76

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 1, JANUARY 2021

An Inter-Data Encoding Technique that Exploits

Synchronized Data fo

Wooseung Nam

, Student Member,
Ness B. Shroff, Fellow, IEEE, and Kyunghan Lee

r Network Applications

IEEE, Joohyun Lee™, Member, IEEE,
, Member, IEEE

Abstract—In a variety of network applications, there exists a significant amount of shared data between two end hosts. Examples

include data synchronization services that replicate data from one

node to another. Given that shared data may have a high correlation

with new data to transmit, we question how such shared data can be best utilized to improve the efficiency of data transmission.

To answer this, we develop an inter-data encoding technique, SyncCoding, that effectively replaces bit sequences of the data to be
transmitted with the pointers to their matching bit sequences in the shared data so called references. By doing so, SyncCoding can
reduce data traffic, speed up data transmission, and save energy consumption for transmission. Our evaluations of SyncCoding
implemented in Linux show that it outperforms existing popular encoding techniques, Brotli, LZMA, Deflate, and Deduplication.

The gains of SyncCoding over those techniques in the perspective of data size after compression in a cloud storage scenario are about

12.5,20.8, 30.1, and 66.1 percent, and are about 78.4, 80.3, 84.3,

and 94.3 percent in a web browsing scenario, respectively.

Index Terms—Source coding, data compression, encoding, data synchronization, shared data, reference selection

1 INTRODUCTION
DURING the last decade, cloud-based data synchronization
services for end-users such as Dropbox, OneDrive, and
Google Drive have attracted a huge number of subscribers.
These new services now become indispensable and occupy a
large portion of Internet bandwidth. Given the rise of data
synchronization services in which significant amount of
shared data exists between servers and clients (i.e., end hosts),
we raise the following question: “how can the previously
synchronized data between the end hosts be best exploited for the
delivery of new data between them?”

We find that this question is not only important to syn-
chronization services but also to general network applica-
tions including web browsing and data streaming because
data transfer between servers and clients essentially lets
them have the same synchronized data in the end. Unfortu-
nately, this question has been only partially addressed in
the literature and in practical systems.

Index coding [1] first suggested the concept of encoding
blocks of data to be broadcasted most efficiently to a group
of receivers holding different sets of blocks. The problem
setting of Index coding is related to ours, but it focuses on

W. Nam is with the School of Electrical and Computer Engineering, Ulsan
National Institute of Science and Technology, Ulsan 44919, South Korea.
E-mail: wsnam@unist.ac kr.

J. Lee is with the Division of Electrical Engineering, Hanyang University,
Seoul 04763, South Korea. E-mail: joohyunlee@hanyang.ac kr.

N.B. Shroff is with the Department of ECE and Department of CSE, The Ohio
State University, Columbus, OH 43210 USA. E-mail: shroff.11@osu.edu.

K. Lee is with the Department of Electrical and Computer Engineering,
Seoul National University, Seoul 08826, South Korea.

E-mail: kyunghanlee@snu.ac.kr.

Manuscript received 3 July 2018; revised 12 July 2019; accepted 23 Aug. 2019.
Date of publication 10 Sept. 2019; date of current version 3 Dec. 2020.
(Corresponding authors: Joohyun Lee and Kyunghan Lee.)

Recommended for acceptance by B. Li.

Digital Object Identifier no. 10.1109/TMC.2019.2940578

4

mixing blocks for optimal broadcasting by mostly using
XOR operations and does not pay attention to exploiting
the similarity among the blocks. Deduplication (dedup) [2]
and RE (redundancy elimination) [3], which have been stud-
ied and developed intensively for storage and network
systems, are capable of exploiting previously stored or
delivered data for storing or transmitting new data. How-
ever, they mostly work at the level of files or chunks of a
fixed size (e.g., 4 MB in Dropbox, 8 kB in Neptune [4]),
which significantly limit the potential of synchronized
data. Even with state-of-the-art deduplication techniques
that can find chunk boundaries in a flexible manner from
using CDC (contents-defined chunking) techniques [4],
[5], [6], [7], the synchronized data is not fully exploited
due to their chunk-to-chunk operations. There exist many
computation acceleration techniques for deduplication
and RE such as bloom filter [8], stream-informed local-
ity [9], rolling hash [10], and hardware accelerators [11],
but these do not improve the efficiency of encoding (i.e.,
the size of encoded data).

In this paper, we try to answer the question by proposing
an inter-data encoding technique called SyncCoding that is a
new framework of exploiting shared data for encoding in two
steps: 1) given data to encode, selecting references for encoding
which hold high similarity with the data to encode from the
pool of previously synchronized data, 2) encoding the data
with the chosen references, which allows bit sequences of flex-
ible lengths in the data to encode to be referenced efficiently
from multiple references. This framework enables a long
matching bit sequence much larger than the size of a chunk in
a reference to be referred by a single pointer (i.e., the position
in the reference and the matching length) and enables a group
of short matching bit sequences toward multiple references
to be referred from multiple references instead of them being
simply delta-coded over a certain chunk.

1536-1233 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The Ohio State University. Downloaded on September 08,2021 at 04:21:43 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0001-7366-536X
https://orcid.org/0000-0001-7366-536X
https://orcid.org/0000-0001-7366-536X
https://orcid.org/0000-0001-7366-536X
https://orcid.org/0000-0001-7366-536X
https://orcid.org/0000-0002-7698-1568
https://orcid.org/0000-0002-7698-1568
https://orcid.org/0000-0002-7698-1568
https://orcid.org/0000-0002-7698-1568
https://orcid.org/0000-0002-7698-1568
https://orcid.org/0000-0001-8647-1476
https://orcid.org/0000-0001-8647-1476
https://orcid.org/0000-0001-8647-1476
https://orcid.org/0000-0001-8647-1476
https://orcid.org/0000-0001-8647-1476
mailto:
mailto:
mailto:
mailto:

NAM ET AL.: AN INTER-DATA ENCODING TECHNIQUE THAT EXPLOITS SYNCHRONIZED DATA FOR NETWORK APPLICATIONS 77

While deduplication and RE for chunk-level redundancy
elimination are known to be effective in leveraging the
series of files originated from a single source file, which are
mostly the same and only partially different, SyncCoding
can potentially benefit from more diverse files (e.g., includ-
ing data that are created on similar topics, by similar author-
ing styles, or in similar formats), irrespective of whether
they are originated from a file or not.

How to most efficiently realize these two steps in Syn-
cCoding is not straightforward to answer and is an open
problem. In this paper, we start tackling the problem by pro-
viding an initial implementation of SyncCoding utilizing 1)
modified cosine similarity for selecting references and 2)
modified LZMA (Lempel-Ziv-Markov chain algorithm) [12]
for efficient bit-sequence referencing from multiple referen-
ces. We find it especially interesting that a non-trivial portion
of data in network applications such as documents or pro-
gram codes stored in cloud storages or web servers fall into
the category where the current implementation of SyncCod-
ing is highly effective. Nonetheless, we note that the frame-
work of SyncCoding is not limited to a specific reference
selection or a compression algorithm. This framework can be
easily extended to use other similarity measures for ensuring
more efficient applicability to general files (e.g., images, vid-
eos) and to use more advanced compression algorithms such
as PAQ [13] and AV1 [14] for improving the efficiency.

In order to design, validate, and evaluate the initial imple-
mentation of SyncCoding, we take the following steps.

1)  We revisit the algorithm of LZMA, the core of7-zip
compression format [15] that is known as one of the
most popular data encoding techniques and reveal
how it works in detail.

2)  We design the framework of SyncCoding with LZMA
and provide a way for LZMA to encode data using
references.

3) We analyze the conditions under which SyncCoding
outperforms the original LZMA with no reference in
the size of compressed data and suggest practical heu-
ristic algorithms to select references from the pool of
synchronized data (i.e., reference candidates) in order
to meet the conditions.

4)  We implement SyncCoding in a Linux system and
evaluate its compression characteristics. We also
implement it in an Android system and study its
energy consumption characteristics. We further dem-
onstrate the benefits of using SyncCoding in realistic
use cases of cloud data sharing and web browsing.

5) We study the performance of SyncCoding for encry-
pted data and discuss an implementation guideline
for SyncCoding.

Our evaluation of SyncCoding in the cloud data sharing
scenario with a dataset of RFC (Request For Comments)
technical documents reveals that on average SyncCoding
compresses documents about 10.8, 20.8, and 66.1 percent
more compared to LZMA after Deduplication, LZMA with-
out Deduplication, and Deduplication only,1 respectively.
Another evaluation in the same scenario with a dataset

1. The chunk size for deduplication here is chosen as a small value,
8 bytes to demonstrate the maximum potential of deduplication

of PDF and image files shows that SyncCoding compres-
ses 18.5 and 40.0 percent more for PDF files and 1.2 and
3.0 percent more for image files compared to LZMA and
Neptune. It confirms that SyncCoding is still beneficial even
for PDF and image files, but at the same time it reveals the
need for a future work that can work more efficiently espe-
cially for image files, for instance, by allowing partially
matching bit sequences to be referenced with delta-encoded
bits or by allowing arbitrary two-dimensional blocks (i.e.,
sets of non-continuous bits in the original bit stream) of bits
to be referenced.

Further evaluation of SyncCoding in the web browsing sce-
nario shows that SyncCoding outperforms commercial web
speed-up algorithms, Brotli [16] from Google with and with-
out deduplication by 81.3 and 84.3 percent, and Deflate [17]
with and without deduplication, by 85.6 and 87.2 percent,
respectively, in the size of compressed webpages of CNN. We
find that this substantial gain observed for SyncCoding comes
from the similar programming style maintained over the web-
pages in the same website and confirm that the gain is persis-
tent over various websites such as NY Times and Yahoo.

2 RELATED WORK

Reforming a given bit sequence with a new bit sequence to
reduce the total number of bits is called data compression
and it is also known as source coding. When the original bit
sequence can be perfectly recovered from the encoded bit
sequence, it is called lossless compression which is the focus
of this work. A bit sequence is equivalent to, hence inter-
changeable with, a symbol sequence where a symbol is
defined by a block of bits which repeatedly appears in the
original bit sequence (e.g., ASCII code). Shannon’s source
coding theorem [18] tells us that a symbol-by-symbol encod-
ing becomes optimal when symbol i that appears with prob-
ability p; in the symbol sequence is encoded by —log, p; bits.
It is well known that Huffman coding [19] is an optimal
encoding for each symbol but is not for a symbol sequence.
Arithmetic coding [20] produces a near-optimal output for a
given symbol sequence.

However, when the unit for encoding goes beyond a
symbol, the situation becomes much more complicated. An
encoding with blocks of symbols that together frequently
appear may reduce the total number of bits, but it is unclear
how to find the optimal block sizes that give the smallest
encoded bits. Therefore, finding the real optimal encoding
for an arbitrary bit sequence becomes NP-hard [21] due to
the exponential complexity involved in testing the combina-
tions of the block sizes.

LZ77 [22], the first sliding window compression algo-
rithm, tackles this challenge by managing dynamically-
sized blocks of symbols within a given window (i.e., the
maximum number of bits that can be considered as a block)
by a tree structure. In a nutshell, LZ77 progressively puts
the symbols to the tree as it reads symbols and when there
is a repeated block of symbols found in the tree, it replaces
(i.e., self-cites) the block with the distance to the block and
the block length. This process lets LZ77 compress redun-
dant blocks of symbols.

Deflate [17] combines LZ77 and Huffman coding. It repla-
ces matching blocks of symbols with length-distance pairs

Authorized licensed use limited to: The Ohio State University. Downloaded on September 08,2021 at 04:21:43 UTC from IEEE Xplore. Restrictions apply.



78

similarly to LZ77 and then further compresses those pairs
using Huffman coding. LZ78 and LZMA are variants of
LZ77, of which their encoding methods for length-distance
pairs are improved. LZMA is the algorithm used in 7z for-
mat of the 7-zip archiver. We will later discuss about the
operations of LZMA in detail in Section 3.

Unlike the aforementioned compression algorithms,
there exist several techniques that include external informa-
tion in addition to the source data for encoding. There are
simpler ways of exploiting external information such as Star
encoding (*-encoding) [23] that uses an external static dictio-
nary shared between a server and its client. A similar yet
more efficient approach has been made using Length Index
Preserving Transform (LIPT) [24] with an English dictionary
having about 60,000 words. Brotli [16], one of the latest
encoding techniques, has a pre-defined shared dictionary of
about 13,000 English words, phrases, and other sub-strings
extracted from a large corpus of text and HTML documents.
Brotli is known to achieve about 20 percent compression
gain over Deflate in the encoding of webpages in a web
browser [25]. Exploiting a static shared dictionary is useful
in general, but its efficacy is limited as each replacement is
bounded by the length of words.

Deduplication [2] is a practical repetition elimination tech-
nique for duplicate data, which is widely studied and devel-
oped for storage systems. It essentially replaces repeated
data chunks of a file with the matching chunks of other files
in the storage by which it enables the concept of SIS (single
instance storage). A similar idea called RE (redundancy elim-
ination) eliminates duplicate packets in network traffic origi-
nally at the network switches [3] and later in the end hosts as
in EndRE [26] to avoid its impact being reduced by encrypted
packets with TLS (transport layer security). Deduplication is
especially effective for secondary storage systems in which
periodic system back-ups that are highly redundant to each
other occupy a large portion. It is also effective in cloud stor-
age services such as Google Drive [27] and Dropbox [28]
because there exist many subscribers who store popular files
such as music, image, video, and PDF files in their storage
spaces. As long as these popular files are unmodified, the files
can be easily deduplicated in the cloud storage system. How-
ever, when there exist slight modifications, the original dedu-
plication with FSC (fixed-size chunking) fails to work due to
so called boundary shift problem.

To tackle this problem, CDC (contents-defined chunk-
ing) [10] is proposed with byte-level fingerprints (i.e., rolling
hash values such as Rabin fingerprints [10] and Gear
hashes [29]) in which chunk boundaries are not deterministi-
cally defined by the size but defined adaptively by a pre-
defined hash pattern. CDC makes chunk sizes variable and
requires much more computation than FSC, but it effectively
identifies modified chunks that are subject to delta encod-
ing [30] over certain chunks and also detects right boundaries
to extract unmodified chunks. For efficient delta encoding for
an unmatched chunk, Neptune [4] and a WAN optimization
technique [31] leverage a sketch of that chunk, which is noth-
ing but some characteristic values obtained from fingerprints,
to find a similar chunk as a basis for delta encoding. Quick-
Sync [32] utilizes the idea of Neptune for mobile devices and
optimizes it for energy saving by adapting the average chunk
size of CDC to the network bandwidth and by bundling

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 1, JANUARY 2021

Sliding windovx(No match (Length, Distance)
1
[alalblcidialblclblalbld] (1,d)
[ala[b[c[d[alblc]b[alb[d] (3,4)
[ala[b[c[d[a[blc[b]albld] (1,2)

[alalb[c[d[alb[c[b[albld] (2,4)
Longest match

(a) Encoding of LZ77

Dynamic window
[alafb[cidfalblc[b[albld] (1,d)
[alalb[c[d[alblc]balbld] (34) ¢

[alalblc[d[alblc[blalbld] (1,2)
[alalblc[d[alblc[blalb]d] (24)>(2).

(Length, Distance)

(b) Encoding of LZMA

Fig. 1. Sample encoding of (a) LZ77 and (b) LZMA over a sequence of
symbols. Whenever a match exists, the longest match is encoded with a
length-distance pair. No match lets the symbol be encoded. When there
is a distance value repeated recently, LZMA points to it instead of
directly encoding it.

packet transmissions for delta-encoded chunks. In another
line of research, a number of acceleration techniques for
deduplication in practical systems are proposed such as
bloom filter [8], stream-informed locality [9], and hardware
accelerators using GPU [11], but they do not fundamentally
improve the compression efficiency of deduplication.

3 LZMA PRIMER

SynCoding is implemented based on LZMA. Therefore, in
order to explain how SyncCoding is implemented, we give
a short primer of LZ77 and LZMA algorithms.

LZ77 encodes a sequence of symbols by maintaining a
sliding window of size w within which the blocks of sym-
bols appeared in the window are systematically constructed
as a tree. Since the window is sliding, the blocks of symbols
captured in the tree will change as the encoding proceeds.
The compression of bits in LZ77 occurs when a repeated
block of symbols is replaced with a length-distance pair,
where the length and the distance denote the length of the
block of symbols and the bit-wise distance from the current
position to the position where the same block of symbols
appeared earlier within the window. Every time a block of
symbol is replaced by a length-distance pair, LZ77 tries to
find the longest matching block in the window in order to
reduce the number of encoded length-distance pairs as the
reduction directly affects the compression efficiency. A sam-
ple encoding with LZ77 when the window size is 4 is illus-
trated in Fig. 1a. The static window size in LZ77 may cause
inefficiencies. For example, when the window size is small,
the number of blocks of symbols that can be kept in the win-
dow is limited, hence reducing the chances of compression.

LZMA works very similarly to LZ77 but with two major
improvements. The first is that LZMA adopts a dynamic
window that has its initial size as one and grows as the
encoding proceeds. Because the window grows, LZMA is
not suffering from being constrained by a small static win-
dow size. The second is that LZMA further reduces the
number of bits representing a length-distance pair by speci-
fying a few special encoded bits that are used when the cur-
rent distance is the same with the distances that are most
recently encoded. Reusing the distance information with
fewer bits helps a lot when the data to compress has a repet-
itive nature (e.g., repetitive sentences or paragraphs in a
file). The look up of the distances is typically done for the
last four pairs. A sample encoding with LZMA is depicted
in Fig. 1b. These small changes cause LZMA can compress
data more than LZ77 [33].

Authorized licensed use limited to: The Ohio State University. Downloaded on September 08,2021 at 04:21:43 UTC from IEEE Xplore. Restrictions apply.



NAM ET AL.: AN INTER-DATA ENCODING TECHNIQUE THAT EXPLOITS SYNCHRONIZED DATA FOR NETWORK APPLICATIONS 79

The optimality of LZ77 was proved earlier by Ziv and
Lempel [34] in the sense that the total number of bits required
to encode a data with LZ77 converges to the entropy rate of
the data, where the entropy rate is defined with the symbol-
by-symbol manner. Since LZMA is more efficient than LZ77,
it is not difficult to prove that LZMA also converges to the
entropy rate by extending the proof in [34].

Our interest lies whether SyncCoding uses less or more bits
than LZMA. To this end, we explain how the number of bits
required for LZMA can be mathematically evaluated.

Let TLZl\,[A({S}jV ) be the total required bits of the output
encoded by LZMA for a given sequence of N symbols {S} f[ .
Suppose that prza is the number of phrases to be encoded in
LZMA, where a phrase is defined by a block of symbols. Note
that as the encoding progresses, the length of a new phrase
(i.e., the number of symbols in the phrase) is determined by
the longest matching sub-sequence of symbols that can be
found in the sliding window. Then, TLZMA({S}iV ) becomes
the bits required to encode all the length-distance pairs for the
phrases, S /MMALL(1) + g(d;)}, where ; is the length of
phrase i, d; is the matching distance of phrase i, and f(/;) and
g(d;) denote the bits to encode I; and d;, respectively. The
matching distance d; is the bit-wise distance from the current
position to the previous position of the same phrase.

LZMA uses comma-free binary encoding [34] for f(I;),
which is also used in LZ77. The comma-free binary encod-
ing consists of two parts: 1) the prefix and 2) the binary
encoding of /;, denoted by b(l;). According to [34], the prefix
and the binary encoding occupies 2[logs[loga(l; + 1)]] and
[loga(l; +1)] bits, respectively. The summation of those
quantifies f(l;) of LZMA.

g(d;) in LZMA falls into either of the following three cases.
When the distance to encode is not the same with any of the
four recently used distances, the distance is encoded by the
binary encoding of a fixed number of digits which is deter-
mined by the size of the sliding window w. Therefore g(d;)
always goes to logs(w). There is one exception when [; =1
(i.e., the phrase consists of a single symbol), the symbol itself
is encoded instead of the distance being encoded. Therefore,
g(d;) = logy C, where C denotes the size of the symbol space
(i.e., character space for a text encoding). When the distance
is repeated from the four recently used distances, there exist
two bit mappings of 4 bits or 5 bits by the following cases: 1)
g(d;) = 4 when the distance matches with the first or the sec-
ond lastly used distance, 2) g(d;) =5 when the distance
matches with the third or the fourth lastly used distance.

By the above equations, we can estimate the best case of
LZMA, that happens when all the distances to encode for
the phrases whose length is larger than two are found from
the first or the second lastly used distance, i.e., g(d;) = 4.
Thus, we have the following lower bound for 777u A({S}iv ).

Lemma 1. TLZMA({S}{V) is lower bounded by the following min-
imal possible total number of bits of LZMA:

Tumia({S1) 2 piaaia - [10g2 O+ 4(pravia — pisia)
PLZMA
+ Z (2 |—10g2 |—10g2(ll + 1)1-‘ + ﬂogg(l, + 1)1),
i=L T 1#1
where p{ . 18 the number of phrases whose length is one (i.e.,
L =1).

New data to be synchronized

Q Encoder

Reference candidates !

)
— . Decoder
=)

Reference indexes || References

Fig. 2. The concept and basic operations of SyncCoding.

Encoded data +
Reference indexes

Previously synchronized data

4 SyYSTEM DESIGN AND ANALYSIS

In this section, we formally state the problem that SyncCod-
ing tackles and proposes the design of SyncCoding. Then,
we provide a mathematical analysis for the design and
explain how it can be compared with that of LZMA.

4.1 System Design

Suppose that there exist n files that are previously synchro-
nized between a server and a client, denoted by F; where
i=1,...,n. Upon transmitting the (n + 1)-st file F,, 1, from
the server to the client, our problem is to answer how should
F,+1 be encoded using the shared files, F1,...,F,. Fig. 2
depicts this scenario in which the encoder (i.e., server) locates
ina cloud system and the decoder is of a mobile device.

Given that the number of previously synchronized, we
assume that we can somehow choose the most useful % files
out of n files and use them only to encode F, ;. We call
those chosen files references and denote the set of references
for F,,11 whose cardinality is % as Rfl +1- Let us discuss the
methods for choosing such k files in the next section.

Algorithm 1. Encoding/Decoding Procedures of

SyncCoding
Encoding:
1)  Choose k useful references R’ |, and index them by
Ly
2) Sort the references in R, in the reverse order of
usefulness
3) Concatenate all the references in R*

n+1
4)  Append it at the front of F,,,; to get V¥,

5) Encode V,, by LZMA and cut out the encoded file

By
6) Transmit £ 4 and Iffﬂ
Decoding:

1)  From I’ ,, restore the concatenated file made up of
R

2)  Compress it by LZMA

3) Append the compressed file at the front of EI |

4) Decode the compound by LZMA and cut out to
obtain F),

For the compression, we let SyncCoding concatenate all
the files in R’ | to be a single large file and append it at the
front part of F,;; to create a virtual file to encode. We
denote this virtual file, a compound of the file to encode
and its references as V. Given V|, we let SyncCoding

simply encode it by LZMA in the hope that all the blocks of

Authorized licensed use limited to: The Ohio State University. Downloaded on September 08,2021 at 04:21:43 UTC from IEEE Xplore. Restrictions apply.



80

symbols that are commonly found in the references and the
file to encode get converted to length-distance pairs, hence
reducing the bits to encode. Note that when V", is con-
structed, we let SyncCoding place the references in the
order that a reference with higher usefulness is placed
closer to F, ;1. Once encoding is done, we cut out the front
part and extract only the encoded portion of F, i, denoted
by EF, . SyncCoding transmits E* | to the decoder with the
list of file indexes chosen as references, denoted by I% ;.

For decoding E¥,,, we let SyncCoding first decode I,
to recall the references at the decoder side. Then, we let Syn-
cCoding create the concatenated file of R’ ., as if it was
done at the encoder and compress it by LZMA. Once we get
the output, we append it at the front part of E | to create a
compound and decode the compound by LZMA. By the
nature of LZMA, this decoding guarantees the acquisition
of F,; from E¥ . The encoding and decoding procedures
of SyncCoding is summarized in Algorithm 1. We implement
SyncCoding of this procedure by modifying an open-source
implementation of LZMA [35].

4.2 Comparative Analysis
We analyze SyncCoding by comparing its total number of
bits for encoding, Tsc({ S}f), with that of LZMA. Recall that
the input is again {S}IV , a sequence of N symbols, which
was identically used for LZMA. By the analogy with the
analysis of LZMA, we can view that Tsc({S}{V) conforms to
SUSCLE(L) + g(dy)} + K logs n, where psc denotes the num-
ber of phrases to be encoded in SyncCoding. k logs n, the
overhead of SyncCoding, quantifies the number of bits to
list the indexes of the references. Since SyncCoding adopts
LZMA for its bit encoding, f(-) and g(-) for SyncCoding are
not different from those in LZMA. Note that the number of
phrases identified in SyncCoding is always smaller than or
at least equal to that in LZMA mainly because the references
give a more abundant source of matching phrases. There-
fore, the better the reference selection, the more the gap
between pgc and przua. It is also obvious that p§. < pi,a,
where pl. denotes the number of phrases of length one in
SyncCoding.

We now find the condition that guarantees better compres-
sion for SyncCoding over LZMA, so that Tsc({S}Y) <

Trzaa ({ S}{V ) is satisfied. For that, we compare the worst case
bit-size of SyncCoding with the best case bit-size of LZMA.
Suppose that SyncCoding reduces the number of phrases by
the factor of y as psc = ¥ - pLzva, where y is a constant satisfy-
ing0 < y < 1.1tis unlikely, but if the reference selection goes
extremely wrong, it is possible to have y = 1. Having a
smaller number of phrases that is to encode a smaller number
of length-distance pairs is the key factor of reducing bits to
encode for SyncCoding. However, this brings a side effect,
which is to increase the average phrase length. Note that the
ratio between numbers of phrases in LZMA and SyncCoding,
v, affects the average phrase length because the following
holds: Isc - psc = N, where lgc is the average phrase length in
SyncCoding. Therefore, the average phrases length in Syn-
cCoding increases by the factor of 1/y compared to LZMA as
in lsc = lizaia /v, where Iy 7y is the average phrase length in
LZMA. Also, there is another side effect that is the increment

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 1, JANUARY 2021

in the distance of a length-distance pair. This increment may
request more bits to encode the distance. The largest incre-
ment in bits comes from the case when a phrase finds its
match from the farthest reference (i.e., the reference appended
at the very beginning). Thus, this largest bit increment is
affected by the number of references and is bounded by log , &
bits. Under this setting, we derive an upper bound of the bit-
size of SyncCoding by assuming possible worst cases in com-
bination as follows: 1) the distance to encode in each length-
distance pair is either not found from any of the four lastly
used distances or not of the length one, 2) the phrases to
encode whose length is one are fully removed by using the
references, say pi. = 0. The condition 1) makes each distance
to be encoded by the binary encoding, so g(d;) = [logs N
holds. The condition 2) makes a phrase always encoded by a
length-distance pair instead of being encoded by the symbol
space, whose bit consumption logy C, is typically much
smaller than g(d;) = [logs N]. These arguments with the
Jensen'’s inequality” let us conclude that Ts({S}!) is upper
bounded by the following lemma.

Lemma 2. Tsc({S})) is upper bounded by the following maxi-
mal total number of bits:

Tsc({s}‘i\() < k[loga n] + y - pLzma - ([loge N + [logs k)
+ ¥ prawa - (2 Mogs [loga(luzvia/y + 1T+ Moga(luzna/y + 1)]>-

By using the Lemmas 1 and 2, the condition, Ty ({S}) <
Timaa({S }]V), gives the following theorem.

Theorem 1. If h(y) > 0 is satisfied for the following definition
of h(y), the total number of bits of SyncCoding is less than that
of LZMA, ie., Tsc({SH') < Tima({S}).

h(y) = — - prLzaa - (,3 + [logz (lLzvia /v +1)]
+ 2[logs [loga (lLzma /v + 1)“),

where « and p denote Zf’ifl‘\lﬁél (2[1oga [loga(l; + 1)1+

[ogz(l;i +1)1) + Pizaa - [ogz CT+ 4(przvia — PLaa)—
E[logs n] and [loga N + [logs k], respectively.

It is complex to find the solution for y that guarantees
h(y) > 0, but it is not difficult to show numerically that
there exists y < 1 satisfying h(y) > 0. Also, it is trivial that
h(y) > 01if y approaches to zero. This implies that selecting
references that effectively reduces the number of phrases to
encode is the key for SyncCoding to be superior than
LZMA.

4.3 Questions on SyncCoding

As revealed by the analysis, the efficacy of SyncCoding over
LZMA depends highly on how much SyncCoding can
reduce the number of length-distance pairs to encode. The
ratio of reduction, y, is the outcome of the reference selec-
tion. The question on which selection of a set of references
from the synchronized data whose volume may be huge is
the most efficient selection, brings the subsequent questions:

2. For a random variable X and a concave function g, E[g(X)] <
g(E[X]) holds. Such g includes log , function.

Authorized licensed use limited to: The Ohio State University. Downloaded on September 08,2021 at 04:21:43 UTC from IEEE Xplore. Restrictions apply.



NAM ET AL.: AN INTER-DATA ENCODING TECHNIQUE THAT EXPLOITS SYNCHRONIZED DATA FOR NETWORK APPLICATIONS 81

~
3

—SyncCoding-Boolean
SyncCoding-Log i
—SyncCoding-Linear

3
2

Compression ratio(%)
~ ~
w (=)}
. .

0 50 100 150 200 250 300 350 400 450 500
The similarity rank of a reference used for SyncCoding

~
N

Fig. 3. The compression ratios of LZMA and SyncCoding with one refer-
ence whose modified cosine similarity is ranked by either of Boolean,
Log, and Linear. Overall, SyncCoding with a single reference shows
higher compression ratios than LZMA and a reference of a higher rank
achieves a better compression ratio.

1) which data in the synchronized data helps the most?, 2) what is
the size of the set of references that leads to the best compression?,
3)how long does it take for SyncCoding to encode and to decode a
file with the chosen references (i.e., encoding and decoding com-
plexity)?, and 4)How much energy does SyncCoding consume in
downloading and decoding a file in mobile devices?

It is essential to answer these questions to make Syn-
cCoding viable, but answering each of these questions is
challenging. Because of the complexity involved in the sym-
bol tree construction in LZMA and also due to the corre-
lated nature of symbols in the input sequence of symbols
(e.g., language characteristics and intrinsic data correlation),
none of the four questions can be tackled analytically. In the
next section, we empirically characterize SyncCoding and
give heuristic answers to these questions.

5 CHARACTERIZATION OF SYNCCODING

5.1 Reference Selection

We first tackle the question on reference selection. As it was
intuitively explained in the system design, it is obvious that
a file containing high similarity with the target file to encode
is preferred to be included in the set of references. However,
given that SyncCoding as well as LZMA tries to minimize
the number of length-distance pairs to encode by seeking
the longest matching subsequence of symbols, it is unclear
how this similarity between files in the context of encoding
can be defined. One definition rooted from the usefulness as
a reference can be the total length of matching subsequences
included in the reference given a target file to encode. The more
the matching subsequences and the longer the matching
subsequences, this definition gives a higher similarity value.
However, this definition is practically impaired as its mea-
surement itself takes as much time as the encoding process
takes, so it is not so different from quantifying how much
additional compression is obtained in SyncCoding by hav-
ing the reference afterwards.

In order to ensure practicality, we need a much lighter
similarity measure that can quickly investigate the individ-
ual usefulness of all the previously synchronized files with
respect to the target file to encode. For this, we borrow the
concept of document similarity, which has been widely
used in the machine learning field with various implemen-
tations such as cosine similarity [36] and Kullback-Leibler
divergence [37]. Based on such similarity measures, we pro-
pose a modified cosine similarity measure. Our modified
cosine similarity denoted by sim(A4,T’) between two files, a

o0
[

—SyncCoding-Greedy
SyncCoding-Boolean

-——SyncCoding-Log

—SyncCoding-Linear

3
(=1

Compression ratio (%)

75 i ________________________ ---- SyncCoding-Random|_|
| | | | I ! - -LZMA
0 10 20 30 40 50 60 70 80 90 100

The number of references used

Fig. 4. The compression ratios of SyncCoding with increasing number of
references that are selected randomly, by a greedy search, or by the
modified cosine similarity rank with either of Boolean, Log, or Linear. In
this figure, the overhead for reference indexing is not considered to
focus on understanding the impact of reference selection.

reference candidate A and the target file to encode 7, is
formally defined as follows:

A T
sim(A,T) £ Diesr S ()

)& _, )
V iesi) FE \ Sicsin FE)

where S(T') is the set of distinct symbols {t;}, observable
from T, t* and ¢! are the frequencies of observing the sym-
bol ¢; in the file A and T, and f(-) is a transformation func-
tion. By definition, ¢/ > 1 and ¢/ > 0 hold.

In order to validate the efficacy of the proposed similarity
measure, we build a dataset by randomly downloading
8,000 RFC documents from the IETF database [38]. We use
one hundred documents as new data for synchronization
and use the others to imitate the database of previously syn-
chronized data (i.e., reference candidates). With this sample
database, we rank the reference candidates with the modi-
fied cosine similarity of three different f(-) transformation
functions for the chosen document: 1) Linear: f(t;) =t;, 2)
Log: f(t;) =log (t; + 1), and 3) Boolean: f(¢;) =1 fort¢; > 0
and f(t;) = 0 for ¢; = 0. We depict the compression ratio of
SyncCoding with different f(-) for each reference candidate
sorted by its similarity rank in Fig. 3 in comparison with
LZMA that uses no reference. Note that the compression
ratio is the fraction of the compressed amount over the size
of the original file, where the compressed amount is the
difference between the size of the original file and the com-
pressed file. Fig. 3 shows that SyncCoding with either of
three functions compresses the chosen document more
than LZMA. Especially with the reference candidate of
the highest similarity rank, SyncCoding-Boolean achieves
about 77.7 percent compression ratio meaning that the com-
pressed size is only 22.3 percent of the original size. Com-
paring this result with that of LZMA which achieves the
compression ratio of 74.0 percent and results in the com-
pressed file whose size is 26.0 percent of the original, Syn-
cCoding reduces the size of the compressed file by about
14.3 percent only with one well-chosen reference. Also, as
Fig. 3 shows, SyncCoding with either of three functions
maintains non-decreasing tendency over the reference can-
didates sorted by the rank. This implies that it is acceptable
to use the modified cosine similarity rank for a quicker
selection of a reference.

Fig. 4, where we increasingly add references for Syn-
cCoding by the similarity rank measured by either of three
functions, further investigates the efficacy of using the

Authorized licensed use limited to: The Ohio State University. Downloaded on September 08,2021 at 04:21:43 UTC from IEEE Xplore. Restrictions apply.



82

15000 ~
JATX:
ll».l
10000 - SRSV
—_ J‘ M
= JrgE
= “”V\M@Qﬁ&“ o _h(w)[oj =
5000 = e, £ r\\'\\
I ~\J08
0t ‘ ‘ ‘
0 50 100 150 200 250 300 350 400 450 500

The similarity rank of a reference used for SyncCoding

Fig. 5. The h(y) and y of SyncCoding over LZMA with one reference
whose modified cosine similarity is ranked by the Boolean transforma-
tion function.

modified cosine similarity in the reference selection. In
Fig. 4, we also include, for comparison, the compression
ratios from a greedy search where the reference that maxi-
mally improves the compression ratio out of all remaining
references is added to the existing set of references and
from a random addition. Note that Fig. 4 only takes the size
of the compressed amount into account when evaluating
the compression ratio and does not consider the overhead
of indexing the references, which will be discussed in the
next subsection. As shown in Fig. 4, SyncCoding-Boolean
performs better than others at least slightly and achieves the
closest performance to the greedy search. Given that the
computational complexities of the greedy search and Syn-
cCoding-Boolean are O(N?) and O(N), respectively,’ it is
reasonable to conclude that SyncCoding-Boolean is a viable
solution to the reference selection problem.

We lastly check whether modified cosine similarity with
Boolean transformation function can be used as a substitute
for h(y) of Theorem 1 or not. We explain in Section 4 that
quantifying h(y) is difficult because computing h(y) requires
the actual number of length-distance pairs in a target file and
the references used. This means that obtaining the value of
h(y) is as difficult as compressing the target file by SyncCod-
ing using the chosen references. Therefore, having a good
proxy of h(y) is important. Fig. 5 shows that our similarity
measure has an increasing tendency with A(y) and a decreas-
ing tendency with y over reference candidates, confirming
that our measure can predict the rank of h(y) for reference
candidates. Throughout this paper, we use SyncCoding-Bool-
ean as our default SyncCoding implementation.

5.2 Maximum Compression Efficiency

We now tackle the second question on the maximum com-
pression advantage of SyncCoding over LZMA. It is of par-
ticular interest in cases where the network bandwidth to
deliver the compressed data is severely limited. The cases
not only include extreme situations such as deep sea com-
munication, inter-planet communication, but also include
networks with high link cost such as satellite communica-
tion, while being at an ocean cruise or at an airplane. From a
different perspective, it is also of strong interest in the cases
where even a small amount of additional compression gives
huge benefit. A nice example is found in inter-data center
synchronization in which tens of terabytes are easily added

3. SyncCoding-Boolean incurs the complexity of evaluating N refer-
ence candidates hnearly, where as the greedy search incurs the com-
plexity of Z\ w1 jin order to find out the most helpful reference at
every addition. The optimal can be obtained by a full search, but incurs
O(N).

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 1, JANUARY 2021

S e N —————

g 76 V Max (76.85

£ Max (76.53%) Max (76.85%

Q

=

g st 1

=]

Rl

2 741 —SyncCoding-Boolean(10)[]

é- SyncCodmg Boolean(20)
73 ‘ ‘

S 10 17 20 24 30 40

The number of references used

Fig. 6. The compression efficiency of SyncCoding for an increasing num-
ber of references. The per-reference overhead is chosen as either of 10
or 20 bytes.

daily and need to be synchronized (e.g., 24 terabytes of new
videos are added to YouTube daily [39]).

If there is no overhead of listing the indexes of the referen-
ces used for encoding, it is obvious that adding a new refer-
ence keeps improving the compression ratio of SyncCoding
although the gain achieved by each addition may keep dimin-
ishing as shown in Fig. 4. However, SyncCoding requires the
indexes to be independently encoded and transmitted along
with the main data. We simply let SyncCoding use the
address space of ten bytes, that is of 80 bits. This size of
address (i.e., index size) gives a pointer that can specify a file
from a database with about 10** files. It is relatively a large
number for a personal use, but in the case of a global data cen-
ter, it can be extended to twenty bytes (160 bits) or more to
index the files with active accesses. To characterize the impact
of the overhead from the indexes in SyncCoding, we depict
SyncCoding-Boolean with two index sizes, considering the
overhead added to the size of the compressed file in Fig. 6. To
avoid confusion, we define compression efficiency as the com-
pression ratio evaluated with the compressed amount includ-
ing the overhead, i.e., the ratio between the compressed
amount plus overhead and the original file size. For simplic-
ity, we quantify the overhead by the address space size multi-
plied with the number of references used, assuming that no
additional encoding is applied for the indexes. We discuss
about the overhead optimization in the next subsection.

As shown in Fig. 6, with 10 and 20 bytes overhead per ref-
erence, SyncCoding achieves about 76.85 and 76.53 percent
as its maximum compression efficiency for the chosen docu-
ment, respectively. The number of references that achieve
the maximum compression efficiency in this test are 24
and 17, confirming the intuition that a larger per-reference
overhead makes the compression efficiency saturated earlier
with respect to the number of references used. However,
even with a larger per-reference overhead, the maximum
compression efficiency achieved does not change much. This
is because the referencing happens mostly from a small num-
ber of highly similar files.

We now provide a practical method of choosing the
number of references that approximately obtains the maxi-
mum compression efficiency for a given file to encode. Note
that finding the real optimal number of references to use,
say k*, is impractical as it requires to find the maximum
from , P (= (”%)W) permutations given k ranging from 1 to
n, where k and n are the number of references to use and
the number of reference candidates. To avoid such high
complexity, we again use our similarity measure to approxi-
mate the compression result as follows: 1) We first sort each

Authorized licensed use limited to: The Ohio State University. Downloaded on September 08,2021 at 04:21:43 UTC from IEEE Xplore. Restrictions apply.



NAM ET AL.: AN INTER-DATA ENCODING TECHNIQUE THAT EXPLOITS SYNCHRONIZED DATA FOR NETWORK APPLICATIONS 83

1
~
<

Cumulative similarity
|
p}
(6]
Compression efficiency (%)

(=3
~
1

\
1
1
\
U
i
1
J
»
1
‘

o
=
T
\
Lo
~
o

o
n
i
!
~
N

— Cumulative similarity
- - Compression efﬁciench
7

30 40

N
~
w

o

10 16 24
The number of references used

Fig. 7. The cumulative similarity and compression efficiency of SyncCod-
ing for an increasing number of references. The per-reference overhead
is chosen as 10 bytes.

=3
[N

3
(=}

-
f=}
T

—Max compression efficiency — H
—Compression efficiency with k*
T i T T

Compression efficiency (%)
~
W

(=]

10 20 30 40 50 60 70 80 90 100
Index of input file (sorted by its maximum compression efficiency)

Fig. 8. Maximum compression efficiencies of SyncCoding obtained from
100 randomly chosen documents are compared with the compression
efficiencies of SyncCoding that use only k* references. The difference
between them is marginal.

reference candidate A € R for the file to encode 7" by its sim-
ilarity, sim(A,T"), where R is the set of reference candidates
(i.e., |R| = n). 2) We then add them one by one to the set of
references while measuring the cumulative similarity at
each addition as sim(Ay,T), where A; denotes the set of k
most similar reference candidates from R. 3) We finally find
the saturation point of the cumulative similarity by testing
if the moving average of A;, = sim(A, T) — sim(A;_1,T) is
below a certain threshold Ay, (e.g., Ay, = 0.01). We use k at
this saturation point as £*.

Fig. 7 shows the cumulative similarity with 10 bytes per-
reference overhead and k& obtained from the aforementioned
method for the same data and setting as in Fig. 6. As shown in
Fig. 7, our method finds £* = 16 and gives the compression
efficiency of 76.76 percent which is not much different from
the actual maximum 76.85 percent with k£ = 24 as in Fig. 6.
We finally test 100 randomly chosen documents with our
method for choosing k* and compare their compression effi-
ciency with actual maximum compression efficiency obtained
from huge computation cost under 10 bytes per-reference
overhead in Fig. 8. Fig. 8 shows that the performance gap is
within 0.96 percent, confirming that our method of approxi-
mately finding k* works effectively.

5.3 Referencing Overhead Optimization

The overhead of referencing files by fixed-length indexes can
be further optimized by a variable length coding such as
Huffman coding [19]. Especially when there are multiple files
to exchange between end hosts which already have many
synchronized files, for instance file exchange between data
centers, indexing with a variable length coding can help.
In such a case, instead of indexing N files equally assigned
with logy N bits, assigning less bits for more frequently
referenced files is possible. Huffman coding in principle

%)
W
(=]

[9%)

(=3

(=]
1

[ ]

193

=1
T
1

0 100 200 300 400 500 600 700 800
Cumulative number of transmissions

Referencing overhead (bits)

%3
(=3
(=]

900 1000

Fig. 9. The referencing overhead by indexing references with Huffman
coding when referencing frequencies of reference candidates are
updated over transmissions.

assigns —log, w; bits to index file ¢ that is referenced by f;
times thus having its relative weight w; = f;/ >, f;. Similarly,
at every file transfer between end hosts, w; can be updated for
all synchronized files and the referencing indexes can be reas-
signed accordingly. The more the files are referenced, the less
the bits are reassigned. Hence, referencing overhead reduces
as file transfers continue.

In order to demonstrate this idea, we reuse our 8,000 RFC
documents dataset in Section 5.1 and build a synchronization
database between end hosts, in which indexing a reference
needs 13 bits for equal bit assignment. We test the total
referencing overhead for each file transfer where a thousand
randomly chosen files from the database are transferred
sequentially each with 24 references, and the indexes are
updated as aforementioned. In a test, all other unchosen files
are considered previously synchronized and are used as ref-
erence candidates. The results in Fig. 9 are averages from 200
repetitions of this test. As shown in the figure, the overhead
starts from 312 bits (13 x 24) and reduces gradually over
transmissions to about 245 bits. It is hard to know what the
actual reduction in overhead will be because it depends on
how frequencies of chosen references change over transmis-
sions, but it is always possible to optimize overhead in this
way. In particular, data centers with a huge number of syn-
chronized files can benefit from this more. However, in the
remaining sections, we use fixed-length indexes to character-
ize the performance of SyncCoding the most conservatively.

5.4 Encoding Time and Decoding Time
of SyncCoding

We tackle the third question on the encoding and the decod-
ing time of SyncCoding by performing experiments. We let
Tg(x, k) and Tp(x,k) denote the time duration taken for
encoding and decoding a file z with k references. Because
the encoding and the decoding complexities of SyncCoding
with & references are not largely different from the complex-
ity of LZMA repeated by k times, it is expected that T (z, k)
and Tp(z, k) may increase linearly as k increases for a given
x. Fig. 10, a measurement on Linux (Kernel 2.6.18-238.el5)
over Intel i7-3770 CPU (3.40 GHz) for three kinds of docu-
ments of on average about 50, 100, and 200kB, a hundred
for each kind, randomly chosen from the aforementioned
dataset in Section 5.1, confirms that the average encoding
time as well as the average decoding time from one hun-
dred trials increases almost linearly to k. Fig. 10 also con-
firms that the size of z has little impact on the times because
the size of the data to encode is smaller than the total size of
the references. The decoding time is on the scale of

Authorized licensed use limited to: The Ohio State University. Downloaded on September 08,2021 at 04:21:43 UTC from IEEE Xplore. Restrictions apply.



8

~

— x|=50kB
--- [x[=100kB
— [x[=200kB

TE(x,k) (sec)

= e L. | .
5 10 15 20 25

The number of references used (k)

o
=
X

—
Q
14 —|x|=50kB
= --- |x[=100kB
2z 0.02 f—Ix|=200kB
» - -LZMA
=
_______ =
H O

The number of references used (k)

Fig. 10. Experimental evaluation of Tg(z, k) (top) and Tp(z, k) (bottom),
the time duration to encode and to decode a file = with k references
under Intel i7-3770 CPU (3.40 GHz). For comparison, the line for LZMA
denotes the time consumed from LZMA for |z| = 200kB.

9 014 e T Fee— e Errrrre
Zz : : — |x|=100kB
= 0.1F x —[x|=200kB 4
z 3 | - -LZMA

=2 0.06
- 5 k*(200kB)  k*(100kB) 20 25

The number of references used (k)

Q
2 0.08 — x|=100kB
= | —[x[=200kB
< 0041 1 7Ma
N ——— ... I | [
~

5 k*(200kB)  k*(100kB) 20 25
The number of references used (k)

Fig. 11. Experimental evaluation of T (z, k) (top) and T (z, k) (bottom),
the time duration to download and to decode a file = with k references
under Galaxy Note 5 (Exynos 7 Octa 7420) connected to an LTE net-
work with the downlink speed of about 30 Mbps. For comparison, the
line for LZMA denotes the time consumed for |z| = 200kB.

milliseconds and is relatively negligible compared to the
encoding time which is on the scale of a second.

We further evaluate end-to-end time performance in the
perspective of a mobile device, which is from downloading
to decoding. We let T, (z, k) denote the time duration taken
for downloading a document = encoded with k references in
the aforementioned Linux platform. The average downlink
speed of the LTE network connected on a mobile device,
Galaxy Note 5, we use during the experiment is about
30 Mbps. We repeat the experiments 100 times for two dif-
ferent average sizes of the tested documents, 100 kB and
200 kB. As shown in Fig. 11, the downloading time of Syn-
cCoding decreases and the decoding time increases as the
number of references increases. As a result, the end-to-end
time in the mobile device is minimized when using k*= 16
for 100 kB and £* = 11 for 200 kB, and the reduction in end-
to-end time is 2.3 percent for 100kB and 15.1 percent for
200kB compared to only LZMA, respectively. One impor-
tant thing to note here is that the encoding time can often be
hidden to users due to the following reasons: 1) the existence
of a powerful encoding server, 2) the parallelism between
the encoding process and the network transmission process,
and 3) preprocessing of SyncCoding in the server. We will
explain more about the applicability of the preprocessing of
SyncCoding to practical use cases in Section 6.

5.5 Mobile Energy Consumption of SyncCoding
We answer the last question on the mobile energy consump-
tion of SyncCoding in this subsection. Since mobile devices

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 1, JANUARY 2021

Galaxy Note 5

Fig. 12. Our test environment for measuring energy consumption of
receiving data with or without SyncCoding in an Android device. Meas-
urements are conducted by a digital power monitor from Monsoon [40].

o
2

=
8

Energy consumed for downloading with no encoding]
En ith L

‘7SyncCoding over no compression (75.9%)|
ed for downloadin;

SyncCoding over LZMA (15.3%)

SOWM

=
=

Energy consumption (mJ)
Energy gain (%)

0 200 400 600 800 0 200 400 600 800
Original size of data to deliver Original size of data to deliver

(a) The energy consumption for (b) The energy gain of SyncCoding
downloading and decoding data over no compression and LZMA.
of variable sizes with SyncCoding Average gains are presented in the
and LZMA. bracket.

Fig. 13. The energy consumption measurement results on Galaxy Note
5 smartphone for downloading and decoding data of variable sizes with
SyncCoding and LZMA.

are more sensitive to high energy consumption than power-
corded desktops or data centers, it is important to know how
much energy that SyncCoding consumes for receiving data in
a mobile device. We define the energy consumption with a
compression algorithm for receiving data to be the total
energy consumption from the start of downloading data to
the end of decoding data. When no compression is applied,
no energy is consumed for decoding. We experiment the
energy consumption from SyncCoding in comparison with
LZMA and no compression in two perspectives: 1) energy
saving by downloading compressed data of smaller sizes and
2) extra energy spending for decoding. For this experiment,
we reuse the RFC documents of the aforementioned dataset in
Section 5.1, whose average file size is about 250 kB. We ran-
domly choose one input file (i.e., the target paper to compress)
from this dataset and use k* reference files chosen out of all
other papers. The experiment is carried out on an Android
device, Galaxy Note 5 connected to an LTE network. The aver-
age downlink speed of the LTE network we use during the
experiment is about 30 Mbps. Our setup for the energy mea-
surement is depicted in Fig. 12.

Fig. 13a shows the mobile energy consumption with Syn-
cCoding, LZMA, and with no compression for receiving
data of variable sizes. When receiving data with a compres-
sion method, the downloading size is reduced, but the addi-
tional decoding process is needed. SyncCoding on average
saves 26.7 and 69.2 percent of energy over LZMA and no
compression for the downloading part but overspends
69.4 percent of energy over LZMA for the decoding part.
The energy consumption for downloading as well as decod-
ing increases nearly linearly to the input file sizes. This is
reasonable because the compressed data size is highly corre-
lated with the input file size and the decoding process that

Authorized licensed use limited to: The Ohio State University. Downloaded on September 08,2021 at 04:21:43 UTC from IEEE Xplore. Restrictions apply.



NAM ET AL.: AN INTER-DATA ENCODING TECHNIQUE THAT EXPLOITS SYNCHRONIZED DATA FOR NETWORK APPLICATIONS 85

150 150
gg S
£ %100 g E100
a.E 2 o
23 g .E
82 o2
> E %3
82 50 55 50
23 CRE
STIR= o
Lo e BN

10 Mbps 30 Mbps 50 Mbps 0.7GHz 14GHz 2.1 GHz

Fig. 14. The energy consumption of SyncCoding for downloading with
various downlink speeds which are 10, 30, and 50 Mbps (left) and for
decoding with different computational efficiencies which are 0.7, 1.4,
and 2.1 GHz (right) on a Galaxy Note 5 smartphone.

reads through the compressed data to progressively recover
the original bit sequences from the references is also highly
correlated with the compressed data size. Since the amount
of saved energy in downloading is greater than the energy
overspent for decoding, SyncCoding can overall outperform
no compression as well as LZMA in terms of total mobile
energy consumption. Fig. 13b summarizes the energy gain
of SyncCoding from receiving data over LZMA and no
compression, which are shown to be on average 15.3 and
75.9 percent, respectively.

Fig. 14 further shows the impact of various network band-
widths and CPU clock frequencies (i.e., energy efficiencies of
computation) to mobile energy consumption when using one
hundred documents of on average about 200 kB encoded with
k* references. For the evaluation, we controlled the bandwidth
of our server from which our mobile device downloads data
through LTE networks and adjusted the CPU clock of our
mobile device using DVFS (dynamic voltage and frequency
scaling) API of Android platform. As shown in Fig. 14, net-
work bandwidth gives nearly linear impact to mobile energy
consumption while CPU clock gives rather flat impact due to
computation time increase for clock reduction. However, note
that these results can be more fickle when using different LTE
chipsets and CPU models with different architectures. There-
fore, one should consider these conditions when applying
SyncCoding for mobile energy saving.

We lastly evaluate the total energy consumption of Syn-
cCoding for the different number of references, k, used in
Fig. 15 to find the optimal & that minimizes the energy con-
sumption. As shown in Fig. 15, for smaller k, the energy
consumption for decoding is less, while the energy con-
sumption for downloading is more. It is vice-versa for larger
k. We find that the optimal £* in terms of mobile energy con-
sumption in this experiment is 6, which is different from the
optimal £* of 9 that obtains the shortest mobile end-to-end
time. We leave the mobile energy modeling for download-
ing and decoding for different k as future work.

5.6 Energy Consumption of SyncCoding

in Extreme Situations
As a special case of mobile applications of SyncCoding, we
further characterize SyncCoding in extreme situations such as
deep sea communications and planetary communications in

4. The results fluctuate for small original file sizes because of the
randomness in experiments (e.g., difference in contents for encoding,
LTE channel variation, computational load variation from system serv-
ices), but it becomes more stable as the original size increases.

—
w
(=}

IlEnergy consumed in decoding
[ JEnergy consumed in downloading

100

w
(=1

(=}

2 4
The number of references used

6(Min) 8 10

Total energy consumption (mJ)

Fig. 15. The total energy consumption of SyncCoding for the different
number of references used, k, which consists of the energy consumed in
downloading and decoding.

which devices are often resource-constrained and their com-
munication bandwidth are mostly extremely limited. In such
an environment, the benefit of applying SyncCoding for data
exchange is directly related to the trade-off between the
energy saving from compressing the size of data to transmit
or receive and the energy expenditure from encoding or
decoding of SyncCoding. We here focus on the encoding and
transmission case for simplicity. We find that data communi-
cations in such extreme situations often demand very high
power consumption especially in the transmission part (e.g.,
tens of watts in deep see acoustic data transmission [41], tens
of watts in the outer planetary data transmission of Voyager 1
and 2 [42], and tens of watts in the Iridium satellite data trans-
mission [43]), but they only achieve very low data rates such
as tens of kilo bps. In such a case, reducing the size of data to
transmit, thus reducing the transmission time can save a sub-
stantial amount of energy. Therefore, although SyncCoding
takes extra energy for data encoding, there exist possibilities
for energy saving.

In order to experimentally characterize such behaviors, we
emulate the energy consumption of SyncCoding in extreme
situation by lowering the CPU clock frequency and band-
width. For one hundred documents to transmit whose aver-
age size before encoding is about 200 kB,” we measured
average time to encode in SyncCoding and LZMA under
700, 1400, and 2100 MHz CPU frequency under i7-3770 CPU
by controlling the clock and voltage with CPUfreq mod-
ule [44], one of DVFS APIs on Linux platform. The resulting
encoding times are 2.24, 1.07, and 0.71 seconds for SyncCod-
ing and 0.45, 0.22, and 0.14 seconds for LZMA. We also mea-
sured the transmission time between two Linux machines by
limiting the network bandwidth using netem [45] as 10, 50,
and 100 kbps. The results are 25.55, 4.99, and 2.40 seconds for
SyncCoding and 43.83, 8.38, and 4.32 seconds for LZMA.
Overall, SyncCoding spends more time in encoding and
spends less time in transmission. Converting these results to
energy consumption for the case of 10 kbps and 700 MHz
with typical 10 watts power consumption in the transmitters
for extreme situations and 11.4 watts power consumption
measured by PowerTOP Linux tool, we get 41.7 percent
energy saving (i.e., 182.8 ]) in transmission and 79.9 percent
energy overspending (i.e., 20.4 ]) in encoding from SyncCod-
ing over LZMA. In total, SyncCoding gives 36.6 percent
energy saving (i.e., 162.4 J) in this test scenario. We note that
this result can vary depending on the types of communication

5. Each document is encoded in SyncCoding with k* references cho-
sen for the document.

Authorized licensed use limited to: The Ohio State University. Downloaded on September 08,2021 at 04:21:43 UTC from IEEE Xplore. Restrictions apply.



86

Similarity New file

check =

n previously
visited webpages

Storage
server

Synchronized files
in a folder

@ Client E Client

Fig. 16. Overview of the evaluation scenarios: 1) cloud data sharing (left)
and 2) web browsing (right).

chipsets, processor models with different architectures, the
size of data to transmit, and link speeds of the networks.
Therefore, in order to apply SyncCoding to extreme situa-
tions, it is necessary to study these conditions judiciously.

6 EVALUATION

We evaluate the efficacy of SyncCoding in two real scenar-
ios: 1) cloud data sharing and 2) web browsing. The scenario
we consider for cloud data sharing is to synchronize a new
file of an existing folder from the storage server to a user
device, given that the folder already includes about a hun-
dred files relevant to the new file. The use case we consider
for web browsing is to browse webpages of a website at a
user device given that the webpages visited up to a moment
are all cached in the device, so the web server can exploit
those cached pages for encoding a new page. The overview
of these scenarios is depicted in Fig. 16.

We experiment both scenarios and statistically compare
the compression efficiency of SyncCoding with existing
encoding techniques, Brotli, Deflate, LZMA, and Deduplica-
tion, whose settings are described in the next subsection. Here
we focus on the compression efficiency without being con-
cerned about the encoding and the decoding time, in order to
give our focus to the reduction of network data traffic. As is
discussed in the previous section, applying SyncCoding on
the fly takes time. Therefore, SyncCoding may not be effective
in speeding up web browsing experiences especially for web
servers with insufficient computational capability. However,
SyncCoding is still useful to the users who would like to
browse web pages with minimal cellular data cost. In the case
of cloud data sharing where the users are less sensitive to the
synchronization delay, the processing time for the SyncCod-
ing can be successfully hidden to its users.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 1, JANUARY 2021

6.1 Settings

SyncCoding. We use SyncCoding-Boolean with k* references
chosen by the proposed algorithm in Section 5.2 and use the
per-index overhead of 10 bytes. For the parameters inher-
ited from LZMA implementation, we adopt the values from
LZMA with its maximum compression option.

LZMA. For the evaluation of LZMA, we use its SDK
(Software Development Kit) provided in [35] with the
parameters from the maximum compression option.

Deflate. For the evaluation of Deflate, we use [46], a popu-
lar open source library including Deflate with all the param-
eters from the maximum compression option.

Brotli. For Brotli, we use an open source implementation
of Brotli [47], which is embedded in Google Chrome web
browser [48]. We also use its maximum compression option.

Deduplication. For the evaluation of Deduplication, we
modify OpenDedup [49] so as to investigate its ideal Dedu-
plication performance for documents. We reduce the lower
bound of the chunk size (i.e., 1kB in OpenDedup [49]) to be
arbitrarily small.

6.2 Use Case 1: Cloud Data Sharing

We emulate a folder of a cloud storage (e.g., Dropbox) by
creating a folder with files of similar attributes. In this
folder, we put three types of data: 1) 8,000 RFC documents
as in Section 5.1, 2) 300 image files collected from Google
image for a few search keywords (e.g., Eiffel tower), 3) 300
PDF files of presentation materials collected from Google
for a few research topics (e.g., wireless networking).

For the evaluation of SyncCoding and other encoding
techniques except Deduplication, we regard a randomly
chosen file from the folder as the target file to encode for
synchronization and assume that all other files in the folder
are reference candidates. For the RFC documents, we per-
form the following three tests and evaluate the compression
efficiencies of SyncCoding and other techniques: 1) Tests for
the target documents of various sizes with £* references, 2)
Tests for a randomly chosen document with various num-
bers of references, 3) Tests for 50 randomly chosen target
documents with k* references. In test 1), for each size of the
target document, we select and test 20 documents whose
size ranges from 90 to 110 percent of the given size. Fig. 17
summarizes the results of these tests. Fig. 17a shows the
average compression efficiency with 90 percent confidence
intervals for different sizes of documents to encode and
reveals that SyncCoding persistently outperforms others.
With respect to the compressed size (i.e., 100 percent -

IS

°
S
%
r

T
I=SyncCoding|

3
S

%0

s}

[—Brotli
LZMA
[ - Deflate

w
=3

2
%
S

N
S

=

®

Compression efficiency (%)
Compression efficiency (%)

w
S

)
S

yncCoding|
—Brotli

LZMA

= =Deflate

S

0 - Compression efficiency (%)

80 kB
The target of input files (kB)

120 kB 158 kB 26(k*) 40

The number of references used

60 80 g 10 20 30 40 50
Index of target file (sorted by compression efficiency of SyncCoding)

(a) Compression efficiency for a target docu- (b) Compression efficiency for various num- (c) Compressed size comparison for 50 target

ment of various sizes. The error bars indicate bers of references.
90% confidence intervals.

documents sorted by the value of SyncCoding.

Fig. 17. Compression efficiency of SyncCoding and other techniques (a) for various document sizes to encode and (b) for various numbers of refer-
ences. (c) A comparison of compressed sizes of 50 target documents when k* references are used.

Authorized licensed use limited to: The Ohio State University. Downloaded on September 08,2021 at 04:21:43 UTC from IEEE Xplore. Restrictions apply.



NAM ET AL.: AN INTER-DATA ENCODING TECHNIQUE THAT EXPLOITS SYNCHRONIZED DATA FOR NETWORK APPLICATIONS 87

=)
S

T T T T
—Deduplication without overhead
- - Deduplication with overhead [

®
=3

=N
=)
T

)
S
T

Compression ratio (%)
Compression efficiency (%)
'S
(=]

T

NN

5% 3 g 510

2 2
Chunk size(byte)

)

Fig. 18. Compression ratio and compression efficiency of Deduplication
without overhead and with overhead for various chunk sizes in the cloud
data sharing scenario with 100 reference files.

compression efficiency), SyncCoding makes the size on
average 12.5, 20.8, and 30.1 percent less than Brotli, LZMA,
and Deflate. Fig. 17b shows that SyncCoding achieves
nearly the maximum compression efficiency at around the
chosen number of references, k* = 26.° Fig. 17c comparing
the compressed sizes of 50 randomly chosen documents
confirms that SyncCoding gives consistent saving over
Brotli, LZMA, and Deflate of about 11.5, 18.3, and 29.5
percent.

We separately test the performance of Deduplication
from a randomly chosen target file with one hundred refer-
ence files for various chunk sizes from 4 to 4096 bytes.
Fig. 18 shows the compression ratio and efficiency with and
without overhead. As Fig. 18 shows, Deduplication achieves
its maximum of about 47.60 percent when the chunk size is
8 bytes, but this is far lower than 82.26 percent from
SyncCoding.

We further test the compression efficiency of SyncCoding
and other techniques over the outcomes of Deduplication
with one hundred reference files and its best chunk size in
Fig. 19. This mimics a mixed Deduplication and compres-
sion method proposed in [50]. Our experiment verifies that
Deduplication indeed helps other encoding techniques by
about 2.17 percent on average but helps SyncCoding by
only about 0.19 percent. This limited improvement over
SyncCoding implies that SyncCoding already eliminates
most redundancy that Deduplication targets to eliminate.

We lastly test the impact of SyncCoding over JPEG image
files and PDF files, which are known to occupy top two por-
tions, 19.6 and 14.5 percent, in cloud storage services [51].
As these files are relatively larger than RFC documents (on
average 400 kB for JPEG images and 330kB for PDF files),
we compare SyncCoding with one of the state-of-the-art
Deduplication techniques, Neptune [4] that exploits CDC
with the average chunk size of 8kB in conjunction with delta
encoding for unmatched chunks. We note that in order to
find similar files for PDF and image files, we apply the same
modified cosine similarity as in Section 5.1 with the defini-
tion of a word being simply replaced by a block of 8 bytes,
because such files do not have the notion of words. Fig. 20a
and 20b compare the compression efficiencies for PDF and
JPEG image files. As shown in the figures, SyncCoding com-
presses 8.71, 18.53, 25.81, and 40.02 percent more for PDF
files and 0.72, 1.22, 1.94, and 3.01 percent more for JPEG files
compared to Brotli LZMA, Deflate, and Neptune. We

6. SyncCoding inarguably requires more computation. We note that
Brotli and Deflate show 14 and 98 percent faster encoding and 72 and
67 percent faster decoding compared to SyncCoding in this experiment.

=
=)

T T
[ClCompression without Deduplication
[ JCompression after Deduplication(8)

o
=)
I

+0.2%

1

SyncCoding

1.7% +0.8%
+4.0%

Tml NI N

Deflate LZMA Brotli

Compression efficiency (%)
o
(=]

Fig. 19. The performance of compression techniques when combined
with Deduplication whose chunk size is 8 bytes.

N
=
T

I

w
=)
T

I

%)
=
T

I

=)
T
I

Deflate LZMA Brotli SyncCoding

=]

Compression efficiency (%)

Neptune

(a) The performance of the compression techniques for PDF files.

w
T
I

)
T
I

Deflate LZMA Brotli SyncCoding

=]

Compression efficiency (%)

Neptune

(b) The performance of the compression techniques for JPEG
images.

Fig. 20. The compression efficiencies of SyncCoding, Brotli, LZMA,
Deflate, and Neptune with the average chunk size of 8kB for PDF and
JPEG image files.

observe that the current implementation of SyncCoding still
compresses a non-negligible amount of data for both for-
mats, but we also observe that it is our important future
work to develop a more efficient compression technique as
a substitute of Brotli or LZMA especially for compressed
image files.

6.3 Use Case 2: Web Browsing

To evaluate the efficacy of SyncCoding in web browsing, for
a given website, we recorded webpage visit histories of a
user and cached all the resources relevant to the webpages
(e.g., HTML files, Java scripts, and CSS files) in the visit his-
tories by an off-the-shelf web browser, Google Chrome.

For a given sequence of webpages in a history, we let
encoding techniques in comparison compress each webpage
when it is invoked. SyncCoding and Deduplication are
assumed to utilize all the previous webpages to the newly
invoked webpage and Brotli is assumed to exploit its pre-
defined static dictionary, that is delivered in advance,
between the server and the client. LZMA and Deflate do not
use additional resources.

Fig. 21a and 21b show the compression efficiency com-
parison for a sample visit history recorded inside the poli-
tics category of CNN and inside the science category of
Yahoo. As expected, Fig. 21a shows that SyncCoding does
not show any advantage over LZMA when there is no pre-
vious webpage to use, i.e., for the first webpage. However,

Authorized licensed use limited to: The Ohio State University. Downloaded on September 08,2021 at 04:21:43 UTC from IEEE Xplore. Restrictions apply.



88

=)
S

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 1, JANUARY 2021

—

I=-SyncCoding

©
S

(—Brotli
LZMA
- -Deflate

3
S

—SyncCoding—Cachcd‘

Compression efficiency (%)

S
S

©
b3

°
S

3
73

%
S

F

-=-SyncCoding f
—SyncCoding-Cached|
—Brotli H
LZMA
|- -Deflate

©
=)

S

=
=]

‘Webpage sequence in a visit history

Compression efficiency (%)

1 2 3 4 5 6 7 8 9 10

100-Compression efficiency (%)
o

‘Webpage sequence in a visit history

S

0

[SyncCoding-Cached|
[ESyncCoding

[ IBrotli
CJLzMA
[CIDeflate

il

M

CNN NYtimes Yahoo

Tested websites

(a) Sample compression efficiencies for the (b) Sample compression efficiencies for the (c) Average compressed sizes of the webpages

webpages in a visit history of CNN.

webpages in a visit history of Yahoo.

from CNN, NYTimes, and Yahoo. The error

bars indicate 95% confidence intervals.

Fig. 21. Compression efficiencies of SyncCoding, SyncCoding-Cached, and three other encoding techniques for the webpages sequentially visited
by sample visit histories obtained from (a) CNN (Politics section) and (b) Yahoo (Science section). (c) A comparison of the average compressed

sizes of webpages from three websites with no section restriction.

from the second webpage onward, SyncCoding shows sig-
nificant compression efficiency improvement over LZMA,
Brotli, and Deflate. The compression efficiency is nearly
maximized after the third webpage and the improvement
over Brotli is as much as 20 percent on average. The same
pattern for the compression efficiency is observed for the
webpages of Yahoo as shown in Fig. 21b. One important
thing to note here is that if we allow SyncCoding to cache
an old webpage of a website, for instance the main webpage
of CNN or Yahoo of yesterday, to our surprise SyncCoding
achieves from the first page as good compression efficiency
as visiting the second page as shown in Fig. 21a and 21b.
We denote this technique by SyncCoding-Cached. We won-
dered why this huge gain appears in SyncCoding and found
the following reason by an analysis for the contents of the
webpages: every webpage in a website authored by a com-
pany or a group of programmers show extremely similar
programming style (e.g., programming templates), and thus
a huge portion of the contents can be referenced from previ-
ous webpages in SyncCoding. Note that this gain is funda-
mentally not achievable when using a static pre-defined
dictionary such as in Brotli. To evaluate the performance of
SyncCoding for more general web browsing behaviors, we
let two test users freely visit webpages of three websites for

=3
S

T T T T T
—Deduplication without overhead
- - Deduplication with overhead [

%
S

F =N
==

[
=)

o

Compression ratio (%)
Compression efficiency (%)

2* 2° ! 2
Chunk size(byte)

Fig. 22. Compression ratio and compression efficiency of Deduplication
without and with overhead for various chunk sizes on a CNN webpage
with 10 reference pages.

o
S

T T T
[JCompression without Deduplication -0.5%

[_]Compression after Deduplication(8)

o
S

+2.1%

[N |

Brotli SyncCoding

3
S
T
1

+2.5%

m |

LZMA

+3.0%

] |

Deflate

Compression efficiency (%)

=
S

Fig. 23. The performance of compression techniques when combined
with Deduplication whose chunk size is 8 bytes.

an hour, CNN, NYTimes, and Yahoo. Using their visit histo-
ries, we perform the same test and depict the average com-
pression efficiencies with 95 percent confidence intervals in
Fig. 21c. The figure confirms that from the perspective of
the compressed size, the improvement of SyncCoding-
Cached over Brotli, LZMA, and Deflate are on average 78.4,
80.3, and 84.3 percent even under such general browsing
behaviors. This implies that if a website is prepared to serve
its webpages with SyncCoding, it can substantially enhance
its user experience.

We again evaluate the performance of Deduplication on
the CNN case with ten reference pages for various chunk
sizes. Fig. 22 shows the compression ratio and efficiency
with and without referencing overhead. Fig. 22 shows that
Deduplication achieves its maximum compression effi-
ciency of about 40.59 percent when the chunk size is 8 bytes,
but this is still far below 96.63 percent from SyncCoding.

We also test the compression efficiencies of SyncCoding
and other techniques with ten reference pages and its best
chunk size in Fig. 23. It shows Deduplication helps other
encoding techniques by about 2.53 percent on average but
makes SyncCoding even worse by about 0.5 percent. This is
because SyncCoding loses some chances to match longer
subsequences after the Deduplication which twists those
subsequences as mixtures of original contents and the
addresses to matching chunks.

Motivated by this web browsing use case in which pro-
gram codes are shown to be a good application of SyncCod-
ing, we further evaluate the efficacy of SyncCoding for the
cloud code-hosting scenario. For the evaluation, we chose
Github, one of the most popular cloud code-hosting services,
and downloaded files from three popular Github projects,
Keras [52], Tensorflow [53], and Pytorch [54]” The total sizes
of files downloaded from Keras, Tensorflow, and Pytorch
projects are 110MB, 880MB, and 730MB, respectively. Each
project has several repositories, and each repository consists
of various program codes written in many kinds of program-
ming languages such as Java, C++, and Python. They also
include images, docs, and PDF files. In our evaluation, Syn-
cCoding is assumed to utilize all the files included in the older
half of the repositories in each project to compress the files in
the remaining half of the repositories. This emulates a scenario
that the programmers participating in a project exploit Syn-
cCoding with the previously shared or stored repositories as

7. The downloaded release of Keras, Tensorflow, and Pytorch are
v2.2.4,v1.12.3, and v1.1.0, respectively.

Authorized licensed use limited to: The Ohio State University. Downloaded on September 08,2021 at 04:21:43 UTC from IEEE Xplore. Restrictions apply.



NAM ET AL.: AN INTER-DATA ENCODING TECHNIQUE THAT EXPLOITS SYNCHRONIZED DATA FOR NETWORK APPLICATIONS 89

goo T
> [ SyncCoding
g [Brotli
.5 80 [ JLzMA
é [ IDeflate
QQ-)‘ 70 -
=
2
122}
3 60 4
-
1)
E Il Il Il
550
Keras Tensorflow Pytorch

Fig. 24. Compression efficiency for program codes of three open source
projects on Github, Keras, Tensorflow, and Pytorch

references when they make a new repository to share and
store their program codes in the project. For these three proj-
ects, as shown in Fig. 24, SyncCoding on average compresses
more about 33.2, 37.5, and 38.1 percent than Brotli, LZMA,
and Deflate in the perspective of the compressed size, respec-
tively. Since the codes would be written in a similar style by
the programmers involved in a project and each repository
may be related to each other in terms of the contents, as
expected, SyncCoding shows superior performance over
other compression techniques.

7 DiISCUSSION

In this section, we discuss two potential performance issues:
1) the performance of SyncCoding when it is applied to
encrypted data, and 2) the operational overhead of Syn-
cCoding when it is applied to commercialized synchroniza-
tion services such as Dropbox.

7.1 SyncCoding for Encrypted Data

Most cloud storage services such as Dropbox and Google
Drive store and exchange user data with encryption due to
security and privacy concerns. A natural question that
arises is whether SyncCoding can compress even the
encrypted data more or not? If the repeated patterns of data
inherent in the file before it is encrypted can be preserved in
the encrypted file, SyncCoding may still be possible to com-
press the encrypted data more compared to other compres-
sion algorithms. In such a case, SyncCoding encoder and
decoder can be implemented in network proxies located in
edge servers and can improve the efficiency of data trans-
mission without having any modification in the existing
data synchronization applications.

To evaluate the efficacy of SyncCoding over encrypted
data, we test the encryption algorithms, DES, AES, and ARIA,
explained as follows. DES (Data Encryption Standard) [23],
[55], [56] is a symmetric encryption algorithm whose encryp-
tion and decryption keys are the same, which had been used
from 1975 as an encryption standard in the US. It has rela-
tively small key size of 56 bits. AES (Advanced Encryption
Standard) [57], [58], developed by NIST (National Institute of
Standard and Technology) in 2001, is also an encryption stan-
dard in the US which has been widely used for applications
such as Dropbox and Google Drive. It uses variable key sizes
from 128 to 256 bits and adopts Rijndael algorithm [59], which
uses substitution and permutation in each block encryption
round. Academy Research Institute Agency (ARIA) [60], [61]
is a block encryption algorithm that also uses variable key size
like AES. ARIA is an encryption standard in South Korea.
Both AES and AIRA use symmetric keys. We here focus only

o
=)

“:lCompression gain of SyncCoding over LZMA with and without encryption‘
+28.T32%
I

W
(=)

—_
(=)
T
L

+0.94%

DES

+0.87%
ARIA

+0.86
AES

Compression gain (%)
= S

No encryption

Fig. 25. The compression gain of SyncCoding over LZMA with 90 per-
cent confidence intervals for three encryption algorithms and for no data
encryption.

e T

g\c/ 30 [CCompression gain of SyncCoding over LZMA with encryption‘ 7
=] +24.42%
S20f 1
a

.2

% 10F 1
2 +4.68%

g +1.32% 1o1% . .

)

&) DES-32 DES-24 DES-16 DES-8

Fig. 26. The compression gain of SyncCoding over LZMA for DES with
different block sizes.

on symmetric algorithms because asymmetric algorithms,
whose encryption and decryption keys are different, are not
widely used due to their much slower encryption and decryp-
tion performance.

We reuse the same RFC dataset as in the cloud data sharing
scenario in Section 6.2. For the evaluation of SyncCoding, we
repeatedly choose one random target document from the data-
set and used k* most similar references from the remaining
documents for one hundred times. Fig. 25 shows the average
compression gain of SyncCoding over LZMA with 90 percent
confidence interval for compression over no encryption and
for compression after applying three encryption algorithms.
When the data is compressed after encryption, the gain of Syn-
cCoding over LZMA for DES, AES, and ARIA in the com-
pressed size are about 0.94, 0.86, and 0.87 percent while the
compression efficiency of SyncCoding for DES, AES, and
ARIA are about 0.9, 0.64, and 0.66 percent, respectively. When
the data is compressed before encryption, the gain of Syn-
cCoding over LZMA is about 28.3 percent while SyncCoding
compresses about 78.8 percent. Interestingly, SyncCoding as
well as LZMA merely reduce the size of the encrypted data.
This is because of the features of modern encryption techni-
ques: Confusion and Diffusion. Confusion makes it more difficult
to guess the contents of the original data. Diffusion makes it
harder to find the pattern of the encrypted data. By doing so,
they transform original data into high-entropy data. Since
the repeated patterns of original data are well hidden inside
the encrypted data, compression over encryption is in general
not effective.

To solve this problem, we apply and test a similar method
in deduplication to improve the compression efficiency of
SyncCoding for encrypted data. We first segregate data (i.e.,
file) into small blocks, store the concatenated encrypted
blocks as the pseudo encrypted data, and then apply Syn-
cCoding over these pseudo encrypted data. To evaluate
this method, we test DES with 8, 16, 24, and 32 bytes of
block sizes for the same dataset as in Fig. 25 for one hundred
times. Fig. 26 shows the average compression gain of Syn-
cCoding over LZMA for block encrypted data with DES.

Authorized licensed use limited to: The Ohio State University. Downloaded on September 08,2021 at 04:21:43 UTC from IEEE Xplore. Restrictions apply.



90

The SyncCoding for DES with the block sizes of 8, 16, 24,
and 32 bytes on average compresses data more by 24.42,
4.68, 1.91, and 1.32 percent with k* references over LZMA,
while LZMA itself compresses data by 29.77, 2.78, 1.82, and
1.19 percent, respectively. On top of this block-level encryp-
tion, data in transport between servers and clients can be
additionally protected by another encryption such as TLS
(transport layer security). According to [62], Dropbox also
stores block-encrypted data and transmit data additionally
with TLS. Overall, applying SyncCoding in the network path
(i.e., after TLS) is impractical, but applying SyncCoding in a
block-encrypted cloud storage before data is transmitted is
still a viable option.

7.2 Operational Overhead of SyncCoding

Understanding the operational overhead of SyncCoding when
it is applied to commercial synchronization services such as
Dropbox can be helpful in deciding how to implement and
integrate SyncCoding into such services. However, it is practi-
cally not easy to quantify the overhead in such commercialized
services since their databases or snapshots of databases are not
accessible. Nevertheless, we can estimate the overhead logi-
cally as follows. To run SyncCoding, it first needs to index the
reference candidates (e.g., up to all the files) and needs to keep
the indices. This is regarded as a storage overhead. Note that
assigning 10 bytes per index as in Section 5.2 can cover up to
2% (roughly 10?) files, so it may be sufficient for most users.
Given a user who keeps 100 gigabytes of data in his or her
cloud storage space with files whose average size is about
1 megabyte, the storage overhead to keep such indices
becomes about 1 megabyte (= 10 x 10° bytes), and the refer-
ence index overheads attached to the files with 20 references
on average becomes about 20 megabytes (=~ 10 x 10° x 20
bytes) in total, which are both acceptable. With those indices
ready, given a file SyncCoding needs to scan other files and
select actual references to use for encoding. This process is sub-
ject to a trade-off between computation and storage because
tagging files based on the file contents for quick classification
can significantly save the scanning computation in the cost of
storage overhead for tagging. If the file system is designed to
tag each file with limited bytes such as 100 bytes, the storage
overhead from tagging will be about 10 megabytes in total for
the aforementioned use case, which is still acceptable. Note
that zero file tagging that pays zero extra storage overhead is
also possible, but this is never going to be a practical choice
because its required computation load may be prohibitively
high. Another source of overhead is from keeping track of file
changes such as additions, deletions, and modifications. This
operation is also subject to a trade-off between computation
and storage. Immediate re-indexing of the reference candi-
dates or re-encoding of the encoded files with the modified
length-distance pairs may bring huge computation overhead,
but this overhead can be intelligently mitigated by temporarily
keeping copies of those untouched files in the background
and by applying batch updates intermittently. This intelli-
gence is the key to develop a practical SyncCoding-based
file system and determines the major storage and computation
overheads. A naive strategy is to let the file system spare a
certain percentage of storage space (e.g., 1 percent of the cloud
storage space) to keep the copies, and a more elaborated
strategy may be to adjust the size of this temporary space

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 1, JANUARY 2021

depending on the frequency of file changes. A more radi-
cal strategy is to adopt CDC-based single instance file sys-
tem as a basis for SyncCoding-based file system and
redesign the length-distance pair format of SyncCoding to
be compatible with CDC chunks (e.g., a distance format
having a CDC chunk index with the offset bytes inside
the chunk). In this strategy, re-indexing and re-encoding
may substantially reduce because only the encoded files
that contain chunk indices with bit changes are subject
to re-computation. Designing this intelligence with high
efficiency is an open question and we leave it as our future
work.

8 CONCLUDING REMARKS

In this work, we propose a novel data encoding technique Syn-
cCoding that exploits the database of previously synchronized
data to improve efficiency of networking. Our experiments
show that SyncCoding can reduce the energy consumption of
mobile devices for data synchronization and also confirm that
SyncCoding outperforms existing encoding techniques, Brotli,
Deflate, and LZMA in terms of compression efficiency in two
popular use cases: cloud data sharing and web browsing.
SyncCoding sets up a new baseline for encoding techniques
that exploit inter-data correlation.

ACKNOWLEDGMENTS

This work was in part supported by IITP grants funded by
the Korea government (MSIT) (No. 2015-0-00278, Research
on Near-Zero Latency Network for 5G Immersive Service,
No. 2017-0-00692, Transport-aware Streaming Technique
Enabling Ultra Low-Latency AR/VR Services), NSF grants
(CNS-1901057, CNS-1719371), and a grant from the Office of
Naval Research (N00014-17-1-2417). A preliminary version
of this work was presented at the IEEE ICNP 2017 [63].

REFERENCES

[1]  Z.Bar-Yossef, Y. Birk, T. Jayram, and T. Kol, “Index coding with side
information,” IEEE Trans. Inf. Theory, vol. 57, no. 3, pp. 1479-1494,
Mar. 2011.

[2] S. Quinlan and S. Dorward, “Venti: A new approach to archival
data storage,” in Proc. 1st USENIX Conf. File Storage Technol., 2002,
Art. no. 7.

[3] N.T.Spring and D. Wetherall, “A protocol-independent technique
for eliminating redundant network traffic,” ACM SIGCOMM Com-
put. Commun. Rev., vol. 30, no. 4, pp. 87-95, 2000.

[4] Y.Hua, X. Liu, and D. Feng, “Neptune: Efficient remote communi-
cation services for cloud backups,” in Proc. IEEE Conf. Comput.
Commun., 2014, pp. 844-852.

[5] A.El-Shimi, R. Kalach, A. Kumar, A. Ottean, J. Li, and S. Sengupta,
“Primary data deduplication-large scale study and system design,”
in Proc. USENIX Annu. Tech. Conf., 2012, pp. 26-26.

[6] D.T.Meyerand W.]. Bolosky, “A study of practical deduplication,”
ACM Trans. Storage, vol. 7,no. 4,2012, Art. no. 14.

[71 ~ C.Policroniades and I. Pratt, “Alternatives for detecting redundancy
in storage systems data,” in Proc. Annu. Conf. USENIX Annu. Tech.
Conf., 2004, pp. 6-6.

[8] B.Zhu, K. Li, and R. H. Patterson, “Avoiding the disk bottleneck
in the data domain deduplication file system,” Proc. 6th USENIX
Conf. File Storage Technol., 2008, Art. no. 18.

[91 M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezis, and

P. Camble, “Sparse indexing: Large scale, inline deduplication using

sampling and locality,” in Proc. 7th Conf. File Storage Technol., 2009,

pp. 111-123.

A. Muthitacharoen, B. Chen, and D. Mazieres, “A low-bandwidth

network file system,” in Proc. 18th ACM Symp. Operating Syst.

Principles, 2001, pp. 174-187.

[10]

Authorized licensed use limited to: The Ohio State University. Downloaded on September 08,2021 at 04:21:43 UTC from IEEE Xplore. Restrictions apply.



NAM ET AL.: AN INTER-DATA ENCODING TECHNIQUE THAT EXPLOITS SYNCHRONIZED DATA FOR NETWORK APPLICATIONS 91

[11]

[12]

[13]
[14]
[15]

[16]

[171

[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[271

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

P. Bhatotia, R. Rodrigues, and A. Verma, “Shredder: Gpu-acceler-
ated incremental storage and computation,” in Proc. USENIX
Conf. File Storage Technol., 2012, vol. 14, p. 14.

N. Ranganathan and S. Henriques, “High-speed VLSI designs for
Lempel-Ziv-based data compression,” IEEE Trans. Circuits Syst. 1I:
Analog Digit. Signal Process., vol. 40, no. 2, pp. 96-106, Feb. 1993.
M. Mahoney, “Fast text compression with neural networks,” in
Proc. ACM AAAI 2000, pp. 230-234.

“Alliance for open media.” [Online]. Available: https://aomedia.
org/, Visited: Oct. 2017.

I. Pavlov. 7z format. [Online]. Available: http://www.7-zip.org/
7z.html, Accessed: Oct. 2017.

J. Alakuijala and Z. Szabadka, “Brotli compressed data format,”
RFC 7932, 2016. [Online]. Available: https:/ /tools.ietf.org/html/
rfc7932

P. Deutsch, “DEFLATE compressed data format specification ver-
sion 1.3,” RFC 1951, 1996. [Online]. Available: https://tools.ietf.
org/html/rfc1951

C. E. Shannon, “A mathematical theory of communication,” Bell
Syst. Tech. ., vol. 27, no. 3, pp. 379423, 1948.

D. A. Huffman, et al.,, “A method for the construction of mini-
mum-redundancy codes,” Proc. IRE, vol. I-40, no. 9, pp. 1098-1101,
Sep. 1952.

J. Rissanen, “Generalized kraft inequality and arithmetic coding,”
IBM ]. Research Develop., vol. 20, no. 3, pp. 198-203, 1976.

M. Ruhl and H. Hartenstein, “Optimal fractal coding is np-hard,”
in Proc. IEEE Data Compression Conf., 1997, pp. 261-270.

J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Trans. Inf. Theory, vol. 23, no. 3, pp. 337-343,
May 1977.

R. Franceschini, H. Kruse, N. Zhang, R. Igbal, and A. Mukherijee,
“Lossless, reversible transformations that improve text compression
ratios,” Preprint of the M5 Lab, University of Central Florida,
pp- 1-33,2000.

F.S. Awan and A. Mukherjee, “LIPT: A lossless text transform to
improve compression,” in Proc. IEEE Int. Conf. Inf. Technol.: Coding
Comput., 2001, pp. 452—460.

J. Alakuijala and Z. Szabadka, “IETF Brotli compressed data for-
mat,” 2014. [Online]. Available: https://tools.ietf.org/html/draft-
alakuijala-brotli-01

B. Agarwal, A. Akella, A. Anand, A. Balachandran, P. Chitnis,
C. Muthukrishnan, R. Ramjee, and G. Varghese, “EndRE: An end-
system redundancy elimination service for enterprises,” in Proc.
7th USENIX Conf. Networked Syst. Des. Implementation, 2010,
pPp- 28-28.

Improving the deduplication flow when uploading to Google
Drive. Sept. 2016. [Online]. Available: https://gsuiteupdates.
googleblog.com/2016/09/improving-deduplication-flow-when.
html

Dropbox. [Online].
Accessed: Oct. 2017.
W. Xia, Y. Zhou, H. Jiang, D. Feng, Y. Hua, Y. Hu, Q. Liu, and
Y. Zhang, “Fastcdc: A fast and efficient content-defined chunking
approach for data deduplication,” in Proc. USENIX Annu. Tech.
Conf., 2016, pp. 101-114.

J. Mogul, B. Krishnamurthy, F. Douglis, A. Feldmann, Y. Goland,
A. van Hoff, and D. Hellerstein, “Delta encoding in HTTP,” RFC
3229, 2001. [Online]. Available: https://www.rfc-editor.org/rfc/
rfc3229.html

P. Shilane, M. Huang, G. Wallace, and W. Hsu, “Wan-optimized
replication of backup datasets using stream-informed delta
compression,” ACM Trans. Storage, vol. 8, no. 4, 2012, Art. no. 13.
Y. Cui, Z. Lai, X. Wang, and N. Dai, “Quicksync: Improving syn-
chronization efficiency for mobile cloud storage services,” IEEE
Trans. Mobile Comput., vol. 16, no. 12, pp. 3513-3526, Dec. 2017.
Z.Tuand S. Zhang, “A novel implementation of jpeg 2000 lossless
coding based on LZMA,” in Proc. 6th IEEE Int. Conf. Comput. Inf.
Technol., 2006, pp. 140-140.

A. D. Wyner and J. Ziv, “The sliding-window Lempel-Ziv
algorithm is asymptotically optimal,” Proc. IEEE, vol. 82, no. 6,
pp- 872-877, Jan. 1994.

I. Pavlov. LZMA SDK. [Online]. Available: http://www.7-zip.
org/sdk.html

N. Dehak, R. Dehak, J. Glass, D. Reynolds, and P. Kenny, “Cosine
similarity scoring without score normalization techniques,” Odys-
sey: The Speaker Lang. Recognit. Workshop, pp. 1-5, 2010.

Available: https://www.dropbox.com/,

[37]
[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]
[53]
[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

S. Kullback and R. A. Leibler, “On information and sufficiency,”
Ann. Math. Statist., vol. 22, no. 1, pp. 79-86, 1951.

IETF RFC Index. [Online]. Available: https://www.ietf.org/rfc.
html, Accessed: Jan. 2019.

R. Turek. What YouTube Looks Like In A Day [Infographic],
Feb. 2016. [Online]. Available: https://medium.com/@synopsi/
what-youtubelooks-like-in-a-day-infographic-d23{8156e599
“Monsoon solutions,” http://msoon.github.io/powermonitor/,
Visited: Jul. 2018.

M. Stojanovic and ]. Preisig, “Underwater acoustic communica-
tion channels: Propagation models and statistical character-
ization,” IEEE Commun. Mag., vol. 47, no. 1, pp. 84-89, Jan. 2009.
R. Ludwig and J. Taylor, “Voyager telecommunications (jet pro-
pulsion laboratory),” p. 37, 2016. [Online]. Available: https://
descanso.jpl.nasa.gov/DPSummary/Descanso4-Voyager_new.
pdf

S. Dey, D. Mohapatra, and S. Archana, “An approach to calculate
the performance and link budget of leo satellite (iridium) for com-
munication operated at frequency range (1650-1550) mhz,” Int. J.
Latest Trends Eng. Technol., vol. 4, no. 4, pp. 96-103, Nov. 2014.

D. Brodowski and N. Golde, “Linux cpufreq governors,” Linux
Kernel, 2013. [Online]. Available: https://www kernel.org/doc/
Documentation/cpufreq/governors.txt

T. L. foundation, “Network emulator.” [Online]. Available: https://
wiki linuxfoundation.org/networking /netem, Accessed: Jul. 2019.
J.-1. Gailly and M. Adler, zlib compression library. [Online]. Avail-
able: http://www.zlib.net, Accessed: Oct. 2017.

Brotli compression format. [Online]. Available: https://github.
com/google/brotli, Accessed: Oct. 2017.

Google to boost compression performance in chrome,” Jan. 2016.
[Online]. Available: http://www.computerworld.com/article/
3025456/ web-browsers / google-to-boost-compression-
performance-in-chrome-49.html

Opendedup - opensource dedupe to cloud and local storage.
[Online]. Available: http://opendedup.org/odd/, Accessed: Oct.
2017.

C. Constantinescu, J. Glider, and D. Chambliss, “Mixing dedupli-
cation and compression on active data sets,” in Proc. IEEE Data
Compression Conf., 2011, pp. 393-402.

L. Drago, “Understanding and monitoring cloud services,” Ph.D.
dissertation, Department of Computer Science, University of
Twente, Enschede, the Netherlands, 2013.

“Keras open source project on github.” [Online]. Available: https://
github.com/keras-team, Accessed: Jul. 2019.

“Tensorflow open source project on github.” [Online]. Available:
https://github.com/tensorflow, Accessed: Jul. 2019.

“Pytorch open source project on github.” [Online]. Available:
https://github.com/pytorch, Accessed: Jul. 2019.

D. E. Standard, “Data encryption standard,” Federal Inf. Process.
Standards Publication, no. 46, National Bureau of Standards, U.S.
Department of Commerce, Washington D.C., 1977.

“Des source code (3-des / triple des) - mbed tls (previously polar-
ssl).” [Online]. Available: https://tls.mbed.org/des-source-code,
Visited: Jul. 2018.

V. Rijmen, and J. Daemen, “Advanced encryption standard,” Federal
Inf. Process. Standards Publications, National Institute of Standards
and Technology, pp. 19-22,2001.

“Aes source code (advanced encryption standard) - mbed tls (pre-
viously polarssl),” [Online]. Available: https://tls.mbed.org/aes-
source-code, Accessed: Jul. 2018.

T. Jamil, “The rijndael algorithm,” IEEE Potentials, vol. 23, no. 2,
pp. 36-38, Apr./May 2004.

“Aria block encryption algorithm - kisa.” [Online]. Available:
https:/ /seed.kisa.or.kr/iwt/ko/sup/EgovArialnfo.do, Accessed:
Jul. 2018.

ARIA source code - KISA. [Online]. Available: http://seed kisa.or.kr/
iwt/ko/index.do;jsessionid=DDB1FEE78B04222BFCEA4E93A8264485.,
Accessed: Jul. 2018.

Dropbox, “Dropbox security architecture.” [Online]. Available:
https:/ /www.dropbox.com/business/ trust/security /architecture,
Accessed: Feb. 2019.

W. Nam, J. Lee, and K. Lee, “Synccoding: A compression tech-
nique exploiting references for data synchronization services,”
Proc. IEEE 25th Int. Conf. Netw. Protocols, 2017, pp. 1-10.

Authorized licensed use limited to: The Ohio State University. Downloaded on September 08,2021 at 04:21:43 UTC from IEEE Xplore. Restrictions apply.


https://aomedia.org/
https://aomedia.org/
http://www.7-zip.org/7z.html
http://www.7-zip.org/7z.html
https://tools.ietf.org/html/rfc7932
https://tools.ietf.org/html/rfc7932
https://tools.ietf.org/html/rfc1951
https://tools.ietf.org/html/rfc1951
https://tools.ietf.org/html/draft-alakuijala-brotli-01
https://tools.ietf.org/html/draft-alakuijala-brotli-01
https://gsuiteupdates.googleblog.com/2016/09/improving-deduplication-flow-when.html
https://gsuiteupdates.googleblog.com/2016/09/improving-deduplication-flow-when.html
https://gsuiteupdates.googleblog.com/2016/09/improving-deduplication-flow-when.html
https://www.dropbox.com/
https://www.rfc-editor.org/rfc/rfc3229.html
https://www.rfc-editor.org/rfc/rfc3229.html
http://www.7-zip.org/sdk.html
http://www.7-zip.org/sdk.html
https://www.ietf.org/rfc.html
https://www.ietf.org/rfc.html
https://medium.com/@synopsi/what-youtubelooks-like-in-a-day-infographic-d23f8156e599
https://medium.com/@synopsi/what-youtubelooks-like-in-a-day-infographic-d23f8156e599
http://msoon.github.io/powermonitor/
https://descanso.jpl.nasa.gov/DPSummary/Descanso4--Voyager_new.pdf
https://descanso.jpl.nasa.gov/DPSummary/Descanso4--Voyager_new.pdf
https://descanso.jpl.nasa.gov/DPSummary/Descanso4--Voyager_new.pdf
https://www.kernel.org/doc/Documentation/cpufreq/governors.txt
https://www.kernel.org/doc/Documentation/cpufreq/governors.txt
https://wiki.linuxfoundation.org/networking/netem
https://wiki.linuxfoundation.org/networking/netem
http://www.zlib.net
https://github.com/google/brotli
https://github.com/google/brotli
http://www.computerworld.com/article/3025456/web-browsers/google-to-boost-compression-performance-in-chrome-49.html
http://www.computerworld.com/article/3025456/web-browsers/google-to-boost-compression-performance-in-chrome-49.html
http://www.computerworld.com/article/3025456/web-browsers/google-to-boost-compression-performance-in-chrome-49.html
http://opendedup.org/odd/
https://github.com/keras-team
https://github.com/keras-team
https://github.com/tensorflow
https://github.com/pytorch
https://tls.mbed.org/des-source-code
https://tls.mbed.org/aes-source-code
https://tls.mbed.org/aes-source-code
https://seed.kisa.or.kr/iwt/ko/sup/EgovAriaInfo.do
http://seed.kisa.or.kr/iwt/ko/index.do;jsessionid=DDB1FEE78B04222BFCEA4E93A8264485.
http://seed.kisa.or.kr/iwt/ko/index.do;jsessionid=DDB1FEE78B04222BFCEA4E93A8264485.
https://www.dropbox.com/business/trust/security/architecture

92

Wooseung Nam (S'17) received the BS and MS
degrees in computer science and engineering from
the Ulsan National Institute of Science and Tech-
nology (UNIST), Ulsan, South Korea, in 2017 and
2019, respectively. Since 2019, he has been work-
ing toward the PhD degree at UNIST. His research
interest includes designing an extremely-com-
pressed data transfer system and a latency mobile
computing platform with energy efficiency. He is a
student member of the IEEE.

Joohyun Lee (S'11-M’'14) received the BS and
PhD degrees from the Department of Electrical
Engineering, Korea Advanced Institute of Science
and Technology (KAIST), Daejeon, Korea, in
2008 and 2014, respectively. In 2014, he was a
postdoctoral researcher with the Department of
Electrical and Computer Engineering, Ohio State
University. He has been an assistant professor with
the Division of Electrical Engineering, Hanyang
University, Korea, since 2018. His research inter-
ests are in the areas of context-aware networking
and computing, mobility-driven cellular traffic offloading, energy-efficient
mobile networking, protocol design and analysis for delay-tolerant net-
works, and network economics and pricing. He received the IEEE William
R. Bennett Prize Paper Award in 2016, given to the best original paper pub-
lished in the IEEE/ACM Transactions on Networking in the previous three
calendar years. He is a member of the IEEE.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 1, JANUARY 2021

Ness B. Shroff (5'91-M’'93-SM’01-F’07) received
the PhD degree in electrical engineering from
Columbia University, in 1994. He joined Purdue
University immediately thereafter as an assistant
professor with the School of Electrical and Com-
puter Engineering. At Purdue, he became a full pro-
fessor of ECE and the director of a university-wide
Center on Wireless Systems and Applications in
2004. In 2007, he joined The Ohio State University,
where he holds the Ohio Eminent Scholar
Endowed Chair in networking and communica-
tions, with the Departments of ECE and CSE. He holds or has held visiting
(chaired) professor positions with Tsinghua University, Beijing, China,
Shanghai Jiaotong University, Shanghai, China, and IIT Bombay, Mumbai,
India. He has received numerous best paper awards for his research and is
listed in Thomson Reuters’ on The World’s Most Influential Scientific Minds,
and is noted as a Highly Cited Researcher by Thomson Reuters. He also
received the IEEE INFOCOM Achievement Award for seminal contribu-
tions to scheduling and resource allocation in wireless networks. He cur-
rently serves as the steering committee chair for ACM Mobihoc and an
editor at large of the IEEE/ACM Transactions on Networking. He is a fellow
of the IEEE.

Kyunghan Lee (S’07-M’10) received the B.S.,
M.S., and Ph.D. degrees from the Department of
Electrical Engineering at KAIST (Korea Advanced
Institute of Science and Technology), Daejeon,
South Korea, in 2002, 2004, and 2009, respec-
tively. He is currently an associate professor in the
Department of Electrical and Computer Engineer-
ing at Seoul National University, Seoul, South
Korea, where he is leading Networked Computing
Lab. Prior to joining Seoul National University,
he was with the School of Electrical and Computer
Engineering at UNIST, Ulsan, South Korea, from 2012 to 2020. His
research interests include low-latency networking, low-power mobile
computing, mobile machine learning, and context-aware networking.
He received two IEEE ComSoc William R. Bennett Prize in 2013
and 2016, respectively, given to the best original paper published in the
IEEE/ACM Transactions on Networking in the previous three years.
He has served on the program committee of a number of leading confer-
ences including the IEEE INFOCOM, ACM MobiSys, and ACM MobiHoc;
and has also served on the organizing committee of renowned conferen-
ces such as ACM MobiSys, IEEE SECON, and IEEE WCNC.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: The Ohio State University. Downloaded on September 08,2021 at 04:21:43 UTC from IEEE Xplore. Restrictions apply.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


