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Negotiating Visibility for Safe Autonomous
Navigation in Occluding and Uncertain Environments

Jacob Higgins

Abstract—Navigation through an occluded environment is a
challenging task for autonomous mobile robots (AMR), since they
must balance both safety and speed in an attempt to fluidly steer
around occlusions in uncertain environments. This is because real
world environments have dynamic actors that may be occluded
to the robot during motion, introducing uncertainty. One key el-
ement of eliminating this uncertainty is moving in such a way to
maximize perception around these occlusions. This letter presents
a novel control framework that combines both perception and
safety constraints, resulting in motion that is quick and safe when
occlusions are present. Perception is satisfied using a model predic-
tive control (MPC)-based approach to provide inputs that increase
visibility around occlusions while safety is promoted by modeling
uncertainties as projected probabilities of occupancy derived from
current observation and expected traffic motion. Improvements
in visibility, safety, and speed are shown in simulations and are
experimentally validated using an unmanned ground vehicle.

Index Terms—Motion planning, mobile robots, optimal control.

1. INTRODUCTION

VER the years, robots have carved a bigger space in our
O every day lives, and the current state of the world has only
accelerated this pace. The on-going pandemic has fueled interest
in minimizing human-to-human contact in many different sec-
tors using autonomous mobile robots (AMR), from ride-sharing
to food/drug delivery. As AMR are introduced in more indoor
spaces shared with other actors (e.g., humans, other robots),
one hurdle they must overcome is to guarantee safety while
promoting speed in typically cluttered occluding environments.
Indeed, when one sees videos of deployed AMR in action,
it is immediately apparent how slow they are programmed to
move through the environment, presumably due to the kinds of
uncertainties that traversing a co-human environment presents.
When human beings are tasked to plan a route through a
cluttered environment, visibility is a key factor in their decision-
making process. Although the exact path is different for each
person, there are several factors that most consider:
e How much of the path ahead is visible?
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Fig. 1. Pictorial representation of the problem covered in this work. Ag
represents the visible region while Ay, is the “known-unknown” not visible
sensed area by the robot

e How likely is a collision with an obstacle that is not

currently visible?

® What is a reasonable balance between moving to increase

visibility and cutting corners to decrease travel time?

Humans answer these questions with split-second decision
making informed by heuristic reasoning and experience, but
translating these sensibilities into an algorithmic framework for
AMR is a more challenging problem.

Consider a robot deployed in a complex environment, ap-
proaching busy intersections of hallways and aiming to take a
turn in the presence of square walls as depicted in Fig. 1. A
naive navigation approach that has the robot stopping at every
intersection would be at best safe but extremely inefficient.
However, if the robot could quantify the limits of its perception
based on surrounding occlusions, then it could attempt to reduce
the unknowns by taking mitigating actions like reducing its
speed and adjusting its trajectory to take a wider angle when
approaching the corner.

To solve these challenges, we propose a control framework
that not only satisfies both safety and perception constraints, but
also uses both of these objectives to inform the importance of
the other in an intuitive and natural way. This control framework
captures the complex notions of safety and visibility, yet is kept
simple so that it may be applied in a variety of contexts.

This work presents two main contributions: 1) the formula-
tion of an analytic perception objective that, when used in the
cost function of an optimal control problem, results in motion
that increases perception around occlusions, and 2) an occu-
pancy grid-based technique to determine if the robot can safely
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navigate around the occlusion in the presence of traffic from
other moving actors.

The rest of the paper is organized as follows: in Section II
we provide an overview of the current state of the art in mo-
tion planning. In Section III we formally define the problem
of motion planning under safety and perception constraints.
Section IV presents our policy framework that can safely nav-
igate in occluded and uncertain environments which is tested
with both simulations and experiments in Sections V and VI,
respectively. Finally, we draw conclusions and discuss future
work in Section VII.

II. RELATED WORK

Motion planning is one of the most studied problem in robotics
[1], and many different approaches have been developed over the
years [2]. When the environment is completely known, there are
a variety of techniques that can generate paths around obstacles
[3], [4]. In many real world scenarios, however, the presence
of occlusions means complete knowledge of the environment
cannot be guaranteed. To address this, much research over the
past decade has focused on motion planning that emphasizes
visibility throughout the trajectory. For example, [5] plans a
UAV trajectory that minimizes snap while avoiding obstacles
and keeping a target object within the field of view of an attached
camera. If the optimization is performed as part of an online
MPC, similar work can be found in [6] where the authors use a
pinhole camera model to include camera image dynamics inside
the model of the MPC, keeping objects of interest at the center of
the camera while moving. [7] achieves the same goal, but instead
uses a neural network to predict the motion of points of interest
on the camera image, reducing computational complexity. Vis-
ibility of multi-UAV systems has been explored in [8], where
their framework is inspired by the coordinated motion of the
human eye. Work has also been done on observing the surface
area of large 3-dimensional objects that cannot be inspected
entirely with a single camera image [9]. Authors in [10] even
constructed a specialized unmanned ground vehicle (UGV) for
the purpose of classifying objects that may be partially or totally
occluded.

Despite this volume of work, less progress has been made on
addressing the inherent uncertainty that occlusions introduce.
[11] presents a formal discussion on optimal path planning
when obstacles in the environment are unknown due to the
possibility of occlusion by other obstacles. Their discussion,
however, is limited only to static obstacles and does not consider
dynamic obstacles that may appear from behind the occlu-
sions. In the context of autonomous transportation vehicles,
[12] computes the reachability sets of cars that may be hid-
den behind occlusions to avoid possible collision states. These
reachable sets assume the occluded vehicles follow reasonable
rules for cars obeying traffic laws, but do not generalize to other
non-transportation settings.

In contrast with this previous work, our proposed framework
considers occlusions to be a source of uncertainty, especially
when dynamic obstacles may appear from behind the occlusions.
This uncertainty triggers the framework to increase visibility,
and in turn the increased visibility serves to reduce uncertainty.
To the best of our knowledge, this is the first work formally
addressing these concerns.
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Fig. 2. Baseline simulation with highlighted Ay, over time in (b).

III. PROBLEM FORMULATION

In this work we are interested in finding a control policy for a
robot to negotiate occlusions while considering visibility, safety,
and speed constraints. The framework should be able to apply
to any general autonomous mobile system, as well as be able to
generalize to any occluded environment.

There are many ways of approaching this multi-faceted prob-
lem. Our approach decouples this research question into two
sub-problems whose solution strongly affects the overall motion
of the autonomous system. Formally, these two problems can be
defined as follows:

Problem 3.1: Safe Navigation : A robot must be able to avoid
collision with any obstacle within its visibility range at any time
over a time horizon ¢7, or mathematically:

llp(t') — o;]| > 0,V € [t,t +tr],Vi € [1,n,] (1)

in which p(t) = [z,y|T is the position of the robot, 0;(t) =
[02:, 0,]T is the position of the i obstacle in the z — y plane at
time ¢, and n, is the number of obstacles.

In the context of this work, this problem implies that the
robot must be able to stop and avoid a collision with actors and
obstacles that are occluded, and hence may suddenly appear in
in the field of view (FOV) of the vehicle.

Now, consider the case depicted in Fig. 1 that shows a situation
that an autonomous robot will most likely encounter while mov-
ing through an indoor setting. The shaded area corresponds to the
robot’s (FOV) F(t), while A(t) € F(t) is the traversable area
that is not occupied or blocked by obstacles. The portion of A(t)
visible to the robot is defined by A,(t) € A(t), while the area
that is traversable but not visible — which we call the “known-
unknown” region — is denoted as A, (t) = A(t) — As(t). The
second problem that we propose to solve in this work is then as
follows:

Problem 3.2: Minimizing Known-unknown Occlusions:
Given the safety constraint defined in Problem 3.1, find a control
policy P,, which at runtime maximizes visibility in an occluded
environment, or equivalently minimizes Ag,, (¢):

Pu(t) = arg min Ay, (1), Vt )
u
where u is the commanded input to the robot.

A. Running Example: Two-Corridor Hallway

To better explain and guide the reader through the proposed
approach, throughout the paper we will use the general occluded
environment shown in Fig. 2 characterized by 90° corners,
typical of most environments that surround us. Additionally, the
robot model for the proposed running example is given by the
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Fig.3. Diagram showing the different components of the proposed controller.

The contributions of this letter are within the green box.

following double integrator dynamics:

pP=u (3)

where u = (&, §J)7T is the input acceleration vector.

Since this work is focused on motion planning in the pres-
ence of potentially occluded dynamic obstacles, we assume that
the shape, size and location of the corridors are detectable by
onboard range/vision sensors or known to the robot a priori,
reflecting the situation in which the robot is already familiar
with a particular building.

InFig. 2 we show a baseline simulation for the robot following
a trajectory using a pure-pursuit approach [13] through the
proposed environment. Fig. 2(a) shows the entire trajectory of
the robot, and Fig. 2(b) shows the known-unknown area over
time.

IV. APPROACH

The diagram in Fig. 3 shows the architecture of our frame-
work. At the core, a model predictive controller (MPC) is chosen
because it can predict future values of an objective function
and work to minimize these future values. In the context of
this work, an MPC can recognize when the visibility will be
negatively affected in future states and proactively and optimally
maneuver to mitigate such occlusion. MPC can also be fed state
constraints on the system that must be respected in the state
prediction horizon. These constraints are used extensively to
promote safe motion.

A pure pursuit-based module is included to dynamically
generate waypoints over the desired trajectory for the robot.
This module both guarantees progress in the navigation toward
the end goal and includes safety constraints when influencing
the motion of the robot. An equally important feature of the
proposed controller is the ability to incorporate uncertainties
of the upcoming hallway into its motion via a probabilistic
occupancy grid-based approach, slowing down the vehicle in the
presence of upcoming uncertainties and maintaining/increasing
its speed when the path ahead is seen (or known a prior) to be
clear. For ease, in this work we assume that a desired trajectory
is built and known a priori. How to build trajectories is not the
scope of this letter and our proposed technique complements any
trajectory generation procedure (e.g., visibility graph, virtual
potential field) by modifying the path to increase visibility and
safety.

In the next sections, we provide details about each of these
modules that make up the proposed controller depicted in Fig. 3,
starting with the MPC formulation for perception to minimize
the known-unknown areas at runtime.
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A. MPC-Based Known-Unknown Perception Minimization

In this work, we are interested in designing a single model
predictive controller (MPC) framework that negotiates occluded
intersections of varying shapes and sizes.

MPC operates on solving an online optimal control problem
(OCP) that optimizes over a moving prediction horizon. This
OCP requires two main components: (1) a cost function J that
the OCP minimizes at each time step, and (2) feasibility regions
that the OCP must respect. The cost function .J at time ¢ for our
specific problem is expressed as:

J= (xeyr —wi)" Quiq(®ipn — wy)

T-1

+ Z(%z-ﬂ' —wy)TQy (T — wy) + UtTJri_lRut-s-iﬂ
i=1

+ WAA (T i, Yeti)- 4)

where x; is the state space vector for the ith prediction step, w,
is the reference set in state space, and w; is the ith control input
that the MPC computes at each sampling period. Q and R are
the cost weighting matrices for state space position and control
input reference tracking, respectively.

The OCP is then formulated as:

arg min J(xo, ug,...un_1)
UQ;,-- -, UN-1

subj. tousq; € Uy, Vi=1[0,N —1]
Ty € Xy, Vi= [1,N] 5

where x4 ; is the model-based predicted state at future time
t+1i x At, At is the sampling time and 7' is the prediction
horizon over IV steps. The feasibility regions for the control
inputs and state-space variables are denoted as f; and A},
respectively. In this letter, control inputs are restricted by simple
min-max inequalities Umin < u < Umax. The feasibility region
for the position component of the state is denoted by P, and
defined by an H-Polyhedron:

Pr={p e R”>: Ap(t) < b} ©)

where the matrices A and b that define P; depend on the position
of the robot p(t), as well as the width of the current corridor wq
and the width of the next corridor w:

—1 0 wo
A=10 L |y b= |wm (N
1 —y/z 0

Motion through the environment is produced by a pure pursuit
approach of a waypoint w, that changes over time. Details on
how this waypoint is chosen will be discussed in Section I'V-B.

The novelty about our MPC framework is the inclusion of a
new term A(z, y) in (4), which defines the perception objective.
The purpose of the perception objective A(z,y) is to value the
current position based on this occluded area.

An exact analytical expression for the known-unknown area
Ajy(t) of an occluded environment is in general a piecewise
continuous function that is not differentiable and computa-
tionally intractable. Instead, this work finds use in a simple
analytical expression that closely correlates to Ay, (t). This
analytical expression is defined by distances Az and Ay relative
to the occluding corner, shown in Fig. 4. The angle between
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Fig. 4. Defining the perception objective in terms of the occluding corner,
relative to the current location of the robot.

Y pos (m)

()

Xpos (m)

(a)

Fig. 5. Mapping points in the x — y plane that are occluded by a corner
(a) to values of the known-unknown area Ay, (z,y) and the logarithm of the
perception objective A(z,y) (b).

the position of the robot and the upcoming corridor is defined
as 0 = arctan(Ay/Ax). With these quantities, the perception
objective is defined as:

0 arctan(Ay/Azx)
MAw, Ay) = o = Ay ®)
In other words, the perception objective is defined as the
ratio between the angle 6 and the parallel distance Ay. This
expression has two main properties that make it appealing to
use as a perception objective:

® limay, o0 A(Az, Ay) = 0, meaning that this perception
objective naturally tends to zero if the robot is far away
from the occluding corner. In this case, the robot’s motion

will not be affected by the perception objective.
® limay—0,A020 A(Az, Ay) = 1/Ax, meaning that as the
robot approaches the occluding corner, the perception ob-
jective takes on the value 1/Ax and the MPC tries to in-
crease Ax in order to minimize the perception objective. By
increasing Az, the occluded area is naturally minimized.
We will now show that the analytical expression in (8)
mimics the desired behavior that an ideal perception objec-
tive would have and provides a differentiable cost function
that any nonlinear MPC can handle. Fig. 5 shows a map-
ping between spatial points occluded by an upcoming corner,
the desired value Ay, (z,y) and perception objective A(x,y).
The values of Ay,(z,y) are considered the “ground truth”
that the analytical perception objective A(x,y) is approximat-
ing. The quantity log(A(x,y)) is plotted against Ay, (z,y) to
address the non-linear relationship between them. Highlighted
in Fig. 5 is a red line of locations along which In(A(x,y))
and Ay, (x,y) share a correlation of 0.96, implying a strong
relationship between the two values. In other words, as the
MPC decides to increase/decrease the perception objective as
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Fig. 6.  Effect of perception objective on the robot motion and comparison of
A}, with the baseline case in Fig. 2.

defined in (8), this correlates to an increase/decrease in the
known-unknown area.

Analyzing the effects of the perception constraint in (4),
we note that a large weight wp causes the MPC to re-
turn commanded inputs whose overall effect is to provide
a better vantage down occluded hallways. Fig. 6 demon-
strates this effect, in which the Ay, is significantly reduced
from the baseline case in Fig. 2 when approaching the
occlusion.

1) Stability Properties: One important observation that can
be made is that since the MPC balances the two possibly conflict-
ing objectives of reference tracking and maximizing perception,
stability of this controller cannot be cast as a reference tracking
problem simply because the minimum of the cost function will
not lie on the reference, but at a point between the reference
and maximizing perception. Instead, stability is defined in the
following sense:

Definition IV.1: Let x,,(t) be a minimum of the cost func-
tion defined in (4) at time t. Suppose ., (t') = x,,(t) =
T, Vt' >t. A controller is defined to be stable if it can
guarantee x(t') — @,,.

In other words, the controller is said to be stable if the
minimum x,, () is asymptotically stable at every instant ¢. Note
that this does not mean the robot will ever reach @, (t), since the
minimum is always changing (i.e., the tracked reference point
is constantly changing over time).

The rest of this section will focus on supporting the following
lemma:

Lemma 1: The optimal control policy defined in (5) results
in asymptotically stable motion that approaches the minimum
of the cost function (4).

Proof: In order to show this, only the position dependence of
the cost function J(x) is considered. As the higher derivatives
of position, e.g., p and P, are quadratic in J(x) with positive
coefficients, itis clear that the minimum of J () corresponds to a
system that has no motion (any non-zero motion only adds to the
cost function). What needs to be explained is how equilibrium
values of (¢4, Yeq) are affected by the addition of the perception
objective A(x,y) defined in (8). To this end, define this = — y
dependent portion as J,, (z, y):

Ty (@, y) =wa (2 —20)* +wy (y — yu)? +wad*(z,y) ()

In order to prove Lemma 1, it must be demonstrated that the
minima of J;,, are well-defined at all times. One simple approach
is to solve where the gradient of the cost function vanishes. The
gradient of the cost function can be shown to be:
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Establishing stability of the MPC controller defined in (5). Fig. 7(a) shows the relationship between the placement of the waypoint w and the minimum

value (i.e. equilibrium value) of the spatial portion of the cost function .J;,, (a). Fig. 7(b) shows a numerical argument for why this system exhibits stability. Also
shown is the waypoint location at w = (—5, —5)T and resulting equilibrium location Peq = (=7.2,-6.3)T.

0Juy (2 — ) — arctan(y/x)

or Tt x?y(y?/x? + 1)

0Joy (5 — ) — arctan?(y/x) arctan(y/x)
oy T y? zy?(y?/a? + 1)

where w = (2, yy) is the location of the waypoint tracked
by the robot at position p = (z,y). Setting these equations to
zero results in transcendental equations, which cannot be solved
analytically. Instead, numerical methods may be used to find
minima; Fig. 7(a) shows the results of such an analysis. This
minimum is referred to as the equilibrium point p,, of the MPC,
as it is the point at which cost cannot be minimized anymore,
and so no motion is commanded by the MPC. It is clear from this
figure how the perception objective causes the MPC to steer away
from the corner and gain a better vantage around the occluding
corner. For any point p, the MPC finds a policy that minimizes
the cost function J(x) at each step over the prediction horizon.
Stability is thus achieved when the MPC selects a policy that
moves the system towards p,, atall times. Assuming itis always
possible to choose such a policy, in order to prove stability it is
sufficient to show that movement towards p,, directly minimizes
the cost function at all points in the = — y plane. For an x —
y point p, this condition is true if and only if the following
inequality holds:

VJzy(Iay)T : (peq - p) <0.

Here, the vector (p., — p) points from the  — y position p to
the MPC equilibrium position p,,. The above inequality asserts
that motion toward p,, must always decrease the cost function.
Fig. 7(b) shows this to be true numerically for certain choices
in waypoint placement and relative perception weight wp. The
green plane corresponds to VJy - (p., — (z,y)T) = 0, mean-
ing that since the projection remains below this plane, it stands
to reason that moving towards the equilibrium position always
results in decreasing J,,,. Assuming such a policy is feasible,
this implies the MPC will always choose to move towards the
equilibrium position. O

B. Waypoint Generation

As mentioned in Section IV-A, the MPC is given a waypoint
w(t) that serves as a pure pursuit objective for the robot to follow.
In the proposed framework, safety is enforced by adapting w(t)
depending on the uncertainty of the upcoming environment.

Section IV-B1 discusses how uncertainty is modeled in our
framework, followed by Sec. IV-B2 that discusses waypoint

placement. Note that this work assumes some prior knowledge
about the expected traffic of other actors in an environment. This
notion can be acquired from prior experience/assumptions. If no
prior knowledge is available, and safety is paramount, one would
select the uncertain case discussed below.

1) Expected Distance to Collision: In the presence of uncer-
tainty due to possible incoming traffic of actors from around
occlusions, safety is determined through probabilistic means
by computing the average distance until collision. In order to
calculate this expectation value, one must know the probabilities
of collision for different locations in space at particular instances
in time. While this may seem unwieldy at first, such a task
becomes more manageable by making the following connection:
the probability of colliding with an object at a given point in
space is the same as that location’s probability of occupancy.
Occupancy grids are a common and well-studied approach for
mapping [14], and readily give the probability of occupancy
for any grid location. The proposed framework borrows this
idea of occupancy-for-mapping and instead applies it towards
calculating the likelihood of collision in an occluded hallway.

In choosing a waypoint w in an uncertain environment, it is
beneficial to have a function that directly connects to the safety
of w. In this framework, this function is the expected distance
to collision beyond the corner and is calculated using estimated
future probabilities of occupancy in the upcoming section of the
hallway.

Define Ad = p — w, and divide Ad up into n sufficiently
small line segmentsd; = p + ~Ad,i = 1,...,n. Additionally,
let Spext € R? define the area of the upcoming hallway. Define
the set D as,

D = {d, 1 d; € Snexl} (10)

In other words, D contains all points d; that lie beyond the
occluding corner.

An occupancy grid map takes as input the z — y position
in space and returns the probability that a region is occupied
by an obstacle. At each sampling time, this occupancy grid is
updated by what is observed by the robot. Define p;(d;) as the
current probability function, with p;(d;) = 1 representing the
knowledge that d; is occupied by an obstacle with certainty. In
order to address situations with dynamic obstacles (e.g., a person
walking into view from around the corner), future occupancy
pi+at(d;) at some time At later is predicted from p;(d;) via
convolution with a probabilistic motion model. For ease of
discussion, the probabilistic motion model is assumed to be a
simple uni-directional motion down the corridor. The parameter
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At is estimated as the distance to w divided by the speed the
robot is currently moving in that direction:

At = ‘dA = (1)
p-d
The expected location of collision d can be defined as:
d=> diprini(di) A= peadd)]  (12)

i€D

Here, (12) can be thought in terms of a generalized geometric
probability distribution, in that the term p(d;)IT:_; [1 — p(d;)]
is interpreted as the probability that the robot travels along Ad
from its current position p and collides with an obstacle only at
d;. It should be noted that (12) is a conservative approximation
of the actual expected distance to collision, as the motion of the
robot may not be along d.

The safety of a waypoint w is determined by comparing the
expected distance to collision |d]| to the stopping distance of the
robot. If we assume that the motion of the robot is limited to a
maximum velocity |p|max and acceleration |P|mayx, @ maximum
stopping distance can be computed as:

[Pl
dslop, max 2 uj|max (13)
A waypoint w is considered safe when the expected distance to
collision is greater than the maximum stopping distance. In this
way, the robot has enough room to stop completely before its
anticipated collision. To indicate safety we introduce a binary
variable © = 1(0) when safe (unsafe):

1, if |d|/dstop, max > 1
(") pr—
0, else

(14)

2) Waypoint Placement: Consider now a predefined desired
trajectory T used as a means of routing the robot around known
static obstacles, such as walls, towards the robot’s goal position.
Points along 7 that are currently visible to the robot are consid-
ered as candidate waypoints, with (14) used to ensure that any
particular candidate is safe to move towards.

Recall from the problem formulation in Sec III that A4 (t) is
defined as the area visible to the robot at time ¢. Let us define
the boundary of this area as §A,(t) € R? as depicted in Fig. 8.

Let 7' ={p,0,-- - Pr;---, PN} Withi={1,..., N} be
an indexed set of N discrete points that make up the visible
model trajectory 7’. The waypoint location w is placed at
the furthest point along 7’ that is considered safe according
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objective (a) and in (b) the relative Ay, compared to the Ay,, for the perception
case in Fig. 6.

to (14). The first point considered is the farthest visible point
pr N = 0As N 7. If p, v is unsafe, then a closer visible point
is considered, p, y_;. Fig. 8 shows how this process may be
repeated until a safe waypoint w = p, y_y, is found. If no
point on T is considered safe in the upcoming corridor, the
waypoint is placed at the entrance of the upcoming corridor p,
and the upcoming corridor is considered unsafe. In situations
where § A; N 7 = (), the waypoint is chosen as the closest point
v* € § A, to the desired trajectory 7.

Pr Nk k€[l N] ifdA;NT #0D
w= (v E€IA; s.t. |p—v*| <|p—v|
Vo € §As(t), else
15)

When the waypoint is placed at w = p, , it means that there
is some non-negligible probability of expected traffic coming
from around the occluding corner. In this situation, it is advanta-
geous for the robot to gain visibility around the occluding corner
to increase the certainty that the upcoming hallway is unoccu-
pied, thereby lengthening the expected distance to collision in
(14). Thus the perception objective is activated and the waypoint
is fixed at p, o. By bringing the waypoint closer to the position
of the robot, a desired side effect is that the MPC will reduce
the speed of the robot to a safe stop at the selected waypoint if
needed.

Fig. 9(a) shows the resulting motion through the two-corridor
system in the running example using this waypoint generation.
Here the perception objective does not activate because the
environment is known to be safe. Also shown in Fig. 9(b) is
the plot of the known-unknown area used to characterize its
visibility (or lack-thereof) around the occluding corner during
the operation, in comparison with the case in which the visibility
constraint is active (see also Fig. 6).

V. SIMULATIONS

The first case study investigated in this work is a simple
“L”-shaped corridor with one occluding corner. The simulated
UGV robot uses a common differential drive motion model
[15] and has a maximum velocity of 2 m/s and maximum
acceleration of 1 m/s2. Thus, from (13), dstop, max = 2 m. The
FOV of the UGV is limited to a 5 m radius. The optimal control
problem was solved using ACADO toolkit [16] and qpOASES
[17] as the solver. Fig. 10 shows a series of snapshots of the
proposed framework navigating the robot through the occluded
intersection. The gray grid cells represent the estimated future
probabilities of occupancy. Current occupancy probabilities are
determined through a log-odds Bayesian update, and used to
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Snapshots of a simulation case study in which a UGV navigates an occluding corner, considering uncertainties. The gray shaded region on the second

corridor indicates the probability that a certain cell is occupied by other actors. (d) shows plots of velocity and Ay, for our policy framework with and without

perception compared to a minimum travel time implementation.
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Fig. 11. The cumulative distribution function of the distance that the robot
first senses a dynamic object while negotiating the L-shaped corridor.

estimate future occupancy probabilities by convolving with a
known motion model.

Also shown in Fig. 10 are simulated dynamic objects, uni-
formly ranging in speed from O to 5 m/s traveling to the left. The
convolution model used to temporally propagate the occupancy
probabilities correlates to this uniform probability in dynamic
obstacle velocity. As the simulation ran, the UGV could “sense”
a dynamic object only when it was within the UGV’s FOV,
recording its distance. This distance serves as a conservative
estimate on safety of the proposed framework since itis designed
to provide ample reaction time in uncertain situations, and not
provide a policy that plans around dynamic obstacles. For these
reasons, the dynamic obstacles are removed from simulation
when they are first observed.

Fig. 11 shows these results as a cumulative distribution
function over the distance that a dynamic obstacle was first
sensed. As a point of comparison, also shown are the results of a
UGV moving to minimize traveling time (i.e., quickly cutting the
corner) as well as a UGV following the safety module without
a perception objective to help with visibility. The figure shows
how motion that minimizes traveling time has a 23% chance
of sensing a dynamic obstacle under dsop, max = 2 m., which is
unacceptable in a safety-critical situation. With the full safety
and perception framework, there was no situation where the
UGYV sensed a dynamic obstacle within its maximum stopping
distance. Fig. 10(d) plots velocities and known-unknown areas
for these simulations for comparison.

It is apparent from Fig. 10(d) that the proposed policy frame-
work performs best at maximizing visibility. What may be sur-
prising is that by considering visibility constraints, the proposed
framework also moves faster around the corner than motion
guided only by the safety module. The UGV is able to do this
because having visibility around the occluding corner helps
reduce the uncertainty in occupancy, establishing safety more
quickly than using the safety module alone.

The second case-study focused on a real-world situation in
which an industrial UGV was tasked to navigate a series of
hallways inside a warehouse to retrieve an item from a stockroom
and take it to a specified location. In this case study, the UGV
must reach the stockroom via a main hallway that is often
occupied by dynamic obstacles (e.g., people, other robots), and
thus has some uncertainty of occupancy. Two scenarios were
tested: (1) the main hallway is known to be clear of dynamic
obstacles (e.g. it is night-time and no other actors are present in
the warehouse) and thus this main hallway is known to be safe a
priori, and (2) occupancy in the main hallway is unknown, with
a probabilistic motion model that assumes all dynamic obstacles
move down the hallway. Fig. 12 shows the setup and results for
these scenarios.

As Fig. 12 shows, the main difference of trajectories between
the two scenarios is when the UGV enters the main hallway.
When there is uncertainty, the UGV moves to gain visibility up
the hallway, and when the main hallway is known to be safe, it in-
stead cuts the corner. Fig. 12(e) shows how the known-unknown
area is reduced when occupancy is uncertain in the main
hallway.

VI. EXPERIMENTS

Experimental validations were performed with a Clearpath
Robotics Jackal UGV inside our lab. As a proof of concept,
different occluded geometries were created to showcase how
the proposed framework adapted to different scenarios. For
each scenario, a Vicon motion capture system was used to
measure state-space values of the Jackal, which were fed into the
policy framework outlined above. The MPC executed at 10 Hz,
producing commanded velocities which were fed to a lower
level controller executing at 100 Hz. As the Jackal can follow
commanded velocities, it can instantly stop moving at any point
and dyop, max 1S effectively zero. Because of this feature, only the
effect of the perception constraint on motion was explored in
experiments.

Fig. 13 shows snapshots for the case study of a UGV ap-
proaching the intersection of two hallways where its sensing
capabilities are occluded by a sharp corner. Two different ob-
jectives were tested: (1) minimum time and (2) perception.
Fig. 13 shows snapshots of these two experiments, as well
as known-unknown areas recorded by the Jackal. Additionally
Figs. 13(a,b) show laser scan data recorded by the onboard
lidar. The impact of including perception is highlighted by the
additional laser scan points around the occluding corner.
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Sequence of snapshots for a simulation of a robot operating in a occluding environment with variable expected traffic of dynamic objects (a-d). In (e) it

is depicted the comparison between the known-unknown areas over time of the case where the long hallway is safe vs unsafe.

(a) Motion with minimum traveling time.
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(b) Motion with perception.
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Snapshots of experiments and data for the two-corridor scenario. Highlighted in (a) and (b) are the lidar point-cloud data before passing the corner

showing a decreased known-unknown in (b). In (c) the plots show the difference in Ay, between (a) and (b).

Note: More simulations and experiments with different envi-
ronments and occlusion conditions are available in the following
link: https://youtu.be/ErtXafqdzJg.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we have presented a novel MPC-based
framework to navigate occluding environments that increases
visibility while considering uncertainties. Uncertainties are con-
sidered through an occupancy mapping-based approach to au-
tonomously decide if it is safe to move around an occluding
corner. If it is not safe, the policy framework chooses a motion
that promotes visibility as it approaches the occlusion, thereby
reducing uncertainty while navigating around a corner safer and
faster.

From here, future theoretical work includes addressing
the challenge of tuning MPC parameters for different sce-
narios and runtime modeling of the probabilistic motion
model used to estimate safety. Further experimenting with
more complex robots like aerial vehicles is also in our
agenda.
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