative performance of our model versus simpler alternatives. In A, for each tumor
time series from [40], we compare our model (1) to each alternative, i.e. BIC o}y — BICpain-
In B, we compare the alternatives to (1) as paired populations, using the Wilcox signed
rank test and adjusting for multiple testing. We see that our primary model significantly
improves on the three alternatives, although the improvement is typically modest when we
consider the two compartment alternative.
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Model Comparison: Tumor Growth Parameter
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Fig. 9 Tumor Growth Rate Estimates in Immunodeficient and Incompetent
Mice. We compare the estimated value of the tumor growth parameter o for immunocom-
petent mice, using models (1), (2), and (4), to those rates estimated from the tumors in
TCRa-KO mice, using model (2).

growth, which our modeling attributes to T cell cytotoxicity, is instead due
to a ‘blip’ of errorful measurement. This is key to the validity of our current
work.

Second, for each time series, we removed the last two observation (and
the associated interpolated points). This allows us to examine the forecasting
potential of our model and its ability to recover the dynamics of immunoescape
and tumor recovery from early growth data. Forecasting future growth was not
the objective of our present modeling work. Nonetheless, it is an informative
test of the limitations of our model.

In Fig. 10, we present the result of this first modification to our model
fitting. For both data sets, we see that removing an interval of irregular growth
does not affect the timing of the immune response. The intensity of the immune
reaction decreases, somewhat, as a smoother, more regular trajectory is fit to
the missing interval. This is seen with particular clarity in the LSD1-KO tumor
data. The timing of the peak T cell reaction is robust to the removal of the
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Fig. 10 Model Refitting after Data Exclusion (Intermediate Interval). We present the orig-
inal and modified fittings of model (1) for two of our time series. For the modified fitting, we
excluded one intermediate real observation and the associated interpolated points, shown in
green to distinguish from the remaining (red) data points. For the scramble control (LSD1-
KO) tumor, we excluded all points between days 13 and 18 (15 and 20).

observation at day 18, indicating that more than a single outlying observation
is suggestive of significant tumor stagnation. Though the biological mechanism
assumed by our model is hypothetical, our inference of immune dynamics
seems robust.

In Fig. 11, we present the result of the second modification to model fitting,
in which we truncate the final few days of tumor growth. The two data sets
under consideration demonstrate qualitative different sensitivities to this ex-
clusion. For the scramble control tumor, the exclusion of the final data points
leads to a fitting in which the final remaining data point is close to capac-
ity. Thus, the projected future growth levels out. This a significant divergence
from both the actual data and the original fit. In contrast, for the LSD1-KO
time series considered, the projected future growth still reasonably resembles
future data. We additionally note that, for the control time series, the entire
timing of the estimated immune response is shifted to an earlier window. For
the LSD1-KO tumor, the timing of the immune response remains the same.
Taken together, our model does not show itself to be a reliable tool for future
growth forecasting.
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Fig. 11 Model Refitting after Data Exclusion (Final Data). We present the original and
modified fittings of model (1) for two of our time series. For the modified fitting, we excluded
the final two real observations and the associated interpolated points, shown in green to
distinguish from the remaining (red) data points. For the scramble control (LSD1-KO)
tumor, we excluded all points after day 18 (20).

5 Discussion

We created a simple mathematical model of the adaptive immune response to
tumor growth in order to infer the potential effects of LSD1 inhibition on T
cell dynamics. Our model suggests that LSD1 inhibition does accelerate tumor
infiltration of T cells, via the MDAb5-mediated interferon response studied
in [40]. We further found that, despite increased levels of tumor-infiltrating
T cells observed at day 14 in wvivo, our model does not imply that LSD1
inhibition alone increases the instantaneous rate of T cell cytotoxicity in TME.
This suggests that the synergistic effect of combination anti-LSD1/anti-PD1
treatment observed in vivo in [35,40] is not due to additive anti-tumor effects.
Rather, our modeling suggests that any benefit of LSD1 inhibition to effective
anti-tumor T cell cytotoxicity occurs PD1/PDL1 is likewise targeted. However,
as previously observed in [40] and [35] and discussed in Section 3.3, we still
have that LSD1 inhibition reduces tumor growth. Moreover, this reduction is
eliminated when MDAS is also knocked out, implicating the interferon response
from [40] and, by extension, the immune system.
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It is unclear why the increased level of T cells in LSD1-inhibited tumors
may not translate to increased cytotoxicity. As we have noted, [40] found the
PDL1 was upregulated in LSD1-KO tumors. However, we briefly consider al-
ternative mechanisms. LSD1 inhibition both induces an IFN-/ response and
upregulates TGF-3. IFN-3 is commonly used to reduce autoimmunity in mul-
tiple sclerosis [21,50], inhibiting memory T cell activation. It is possible that
the type 1 inteferon response sustaining T cell activity in the TME of LSD1
KO tumors is simultaneously suppressing elements of anti-tumor immunity.
Alternatively, the upregulation of TGF-5 may also reduce activation, prolifer-
ation, and/or cytotoxic function in CD8+ cells [30,33]. Despite its potential to
increase and sustain T cell infiltration, if LSD1 inhibition can simultaneously
undermine anti-tumor immunity in the TME, the mechanism responsible needs
to be identified for effective therapeutic targeting. Given two tumors with dis-
tinct immune profiles, it is entirely plausible that LSD1 inhibitors could sen-
sitize one to checkpoint therapies, while disabling immunosurveillance in the
other.

In future work, we intend to investigate and model the effect of LSD1 inhi-
bition on many tumor-immune mechanisms currently excluded from the model.
The effect of LSD1 inhibition on the mechanisms PD1-mediated immune toler-
ance is still unclear. Additionally, our current work does not consider myeloid
cell dynamics. Recent work suggests that LSD1 promotes immunosuppressive
myeloid cells, and that its inhibition reduces the differentiation of these pop-
ulations in the TME. Condamine et al.found that LSD1 inhibitors reduced
the differentiation of myeloid derived suppressor cells (MDSCs) and polymor-
phonuclear (PMN) cells in vitro and in wvivo, synergistically enhancing the
effect of anti-PDL1 agent [6]. With the appropriate data, we hope to later
explore the dynamic interplay between myeloid and T cell populations in the
TME under the effect of LSD1 inhibitors, clarifying the tumor-immune sig-
natures favorable to anti-LSD1/anti-PD1 combination therapy. Finally, more
investigation is warranted into T cell exhaustion in LSD1 inhibited tumor-
immune systems. While LSD1 inhibition increases T cell tumor infiltration,
complementing anti-PD1 treatment in the short-term, we cannot discount the
possibility that an LSD1-mediated interferon response might also accelerate
other (non-PD1) forms of T cell exhaustion. This would have serious impli-
cations for the long-term efficacy of LSD1 inhibitors as compliments to im-
munotherapy.
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A Statistical Comparisons in Figures

For the pairwise comparisons in Figs. 4, 6, 8, and 9, we used an unpaired Student’s t-test. For
each panel, we applied a Benjamini-Hochberg adjustment for multiple-testing. In order to
validate the chocie of a t-test, we used the Shapiro-Wilk test for normality. We cannot reject
normality for the samples in Figs. 4, 6, and 8 (P > 0.05). For Fig. 9, two of the samples were
somewhat non-normal. Left to right in 9, the S-W statistic had values 0.93,0.85,0.90,0.98
corresponding to P = 0.17,8.8e — 4,9,0.010.81. We used the same comparison for Fig. 4D
as in [40].

For the differential gene expression (DGE) analysis for Fig. 7, we used the gene counts
from [40] (data accessible at NCBI GEO database, accession GSE112230), and the R package
edgeR. We normalized the counts using the TMM method, and removed minimally express-
ing genes, leaving us with 12305 genes remaining. We fit a linear model to compare gene
expression between the three experimental tumor conditions: scramble control, LSD1-KO,
and LSD1/MDA5 DKO tumors. Our workflow was based upon the tutorial in [7]. When
adjusting for multiple testing, we used the BH method as before, and adjusted for all three
pairwise contrasts (between our experimental conditions) for the full set of expressing genes,
together.

B Description of Statistical Model and MCMC Fitting

Consider the tumor growth data for tumor ¢ as a time series y; = (y; (t]))?;l We assume
a statistical model of the form

yi(t) = f(pi,t) +ei(t) (5)
€i(t1), o, €i(tn) ~iid N(pi, o) (6)

where f(p;,-) is a deterministic model and ¢;(-) is the measurement noise, parameterized
by pi, i, o; individually for each tumor time series i. The model f(p;,-) is the solution to
either our main DDE model (1) described in Section 2.1, (1), or one of the alternative ODE
models in Section 2.1 (2, 3, 4). We use f(p;) to denote (f(pi,tj))j, i.e. the estimated time
series from our model, corresponding the data y;. For our measurement noise, we ideally
would have pu; = 0 for each tumor. We make this assumption for model fitting, but estimate
w; for the purposes of model validation below, in order to strengthen the likelihood of simple
alternative models.
Given a model f and parameters p;, u;, 0;, the conditional log-likelihood is given by

log L(y; | £,Pi, pi, o) = — n; log(V2mo;) (7)
B yi(tj)*f(Piytj)*M)Q
2;( o

For the purposes of model fitting, we estimated p; for fixed o; using a Markov chain Monte
Carlo,! under the assumption that pu; = 0. We linearly interpolated our data y; — ; so
that we had 5 data points per day. Per standard practice, we employ the ¢2 error as the
target function g, for which e9 « L:

9(@i | P> 115, 03) = — |G — FB:)[72 (8)
= =S Gilty) — ft)?
j=1

In order to favor smoother, less irregular fits, we linearly interpolated our data

1 We use the MCMC implementation from the R package BayesianTools, employing the
differential evolution sampler ‘DEzs’.
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To find f(p;), we need to solve systems (1, 2, 3, 4). The one-dimensional systems 2,3
have well-known closed-form solutions:

Jexp [— log (%)} ©

_ uCo
C(t) = Co T (= Coje—at (10)

Q
=
~
&
Il

For our main model (1) and the two compartment model (4), we solved our equations
numerically using the R package diffeqr, which is a convenient wrapper for the Julia suite
DifferentialEquations. jl.

To validate our model, we compared it to each alternative choices of f for each tumor
i, using the standard Bayesian Information Criterion (BIC):

BIC; = Ny log(n;) — 2log L (11)

where N, is the number of free parameters for our model, i.e. the length of (p;,c;). In
particular, these are 7,4,4,6 for models (1),(2),(3), and (4), respectively. Substituting (7)
into (11) and using our estimate p;, we have

. 1 .
BIC; = Nplog(n;) + 2n; log vV2n6; + ?Hyi — FB)l3 (12)
i
BIC; = Nplog(n;) + 2n; log(6;) + ni(1 + log(2m)) (13)
A 5.2
whore 52— 1= SO
n;
(14)

C Supplementary Tables

Table 2 Estimated Model Parameter Values. The estimated values of the (non-fixed)
model parameters for each mouse tumor (from the experiment for Fig. 5E in [40]), based on
tumor volume time series data.

Tumor o " £ ™ SH SK
Scramble 1 4.60E-01 2.62E4-03 1.50E-01 5.27E-02 1.50E-07 5.13E-04
Scramble 2 4.69E-01 6.91E403 1.43E-01 1.83E-02 3.17E-06 2.74E-04
Scramble 3 4.52E-01 2.86E4-03 1.45E-01 2.04E-02 3.94E-06 4.20E-05
Scramble 4 3.94E-01 3.74E403 2.69E-02 4.79E-04 4.72E-06 1.67E-05
Scramble 5 4.80E-01 5.21E4-03 7.77E-02 1.49E-02 1.01E-08 9.99E-04
Scramble 6 3.85E-01 8.49E4-03 1.21E-01 1.10E-02 2.22E-08 1.89E-06
Scramble 7 3.72E-01 1.24E403 9.75E-03 9.07E-02 5.35E-04 1.36E-08
Scramble 8 5.12E-01 4.71E+403 1.10E-01 2.26E-02 3.94E-08 9.59E-04
LSD1 KO 1 2.98E-01 1.67E403 5.20E-02 7.06E-02 1.03E-06 2.80E-05
LSD1 KO 2 2.81E-01 8.99E+03 1.89E-02 6.80E-02 1.07E-04 1.12E-08
LSD1 KO 3 2.32E-01 2.55E+03 3.99E-02 7.95E-02 7.51E-05 4.99E-06
LSD1 KO 4 3.80E-01 6.30E4+03 1.22E-01 7.92E-02 3.03E-05 9.23E-04
LSD1 KO 5 3.56E-01 4.63E4-03 7.19E-02 1.73E-03 5.54E-08 1.74E-06
LSD1 KO 6 2.83E-01 8.16E403 1.02E-03 2.77E-03 6.24E-04 2.56E-04
LSD1 KO 7 2.84E-01 5.03E+4-02 6.68E-02 1.56E-02 7.29E-05 3.13E-04
LSD1 MDAS5 4.65E-01 3.39E403 1.17E-01 2.38E-02 2.05E-07 1.71E-04
DKO 1

LSD1 MDAS5 4.72E-01 3.47TE+03 7.70E-02 4.00E-02 1.61E-07 9.65E-04
DKO 2

LSD1 MDAS5 3.96E-01 5.18E4-03 1.34E-01 1.14E-02 4.86E-08 1.32E-05
DKO 3

LSD1 MDAS5 4.34E-01 3.94E+03 2.48E-02 9.29E-04 1.44E-06 8.81E-06
DKO 4

LSD1 MDAS5 5.04E-01 3.34E+03 9.27E-02 2.71E-02 1.04E-08 9.64E-04
DKO 5

LSD1 MDAS5 5.03E-01 7.25E+403 1.11E-01 2.76E-02 3.21E-08 9.55E-04
DKO 6
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Table 3 Logistic Growth for Immune Deficient Tumors. To account for the possibil-
ity of immune-independent mechanisms of inhibited growth in LSD1-KO tumors, we com-
puted the least squares estimate of logistic growth for TCRa-KO and TCRa/LSD1-DKO
tumors (from Fig. 5C in [40]). We compare the means of parameters «, p, and Co between
the two conditions via unpaired t.test. Even pre-FDR adjustment, we find no significant dif-
ference between p and Co of our samples (¢ = 0.73,1.36, and P = 0.476,0.193, respectively),
and marginal evidence that the LSD1-KO condition has a higher immune-deficient growth
rate than the control scramble (¢ = —2.35, P = 0.038). This latter difference vanishes after
adjustment. Thus, for immunodeficient mice, we see no evidence for any anti-tumor effects
of LSD1 inhibition.

Tumor o © Co
Scramble TCRa KO 0.563743699 3912.194739 0.052569707
Scramble TCRa KO 0.480629132 4581.405315 0.137067466
Scramble TCRa KO 0.533601886 9990.79188 0.124822197
Scramble TCRa KO 0.262316687 9999.356249 9.160142923
Scramble TCRa KO 0.452943779 2437.152773 0.551289523
Scramble TCRa KO 0.349057835 5360.823555 1.827053661
Scramble TCRa KO 0.509650981 9987.564364 0.214161265
0.580677922 2852.511648 0.229292158

LSD1 KO TCRa KO
LSD1 KO TCRa KO
LSD1 KO TCRa KO
LSD1 KO TCRa KO
LSD1 KO TCRa KO
LSD1 KO TCRa KO

I

334763587 9978.038937 2.40658147
0.289841785 7179.317676 7.514285629
0.339625003 3870.760716 4.572794932
0.299030515 9999.841561 2.850807521

0.36148731 9979.685307 7.152464226
0.366512912 9979.305856 0.294670011

1
2
3
4
5
6
7
Scramble TCRa KO 8
1
2
3
4
5
6
7
8

LSD1 KO TCRa KO 0.293537226 7208.25365 8.984451724
LSD1 KO TCRa KO 0.382124921 1886.942171 1.05053347
LSD1 KO TCRa KO 9 0.526204655 2787.05914 0.088720404
LSD1 KO TCRa KO 10 0.417661279 9996.276858 1.062130233
Scramble TCRa (Avg) 0.46657774 6140.225065 1.537049863
LSD1 KO TCRa (Avg) 0.361078919 7286.548187 3.597743962

D Marginal Parameter Densities
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Marginal Parameter Densities (LSD1-KO #5)
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Fig. 12 Prior and Posterior Parameter Distribution for Main Model Fitting
(LSD1-KO #-5) Presented are the prior and posterior distribution of the parameters p; of
model 1, taken from the MCMC, where i is one of the LSD1-KO tumors. In order from left
to right, the panels here correspond to «, p, ¢, 7,10g,(sH),logo(sK)-
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