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Abstract

We develop a two-dimensional model for the transient diffusion of gas from the cavities in
ridge-type structured surfaces to a quiescent liquid suspended above them in the Cassie state
to predict the location of the liquid vapor-interface (meniscus) as a function of time. The
transient diffusion equation is numerically solved by a Chebyshev collocation (spectral) method
coupled to the Young-Laplace equation and the ideal gas law. We capture the effects of variable
meniscus curvature and, subsequently, when applicable, movement of triple contact lines.
Results are presented for the evolution of the dissolved gas concentration field in the liquid and,
when applicable, the time it takes for a meniscus to depin and that for longevity, i.e., the onset
of the Cassie to Wenzel state transition. Two configurations are examined; viz., one where
an tmpermeable membrane pressurizes the liquid above the ridges and one where hydrostatic
pressure is considered and the top of the liquid is exposed to non-condensible gas.

1 Introduction

Superhydrophobic surfaces (SHs) are structured surfaces that can support liquid in the un-
wetted (Cassie) state. They consist of a hydrophobic substrate on which liquid is supported
between protruding structure elements by surface tension, resulting in both gas and solid con-
tact with the liquid (the vapor pressure of the liquid may also provide support). The distance
between the protruding structures can vary, but is often on the order of tens to hundreds of
microns (see, [1-3]). A liquid is said to be in the Cassie state when the cavities between the
surface elements are unwetted and in the Wenzel state when the liquid fills these cavities. For
liquid droplets in the Cassie state the reduction in total solid-liquid interfacial area results
in apparent contact angles approaching 180° [4]. In liquid flow in the Cassie state over SHs,
this reduction in solid-liquid interfacial area reduces frictional drag [5]; however, our focus in
this paper is stationary liquid. Engineering and biological applications of SHs with stationary
liquids include anti-fouling and respiration of underwater insects [6, 7], respectively.

For a liquid column that is supported in the Cassie state, the balance of forces along
liquid-vapor interfaces (menisci), assuming they are stationary or move very slowly, is given
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by the Young—Laplace equation. However, applied pressure and gas diffusion can cause a
liquid column that is initially in the Cassie state to transition to the wetted (Wenzel) one
[3,4,8-10]. The commonly studied ridge-type SHs with closed cavities are our focus here.
Upon submersion in a column of water, the gas in the cavity(s) of a SH with closed cavities
is rapidly compressed, in what may be assumed an isothermal or adiabatic process, to a
pressure we denote by pg (07) [11,12]. The corresponding local increase in the dissolved gas
concentration on the liquid side of the menisci in accordance with Henry’s Law causes gas
molecules to diffuse into the liquid. The diffusion of gas out of the cavity results in a decrease
of the gas pressure as per the ideal gas law. Meniscus deformation can be seperated into
two regimes. In the first regime the meniscus must satisfy a force balance as per the Young-
Laplace equation and the contact angle (6) increases. As gas continues to diffuse the contact
angle continues to increase and may reach its maximum value, i.e., the advancing contact
angle (0,) [8,11]. We refer to this time as critical time (fe). The second regime of meniscus
deformation occurs after critical time. In this regime, when additional gas molecules diffuse
into the liquid, the volume of gas in a cavity further decreases and thus menisci depin and
slide down the cavity walls [8]. Finally, the menisci may reach the bottom surface (Wenzel
state). The duration of the Cassie to Wenzel state transition is known as longevity and is
denoted t¢ [10,12]*.

The upward component of the surface tension force during the metastable Cassie state
depends on the shape of the cavity sidewalls [13]. For example, for ridge-type structures
that have straight side walls, it remains fixed during movement of the triple contact line.
Conversely, for other sidewall profiles, such as cones or re-entrant structures, it is dependent
on the location of the triple contact line [13]|. In some experimental studies, the onset of the
Wenzel state has been observed before the menisci fronts are theoretically expected to contact
the bottom surface, possibly as a result of imperfections in the cavity walls or the presence
of another favorable minimum energy state [8,12,14].

The mechanisms for Cassie to Wenzel state transition can be observed and validated ex-
perimentally using, for example, optical [10,14] and acoustic techniques [15]. Lv et al. [8]
reported the menisci shape during pressure- and diffusion-induced transitions on micro-pore
type structures using a confocal microscope. They measured the contact angle and displace-
ment of a triple contact line as a function of time. Their results clearly demonstrate the
two regimes of mensicus deformation, initially showing contact angle defomation followed
by sliding into micro-pores upon acheivement of the advancing contact angle. Similarly, Xu
et al. [3] used a high-resolution camera to capture the gas diffusion-induced transition on a
micro-scale trench sample. Their method is discussed in detail later. Additionally, several of
the experimental studies showed that increasing the degree of gas saturation in the liquid can
slow the diffusion process and thus enhance the longevity of SHs [10,12].

Early work on modeling gas diffusion-induced Cassie to Wenzel state transition on ridge-
type structures was done by Emami et al. [11]. In their model, the diffusion of dissolved
gas into the liquid is proportional to the product of gas pressure in the cavity and an
experimentally-determined average mass transfer coefficient for air. This model has been
used by others to correlate experimental data on gas diffusion-induced Cassie to Wenzel
state transition by prescribing an appropriate value for the aforementioned mass transfer

'For hierarchical SHs that are composed of micro-structures fabricated on top of a micro-structured sub-
strate, only the nano-structures are wetted when the menisci reach the bottom surface (partial Wenzel state) [9].
A complete Wenzel state is achieved when the nano-structures are wetted.
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coefficient [3,10]. In contrast, for liquid over cylindrical microcavities, Sggaard et al. [14]nu-
merically solved a one-dimensional transient gas diffusion model and successfully correlated
their experimental data without the need of experimentally-determined fitting parameters.
In their model, the radius of curvature of the meniscus was held constant at the advancing
contact angle, ignoring meniscus deformation before critical time. The Young-Laplace equa-
tion was used to determine pressure within the cavity and this pressure was supplied to a
one-dimensional diffusion equation.

Previously, we developed a semi-analytical, one-dimensional solution for the evolving dis-
solved gas concentration field in the liquid, the critical time and longevity on ridge-type
SHs [16]. We captured the effect of a time-dependent boundary condition on the menisci by
applying Duhamel’s theorem. Meniscus curvature was accounted for in the Young—Laplace
equation and ideal gas law. However, in solving the transient diffusion equation, we assumed
that the solid fraction of the ridges, defined as the meniscus length divided by ridge pitch,
was vanishingly small and that the meniscus was flat. In this numerical study, we relax the
foregoing assumptions and thus refine our predictions for times required for menisci to depin
and transition to the Wenzel state.

Xu et al. [3] experimentally capture the effects we model in this paper. They submerged
a single superhydrophobic cavity whose length was much larger than its width in water and
imaged the meniscus location over time. Initially, the the meniscus was flat but immediately
upon submersion the contact angle started to increase as gas diffused into the liquid. In the
middle of the long cavity, far from the end walls, the deforming meniscus was unaffected
by edge effects and the deformation appeared two-dimensional when viewed from the side.
Upon reaching the advancing contact angle, the meniscus depinned from the cavity edges and
proceeded to travel into the cavity with a constant radius of curvature. A complimentary
model was developed using an empirical parameter to capture meniscus curvature effects. We
build a more accurate model than the one implemented in Xu et al. [3] by fully resolving the
two-dimensional gas distribution in the liquid, explicitly capturing meniscus curvature and
transient, two-dimensional diffusion. Physically our model can be viewed a two-dimensional
slice of a periodic superhydrophobic surface in which the slice is taken in the middle of a long
channel such as the one seen in the experiments by Xu et al. [3]. However, we note that Xu
et al. [3] focus on a single channel and our model is the first to our knowledge that resolves
a fully periodic system of grooves and thus there is no direct experimental data available
against which to compare our model. In contrast, Xu et al. [3] submerge their single grooves
in a cylindrical container, a setup that would rarely be seen outside of a laboratory setting.
Too, periodic systems of grooves are more common than single grooves in practice due to
larger surface coverage.

2 Mathematical Model

We consider a 2D quiescent liquid column that is initially in the Cassie state above a ridge-
type structured surface as per the two configurations shown in Fig. 1. Our focus is restricted
to half of a single cell due to periodicity, as discussed in detail later. According to the Kelvin
Equation, at 25°C, in the limiting case of a meniscus with a contact angle of 110°, the vapor
pressure is about 4% of standard atmospheric pressure. 110° is the advancing contact angle
of water on silicon treated with a flouroploymer [17], the scenario considered here. Due to the
relatively small effect of vapor pressure, we can ignore the vapor component of the mixture
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Figure 1: Schematics with liquid initially in the Cassie state over one pitch of ridges. (a)
hydrostatic pressure neglected and top surface of liquid is impermeable. (b) hydrostatic
pressure considered and top surface of liquid surface exposed to non-condensible gas. This is
a single cell of a periodic surface. As the lines of periodicity are through the middle of the
parallel ridges we refer to the solid thickness as a “half-ridge.”

which we refer to as the “gas” phase. Additionally, to simplify the model we consider a single
gas species in the cavity, in our case nitrogen. In Fig. 1, h(t) is the height of the portion
of the liquid domain, 2, between the top of a ridge and the (assumed flat) top surface of
the liquid, sqo is the ridge height (and cavity depth), 2a is the width of the cavity and 2d
is the ridge period such that half of the ridge thickness is (d — a). We additionally define
the solid fraction of the ridge as ¢ = (d — a)/d. Assuming the pressure on the liquid side of
the meniscus is equal to or larger than that on the gas side of it, a stress balance along the
meniscus is given by

R(z.0) (1)

where p, . is the gas pressure in the cavity, p is atmospheric pressure, p; is the density of
the liquid, ¢ is the acceleration due to gravity, ym (z,t) is the y-coordinate of the meniscus,
o is the liquid-gas surface tension and R is the radius of curvature of the meniscus. Y, (z,1)
is a moving boundary and its location must be tracked during our solution. We assume that
h(t) > |ym(x,t)] = h(t) — ym(x,t) = h(t); therefore, changes in hydrostatic pressure along
the meniscus are negligible and R is independent of x, i.e., the meniscus is a circular arc.

Py (t) = Poo + g [P (t) = Ym (2,1)] —
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Consequently, Eq. (1) simplifies to
(t) = poo + P19 ho — s
Dg,c = Poo T P19 No R (t) )

where hg = h(t = 0)2. Also, it follows from the geometry of the problem that

ym(:c,t):i[\/R(t)Q—wz—\/R(t)Q—aQ]—s(t), (3)

where s(t) is the distance (a positive quantity) from the top of a ridge to the triple contact
line and the ‘+’ and ‘—’ signs preceding the bracketed term correspond to menisci protruding
upward and downward, respectively. Henceforth, we restrict our attention to horizontal and
downward protruding menisci. Per Fig. 1, the contact angle, i.e., the (positive) angle between
the vertical and the tangent to the meniscus at the triple contact line, is between 7/2 and
the advancing contact angle. Before critical time, i.e, when s (¢) = 0, the meniscus is pinned
and R decreases with time. After critical time it assumes a constant value corresponding to
the advancing contact angle. The geometric relationship between R and 6 is

for 0<t<te

R (t) _ { cos[7ra—0(t)] (4)

m for tcr <t< tf.

As mentioned before, ridge-type SHs are periodic structures so we can focus our solution on
a single half-cell of the surface as shown in Fig. 1. The cavities are closed to the environment
and thus the only mechanism for gas transport is diffusion into the liquid. Furthermore, we
analyze the liquid domain on the interval 0 < x < d because it’s symmetric about = 0. The
volume of gas per unit depth in one half of a cavity, V; .(t), is given by V; .(t = 0) = a s plus
the integral of yy(z,t) on 0 < x < a. It follows that

V! (8) = aso—as(t) - % {R(t)2 arcsin[Rczt)] —aJR()? - a2} , (5)

where R (t) can be represented in terms of gas pressure as per Eq. (2). The gas in the cavity
obeys the ideal gas law,
i (1)
Pg,c (t) V:g,,c (t) = gTRuT (6)
g
where m’g7C is the residual mass of gas in the cavity per unit depth, M, is the molecular weight
of the gas, R, is the universal gas constant and 7" is the absolute temperature of the gas.
We consider a scenario where liquid is slowly, as to not allow any impingement of the
surface, poured onto a SH and then immediately gas begins to diffuse into the liquid. Our
initial time is the time immediately after the liquid has been poured. In Fig. 1(a), we depict
case study I, where an impermeable membrane separates the liquid from the pressure of the
surrounding atmosphere (p ), assumed to be much greater than the hydrostatic pressure of
the liquid column, i.e., poo > pr,gh(t). In this case, at t = 0, gas pressure in the cavity,
Pg,c(0), is equal to po and thus, the meniscus is flat. Figure 1(b) shows a schematic of case

2 Although we ignore the effects of changes in meniscus shape and position on hydrostatic pressure, we do
account for them in the rest of our formulation as per below as they are essential to, e.g., calculate the volume
of the gas phase.
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study II, where we consider the effects of hydrostatic pressure and gas diffusion at the top
of the liquid domain. Because of hydrostatic pressure, the initial pressure in the cavity will
be higher than that of the atmosphere and the meniscus has an initial radius of curvature
of R(0") [11]. To solve for the initial volume, we assume that the gas pressure in the cavity
is initially (i.e., at ¢ = 0) po. However, we assume that the gas is instantly compressed
to a pressure of pg(07) and a volume per unit depth of Véc due to hydrostatic pressure.
Assuming isothermal compression, pg .(07) is given by

Pac 50 = Py (07) Vg (07). (7)

The meniscus has been assumed flat and the pressure in the cavity to be p at the beginning
of the isothermal compression process. These are reasonable assumptions when pouring water
onto a uniformly-covered textured surface as air will be trapped in the trench at atmospheric
pressure and initially the meniscus supports a negligible pressure difference. We note that
the meniscus immediately depins if the hydrostatic pressure reduces volume in the cavity
below the volume needed to reach the advancing contact angle, i.e., s (07) # 0 and t¢, = 0, if
Véjc (07) < Véjc (0 =0,).

We neglect the advective mass transport of the dissolved gas species, a valid assumption
in analogous mass transfer problems [18]. Thus, the two-dimensional, transient diffusion
equation governs the dissolved gas concentration field as per

O0pg 62pg ang
Pe_p.(Z2Fre, Z s
or 8 < 022 T o2 ) ®)

where pg (z,,1) is the partial density of the dissolved gas in the liquid and Dy is the binary
molecular diffusivity of the dissolved gas in the liquid. We prescribe symmetry boundary
conditions at x = 0 and = = d as per Egs. (9) and (10). The cavity is sealed on all sides;
therefore, gas leaves it only through diffusion along the meniscus. Dissolved gas concentration
on the liquid side of the meniscus is determined from Henry’s Law as per Eq. (11), where H
is Henry’s constant. Case study I and case study II only differ in the boundary condition at
the top of the domain and share the following boundary conditions.

o O, () <y <h(1),1>0) = 0 ©
%pg(d,0<y<h(t),t>0) =0 (10)

Pg 0 <z <a,ym(z,t),t) = Pg,c (t) H (11)
a—ypg(a<x<d,0,t>0) =0 (12)

%pg (a,—s(t) <y <0,te <t<ty) = 0, (13)

For case study I, we assume that the top of the domain is impermeable to gas as per

HoPe (0<z<d,h(t),t>0)=0, casestudyl (14)
Y

For case study II, we assume that the tope of the domain is opne to the environment such

that the dissolved gas concentration on the liquid side of the top of the domain given by
Henry’s Law as per

ps (0 < <d,h(t),t >0)=psH, casestudy IL (15)

6
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The initial condition is uniform dissolved gas concentration as per

pg (2,9,0) = pgo- (16)

Too, for case studies I and II, the initial pressures of gas in the cavity are po and pgo(07),
respectively. In the liquid domain, the total mass of the solvent species is preserved. Moreover,
since the partial molar volume of the dissolved gas is much smaller than that of the liquid,
the total change in volume of the liquid domain is negligible. It follows from the geometry of
the problem that the height of the liquid above the ridge is.

h(t) = ho = 55 () = o {R(t)2 arcsin[RCEt)] —a\/R(t)? - a2} . (17)

We bound the gas in the cavity by a deforming control volume (of unit depth), cvg(?).
The only flux of gas through the corresponding deforming control surface, csg(t), is due to
the diffusion of it along the meniscus. Applying conservation of mass to the gas in the cavity
yields

d

0= —
At Jeu, (1)

pg.cdA — Dg1/ Vpg - 0ids, (18)

csg(t)

where pgc = my./Vy . is the density of gas in the cavity as per Eq. (6), assumed uniform
because of the high molecular diffusivity of gases, dA is a differential area in the domain, f
is the unit vector normal to the meniscus and pointing into the liquid as per

—Oym/0x 1+
1+ (ym/02)*

(19)

n=

and s is the coordinate along the meniscus. Upon substituting Eq. (19) into Eq. (18) and
transforming the surface integral along ds in Eq. (18) to one along dz and integrating over
time we obtain

t a o
P
0= m/g7c (t) — mlgvc(()) < Dg]/o /0 <8yg
!/

Here, my (t) and myg (t = 0) may be expressed as functions of the pressure and volume
of gas in the cavity as per Eq. (6), the ideal gas law. Moreover, the volume of gas in the
cavity, Vg/yc(t), is a function of its pressure, from which the radius of curvature of the meniscus
follows from Eq. (2), and the displacement of the triple contact line. It follows that Eq. (20)

is equivalent to

OYym Opg

ox Ox

Y=Ym

) dzdr. (20)
Y=Ym

M, ) /t /“ Ops  OYym Opg
= c cllt), — Poo —-D - R} (21
0 RT {Pg.c (t) Vg [pg,c(t),5(t)] — poosoa} — Dy o o Loy " ow x|, dzdr. (21)

Dimensionless analysis is forgone due to the appearance of numerous dimensionless numbers
that appear when scaling the various constraints in this problem. The set of dimensionless
parameters reduce the parameter space by only three degrees of freedom such that solutions
to the dimensionless problem are not valid if the liquid properties, diffusion coefficient or
length scales are varied.
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Figure 2: Labeling of (a) 2Q) subdomains in case study I (where subdomain 1 is rectangular
at t = 0) when 0 <t < te and II when 07 <t <t and (b) 2Q + 1 ones when t., < t < t;.
At t = t¢, the portion of subdomain 1 below y = 0 becomes subdomain 2Q) + 1.

3 Numerical Method

3.1 Introduction

We apply a spectral (Chebyshev collocation) method to numerically solve the transient, two-
dimensional diffusion equation, Eq. (8), for the partial density of the dissolved gas in the liquid.
This preserves discretization accuracy near curved boundaries. However, once transformed,
the diffusion equation and boundary conditions are more complex.

3.2 Domain Decomposition and Mapping

As per Fig. 2, we solve for the dissolved gas concentration field in domain, 2 by decomposing
it into an arbitrary number of subdomains, €2, for ¢ =1,2,...,Q,Q +1,...,2Q for t <t
and ¢ = 1,2,...,Q,Q + 1,...,2Q,2Q + 1 for t > t.. as shown in Fig. 2. The columns of
subdomains to the left and right of the triple contact point at * = a,y = 0 for t < ¢, and
x =a,y = —s(t) for t > t, are separated by a (vertical) line emanating from it. There are @
rows and 2 columns of subdomains up until ¢.,, when subdomain 2Q+1 is added to the bottom
of the left column,. Straight boundaries of subdomains parallel to the z axis correspond to
fixed values of y denoted by ¥,, where ¢ = 0,1,2,...,Q — 1, except at the top of the domain,
where the value of y decreases with time and corresponds to h (t). Care must be taken in
choosing the height of the topmost subdomains to ensure the moving boundary there can be
captured in that subdomain for the entirety of the solution. Heights of the subdomains are
chosen so that those closest to the meniscus have aspect ratios near unity. Nodes are aligned
on subdomain interfaces. Before critical time, the left, bottom subdomain, 21, is bounded by
a deforming boundary, y = ym(z,t), and a fixed one, y = y;. At critical time, the meniscus
depins and the triple contact line moves down the impermeable ridge; therefore, we separate
2 into two subdomains as per Fig. 2(b). Then, subdomain ; becomes rectangular and
bounded from below by y = 0 and subdomain {255 contains the rest of the liquid previously
in subdomain €2;. In general, the subdomains fall into 7 categories based on their applicable
boundary conditions and geometry and this is discussed in detail in Appendix A.

We map each subdomain to the canonical [—1,1] x [—1, 1] (square) domain suitable for
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Chebyshev collocation and obtain machinery to effectively accommodate meniscus curvature.
The transformed variables £, and 7, are given by the maps

T — Tq—

§(z) = 2 -1 (22)

xQ7+ - x‘b_
Y = Yg— (@,1)
Ui (xayvt) = 2 - 17 (23)
! Yq,+ (t) — Yq,— ('T7 t)
where g _, 4+, yq— (x,t) and y, + (t) are the positions of the left, right, lower and upper
boundaries, respectively, on subdomain ¢ [19]. Here y, _ only depends upon z and ¢ for
subdomain 1 when ¢ < t.; and subdomain 2¢Q) +1 when ¢ > ¢, and y, + only depends on ¢ for
subdomains @) and 2Q).
Next, we transform the dependent variable from p(x,y,t) to p[¢ (x),n(x,y,t),t]. The
first-order partial derivatives of p (z,y,t) with respect to x and y in terms of (ordinary and
partial) derivatives of the maps and those of p (&, n,t) are

pr = Expe+ Nupy (24)
Py = TypPn (25)

where the various derivatives are denoted by subscripts. Noting that .., &, &y and ny,
equal 0 in all subdomains, the second-order partial derivatives are
paz = Expee + 26anapen + NPan + Tz Py (26)
2
Pyy = Ty P> (27)

Too, 7z, is only non-zero on subdomain 1 before critical time and subdomain 2Q) + 1 after it.
Furthermore,

T,y + pn”?y?/b (28)
where the second term on the right side accounts for the deformation rates in y of physical
subdomains 1, ) and 2Q) for ¢t < t.; and @, 2Q) and 2Q) + 1 for t > t., when £ and 7 are held
constant [20,21]. It follows that the transient diffusion equation, Eq. (8), in the (Cartesian)
&n plane is

Pt|g,n = Pt

Pile.n — Pomyye = Dyt [E2pee + 26annpen + (0 +115) P + Nz (29)

The dissolved gas concentration profile in each subdomain is approximated as a Lagrangian
polynomial as

o (Eqvmg) = ZD (&) 15 (1g) patn: (30)

(=0 n=0
where we have added the subscript g to the dependent variable p to emphasize our splitting
of our domain into subdomains. Here, léLq) (&) and 1) (nq) are the ¢-th and n-th terms of
Lg-th and Ng-th order Lagrange-basis polynomials in &, and 7, respectively, as per

H Lo =&k fork=0,1,2,..., L, (31)
kOk;éKgqe Sa.k
Nq

Yo = 1 Mo " ek gk =0,1,2,..., N, (32)

k=0, ke, 1910 Tk
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and pg;, are unknown values of the dissolved gas concentration at predetermined interpola-
tion points, §, ¢ and 74.,. These are chosen as the Chebyshev points as per

g0 = —COS (%E) , for £ =0,1,2,...,L, (33)
Ng,n = — COS (%n) , forn =0,1,2,..., N, (34)

such that they vary from —1 to 1 and they are collocated with points in the physical domain
as per the inverses of the maps given by Eqs. (22) and (23). The uneven spacings of the
Chebyshev points reduce Runge’s phenomenon at the edges of the computational domain [22].
We note that léL") (&) and [N (ng) equal 1 where &, = &, and 1g = 14, respectively, and
0 on all other Chebyshev points. The dissolved gas concentrations at the Chebyshev nodes
in each subdomain are expressed in the form of a (Ly + 1) (N, + 1) column vector as per

T
Pq = [poo,- - 3 PLg,0s POLs -+ s PLg Ly - - - 7p0,Nq7---7qu,Nq] (35)

Given Eq. (30), the column vectors of first-order partial derivatives of the dissolved gas
concentration field are [23]

dp
67; = [y ® Di] pq (36)
op

Here, I, and I, are the (N +1) x (N +1) and (L +1) x (L + 1) identity matrices, respec-
tively, D, is an (L + 1) x (L 4+ 1) Chebyshev differentiation matrix as per

é (—1 i+j ) .
D;; = Tziy i F# ] (38)
Cj Xr; — a?j
T .
D, = ———, 1<i<L-1 39
2,2 2 (1 » xzz) >t ( )
2% +1
Doy = — 5 (40)
2% +1
D, = 5 (41)
where the coefficients ¢; and ¢; are
2 (=0 {=1L
& = o (42)
1 1<i¢<L-1,

and D, is the analogous (N + 1) x (N + 1) Chebyshev differentiation matrix.> The symbol
® denotes the tensor product, which produces matrices of the requisite (L + 1) (N + 1) X
(L+ 1) (N + 1) dimensions. The second-order partial derivatives are

&p
8x2q = [y® Dw]2 Pq (43)
0?p
aygq = [Dy ® Iw]2 Pq- (44)

3We have dropped the subscript ¢ from L and N as they are the same in all subdomains.
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3.3 Time Discretization

We discretized the rate of change of dissolved gas concentration at the Chebyshev nodes
using a 3-point formula. Then, we compute the dissolved gas concentration using an implicit
scheme. On a given k-th time step, we prescribe constant time step size, dt. For constant dt,

(pt)¢, in Eq. (29) is given by

_ 2
ot - 20t +0 (3t (45)

lap(k+1)] 3ptkt1) — 4pk) 4 plk=1)

&m

where the superscripts (k+ 1), (k) and (k — 1) denote the number of time steps elapsed since
t = 0. The same formula is used to evaluate dR/dt in subdomains 1 and 2Q+1 and dh/d¢ in
subdomains @ and 2Q). The analogous two-point formula is used for the first time step. As
the contact angle approaches the advancing contact angle before critical time, we reduce the
time step significantly for better precision. This reduces the three-point formula to the form,

dptl) ot -1 0t\ 0ty
o {&(&,H)} K“w)w” -

<1 + (‘;f,) T 4 p(k_l)} +0 (1] (46)

where 6t’ is the new time step size and dR/dt and dh/dt are computed in a similar manner.
We note that Eq. (46) simplifies to Eq. (45) for 6t = 6t. The first-time step after critical
time was treated with a two-point time discretization before reverting to a 3-point formula.

3.4 Transformed Diffusion Equation

The transformed diffusion equation is expressed in matrix form for each subdomain. Changing
the 2’s and y’s to {’s and n’s, respectively, in Egs. (36), (37), (43) and (44), provides p¢, py,
pee and pyy, respectively. It then follows from Eqns. (24)-(27) that

5p(k+1)

or (&2 (I, ® D¢) + 1z (D, @ I)] p*+Y) )
8pél;+1) — [, (Dy® L)) plk+D) .
822(;1) N {[&(Im ® D) +12(Dy @ Ie)]* + 0z (Dyy @ [5)} PO HD) (19)
823(;;1) = [Iny(Dy @ )] p*HY (50)

, where the superscript (k + 1) denotes the dissolved gas concentration in the liquid at time
t = (k+1)dt and the various partial derivatives of n and £ are (L+1)(N+1)x (L+1)(N+1)
diagonal matrices. Expressing the diffusion equation in the form

Aot = F, (51)
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where A, and F, are an (L + 1)(N + 1) x (L +1)(N + 1) matrix and an (L+1)(N +1) x 1
vector, respectively, it becomes

(Da {16 (1 ® De) + 1z (Dy @ I + 1 (D @ Ie) + [y (Dy @ Ie)]* } +

p(k_l) — 4p(k)

557 . (52)

3

for the case of three-point time discretization. Here, Iy isan (L +1) (N +1)x(L+1)(N +1)
identity matrix and y; has the same dimensions. We note that, in certain subdomains, 7,
Nexs My, and y; change with time; therefore, at each time step, we update then using the
subdomain-level equations as described in Section 3.6.

3.5 Assembly of Linear System of Equations

Rows in matrices A1 —Asg11 and the corresponding rows in F; —Fog 41 corresponding to inter-
nal nodes are assembled according to Eq. (52). We apply the necessary boundary conditions
by modifying the 2(L, + N,) rows in them corresponding to external boundaries or internal
ones where subdomains intersect and, denoting the revised matrices by Al_A2Q+1, and by
generating the matrices Ai,j and Aj,i. The latter are sparse matrices necessary to impose the
continuity of dissolved gas concentration or flux at the Chebyshev nodes located on an §2;-€2;
interface. (If Q; and €2; do not share an interface, then Ai,j = 0.) The resulting linear system
of equations is

- ~ ~ 1 T (k+1) 7 -~ q

Aq e Ay <o Arggq Pg ) Iy

Aq,l Aq Aq,2Q+1 ngH) = IENTq : (53)
L A2Q+1,1 A2Q+1,q A2Q+1 41 p(QIZ;rll) i L I~f-‘ﬂ2Q+1 J

In discussing this system of equations we refer to the matrix operator as Agohal, the full
solution vector as pglobal, and the forcing vector as Fgiopal. Examples of how boundary nodes
are accommodated are as follows. First, to prescribe an (external) homogeneous Neumann
condition in z on the i*" (non-corner) Chebyshev node in the column vector p,, we set the it!
row of A, equal to the right-side of Eq. (47) and the ith row of F, equal to 0. Secondly, for
the node shared by subdomains 1 and 2 along the vertical line of symmetry on the left-side of
the domain (see Fig. 2), we modify rows in Ay, Ag, F; and Fy and utilize the relevant rows in
ALQ and A2,1 to impose continuity of temperature and diffusive flux in the y direction. (The
choice of the interfacial boundary condition, i.e., flux or concentration matching, assigned to
a given subdomain is arbitrary.) We do not impose the homogeneous Neumann condition in
x at this node. Finally, for a corner node shared by 4 subdomains, we match 3 concentrations
and one diffusive flux. Additional information on the subject can be found in the texts by
Canuto et al. [22] and Trefethen [24].

3.6 Sumdomain Types

The subdomains fall into 7 categories as follows.
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(A) The left, bottom subdomain when 0 < t < t., in case study I and 07 < t < t., in case
study II bounded by 0 < z < a and y, < y < y1, i.e., ;1 as per Fig. 2(a). After critical
time, it subdivides into €y of group (B) and Q941 of group (G) as per Fig. 2(b).

Middle subdomains on 0 < x < a, i.e., from {23 to 2g_1 and, additionally, Q; for t > ;.
The top subdomain on 0 < z < a, i.e., Qg.

The bottom subdomain on a <z < d, i.e., Qg1.

Middle subdomains on a < z < d, from Qg2 to Qag_1.

The top subdomain on a < x < d, i.e., {22q.

The bottom subdomain on 0 < = < a after critical time, {22041. Before critical time,
the portion of the solution vector corresponding to {29941 is set to zero because it’s only
defined after the triple contact line depins.

In order to formulate the necessary system of equations, we describe boundary conditions
and geometric maps, £(x) and n(z,y,t), for each subdomain group.These are discussed in
detail in Appendix A. Additionally, as part of the numerical method we performed singularity
removals on the singular points in the problem. The triple contact point is singular before and
after critical time and the point at which the meniscus intersects the cavity wall is singular.
The singularity removals were done in order to ensure correct capture of the singularity
behavior, as well as increase the speed and accuracy of the solution by removing the need
for large mesh densities in the vicinity of the singular points. The singularity removals are
discussed in detail in Appendix B.

3.7 Solution
3.7.1 Solution up to Critical Time

We iteratively solve for the pressure of the gas in the cavity and the dissolved gas concentration
in the liquid. At a given k' time step we numerically solve for an improved estimate of the
pressure of gas in the cavity, pgc(tri+1), as per

0= fi[pgetri+1)] + f2 [Pec(thi), p1(tr.i)] (54)

where f; is the first term in Eq. (21) (evaluated at s () = so) and f2 is the second one. An
inner loop, denoted by 7 is used to update the maps 7., 1., and y;. The first iteration of the
inner loop is the solution of the linear system of equations where we assume no motion at
the meniscus since the last time step and is denoted by p1(tx,1). Subsequently, the solution
P1(tri=1) is then substituted into Eq. (54) to update the pressure of gas in the cavity, as
denoted by pg¢(tgp=1=2). We compute the integral in fp in Eq. (21) from ¢;_; to ¢ using
the Clenshaw—Curtis quadrature method as it preserves accuracy of the Chebyshev spectral
method [22]. With this improved estimate of pg (tx 1), we update the maps and the cor-
responding terms 7, 1, and y; in Eq. (52) for use in the next iteration. The boundary
condition on the meniscus is updated to pg ¢(tri=2)H. In the next iteration, ¢ = 2, py o(tx,i=2)
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is the initial condition to compute a more accurate dissolved gas concentration field in the
liquid, pg(tk,i=3). Finally, we iterate until a convergence criteria is met

pg,C(tk,'L“Fl) - pg7c(tkvz)
pg,C(tk,i—i—l)

<e (55)

where € is user-defined. The algorithm is:

1. Determine the Aq and Iﬁ'q matrices using solution of the previous iteration as an initial
condition.

2. Numerically solve for pnum (tx,i) and psing as per Eq. (124).
3. Compute pg o(tri+1) as per Egs. (54).

4. Update the geometric parameters, 1., 1, and y;. Compute time derivatives using a
3-point formula of the form of Eq. (45).

5. If the convergence criterion given by Eq. (55) is met, then repeat steps 1 through 4 for
the next time step (k + 1). If the convergence criterion is not met, proceed to the next
iteration (i + 1) for the current time step (k).

At t = 0T, the shape of the domain and dissolved gas concentration in the liquid are given
by the initial conditions. At the end of the first time step and first (inner) iteration, ¢ = 6t
and ¢ = 1, we approximate the shape of the liquid domain and the boundary condition at the
meniscus to be the same as those at t = 0T,

Poo for case study I
tree1i= R 56
Pc(lth=t=1) {pg,c(OJr) , for case study II (56)

When critical time has been reached, we fix the gas pressure and allow the meniscus to depin.

3.7.2 After critical time

After critical time, the gas pressure and radius of curvature of the meniscus are constant;
therefore, pg ¢ (t > ter) = Per, 0 (t > ter) = 0a and R (t > tey) = Rer. However, the meniscus
depins such that s (t) is no longer constant and drives the variation of ym, (x,t) in the yag 41
to mag+1 map. At the first time step after critical time, 5, (for ter < tp<te + 0t), we use an
initial guess for the finite displacement of the triple contact line s (t5;=1). We perform a mass
balance on the gas cavity in a similar manner to Eq. (54) to obtain

0= f1[s(thiv1)] + f2 [s(tri), p1(trs)] (57)

For subsequent time steps, we employ the same approach as described in the previous section,
except, we compute s (ty;4+1) instead of pg ¢ (tgit1)-
3.8 Longevity

We assume that the transition to the Wenzel state occurs when the meniscus reaches the
bottom of the gas cavity as depicted in Fig. 1, i.e., ym (0,%) = —sg, where ¢ is the final time
or longevity. In a limiting case of ¢s — 0 and 65 — 90°, the solution to t¢ approaches that of
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1D model described in Kadoko et al. [16]. Therefore, in the 1D model, mass conservation of
the gas in the cavity yields

pOOSOMg - ]
2h o= [ 1
553 (5 {pLghH + (pocH = pg,0) [1 = cos (wn)])
n=1
[exp (=67 Dgitr) — 1] ) (58)

4 Results and discussion

We implemented the model in MATLAB®). Assuming that the liquid and gas are pure
water and nitrogen, respectively, and that liquid rests on a silicon substrate coated with a
flouropolymer coating, we set the thermophysical properties to H = 1.82 x 1077 kg/ (mgPa)
25], Dgi = 2.01 x 1079 m?/s [26], 64 = 110° [17] and o = 0.073 N/m [27] at ambient condi-
tions of T' = 25°C and ps, = 1 atm. We note in practice that air would likely be the lgas
in the cavity; however, since air is primarily nitrogen we assume the gas is pure nitrogen to
restrict attention to a single species, simplifying the model. Additionally, 110° is the advanc-
ing contact angle of water on silicon treated with a flouroploymer [17]. Unless noted, we set
the geometric parameters to be sg = 10 um and a = 5 pum with the liquid initially degassed.
To generate the computational domain for case study I, we partitioned the liquid domain
into 4 subdomains (before critical time), i.e., @ = 2, where the interfaces y, are located on
{0, 3a, h}. This allocated most of the nodes to the region near the triple point where gradients
are largest. For case study II, we partitioned the liquid domain into 6 subdomains (before
critical time), i.e., @ = 3, where the interfaces y, are located on {0, 3a, 3a + 3(ho — 3a)/4, h}.
This allocated nodes close to both the triple point and to the top-most meniscus. Before
critical time the time stepping was handled as follows. A time step of 6t = 1073 s was ini-
tially used before critical time. However, as the angle of the deforming meniscus neared the
advancing contact angle it was changed to 6t = 10~ s to more accurately capture t.,. A time
step of 6t = 0.01 s after critical time was needed to accurately capture ¢;. A mesh dependence
study was used to calculate the necessary spatial grid size. The total number of nodes was
doubled until .. varied by less than 0.1 percent. This resulted in L = 24 and N = 20, a total
of 1920 nodes, for case study I and L = 36 and N = 18, a total 3888 nodes, for case study
II. For both cases t; varied by less than 0.25 percent between the final two iterations. The
difference in grid construction between case study I and case study II was in order to better
capture the sharp gradients at the top of the domain that occur in case study II.

4.1 Case Study I

To examine case study I we ran a series of computations that spanned the parameter space
of solid fraction (i.e., ¢ = (d — a)/d varied between 0 and 1) over a large range of values of
the initial height of the liquid column (hg). Figure 3 plots critical time versus solid fraction
when hg, defined as the initial liquid column height, is fixed at 800 pm and the half width
of the gas cavity is @ = 5 um. Clearly, increasing solid fraction dramatically increases gas
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Figure 3: Plot of critical time, t¢;, versus solid fraction, ¢, for case study I. The total height
of the liquid domain is hg = 800 um, the gas cavity half width is ¢ = 5 ym and the cavity
depth is sg = 10 pm.

diffusion out of the cavity because of the increase in the width of the domain (2d) leading to
lateral diffusion. Of note, critical time is almost entirely independent of chamber height, hg,
for these specific parameters because the time it takes for gas to diffuse through the entire
domain is significantly larger than t... Also plotted is critical time computed from the quasi
one-dimensional model in our earlier publication [16]. This model is exact in the limit as
¢ — 0 and 0, — 90° and is far easier to solve, but begins to veer from the exact solution
as these parameters change in value. As can be seen in Fig. 4 treating the meniscus as flat
as opposed to having an advancing contact angle of 110° leads to an underestimation of the
critical time by 6% as ¢ — 0.

Figure 4 plots longevity (¢¢) versus hg for solid fractions ranging from 0.1 to 0.9. Again,
it is evident that increasing solid fraction speeds up the diffusive process, this time exhibited
by the decrease in ¢¢. This plot quantifies the increase in ¢y with decreasing hg. The (vertical)
dashed lines correspond to the limit at which a full Cassie to Wenzel state transition can occur.
They represent the minimum liquid column height that has the capacity to hold m{ — m’f
mass of gas in a saturated solution, where m’f is the mass in the cavity at time ty, i.e.,

(1= 6) (mf —m})
a(pooH — pgp)

hmin = (59)
which is a modification to a result found in our earlier publication Kadoko et al. [16]. The
computed data is again compared to that of Kadoko et al. [16] and again shows underestima-
tion with final time solutions veering from the 2D solution by about 9%.

Figure 5 plots the volume of gas in the cavity versus time for different solid fractions. The
inset shows the results for the critical time and slightly thereafter. Since the cavity width is
the same, the effect of different solid fractions can easily be explored. As gas diffuses from the
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Figure 4: Plot of longevity versus initial height of the liquid table, hq, for case study I for
various solid fractions, ¢ . The gas cavity half width is a = 5 um and the cavity depth is
so = 10 um. The vertical dashed lines indicate the minimum height in which full Cassie to
Wensel state transition can occur.

cavity into the liquid, the meniscus deforms and eventually depins, reducing the volume of
gas in the cavity. This happens significantly faster for domains with the same cavity width,
but larger solid fraction becauase the total volume for diffusion is much larger, approaching
that of a half-space for small ¢. The discontinuity visible in the inset highlights the transition
between the two types of meniscus movement: 1) meniscus deformation and 2) sliding of the
contact line. It exists because after critical time the pressure in the cavity remains constant
and s changes, whereas before critical time the pressure varies to accommodate the deforming
meniscus. Viin is the volume of gas in the cavity when the lowest part of the meniscus makes
contact with the cavity bottom.

Figure 6 shows contour plots of the dissolved gas concentration field in the lower region of
the liquid domain, —10 um < y < 15 pm, with ¢ = 0.5. Fig. 6 (a) shows p at t = 0.05s, soon
after the diffusion process has started, such that the concentration gradient is relatively large
and the meniscus has only begun to deform. Fig. 6 (b) depicts p at critical time, right before
the meniscus begins to slide. Figs. 6 (c) and (d) show p at t = 25s and ¢t = t¢, respectively.
At this point the concentration gradient has decreased significantly and diffusion rates are
low. This helps illuminate why t; is much larger than t..

4.2 Case Study II

Figure 7 plots longevity as a function of cavity depth for a characteristic initial liquid height,
ho = 3000 pm and cavity half width of @ = 5 pm. The first thing to note is that a larger initial
column height of hg = 3000 um in case study II, leads to less longevity, t¢, than in case study
I for hg = 1500 pm and the same cavity depth, sy = 10 um, as per Fig. 4. This is because in
case study II hydrostatic pressure is taken into account. If the effect of hydrostatic pressure
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Figure 5: Plot of volume of gas in the cavity versus time for various solid fractions as per
case study I. The total height of the liquid domain is h = 700 um, the gas cavity half width
is @ = 5 um and the cavity depth is sg = 10 um. The inset focuses on the time before critical
time.
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Figure 6: Contour plot of the dissolved gas concentration in the liquid for case study I at (a)
t =0.05s, (b) t =0.539s (ter), (c) 25s and (d) ¢ = 38.34s (t¢) showing a portion of the liquid
domain on interval —10 um < y < 50 pm for initially degassed water in case study I. The
total height of the liquid domain is A = 800 um, the gas cavity half width is a = 5 um, ¢ = 0.5
and the cavity depth is sp = 10 um. The sharp decrease in the magnitude of concentration
gradient between a) and d) show that diffusion has slowed greatly by the time t¢ is reached.

20

15

N 10

[¢;]

o

-5

-10
10 0 5 10

z (ym)

18

1202 Joquia)das g0 Uo sapoH oJel ‘AusioAlun sunL AQ Jpd-9r0L-LZ-U/bSEZ0L9/0ZE LSO L/GL L L 0L/10p/spd-ajoie/le)sueesy/BIo"sLuse: uoljos||0o[e)Bipawse//:dny wol papeojumoq



3— : ' ' —1D
=0.1
3501 { z —0.2
—2 :
§ | ¢ =0.3
300 vb | ¢ =0.4
=14 ¢ =05
<} 0 ——¢ =0.7
2 2001 5 20 ) ——¢ =0.8
" so (um ——¢ =0.9
* 150t 1
1001
50
O 1
5 7 9 11 13 15

0 (um)

Figure 7: Plot of cavity depth versus longevity as per case study II for a = 5 um and hg =
3000 pm. Inset: Plot of cavity depth versus critical time as per case study II for ¢ = 5 pum
and hg = 3000 pm.

is significant the pressure in the cavity will be higher for the same atmospheric pressure,
increasing the diffusive driving force. Secondly, Fig. 7 also shows that increasing cavity depth
yields larger critical times and longevity because more gas must diffuse out of the cavity to
reach the Wenzel state. This is potential valuable insight for design of these surfaces. Plotted
alongside the results is the quasi one-dimensional solution for case study II from Kadoko et
al. [16]. In this case, it fulfills the solution requirement for ¢ = 0, demonstrating much the
same shape as our results.

Figure 8 plots longevity for varying initial gas concentration for a characteristic initial
liquid height, hg = 3000 um. Increasing the initial gas concentration reduces the driving
force for diffusion, increasing both critical time and longevity. Longevity grows rapidly with
increasing initial concentration. This highlights that initial gas concentration, along with
cavity depth and total chamber height, can be tuned to achieve the desired performance of
a surface. Again to span the whole parameter space, the results from Kadoko et al. [16] for
theta, = 90° are included.

5 Conclusion

We present a two-dimensional numerical analysis of the gas diffusion-induced Cassie to Wenzel
state transition in a quiescent liquid resting on parallel-ridge type SHs. This analysis is
representative of the meniscus behavior in the middle of a long three-dimensional meniscus
such as seen in Xu et. al [3]. We demonstrate that the algorithm captures the deforming
and moving boundaries of the liquid domain seen in experiments and the time-dependent
boundary condition on the meniscus in parallel-ridge type SHs. Too, it computes the dissolved
gas concentration field in the liquid. The algorithm can be extended to hierarchical re-entrant
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Figure 8: Plot of initial dissolved gas concentration in the liquid versus longevity as per case
study II for @ = 5 ym and hg = 3000 pm. The cavity depth is sg = 10 pm.

SHPo surfaces where sidewalls of the structures have non-straight profiles. Future work needed
is resolution of the fully three dimensional problem, capturing wall effects near ends of the
long channels, and treating the gas in the cavity as air is such that two species equations
need to be resolved. Finally, the lack of experimental data to which to compare our results
to shows a need for experimental work capturing diffusion effects on periodic surfaces.
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Nomenclature

Greek Symbols
o coefficient for singularity removal
p vector of dissolved gas concentration

ot time step

€ convergence criteria
i map to vertical of unit square
Q domain
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o) solid fraction, (d —a)/d

p density (mol/m?)

o surface tension along meniscus (N/m)

0 contact angle of penetration into cavity, measured from the horizontal
& map to horizontal of unit square

Roman

A matrix operator

F forcing vector

v contributions from singularity removal to global matrix

Ai,j matrix for coupling subdomains i and j

a half-width of the cavity (m)

B, C singularity strengths

D binary molecular diffusion coefficient (m?/s) or differentiation matrix
d half of the ridge period (m)

g gravitational constant (m?/s)

H Henry’s constant (mol/m? - Pa)

h transient height of the liquid domain (m)

ho initial height of the liquid domain (m)

m mass per unit depth of gas in cavity (kg/m?)

M, molecular weight of gas (kg/mol)

D pressure (Pa)

Q number of subdomains in vertical direction

R radius of curvature of meniscus (m)

R,  universal gas constant (J/mol - K)

s coordinate along arc spanning meniscus (m)

s transient location (in y) of the triple contact point (m)

50 depth of the cavity (m)
T temperature (K)

t time (s)
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Vv’ volume per unit depth of gas in cavity (m?)
Ym  meniscus location (m)

Subscripts

00 far-field (atmosphere)

a advancing (contact angle)

cr critical

diff  differential operator on the triple contact point
f final

g,c  gas in the cavity

global refering to global matrix and vectors

gl gas-liquid
g gas
1 liquid
num referring to numerical non-singular solution
q subdomain number
sing referring to quasi-analytical singular solution
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A Appendix A - Subdomain Types

A.0.1 Subdomain Type (A)

The impermeability boundary conditions and Henry’s Law, i.e., Egs. (9) and (11), respectively,
apply on exterior faces and on the 1-Qg41 and €21-{)y interfaces, we match fluxes. Thus

0

-~ ) —

pr[T ym (2, 1)) = pgc(t) H (61)
0 0

%Pl(a,y,t) = %PQH(CL?@/J) (62)
0 0

aiypl(waylvﬂ = %pz(x,y1,t)- (63)

We transform these conditions to be in terms of £ and 7 as per Egs. (24) and (25) using the
maps

Eq(x) = 2£—17 for0<z<a (64)
a
Y — Ym (2,1)
m(x,y,t) = 2—"——"—1, fort <ty 65
(@,y,t) sy (65)

where £, (x) is valid for groups (A), (B), (C) and (G) and 7 (z,y,t) is only valid for the
interval 0 < ¢ <t because subdomain 2y splits into an a x y; rectangle (also denoted by
2 and belonging to group (B)) and Qsg1 after it. The derivative of £, () is given by

d¢, 2
=42
, for0<z<a (66)

The partial derivatives of 1y (z,y,t) with respect to z and y are

om n—1 z

= 67
ox Y1 — Ym (2, 1) R (t)Q .2 (67)
6771 2
i 68
dy Y1 — Ym (2, 1) (68)

Also, required, for groups (A) and (G), is the partial derivative of y with respect to time,
which follows from Egs. (3) and (23) as
R(t)

(3y(A,G)> _ 1—77{ R(t) B
0 Jen 2 VR -2 RO -2

A.0.2 Subdomain Type (B)

dR_ ds
dt dt

} ) for0 <t <t  (69)

The boundary conditions for subdomains in group (B) consist of symmetry on =z = 0 (for
nodes solely in one subdomain) and continuity of dissolved gas concentration and flux of it
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on the interfaces share by two subdomains. Thus,

0
— ) =
0 0
%Pq(aa y’t) = %pq+Q(a7yat) (71)
pq($7yq—17t) = pq—l(xayq—ht) (72)
0 0
%pq(xquat) = @Pq-ﬁ—l(%?ﬁ;i) (73)
where
2,3,...,0—1 for 0 <t <te
— 9 Y 7Q 9 or < — (74)
2,...,Q —1, forta<t <t
The vertical map and its derivative with respect to y are
Yy— yq—l
nely) = 2—F——1 75
o) = 20t (75)
0 2
e o = (76)
dy Yq = Yg-1

As for the (Q — 1 corner points that are shared by 4 subdomains each, we prescribe three
concentration and one flux continuity condition as per

Pq (@, yg:t) = pg+1(a,yg,t) (77)
Pg+1(a,Yg,t) = porq+1 (a;Yg,t) (78)
Pe+Q+1 (Y t) = pgrq (a,Ygst) (79)
8 0
Pq+Q (a,yq,t) = %Pq (a,yq,t) (80)

where ¢ =1,2,...,Q — 1.

A.0.3 Subdomain Type (C)

Subdomain type (C), i.e., g, is the topmost one on 0 < & < a. At the top side of it we apply
impermeability and constant dissolved gas concentration boundary conditions for case studies
I and II, respectively. On the bottom and right sides, we apply dissolved gas concentration
and flux continuity, respectively. At the left side we apply symmetry conditions. Thus,

0
0 0
(9 pQ(CL Y, ) = aixp‘Z‘FQ(a’ Y, t) (82)
p (:I; yQ 17t) = PQ—l(xny—lat) (83)
gy oz, h(t),t) = 0, for case study I (84)
po(x,h(t),t) = pooH, for casestudy II (85)
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The vertical map and its derivative are

Y —Yo-1
) = oY _Yor 4 86
nQ (y,t) AOEE (86)
ong 2
= - 87
oy~ hO-vuas o
For groups (C) and (F), the rate of change of y with respect to ¢ is

ay(c F) 1 dh

AL - (1 -
(F52), = suen g (58)

A.0.4 Subdomain Type (D)

Subdomain type (D), i.e., Qgy1, is directly above the ridge. The symmetry and imperme-
ability boundary conditions apply to the exterior. We apply dissolved gas concentration and
flux continuity on the left and top interfaces. Thus,

PQ-H(CL,y,t) = Pl(a,y,t) (89)
0
%pQJrl (d7y7t) =0 (90)
0
@%H(% 0,t) = 0 (91)
D i) = poiaaynt) (92)
apr+1 T, Y1, - 8pr+2 Z, Y1,

The horizontal and vertical maps are

r—a

Eq(x) = 2d_a—1, fora<z<d (93)
Y

n+1(yt) = 2——1 (94)
Y1

where Eq. (93) is valid for subdomain groups (D), (E) and (F). The derivative of {, with
respect to x is

0¢, 2
5 _ 95
or d—a (95)
and the derivative of the vertical map with respect to y is
0 2
gie+1 _ 2 (96)
Oy Y1

A.0.5 Subdomain Type (E)

Similar to subdomain group (B), boundary conditions for group (E) consist of a symmetry
condition on one exterior side (x = d) and continuity on three internal interfaces. Thus,

pQ(au yvt) = quQ(CL,y,t) (97)
0
%pQ(dv Y, t) = 0 (98)
Pq(l‘, Yq-Q-1, t) = qul(l" Yq-Q-1, t) (99)
0 0
aiypq(x')yq—Qat) = @pq+1(x7yq—Q7t) (100)
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where
g=Q+2,Q+3,...,2Q -1 (101)

The map used for subdomains of type (E) is

Y~ Yg—Q-1
ngly) = 22791 (102)
Y9—Q — Yg—0Q-1
where 5 )
ng(y) _ (103)
Ay Yo—Q — Yg—Q—-1

A.0.6 Subdomain Type (F)

Subdomain group (F) is the topmost portion of the liquid domain on a < = < d. The
boundary condition at the top of 2a¢ is the same as that on Q¢ as per Egs. (107) and (108).
On the left and bottom sides, we prescribe dissolved gas concentration and flux continuity as
per

p2q(a,y,t) = pola,y,t) (104)
0

— d,y,t) = 0 105
O PQQ( 'Y, ) ( )
9 (x t) = 9 (z t) (106)

8szQ » YQ—1, = 8yﬂ2Q—1 » YQ—1,

0

a—yng (z,h(t),t) = 0, for case study I (107)
p20 (z,h(t),t) = pooH, for casestudy Il (108)

The map in the vertical direction and its derivatives are the same as those given in Egs. (86)-
(88).
A.0.7 Subdomain Type (G)

Subdomain type (G), i.e., Q2941 exists after critical time as shown in Fig. 2(b). The boundary
conditions are

0
%ﬂ2Q+1(07 Y, t) = 0 (109)
0
%P2Q+1 (CL, Y, t) =0 (110)
pZQJrl(:L‘aym (1"7t) at) = pCrH (111)
0 0
— = — 112
aprQ-‘rl (xaoat) 8y101 (.ﬁU,O,t) ( )

The vertical mapping function is

Y

2Q+1 (.T,y,t) =1-2
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The first-order partial derivatives of 12941 (x,y,t) are

oz Ym (2, 1) R (t)2 2
On20+1 2
_ 115
ay Ym (l’,t) ( )

The partial derivative in y with respect to ¢ is given Eq. (69), where dR/dt = 0, because
radius of the meniscus is constant after critical time.

B Appendix B - Singularity Removal

B.1 Singularity Removal

A singularity in diffusive flux exists at the triple contact point (z = a, y = 0) before critical
time. After it, as the triple contact point advances down the ridge, one remains at this loca-
tion and a second one follows the triple contact point. We remove them from our numerical
solution (and, subsequently, reincorporate them into our final one) in the manner of Game et
al. [28] to reduce the required mesh density as per the following steps. First, local analyses
in the vicinity of the singular points are performed to resolve the forms of the singularities
up to undetermined constants coefficients, the singularity strengths. Next, a column is added
to Aglobal that contains the contribution(s) to the diffusion equation and (external) boundary
conditions from the solution(s) to the local (singular) problem. This requires that the un-
known singularity strength(s) be appended to the solution vector. Finally, a row(s) is added
to Aglobal to bound the derivative of the numerical solution at the singularity(s). The resulting
matrix system is one column (and one or two rows) larger than prior to singularity removal,
a negligible increase in computational load. Below we discuss the specific implementation of
each singularity.

B.1.1 Before Critical Time

The local problem in the vicinity of the triple contact point, cast in polar (r, ¢) coordinates to
facilitate its solution, is shown in Fig. 10. Only the Laplacian terms in the diffusion equation
are singular; therefore, we need only resolve Laplace’s equation in our local analysis. We
decompose our solution into a numerically-resolved component, ppum, and an analytically-
resolved singular one as per

Pglobal = Pnum T Psing- (116)

We impose the inhomogemenous boundary condition along the meniscus as per pnum = Hpg,c.
Then, both boundary conditions on the local problem are homogeneous and it reads

V?psing = 0 (117)
apsing

=0 118

| (118)

Psing|¢:9+7r/2 =0. (119)
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Figure 9: Local problem before crtical time.

The solution is
Br* cos(\), (120)

where B is the unknown singularity strength, and the eigencondition reads

cos [A(0 + m/2)] = 0. (121)
We need only consider the strongest singularity such that

psing = B cos(Aoo), (122)

where Ao = /(20 + 7). In Cartesian coordinates this result is

Psing = B (x2 + y2)1/(2/\0) cos [Ag arctan (y/x)] . (123)

We subtract psing from the numerical problem by recasting the overall problem as

Ag;lobaul Vsing Pnum | _ IFIglobal
|: Vdiff 0 B o 0 ' (124)

Here, on an interior point, vgng; takes the form

1

1 apsing
. OZE Psmg|g;:a;(z),y:y(z) ’

Vsinei = Vi X
sing,i — Yt B oy

(125)

r=2(1),y=y(3)

where « is a coeflicient that depends on the finite difference scheme used. It assumes the

vatues 3 1 ot ot ot
o={om 5 1ot (5 )] (4 6) 55 ) (126)

for the usual three-point formula, the two-point formula and the three-point formula with
non-uniform time step size, respectively. This is necessary, because psing resolves only the
Laplacian terms in the diffusion equation, Eq. (52), and the penultimate and ultimate terms
on its left side must thus be added.

When matching flux or concentration on adjacent subdomains singularity subtraction is
not necessary and thus the appropriate element of vgne is set to 0. Finally, for points on
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a) b)

2 2 —
\Y% Psing,1 = 0 \Y% Psing,2 = 0
I 9,
| - Psing,2 __
:7 rrenial
180° ,}¢
OpPsing,1 __
96 0 ,
2
Ipsing.1 __ 0 Zi@ -
o9

Psing,2 = 0

Figure 10: Local problems at a) = a, y = 0 and b) the tripcle contact point after crtical
time.

external boundaries, vging is populated with the appropriate contribution of pgine. For exam-
ple, when the i row of Aglobal corresponds to a node operated by the symmetry boundary
condition at x = 0, then

l apsing

Using,i — >
B 0z 2=0,y=y(7)

where 7 indicates the i-th index and y(¢) is the y location of the i-th node. Thus, the solution,
Pglobal = Pnum + Psing Satisfies the external boundary conditions.

We remove the singularity from the numerical solution, pnum via the a row vector vgig in
Eq. (124). It applies the differential operator d/0x at the (singular) triple contact point in
subdomain @ + 1. The end result is a new system of (2QQ + 1)(L + 1)(N + 1) + 1 equations.
The element 0 in the right-side vector restricts dpnum/0z = 0 and therefore removes the
singularity from pnum. The full solution is obtained by solving this new system of equations,
constructing both the singular solution and the numerical solution from the solution vector
(which includes the singularity strength) and adding them together. Additionally, all integrals
and derivatives done in the analysis are split into a singular and non-singular parts and then
summed to ensure accuracy.

B.1.2 After Critical Time

The local problems after critical time, denoted by the subscripts 1 and 2 at © = a, y = 0
and at the triple contact point, respectively, again cast in polar (r, ¢) coordinates to facilitate
their solution, are shown in Fig. 10. Again, locally, we need only resolve Laplace’s equation
and decompose our solution into numerically-resolved and (singular) analytical components.

A separation of variables solution shows that the form of the solution at x = a, y = 0
most singular in the partial derivative with respect to r is

psing.1 = O3 cos(119), (127)

where C' is the unknown singularity strength. The singular problem at the triple contact
point is

V2 psing2 = 0 (128)
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subject to

a .
9Psing,2 -0 (129)
8¢ Po=m/2
psing,2|¢2:9a+ﬂ,/2 =0. (130)

It follows from the separation of variables and trigonometric identities that the form of the
solution at the triple contact line that is most singular in the partial derivative with respect

to r is 5 5
) _ 7/(20,) . P2 T T)2
Psing,2 = Ty [D sin (29a) + E cot <29a> coS <29a ﬂ ) (131)

where D is the unknown singularity strength.
Subtracting psing,1 and psing,2 from the numerical problem changes the overall one to

Aglobal Vising V2;sing Prnum IFgloba,l
viag 0 0 c |=| o (132)
Vo diff 0 0 D 0.

The role of the column vectors vi gig and vg gig are analogous to that of vgig in Eq. (124)
before critical time. Moreover, the row vector vy gig causes the operator d/0x to act on the
element of ppum corresponding to the bottom left corner of subdomain @ + 1 and the row
vector va gi causes the operator 0/0y to act on the element of ppu, corresponding to the
triple contact spot in subdomain 2Q)+ 1. Both these partial derivatives are set equal to 0. The
result is a system of (2Q +1)(L + 1)(N + 1) + 2 equations. The solution process is analogous
to that before critical time.
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