
Mathematical Modelling of Natural Phenomena
Math. Model. Nat. Phenom. www.mmnp-journal.org
https://doi.org/10.1051/mmnp/ (will be inserted later)

THE IMPACT OF COMPETITION BETWEEN CANCER CELLS AND

HEALTHY CELLS ON OPTIMAL DRUG DELIVERY

Heyrim Cho
1
and Doron Levy

1, 2

Abstract. Cell competition is recognized to be instrumental to the dynamics and structure of the

tumor-host interface in invasive cancers. In mild competition scenarios, the healthy tissue and cancer

cells can coexist. When the competition is aggressive, competitive cells, the so called super-competitors,

expand by killing other cells. Novel cytotoxic drugs and molecularly targeted drugs are commonly

administered as part of cancer therapy. Both types of drugs are susceptible to various mechanisms of

drug resistance, obstructing or preventing a successful outcome. In this paper, we develop a cancer

growth model that accounts for the competition between cancer cells and healthy cells. The model

incorporates resistance to both cytotoxic and targeted drugs. In both cases, the level of drug resistance

is assumed to be a continuous variable ranging from fully-sensitive to fully-resistant. Using our model

we demonstrate that when the competition is moderate, therapies using both drugs are more e↵ective

compared with single drug therapies. However, when cancer cells are highly competitive, targeted drugs

become more e↵ective. In this case, therapies that are exposed to it for a su�ciently long time are

shown to have better outcomes. The results of the study stress the importance of adjusting the therapy

to the pre-treatment resistance levels. We conclude with a study of the spatiotemporal propagation

of drug resistance in a competitive setting, verifying that the same conclusions hold in the spatially

heterogeneous case.
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1. Introduction

Intra-tumor heterogeneity that results from both genetic and non-genetic mechanisms has been receiving
increased attention in recent years (Gatenby and Gillies, 2008; Hanahan and Weinberg, 2011; Maley et al.,
2017; Marusyk et al., 2012; Merlo et al., 2006). Due to phenotypic and mutagenic diversity, cancer can be
thought of as an ecosystem formed by coexisting populations expressing abnormal features and di↵erent cell
types that are embedded in a heterogeneous habitat of normal tissue (Hillen and Lewis, 2014). Accordingly,
competition between tumor cells and healthy cells in the host tissue may play a key role in cancer growth (Gil
and Rodriguez, 2016; Moreno, 2008). Although the mechanisms are complex and are not fully understood, it is
known that cells can discriminate their types via short-range interactions that quantify the relative expression
levels of particular proteins. Accordingly, cell competition occurs in the process of identifying and eliminating
the less fit cells. The fitness-induced process generally eliminates the defective cells, such as Minute gene
mutated cells in D. melanogaster (Moreno et al., 2002; Simpson, 1979). However, certain types of cancer cells
can signal the death of their surrounding tissue in a way that promotes their neoplastic transformation. After
the “loser” cells disappear from the tissue, the “winner” cells not only survive but also proliferate to fill out
the void created by the dying cells (Eichenlaub et al., 2016; Levayer, 2018; Moreno, 2008; Tsuboi et al., 2018).
Figure 1 illustrates cancer growth in two distinct competition scenarios.

Supercompetitor
Normal cell

Cancer cell

death

Figure 1. Competition between healthy cells and cancer cells. Often cancer cells and normal
cells coexist and the expansion is restricted by spatial competition (top). However, some cancer
cells, the so called super-competitors, expand by killing the healthy cells (bottom). Diagram
adapted from Moreno (2008).

To eliminate cancer cells and suppress their malignant growth, various treatments are available, including
surgery, chemotherapy, immunotherapy, and radiotherapy. In particular, cytotoxic chemotherapy and molecular
targeted approaches represent two modes of cancer treatment (Masui et al., 2013). Whereas chemotherapy
uses highly potent chemicals to target dividing cells, targeted drugs act on specific molecular targets that are
associated with cancer. Novel therapies and drug substances are constantly being developed (Ribeiro et al.,
2012).

For both chemotherapy and targeted therapy drug resistance is the predominant factor limiting clinical
success (Gillet and Gottesman, 2010; Housman et al., 2014; Masui et al., 2013; Teicher, 2006). For instance,
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resistance to chemotherapy includes extrinsic mechanisms that prevent the drug from reaching its target in
an active form due to short serum half-life or rapid clearance by the kidneys and liver (Burris et al., 2011;
Slingerland et al., 2012). Intrinsic cellular mechanisms involve increased e✏ux or decreased uptake, enzymatic
modification and inactivation of the drug, and alteration of drug targets within the cell (Fodal et al., 2011;
Gottesman, 2002; Gottesman et al., 2002). Resistance to targeted drugs also relies on various mechanisms
including cellular responses that maintain the signaling despite the e↵ective targeting or signaling through al-
teration of downstream e↵ectors, and cell survival pathways by disabling apoptosis (Byers et al., 2013; Zhang
et al., 2012). Drug resistance involves genetic and epigenetic alternations that either exist prior to the treatment
or acquired, often induced by the drugs (Gillet and Gottesman, 2010; Teicher, 2006). Clinical trials of combina-
tions of cytotoxic and targeted drugs suggest that the complementing mechanisms can be used for developing
e↵ective therapies (Dorris et al., 2017; Ribeiro et al., 2012).

Due to the complexity of the underlying mechanisms and the multifactorial pathways of tumor growth and
drug resistance, various mathematical models have been developed to describe and investigate the emergence of
cancer and its evolution. Modeling approaches include deterministic models using di↵erential equations (Ander-
son and Chaplain, 1998; Birkhead et al., 1987; Trédan et al., 2007) and stochastic models including branching
process and multiple mutations for studying multi-drug resistance and optimal control of drug scheduling (Kim-
mel et al., 1998; Komarova, 2006; Michor et al., 2006). These modeling approaches have provided a framework
for improving early detection, for quantifying intrinsic and acquired resistance cells, and for designing therapeu-
tic protocols (Foo and Michor, 2014; Lavi et al., 2012; Michor et al., 2006; Roose et al., 2007; Swierniak et al.,
2009).

On top of that, various mathematical models incorporate tumor heterogeneity and competition between
distinct cell types (Bacevic et al., 2017; Lorz et al., 2013; Piretto et al., 2018; Yoon et al., 2018). Recent models
using ordinary di↵erentiation equations (ODEs) focus on competition between distinct types of cancer cells that
are either resistant or sensitive to a single drug (Carrère (2017); Piretto et al. (2018); Yoon et al. (2018)). While
ODEs can model the overall size of the population, partial di↵erential equations can model spatial heterogeneity
in either the physical space or in the phenotypic space. Competition models using reaction-di↵usion equations
date back to Gatenby and Gawlinski (1996) that describe the spatial distribution and temporal evolution
of an invasive tumor, accounting for the density of the normal tissue and the neoplastic cancerous tissue.
Considering phenotypic heterogeneity, Lorz et al. (2013) developed a model for the competition between healthy
cells and tumor cells that depends on a continuous phenotypic variable of cytotoxic drug resistance level. All
aforementioned models consider drug resistance to a single drug.

To study the impact of cell competition and the heterogeneity in drug resistance, we develop a phenotypic
structured model extending the model proposed in Lorz et al. (2013). Our model consists of healthy cells
and tumor cells depending on a continuous variable that represents the level of drug resistance. The model is
aimed at designing e↵ective combination therapies (see also Cho and Levy (2018b); Perthame et al. (2014)).
We study two scenarios: (i) a mild competition that allows coexistence of distinct cells; and (ii) an aggressive
competition that results with the elimination of one population (see Figure 1). We examine the tumor response
under a combination therapy of cytotoxic and targeted drugs, assuming a continuous level of drug resistance to
each drug. This distinguishes our work from most other competition models that only consider resistance to a
single drug (Bacevic et al., 2017; Carrère, 2017; Lorz et al., 2013). Our study implies that the optimal order
between the drugs as well as the duration of therapy, depend on the competition parameter and on the ratio of
preexisting resistant cells to each drug.

The paper is organized as follows. In section 2, we introduce the competition model between cancer cell
and healthy cells with a multi-dimensional resistance trait. We estimate the range of the competition rate
that corresponds to the super-competitive scenario, where only one population can survive. In section 3, we
numerically study our model, focusing on cancer growth and on the emergence of resistance under di↵erent
combination therapies. Therapies in which one drug is switched for a second drug are compared to single-drug
therapies in section 3.1, particularly when the competition rate is low. In section 3.2, we study the e↵ect of
di↵erent continuum models in the resistance space and numerically compute the optimal switching time that
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minimizes the overall number of cancer cells in a given time interval. Alternating therapies and combination
on-o↵ therapies are compared in section 3.3. The model is extended to space and the proposed therapies are
studied in section 4. Concluding remarks are provided in section 5.

2. A mathematical model for the competition between healthy cells and

cancer cells

To model the competition between healthy cells and cancer cells and the emergence of resistance, we consider
two populations: healthy cells nh(t, ✓) and cancer cells nc(t, ✓). Both populations describe the number of cells at
time t that have a resistance phenotype ✓. The variable ✓ = (✓1, ✓2) 2 [0, 1]2 describes the level of drug resistance
to cytotoxic drugs (✓1) and to targeted drugs (✓2). The value 0 corresponds to full sensitivity to the drug, and
the value 1 corresponds to complete resistance. For example, the level of resistance to cytotoxic agents can be
related to the expression level of a gene or a gene cluster that is linked to the cellular level of drug resistance
and proliferation potential, such as MDR1, ALDH1, CD44 (Amir et al., 2013; Hanahan and Weinberg, 2011;
Medema, 2013). We model the competition of nh(t, ✓) and nc(t, ✓) as a reaction-di↵usion system,

@tnh(t, ✓) = [rh(✓)� dh(✓)⇢h(t)� µh(✓)c1(t)]nh � āhc(✓)⇢c(t)nh + ⌫h�✓nh, (1)

@tnc(t, ✓) = [rc(✓)� dc(✓)⇢c(t)� µc(✓)c1(t)� 'c(✓)c2(t)]nc � āch(✓)⇢h(t)nc + ⌫c�✓nc. (2)

The reaction terms involve proliferation, apoptosis, and drug e↵ect. The first reaction terms with rh(✓) � 0
and rc(✓) � 0 model the proliferation depending on the resistance level. We assume that the proliferation rates
satisfy @✓irh(✓)  0 and @✓irc(✓)  0, corresponding to the assumption that resistant cells devote their resources
to developing and maintaining the drug resistance mechanisms (see the experimental evidence in Misale et al.
(2015); Mumenthaler et al. (2015); Wosikowski et al. (2000)).

The death terms involve the rate of apoptosis, dh(✓) � 0 and dc(✓) � 0. We consider a logistic growth model
with ⇢h(t) and ⇢c(t) being the total numbers of normal cells and cancer cells, computed as

⇢h(t) =

Z
nh(✓, t)d✓, ⇢c(t) =

Z
nc(✓, t)d✓,

and ⇢(t) = ⇢h(t) + ⇢c(t). The carrying capacity of normal cells with phenotype ✓, is given by rh(✓)/dh(✓).
Key to the model are the competition terms: apoptosis due to competition occurs with rates ahc and ach with
respect to the size of the other cell population. This resembles the competitive Lotka–Volterra model, (e.g.,
Gatenby and Gawlinski (1996); Murray (2002)), and has been referred to as competition rate in competition
models (Piretto et al., 2018). The competition rate is also related to spatial capacity, and it makes sense to
consider ahc > 0 and ach > 0 accounting for spatial competition.

The drug e↵ects that represent the death of cancer cells due to the action of cytotoxic and targeted drugs
are also included in the growth term. The time-dependent dosages are denoted by c1(t) for the cytotoxic drug
and c2(t) for the targeted drug. The healthy cells are a↵ected only by the cytotoxic drug with a drug e↵ect
function µh(✓). Cancer cells respond to both the cytotoxic drug and to the targeted drug with e↵ect functions
µc(✓), and 'c(✓), respectively.

Chemotherapy uses highly potent chemicals that kill rapidly dividing cells, thus we take µh(✓) > 0 and
µc(✓) > 0, and assume that the therapy is more e↵ective with sensitive cells. On the other hand, targeted
therapies selectively target these cancer-related genetic lesions. Hence, we let 'c(✓) > 0, and assume that
targeted drugs do not a↵ect healthy cells. As the resistance level increases, the cells become more resilient to
the drugs. This translates to the modeling assumption @✓iµh(✓)  0, @✓iµc(✓)  0, and @✓i'c(✓)  0 (Lorz
et al., 2015; Mumenthaler et al., 2015).

The Laplacian operator �✓ =
P

n

i=1 @
2/@✓2

i
describes the instability in the resistance phenotypic space with

rates ⌫h and ⌫c. In addition to genetic mutations, epimutations contribute to phenotypic instability: heritable
changes in gene expression that do not alter the DNA (Brock et al., 2009; Glasspool et al., 2006; Gupta et al.,
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Figure 2. Comparison of the dynamics of the total number of cells ⇢(t) = ⇢h(t) + ⇢c(t) for
di↵erent values of the competition parameter ahc = 0, 0.2, ..., 1. The cancer cells proliferation
factor is A = 2 and the results are shown up to t = 40. Healthy cells and cancer cells coexist
when ahc  1/A = 0.5, while the cancer cells aggressively overtakes the population when
ahc > 0.5. The latter case corresponds to the super-competitive model.

2011). Recent experiments demonstrated that such non-genetic instability and phenotypic variability allow
cancer cells to reversibly transit between di↵erent phenotypic states (Chang et al., 2006; Pisco et al., 2013;
Sharma et al., 2010).

2.1. Studying the competition parameter

Recent studies suggest that cell competition is often critical in shaping cancer development (Vivarelli et al.,
2012; Wagsta↵ et al., 2013). In particular, the fitness-sensing process during competition that usually eliminates
defective cells, has a distinctive behavior in pre-cancerous lesions (Moreno, 2008). By acquiring a “super-fit”
status, these super-competitors mutated cells can sense the surrounding wild-type cells as “less fit” and signal
the death of surrounding tissue that in turn promotes their neoplastic transformation (Gil and Rodriguez, 2016).
In our model, the competition parameters ahc and ach describe the aggressiveness of the cells towards cells from
the other populations.

To characterize competition scenarios, we simplify Eqs. (1)–(2) by excluding the di↵usion terms, and consider
parameters as follows. We will revisit the di↵usion terms in a later section. The proliferation rate and death
rate are assumed to be constant. Cancer cells proliferate A times faster than healthy cells, that is, rH = r and
rC = Ar with A � 1. The apoptosis rates are taken as dH = dC = d. The cross-competition parameter is taken
as āhc = dahc and āch = dach. We provide analytical results assuming that the model has a single trait ✓, so that
⇢h = nh and ⇢c = nc. This is of value since phenotype-structured models are known to asymptotically converge
to a Dirac-delta distribution at few dominating resistance traits (Lorz et al., 2011; Perthame and Barles, 2008).
We consider the following scenarios:

• No treatment. When no drug is applied (c1 = c2 = 0), a nontrivial equilibrium of ⇢h > 0 and ⇢c > 0 exists
if r � d(⇢h + ahc⇢c) = 0 and Ar � d(ach⇢h + ⇢c) = 0. With a constraint 0  ahc, ach  1, this reduces to a
condition that the two populations can coexist when the competition rate satisfies ahc  1/A. Otherwise, when
the competition rate is ahc > 1/A, one of the cell populations must become extinct, either ⇢h > 0, ⇢c = 0 or
⇢h = 0, ⇢c > 0. We consider this case as the super-competitive scenario. Since A represents the ratio of over-
proliferation of cancer cells compared to normal cells, for larger values of A, it is likely to be super-competitive
for a larger range of the competition rate ahc.

• Weak treatment. The condition for coexistence changes when the drug is applied with small dosages. For
the cytotoxic drug, if c1 < min (r/µh, Ar/µc), then coexistence amounts to ahc < (r � µhc1)/(Ar � µcc1). We
note that the condition is identical to the no treatment case if the drug e↵ect rate of healthy cells versus cancer
cells is proportional to the proliferation rate, that is, if µc = Aµh. However, under weak targeted therapy,
c2 < r/'c, coexistence boils down to ahc < r/(Ar � A'cc2) so that the cells are likely to coexist for smaller
values of A.

• Strong treatment. We assume that the drug dosages are su�ciently high such that only the most resistant
cells can survive, corresponding to ✓⇤ = 1, where ✓⇤ = argmax✓(r(✓) � µ(✓)c). With such a dosage c, the
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Figure 3. The relative size of healthy cells ⇢h(t)/⇢(t) (left) and cancer cells ⇢c(t)/⇢(t) (right)
at t = 50 depending on the competition parameter ahc = ach = a. (a) Without the drug
treatment, cells coexist when the competition parameter is ahc  1/A. The second and third
rows show the results for a fixed A = 2. (b) The competition trend does not change when
a cytotoxic drug is applied regardless of the dosage. (c) The targeted drug has a significant
impact on the dynamics of coexistence as it only a↵ects the cancer cells.

No drug, Weak drug

Strong drug Cytotoxic drug Targeted drug

ahc >
1

A
ahc >

r � µhc1
Ar � µcc1

ahc >
r

Ar �A'cc2
Table 1. The range of the competition parameter within 0  ahc  1 such that the compe-
tition model becomes aggressively competitive, not allowing for coexistence. The competition
is likely to be aggressive when the over-proliferation ratio of the cancer cells A is large. We
note that the parameter range of the cytotoxic drug reduces to ahc > 1/A for any dosage if
µc = Aµh.

coexistence condition is identical to the no treatment case as ahc  1/A.

Figure 2 shows healthy cells, cancer cells, and combined counts, up to t = 100, for ahc = 0.0, 0.2, ... , 1.0 and
ach = ahc/2. We consider rh(✓) = r = 1.5 and rc(✓) = 2r = 3.0, which corresponds to the relative proliferation
A = 2 Healthy cells and cancer cells coexist when ahc < 1/2, but when ahc > 1/2, the cancer cells overtakes
the population and the healthy cells are eliminated. This condition is demonstrated again in Figure 3(a). The
relative numbers of cells ⇢h(t)/⇢(t) and ⇢c(t)/⇢(t) at t = 50 are plotted for di↵erent values of A and ahc. The
coexistence threshold 1/A is apparent in the results. We remark that for other values of ach in the range of
0  ach  ahc show similar results.

The results shown in Figure 3(b,c) are computed with A = 2 and agree with the theoretical thresholds.
While the cytotoxic drug does not change the range of ahc that corresponds to coexistence, the targeted drug
increases the range of coexistence for weak dosages. The threshold of the competition parameter is summarized
in Table 1.
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2.2. E↵ectiveness of targeted drugs regarding competition

Let us estimate the drug dosage based on the dominating trait ✓⇤ = argmax✓ nc(✓). The instantaneous
growth rate of the cancer cells without drug at time t is

Gc = rc(✓
⇤)� dc(✓

⇤)(ach⇢h(t) + ⇢c(t)).

This rate is reduced by µc(✓)c1(t) and 'c(✓)c2(t) when a drug is administered. We provide an estimation for the
case of µ̄c(✓⇤1) = µ̄c(1 � ✓⇤1), assuming that an increased level of resistance implies lower levels of proliferation
and drug e↵ect. For instance, when the sensitive cells are dominant such that ✓⇤1 ⇡ 0, the growth rate without
the treatment becomes Gc ⇡ ⌘c � d(✓⇤)(ach⇢h(t) + ⇢c(t)). This growth term for the dominant cells is negative
when the initial dosage of cytotoxic drug satisfies

rc(✓⇤)� d(✓⇤)(ach⇢h(t) + ⇢c(t))

µ̄c(1� ✓⇤1)
< c1.

As ✓⇤1 increases, resistant cells arise. The cytotoxic drug dosage that is necessary to lower the number of cancer
cells increases and it may reach the maximum tolerated dose. Eventually, when ✓⇤1 ⇡ 1, the drug e↵ect term,
c1µ̄c(1 � ✓⇤1), becomes negligible even with high dosages. In this case, reducing the growth rate using the
competition term involving the healthy cells becomes more e↵ective. Thus, when

rc(✓
⇤)� c1µ̄c(1� ✓⇤1) > 0,

targeted therapy is preferable since it can still suppress the cancer cells using the competition term d(✓⇤)ach⇢h(t),
preserving the normal cells ⇢h(t) despite the reduced drug e↵ect due to resistance. The e↵ect of this term
becomes more critical for larger values of the competition parameter ach. We verify the e↵ectiveness of targeted
drugs in the highly competitive case in our simulations.

2.3. Switching drugs as a function of the resistance ratio

The choice of drug can be determined by considering the ratio of resistance. For simplicity we classify the
sensitive and resistant cancer cells into four groups as ⇢SS , ⇢SR, ⇢RS , and ⇢RR, where S and R represent
being sensitive and resistant to one of the drugs, for instance, ⇢SS

.
=

RR 0.5
0 nc d✓. The first index corresponds

to the cytotoxic drug and the second index corresponds to the targeted drug. The treatment type can be
determined by comparing ⇢SR and ⇢RS , where the drug type with less resistant cells should be administered
first. For instance, if the resistant population to the second drug is larger, ⇢SR > ⇢RS , it is more e↵ective to
use the first drug, assuming that the e↵ective decay rates due to each drug, ec1 and ec2, are identical. Since
⇢SR(e�ec1t � 1) < ⇢RS(e�ec2t � 1), we have

(⇢SS + ⇢SR)e
�ec1t + (⇢RS + ⇢RR) < (⇢SS + ⇢RS)e

�ec2t + (⇢SR + ⇢RR),

where the left- and right-hand sides represent the number of cancer cells after treated for time t with the
first and the second drug, respectively. This result di↵ers from the results of Piretto et al. (2018), in which
a combination therapy of cytotoxic chemotherapy and immunotherapy assuming resistance to only cytotoxic
drugs was considered. When cells that are resistant to cytotoxic drugs are present, it was suggested to first
apply the cytotoxic drug (Piretto et al., 2018).

3. Combining cytotoxic and targeted drugs

We study the e↵ect of di↵erent combination therapies with cytotoxic and targeted drugs regarding competi-
tion. We simplify the parameters by considering ahc = ach = a, which takes into account the super-competitors
and also a highly competitive fighting for space. The resistance trait becomes ✓ = (✓1, ✓2) 2 [0, 1]2, where ✓1
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and ✓2 represents resistance to cytotoxic and targeted drug, respectively. In particular, we consider the model
functions as in Lorz et al. (2013),

rh(✓) =
⌘hQ2

i=1(1 + ✓2
i
)
, rc(✓) =

⌘cQ2
i=1(1 + ✓2

i
)
, (3)

dh(✓) =
d

Q2
i=1(1� 0.1✓i)

, dc(✓) =
d

Q2
i=1(1� 0.3✓i)

,

where ⌘h = 1.5 and ⌘c = 3 are the maximum proliferation rates of healthy and cancer cells, respectively, and
d = 0.5 is the apoptosis rate. The drug e↵ect functions are taken as

µh(✓) = 0.4(1� ✓1), µc(✓) = 0.8(1� ✓1),

'c(✓) = 0.8(1� ✓2). (4)

All model functions satisfy the positivity and slope assumptions from section 2. The drug schedules we consider
are shown in Figure 4. We consider four di↵erent therapies:
(a) a single cytotoxic drug therapy initiated at tc, that is, ci(t) = ci 1tct,
(b) a switching therapy such that the drug is switched once after ts, ci(t) = ci 1tcttc+ts and cj(t) = cj 1tc+tst,
(c) an alternating therapy with period tp, ci(t) = ci 1(2n)tpt�tc(2n+1)tp and cj(t) = cj 1(2n�1)tpt�tc(2n)tp ,
(d) combination on-o↵ therapy with period tp, ci(t) = ci 1(2n)tpt�tc(2n+1)tp and cj(t) = cj 1(2n)tpt�tc(2n+1)tp .

0
0

0
0

0
0

0
0

Cytotoxic

Targeted

Figure 4. Drug scheduling considered in our simulations: (a) single cytotoxic drug therapy
initiated at tc; (b) drug switching therapy such that the drug is switched once after ts; (c)
alternating therapy with period tp; and (d) on-o↵ combination therapy with period tp. We also
test schedules of (a-c) initiated with targeted drugs.

The initial cell populations are set as

nh(0, ✓) =
1� w

C0
exp


� (✓1 � µ1)2

✏
� (✓2 � µ2)2

✏

�
,

nc(0, ✓) =
w

C0
exp


� (✓1 � µ1)2

✏
� (✓2 � µ2)2

✏

�
. (5)

Here, the mean resistance phenotype is centered at µ1 and at µ2 for the cytotoxic drug and the targeted drug,
respectively. In addition, w represents the initial proportion of the cancer cells in the tissue, and ✏ controls the
variance of the preexisting resistance. C0 is a normalizing constant chosen so that ⇢(0) = 1. For the numerical
simulation, we consider a fourth-order finite di↵erences method for the phenotypic space with 100 grid points
and a fourth-order Runge-Kutta method with a fixed time step �t = 10�3 for time integration.

3.1. Single drug and drug switching therapy using cytotoxic and targeted drugs

We first examine the outcome of a single drug therapy for di↵erent values of the competition parameter a,
using either a cytotoxic or a targeted drug. We simulate the model without the di↵usion term (⌫h = ⌫c = 0).
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Cytotoxic Targeted

Figure 5. Comparison of the total number of cells ⇢(t) = ⇢h(t) + ⇢c(t) when using cytotoxic
and targeted therapy with di↵erent values of the competition parameter a = 0.2 and 0.8. The
drug is administered at tc = 10 with dosages ci = 1 and 4. When c1 = 4, administering a
cytotoxic drug results with a relapse regardless of the values of a. The timing of the relapse is
delayed in the case a = 0.8 when administering a high dosage c2 = 4 of the targeted drug.

For the initial condition, we set µ1 = µ2 = 0, w = 10�5, and ✏ = 0.05. The results shown in Figure 5 confirm
that the competition parameter a determines the outcome: either coexistence or aggressive competition. This is
the case with a low dosage ci = 1 as well as with a higher dosage ci = 4. When a = 0.2, healthy cells and cancer
cells are both present throughout the treatment, but not when a = 0.8. In particular, under a high dosage of
the cytotoxic drug, c1 = 4, the relapsed cancer cells overtake the population. In the case of a targeted drug,
the healthy cells suppress the cancer cells for some time, so that the relapse is delayed. This does not prevent
an eventual relapse. The results are consistent with the observations of Suijkerbuijk et al. (2016) that showed
that when the APC mutant clones in Drosophila midgut reach a certain size, they induce the apoptotic death
of the surrounding wild-type cells. From this simulation, we observe that the targeted drug is partially e↵ective
in the competitive scenario, a = 0.8.

Figures 6–7 show the e↵ect of increasing the dosages in the range 2  c  6 for the single drug therapy
case, comparing cytotoxic and targeted drugs. Here, we assume less preexisting resistance by setting ✏ = 0.02.
In Figure 6, acute relapse is observed under cytotoxic drug with high dosages ci = 5, 6, where the number of
cancer cells rapidly increases at later times (t > 50), compared with moderate dosages (c = 2, 3). This is the
case for both competitive scenarios a = 0.2 and 0.8. However, under targeted drugs, the relapse is worse when
a = 0.2, but not when the cells are highly competitive (a = 0.8). The targeted drugs eliminate only the cancer
cells which helps the healthy tissue maintain its dominance and suppress the growth of cancer. In contrast, the
cytotoxic drug, provides an advantage to the highly proliferative cancer cells, allowing them to fill in the void.

We compare the results when the rate of apoptosis due to the cytotoxic drug is larger than the rate induced
by the targeted drug, hoping that this will provides insights about improved drug scheduling. Figure 7 shows
the results where the drug e↵ect function of the cytotoxic drug amplifies by up to 1.66 times the e↵ect of the
targeted drugs. The cytotoxic drug with a stronger e↵ect function is more e�cient in killing the cancer cells,
until a certain time point where the resistant cells cause a relapse. However, when a = 0.8, stronger apoptosis
of the cytotoxic drug holds for a very short period of time, so that the targeted drug has a significant advantage
over the cytotoxic drug. This suggests that there may exist a drug scheduling that maximizes the drug e↵ect,
particularly when the competition is less aggressive (a = 0.2).

To demonstrate the e↵ectiveness of combination therapies, we compare the number of cells ⇢(t) and ⇢c(t)
using a single drug therapy, to a combination therapy switching either from a cytotoxic drug to a targeted
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Figure 6. Comparison of the total number of cancer cells ⇢c(t) for an increased drug dosage
2  c  6. The results compare cytotoxic therapy (up) and targeted therapy (down) for the
competition parameters a = 0.2 (left) and a = 0.8 (right). We observe that in general, high
cytotoxic drug dosages (c = 5, 6) result with a delayed, yet stronger relapse compared with
moderate dosages (c = 2, 3). In contrast, targeted therapy results with a substantial delay in
the relapse time in the highly competitive case a = 0.8.
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Figure 7. Comparison of the total number of cancer cells, ⇢c(t), using cytotoxic and targeted
therapy. The drug e↵ect function of the cytotoxic drug is scaled such that it ranges from 100%
to 166% of the drug e↵ect function of the targeted drug. The cytotoxic drug with a higher
cytotoxic e↵ect reduces the cancer cells more e↵ectively than the targeted drug until a certain
time, especially when a = 0.2. However, in the more competitive case, a = 0.8, the targeted
drug quickly becomes more e↵ective.

drug or the other way around. We comment that often the first-line therapy is replaced by other drugs once
it becomes ine↵ective (Biswas et al., 2016; Kalemkerian et al., 2012; Mok et al., 2009). Figure 8 presents the
results where the first drug is applied at t = 10, and switched to the second drug at t = 20. We set the values
of the cytotoxic drug dosage, c1, and the targeted drug dosage, c2, to either 4 or 6. We observe that switching
the drug delays the relapse until the final simulation time t = 80, in particular with the higher drug dosage,
ci = 6. While a single drug therapy eventually results in a relapse due to the resistant population, we verify
that switching the drug helps in delaying the relapse. This conclusion depends on the level of competition.
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Figure 8. Comparison of the total number of cells ⇢(t) and cancer cells ⇢c(t) using either a
single drug therapy or a combination therapy, switching the drug once. The initial drug is
applied at t = 10 and switched to the second drug at t = 20, that is, ts = 10. The top two rows
correspond to a = 0.2. Compared to the single drug therapies, switching the drug in either
way delays the relapse. The bottom two rows are the highly competitive case, a = 0.8. In this
case, switching the targeted drug to a cytotoxic drug with insu�cient amount of drug (c1 = 4)
results with a worse outcome for the cancer cells.

With a moderate dosage ci = 4, switching from a cytotoxic drug to a targeted drug is e↵ective when a = 0.2,
but not when a = 0.8, where targeted drugs are advantageous.

We further aim to compute the optimal switching time. Figures 9 and 10 show the total number of cancer
cells, ⇢c(t), for the low-competition (a = 0.2) and the highly competitive (a = 0.8) cases. The drug is switched
at di↵erent times after the initial drug is applied at tc = 10. We fix the dosage as ci = 4. The case when the
therapy is initiated with a cytotoxic drug is shown in Figure 9. We observe that the cancer cell population
remains low when the targeted drug is applied after the cytotoxic drug has eliminated su�ciently many cells that
were resistant to the targeted drug. The second row shows the relative size of the total cancer cell population

compared to a single drug therapy, that is, �c

.
=

R 80
0 ⇢c(t) dt

.R 80
0 ⇢⇤

c
(t) dt , where ⇢⇤

c
(t) is the number of cancer

cells subject ot a cytotoxic drug treatment only. We observe that when a = 0.2, there exists an optimal switching
time. The relative cancer size is minimized to 20% when the therapy is switched at tc+20. Figure 10 shows the
opposite case where the drug is switched from targeted to cytotoxic. Similarly, one can benefit from switching
the drug when a = 0.2. In this case, the optimal switching time is approximately tc + 30. When a = 0.8, a
therapy using only the targeted drug with a dosage of c2 = 4 is more e↵ective than an alternating therapy. As
a result, rapidly switching the drug from targeted to cytotoxic yields significantly worse results, while for the
switching from cytotoxic to targeted drug – the sooner the better.
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Figure 9. Number of cancer cells when the treatment begins with the cytotoxic drug at
tc = 10, and then switches to the targeted drug at di↵erent times (⇥). The targeted drug
delays the relapse due to resistance to the cytotoxic drug. In particular, when a = 0.2, there
exists a switching time that minimizes the number of cancer cells, approximately ts = 20.
However, in the more competitive case, a = 0.8, it is better to switch the drugs earlier since
the targeted drug is more e↵ective.

Figure 10. Number of cancer cells when the treatment begins with the targeted drug at
tc = 10, and then switches to the cytotoxic drug at di↵erent times (⇥). The cytotoxic drug
delays the relapse due to targeted drug resistance when a = 0.2. Switching the drug at ts = 30
minimizes the total number of cancer cells. When a = 0.8, using the targeted drug only without
switching to a cytotoxic drug is more e↵ective.

3.2. Continuous phenotypic levels of drug resistance

In this section, we study the implications of considering a continuous resistant space on the treatment
scheduling. Generally, we will observe variations in the mean resistant level as a function of the drug dosage. In
a previous work we demonstrated that di↵erent continuum models of proliferation and drug e↵ect functions yield



THE EDPSMATH DOCUMENTCLASS USERS GUIDE VERSION 2 13

distinctive dynamics in the drug resistance space, Cho and Levy (2018a). The dynamics of continuum-resistance
models can be similar to the dynamics of models that are based on discrete levels of resistance. It can also be
significantly di↵erent. In linear models of proliferation r(✓) and drug e↵ect µ(✓), the typical outcome is that
cells end up concentrating either in the most sensitive or in the most resistant trait. Such dynamics is essentially
similar to considering a model with two resistance states: fully resistant and fully sensitive. Di↵erences between
the continuum and discrete models are observed with non-linear proliferation and drug e↵ect functions. Here, we
study how our model depends on the choice of continuum models by considering two functions: (i) a quadratic
model that allows intermediate resistance level,

rc(✓) = (⌘c �
⌘c
4
)

2Y

i=1

(1� ✓2
i
) +

⌘c
4
, µc(✓) = µ(✓1 � 1)2,

and (ii) a linear model for which the outcome is similar to a discrete two-states model,

rc(✓) = (⌘c �
⌘c
4
)

2Y

i=1

(1� ✓i) +
⌘c
4
, µc(✓) = µ(✓1 � 1).

The parameters are taken to be comparable with Eqs. (3)–(4). The death terms are assumed to be constant,
dh(✓) = dc(✓) = 0.5, and the epimutation rates are set as ⌫h = ⌫c = 10�3.
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Figure 11. Distribution of healthy cells, nh(t, ✓), and cancer cells, nc(t, ✓), in the resistance
phenotype space using a quadratic model (model i) and a linear model (model ii) with a = 0.2
for di↵erent drug dosages c = 1, 2, 3, 4 at t = 80. Using the quadratic model, as the drug
dosage increases, the mean resistance level in cancer cells gradually increases in the direction
of ✓1 or ✓2 depending on the drug type. On the other hand, the linear model yields the level
of resistance in cancer cells changes from fully-sensitive, ✓i = 0, to fully-resistant, ✓i = 1,
depending on the drug dosage. This is a sharp transition compared with the quadratic model.
Healthy cells are only a↵ected by the cytotoxic drug.
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Figure 11 shows the distribution of both healthy cells, nh(t, ✓), and cancer cells, nc(t, ✓), in the resistance
space. These results are computed with the quadratic and linear models, while increasing the drug dosage,
c = 1, 2, 3, 4. The distributions are shown for the case when the competition allows cells to coexist (a = 0.2
at time t = 80). Figure 11 confirms that the quadratic model allows for intermediate resistance levels that
gradually increase with increased drug dosage. As the dosages of the cytotoxic and targeted drugs increase,
the mean resistance level of cancer cells nc(t, ✓) increases in the corresponding direction of ✓1 and ✓2. The
resistance levels of healthy cells is a↵ected only by the cytotoxic drug. In contrast to the smooth transition
in the resistance level observed in the quadratic model, the outcome of the linear model is closer to binary as
shown in Figure 11. With the dosage threshold of c ⇡ 3, the dominating resistance trait instantly changes
from fully-sensitive (✓i = 0) to fully-resistant (✓i = 1). We note that in the highly competitive case, a = 0.8,
the distributions are similar to the results shown in Figure 11, only that the concentration of healthy cells is
relatively low, nh(t, ✓) ⇡ 0.
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Figure 12. Evolution of the cancer cell distribution nc(t, ✓) at t = 10, 20, 30, 40 using the
quadratic model (top) and the linear model (bottom) with a drug switching therapy. The
dosages satisfy c1+ c2 = 5. The initial drug is applied at t = 10, and the second drug is applied
at t = 20. In contrast to the single drug therapy, a combination therapy reduces the levels of
cancer cells that are resistant to one drug yet are sensitive to the other drug.

We proceed to studying the evolution of the distribution in the resistance space under drug switching therapy.
The results are shown in Figure 12. Here, the initial drug is applied at tc = 10 and is then switched to the
second drug at t = 20. Prior to the treatment, the most sensitive cells dominate the population. However, after
treatment is initiated, the resistant cells emerge, depending on the drug type. For instance, when the therapy
is switched from a cytotoxic drug to a targeted drug, the distribution shifts from ✓1 � 0 and ✓2 = 0 to ✓2 � 0.
Compared with the outcome of a single drug therapy, the population of cancer cells that are resistant to one
drug and sensitive to the other drug declines. Cells that are resistant to both drugs, ✓1 ⇡ 1 and ✓2 ⇡ 1, are
likely to survive.

Figure 13 compares the e↵ect of switching therapy to a single drug therapy for the two continuum mod-
els. The relative size of the total cancer cell population compared with a single (cytotoxic) drug therapy, is
R 100
10 ⇢c(t) dt

.R 100
10 ⇢⇤

c
(t) dt , where ⇢⇤

c
(t) is the number of cancer cells under a cytotoxic drug treatment. Once

again, the results confirm that a single targeted drug therapy is particularly e↵ective when the cells are highly
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Figure 13. Relative number of cancer cells using drug switching therapy compared to using
a single cytotoxic drug for di↵erent values of drug switching time ts. The results are shown for
the quadratic model (top) and the linear model (bottom). The linear model is more sensitive
to the switching time, and when a = 0.8, the outcome of a single cytotoxic drug therapy or the
switching therapy, can be worse than a single targeted drug therapy, where the arrows indicate
the increased amount.

competitive, a = 0.8. This is more significant in the linear model, where the relative size of the cancer cell
population reduces approximately to 50%, compared with 80% with the quadratic model. When a = 0.2, the
switching therapy in any order is more e↵ective than the single drug therapies regardless of the continuum
model (ts � 5). We note that the outcome of the linear model strongly depends on the switching time ts, and
particularly becomes worse than the single targeted drug therapy when a = 0.8, if the tumor is not exposed to
the targeted drug for a su�ciently long period.

3.3. Alternating therapies and on-o↵ combination therapies

In the previous sections we studied the emerging dynamics when switching cytotoxic and targeted drugs. The
study was performed assuming competition between healthy cells and cancer cells, and a continuum resistance
trait. In this section, we assume that the drug can be changed within a short period of time, and study the
periodically alternating therapy and the on-o↵ combination schedules depicted in Figure 4(c,d). The results for
these studies are shown in Figures 14. In both figures, the drug therapies start at tc = 10. We test for di↵erent
dosages: (i) a moderate dosage c1 + c2 = 3 aiming at maintaining the cancer cell population at low levels; and
(ii) a high dosage, c1 + c2 = 5, aiming at completely eliminating the cancer cells. We also test for di↵erent
competition rates a = 0.2 and 0.8. As a reference, we plot the results obtained with single drug therapy.

Figure 14 shows the dynamics of the cancer cells under the moderate dosage. We observe that the alternating
therapy is more e↵ective than the other therapies, as it reduces the overall number of cancer cells compared to
single drug therapies. In particular, alternating the drug with a short period (tp = 2) suppresses the cancer
growth without oscillations. Initiating the alternating therapy in any order ends with similar results for both
competition rates since the preexisting resistant populations to both drugs are identical. On the other hand,
the on-o↵ combination therapy yields a highly oscillatory behavior that results in larger numbers of cancer cells
during the o↵ period compared with the single drug therapy. Since the dosage of chemotherapy is restricted
due to its toxic nature (Dorris et al., 2017; Ribeiro et al., 2012), the on-o↵ combination therapy may not be
e↵ective in such situations.
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c1 + c2 = 3 c1 + c2 = 5

Figure 14. The number of cancer cells ⇢c(t) using di↵erent therapies including single-drug,
alternating, and combination therapy with a relatively low dosage c1 + c2 = 3 and a relatively
high dosage c1 + c2 = 5. The periods of alternating and combination therapies are taken
as tp = 2, 5, 8, and 12. The alternating therapy in any order is more e↵ective than others
considering the overall number of cancer cells during the treatment. A shorter alternating
period (tp = 2) suppresses the cancer cells without oscillations. On the other hand, the on-
o↵ combination therapy yields a highly oscillatory outcome. In case of a = 0.8 using high
dosage, initiating the therapy with the targeted drug is more e↵ective than initiating it with
the cytotoxic drug, and the on-o↵ combination therapy also delays the relapse e↵ectively.

In the case of a higher dosage, c1 + c2 = 5, we observe that the number of cancer cells reduces to less than
an order of magnitude for a certain time period before a relapse occurs. As shown in Figure 14, both of the
alternating and combination schedules significantly delay the relapse compared to the single drug therapies. As
before, alternating the drug with shorter periods (tp = 2) keeps the cancer population below a certain threshold,
in contrast to longer periods that may result in small peaks throughout the treatment. However, when a = 0.8,
we observe that initiating the therapy with the targeted drug is more e↵ective in the sense that it overcomes
the drawback of longer drug periods. We also observe that the on-o↵ combination therapy with a high dosage
e↵ectively reduces the cancer cells population and delays the relapse, similarly to the alternating schedule with
short periods. However, after the relapse, the cancer cell population fluctuates more than with the alternating
schedule.

The results obtained so far assume equal sizes of preexisting populations that are resistant to the cytotoxic
and the targeted drugs. However, since the preexisting resistance is one of the critical factor in relapse, we further
study the more realistic scenario in which di↵erent fractions of the pre-treatment population are resistant to
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c1 + c2 = 3 c1 + c2 = 5

Figure 15. Number of cancer cells ⇢c(t) for di↵erent therapies when the number of cells that
are resistant to the cytotoxic drug is larger than those that are resistant to the targeted drug
(⇢c,R1 > ⇢c,R2). We observe that initiating the alternating therapy with the targeted drug with
a smaller resistant population is more e↵ective.

both drugs. We denote the number of cells that are resistant to the cytotoxic drug and to the targeted drug as

⇢c,R1(t) =

Z

1✓1�0.5

nc(t, ✓)d✓, ⇢c,R2(t) =

Z

1✓2�0.5

nc(t, ✓)d✓,

respectively. We remark that the previous results correspond to the case ⇢c,R1(0) = ⇢c,R2(0). We consider the
initial condition as in Eq. (5), but with di↵erent variances ✏ = 0.02 or 0.08 for each direction, ✓1 or ✓2. The
ratio then either becomes ⇢c,R1(0) : ⇢c,R2(0) = 1 : 104 or ⇢c,R1(0) : ⇢c,R2(0) = 104 : 1.

Figure 15 presents the results for the case when the cytotoxic resistant cells have a higher ratio, that is,
⇢c,R1(0) > ⇢c,R2(0). We test the same therapies as before including the single drug, alternating therapies,
and combination therapies. We consider the moderate dosage c1 + c2 = 3 and the high dosage c1 + c2 = 5.
The competition rates are set as a = 0.2 and 0.8. Similar conclusions hold as in the symmetric pre-treatment
case. With a relatively low dosage, the alternating schedule with a small period works remarkably better than
the combination therapy, while with a relatively high dosage, the combination therapy can also suppress the
tumor growth for a certain period of time. However, in the asymmetric pre-treatment case, the order of drugs
becomes more important to the therapy outcome. First, the outcome of single drug therapy is correlated with
the size of the preexisting resistance: In Figure 15, the cytotoxic drug produces a worse outcome due to a larger
pre-treatment resistance population. The targeted drug yields the early relapse portrayed in the opposite case
⇢c,R1(0) < ⇢c,R2(0). In addition, when ⇢c,R1(0) > ⇢c,R2(0), initiating an alternating schedule with a targeted
drug is more e↵ective than initiating it with the cytotoxic drug, particularly for higher dosages. Clearly, this is
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the outcome because the targeted drug reduces the population of cells that are resistant to the cytotoxic drug.
In addition, for the highly competitive case, a = 0.8, we observe that a single targeted drug therapy with dosage
c1 + c2 = 3 yields the minimal number of cancer cells up to t ⇡ 40 with a relatively low dosage. This provides
us with an opportunity to design an e↵ective adaptive therapy.

On the other hand, when ⇢c,R1(0) < ⇢c,R2(0), it is better to initiate the treatment with the cytotoxic drug.
As expected, the results suggest that the pretreatment resistance can be a critical factor in determining the
course of therapy and its outcome.
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Figure 16. Number of cancer cells at time t = 100, ⇢c(100), for di↵erent dosages of com-
bination therapy involving cytotoxic and targeted drugs. The results are tested for di↵erent
sizes of pre-existing resistance either ⇢c,R1 < ⇢c,R2 or ⇢c,R1 > ⇢c,R2. As expected, initiating
the switching therapy with the drug that has a smaller resistant population is more e↵ective.
When a = 0.8, there exists an optimal dosage of the cytotoxic drug.

In addition to drug scheduling, we also study the e↵ect of dosages with respect to asymmetric preexisting
resistance. In Figure 16, we present the number of cancer cells ⇢c(t) at t = 100 using a combination therapy
with a cytotoxic drug dosage c1 and a targeted drug dosage c2. When ⇢c,R1 > ⇢c,R2, we observe that a higher
dosage of the targeted drug is more e↵ective than increasing the dosage of the cytotoxic drug. For instance, the
dosage (c1, c2) = (2, 3) results in a smaller tumor than (c1, c2) = (3, 2). In the opposite case, ⇢c,R1 < ⇢c,R2, the
result is reversed: c1 < c2 is a more e↵ective treatment. When the competition is mild, a = 0.2, increasing the
dosages of both drugs constantly improves the outcome. However in the highly competitive case, a = 0.8, there
exists an optimal dosage of the cytotoxic drug. For instance, when ⇢c,R1 > ⇢c,R2, (c1, c2) = (1.5, 3) results with
the minimum number of cancer cells. The optimal dosage changes to (c1, c2) = (2.5, 3), with a slightly larger
cytotoxic drug dosage when ⇢c,R1 < ⇢c,R2.

4. Tumor growth model with cell competition

We extend the competition model by including a physical space variable x 2 [�1, 1]2 ⇢ R2. The concentra-
tions of healthy cells, nh(t, x, ✓), and cancer cells, nc(t, x, ✓), are governed by the following system,

@tnh(t, x, ✓) = GHnh + ⌫n�xnh + ⌫prx · (nhrxph), (6)

@tnc(t, x, ✓) = GCnc + ⌫n�xnc + ⌫prx · (ncrxpc).

Here, ph(t, x) = (⇢h/⇢h,0)k and pc(t, x) = (⇢c/⇢c,0)k, are the cell pressures for the healthy cells and the cancer
cells, respectively. The normalizing constants are taken as the maximum cell capacity ⇢h,0 = 3 and ⇢c,0 = 6.
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The growth terms, GH and GC , are taken as in Eqs. (1) and (2), and ⌫n and ⌫p are constants describing cell
motility. The spatial competition model follows the tumor growth model developed in Cho and Levy (2018b),
and the cell motility parameters are taken as ⌫h = ⌫c = 10�6, ⌫p = 10�5, and k = 6 (Bray, 2000).

We consider three spatially heterogeneous drug distributions to examine the therapies c1(t, x) and c2(t, x):

i. A constant dosage,

ci(t, x) = c̄i(t).

ii. A di↵usive case, where the drug di↵uses from the right edge x1 = 1 (Mumenthaler et al., 2015),

ci(t, x) = c̄i(t)
h
(e�(x1+1)/2 + e��(x1+1)/2)/(e� + e��)

i
,

with � =
p
2.

iii. A highly heterogeneous case (Peng et al., 2016),

ci(t, x) = c̄i(t)
h
2 + 0.25 sin(2⇡ k (x1 + 1, x2 + 1) k2) + 0.5 sin(4⇡ k (1� x1, x2 + 1) k2)

i
/2.75.

We assume a similar dependence of the proliferation on the space variable with all three cases considered.
We choose the initial condition as a small concentration of cancer cells embedded in the center of a healthy
tissue (see Figure 17, t = 0). The following results are presented by plotting the total number of healthy cells,
⇢h(t, x, y) =

R
nh(t, x, y, ✓)d✓, and cancer cells, ⇢c(t, x, y) =

R
nc(t, x, y, ✓)d✓.

Figure 17 corresponds to the case of a constant dosage. The initial tumor is located at the center of the
domain. The first row shows the mildly competitive case, a = 0.2, and treatment with the cytotoxic drug. The
second row shows the highly competitive case, a = 0.8, and treatment with the targeted drug. The treatments
are initiated at tc = 6 and tc = 10, respectively, with dosages c̄1 = c̄2 = 5. We observe that the cytotoxic
therapy eliminates the healthy tissue in addition to the cancer cells, unlike the targeted drug. In addition,
when a = 0.2, the cancer cells grow on top of the healthy tissue, while in the highly competitive case, a = 0.8,
the cancer cells replace the healthy tissue while expanding. In both cases, a tumor treated with a single drug
therapy quickly relapses due to the preexisting resistant cells. The spatial simulations with constant dosages
are consistent with the results of the non-spatial model in the previous sections.

We now test combination therapies when the drug distribution is spatially heterogeneous. Figure 18 compares
single drug therapies and alternating therapies with period tp = 2, when the resource and drugs are di↵used
from the right boundary, x1 = 1. The treatment dosages are taken as c̄1 = 7 and c̄2 = 4. We remark that
prior to the treatment, the tumor grows faster closer to the right boundary where the concentration of resources
is high. Using a single drug therapy, the tumor relapses before t = 40, particularly when a = 0.2 using the
cytotoxic drug. When a = 0.8, we verify the e↵ectiveness of the targeted drug, for which we observe that the
size of the tumor at t = 40 is smaller compared with the tumor at the same time using the cytotoxic drug,
despite the lower dosage. The alternating therapies are more e↵ective compared with the single-drug therapies
in all competition environments, although the di↵erence is smaller in the highly competitive case a = 0.8, since
the single targeted drug therapy is e↵ective as well.

Finally, di↵erent therapies including the on-o↵ combination therapies are compared in Figure 19. We set
the dosages as c̄1 = c̄2 = 5, which are su�ciently high so that the on-o↵ combination therapies are e↵ective
as much as the alternating therapies. The drug distribution is heterogeneous. As expected, the single drug
therapies result with strong relapses compared with the alternating and combination therapies. In addition, we
observe emerging local peaks of cancer cells when using combination therapies during the o↵ periods. This is
particularly worse than the outcome of alternating therapies when a = 0.2. In the case of a = 0.8, although the
alternating therapy is more e↵ective in suppressing the tumor throughout the treatment than the combination
therapy, the sizes of the relapsed tumors at t = 40 are similar.
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Figure 17. The evolution of cancer cells ⇢c(t, x, y) and healthy cells ⇢h(t, x, y) under single-
drug therapies initiated with a small cancer population in the center of the domain (left, t = 0).
The cancer cells grow on top of the healthy tissue when a = 0.2 (top, t = 6). When a = 0.8
(bottom, t = 10), the cancer cells aggressively eliminate the healthy cells while expanding. The
treatment starts at t = 6 (top) and t = 10 (bottom). The cancer cells relapse quickly when
using a single drug therapy due to preexisting resistance.

5. Conclusion

In this work we develop a competition model of healthy and cancer cells that takes into account resistance
to cytotoxic and targeted drugs. We study the dynamics of resistance to the drugs and observe the emergence
of populations with distinct levels of resistance depending on the therapy. Primarily, we classify the cell
competition scenarios as either mild, where distinct cell types can coexist, or aggressive, where cancer cells
dominate by actively eliminating the healthy cells. The threshold of the competition rate that distinguishes
the two scenarios is related to the over-proliferation of the cancer cells over the healthy tissue. It also depends
on the drug dosages. In addition, the analysis shows that targeted therapies have a greater potential of being
e↵ective when the cells are highly competitive.

Various drug treatments are tested in the two competition scenarios, and we observe that the treatment
outcomes are distinctive. Although the targeted drug is more e↵ective in the highly competitive case, a single
drug therapy, either cytotoxic or targeted, results with an eventual relapse due to the preexisting resistance,
regardless of the strength of the competition. However, treatments that include both drugs show better outcomes
in terms of the relapse time and the tumor size. Considering the drug switching therapy, an optimal switching
time that minimizes the overall number of cancer cells exists when the competition is mild. In the highly
competitive case, the targeted drug therapy alone is often e↵ective enough. We also compare di↵erent continuum
models that either allow for intermediate resistance states or are close to a two-state model with cells that are
either fully sensitive or fully resistant to the drugs. Although the overall advantage of the switching therapy over
single drug therapy in di↵erent competition environment holds, the linear model is shown to be more sensitive
to the switching time that often yields a worse outcome compared with a single targeted drug therapy. Thus,
when the population is highly competitive and both the tumor proliferation and the drug e↵ect linearly depend
on the resistance trait, the drug switching time should be more carefully determined. Alternating treatments
with di↵erent periods are shown to be e↵ective in suppressing the cancer population during the entire treatment
period compared with the other therapies. This particularly holds with small periods. Finally, we investigate a
spatially heterogeneous tumor growth model, and verify that the same conclusions hold.

As future work, we propose to incorporate experimental results considering combination of chemotherapy and
targeted therapies (Dorris et al., 2017; Ribeiro et al., 2012) and develop optimal strategies using optimal control
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Figure 18. The evolution of cancer cells ⇢c(t, x, y) and healthy cells ⇢h(t, x, y) under single-
drug and alternating (Alt.) therapies di↵used from the right boundary, x = 1. When a = 0.2,
the alternating therapy is remarkably e↵ective compared with a single cytotoxic drug. When
a = 0.8, a single targeted drug therapy is also e↵ective, although the tumor size is slightly
larger compared with the tumor size with the alternating therapy.

theory for stabilizing the cancer population and/or minimizing the tumor size during the treatment period
(Carrère, 2017; Jonsson et al., 2017). Adaptive therapy is another interesting topic that aims at controlling
the tumor by maintaining sensitive cells in order to suppress the resistant cancer cells (Bacevic et al., 2017;
Gatenby et al., 2009). Finally, the computational cost of simulating three-dimensional tumor growth models
with multi-dimensional resistance traits is prohibitively expensive due to the high dimensionality. This requires
developing an e�cient numerical method that balances computational cost and accuracy (Cho et al., 2016;
Grasedyck et al., 2013).
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