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Toward a complete interdisciplinary treatment of
scale: Reflexive lessons from socioenvironmental
systems modeling

Takuya Iwanaga1,*, Hsiao-Hsuan Wang2, Tomasz E. Koralewski2, William E. Grant2,
Anthony J. Jakeman1, and John C. Little3

The pathways taken throughout any model-based process are undoubtedly influenced by the modeling team
involved and the decision choices they make. For interconnected socioenvironmental systems (SES), such
teams are increasingly interdisciplinary to enable a more expansive and holistic treatment that captures
the purpose, the relevant disciplines and sectors, and other contextual settings. In practice, such
interdisciplinarity increases the scope of what is considered, thereby increasing choices around model
complexity and their effects on uncertainty. Nonetheless, the consideration of scale issues is one critical
lens through which to view and question decision choices in the modeling cycle. But separation between team
members, both geographically and by discipline, can make the scales involved more arduous to conceptualize,
discuss, and treat. In this article, the practices, decisions, and workflow that influence the consideration of
scale in SESs modeling are explored through reflexive accounts of two case studies.Through this process and
an appreciation of past literature, we draw out several lessons under the following themes: (1) the fostering
of collaborative learning and reflection, (2) documenting and justifying the rationale for modeling scale
choices, some of which can be equally plausible (a perfect model is not possible), (3) acknowledging that
causality is defined subjectively, (4) embracing change and reflection throughout the iterative modeling
cycle, and (5) regularly testing the model integration to draw out issues that would otherwise be
unnoticeable.

Keywords: Reflexive analysis, Integrated assessment and modeling, System-of-Systems, Socioenvironmental
modeling, Interdisciplinary teams, Uncertainty

1. Introduction
Consideration of scale is a common activity in all system-
of-systems (SoS) modeling approaches involving the
integration of multiple models when representing any
complex socioenvironmental system (SES) of interest.
Unfortunately, such consideration is all too often con-
ducted tacitly, or at best minimally, and recently has been
considered a grand challenge in SES modeling (Elsawah et
al., 2020). Scale underlies many modeling concerns
including how to address model complexity, conceptual
mismatches, and uncertainty. In short, explicit consider-
ation of scale issues provides a valuable, and indeed

critical, lens to view the decisions made in any SES mod-
eling activity.

This article follows an earlier publication (Iwanaga et
al., 2021b) in which the current practices, issues, and
challenges with respect to scale were explored through
a sociotechnical lens. Scale can thus be characterized as
an expansive term relating not just to the properties of the
system under investigation but also the interplay between
the social and technical dimensions. These influence what
is considered, what is not, and what is eventually included
in the modeling. A crucial aspect is the influence of the
people involved and the subsequent technical processes
and decisions that produce a model for a given purpose.
These underlying influences, including scale decisions
taken, often remain implicit and are not explicitly dis-
cussed. But for reasons of saliency, legitimacy, and trans-
parency, they are best appreciated and considered by team
members in as complete a sense as possible, albeit taking
resources and time available into account.

Interdisciplinarity is now recognized as a crucial neces-
sity in understanding and dealing with the complexity of
socioenvironmental interactions (Hall et al., 2012; Saltelli
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and Funtowicz, 2017; MacLeod and Nagatsu, 2018; Ster-
ling et al., 2019). Challenges to a successful modeling
process and set of outcomes necessitate effective collabo-
ration, teamwork, and cross-disciplinary communication
and discussion of a high order among team members
(Nancarrow et al., 2013; Hall et al., 2018). Technological
solutions cannot resolve mismatches in understanding
among people, although they can facilitate and prompt
discussions. Thus, there is a need to examine the practices
and decision choices we make in any modeling activity,
but especially so for one as complex as in SES. Acknowl-
edgment of the human aspects that influence the choice
and treatment of scales in modeling, and their implica-
tions, is therefore crucial in moving beyond the status
quo. A key activity then is identifying the practices and
approaches that facilitate and promote effective interdis-
ciplinary cohesion among and within modeling teams.

The treatment of scale in the modeling process is an
essential and valuable activity for focusing the attention of
modelers on many of their key decisions. But that treat-
ment can be affected by the level of cohesion and reflex-
ivity within the collaborative process, which in turn may
have a substantial influence on modeling outcomes, espe-
cially with greater interdisciplinarity of the modeling issue
being addressed (Jones et al., 2011; Lahtinen et al., 2017).
The level of inclusivity in communication that leads to
interdisciplinary considerations and participation of all
stakeholders, where stakeholders may include modelers
themselves (following the definition in Freeman, 2010),
are then also issues of scale to be explored. Recent pub-
lications espouse similar positions in recognizing the role
that researchers play in shaping the scientific and policy
discourse (Crouzat et al., 2018; Connolly, 2020; Walsh et
al., 2020). We, as researchers, are perhaps coming to the
full realization that “the technique is never neutral” (Salt-
elli et al., 2020) and that we cannot divorce ourselves from
the influence we have on processes we take part in (Glynn
et al., 2017; Cockerill et al., 2019).

1.1. The reflexive approach

A (more) reflexive approach to interdisciplinarity has been
suggested over the years to aid in bridging the gap in
understanding between the research that is conducted
and the interdisciplinary processes that produce research
outcomes (Finlay, 2002; Preston et al., 2015; Lahtinen et
al., 2017). As with many terms that cross disciplinary
bounds, “reflexivity” has several meanings with different
practitioners holding differing views on its definition. The
term “reflexive” is adopted here to convey a more trans-
formative intent; the goal is to improve future practice
through reflection on the seemingly self-evident choices
and influences in the activities undertaken, the underlying
assumptions, the role one played in the decisions, and the
broader context in which these choices occur (Preston et
al., 2015; May and Perry, 2017; Bolton and Delderfield,
2018). Reflexive evaluation is therefore one approach to
considering the implication of scale choices, a practice
which can aid in identifying the lessons learnt that are
of benefit to future research (Krueger et al., 2016; Mon-
tana et al., 2020).

In this article, we draw five lessons through the reflex-
ive accounts of the treatment of scale across two interdis-
ciplinary socioenvironmental modeling case studies, also
drawing upon diverse literature, where appropriate, to
corroborate our experiences. As noted by others, the
reflexive approach is highly situation-specific, such that
there is no “one” approach to reflexivity (e.g., Montana
et al., 2020). The reflexive process applied here was, how-
ever, informed by descriptions of reflexivity given in Finlay
(2002) and May and Perry (2017), alongside accounts pro-
vided by Krueger et al. (2016) and Preston et al. (2015).

The described approaches involve critical self-analysis,
which we define in this context as analyzing one’s own
influence on the modeling process, and a process of joint
discussions to form reflexive accounts of our experiences.
The choices made in the modeling and their implications
were analyzed as part of the reflexive process to elicit the
how and why of the modeling and their influence on
outcomes. The adopted approach also involved a third
party who acted to provide an external viewpoint to elicit
further reflection and pushed forward the reflexive pro-
cess. The approach aided in drawing out the successes and
the struggles encountered when working within an inter-
disciplinary context. It is acknowledged here that the
described approach is subject to some uncertainty as not
all those involved in the original case studies could par-
ticipate (due to availability and the necessary time com-
mitment) and so may not include their valuable insights
and perspectives (a matter revisited in Section 2).

The reflexive approach encompasses not just the
“technical” decisionsmade (such as whatmodels to use and
the scope of stakeholder engagement) but also acknowl-
edges that the modeling teams form a social system in its
own right with their own complex interactions which influ-
ence the path taken. Model outcomes are therefore heavily
influenced by the social context of the modeling process as
well as the technical decisions made therein. Future efforts
can be improved by concretely acknowledging this inter-
play (Catalano et al., 2019; Sterling et al., 2019; Montana
et al., 2020). A sociotechnical view was taken to elicit these
aspects in the reflexive process.

In the next section, we briefly detail the modeling con-
ducted for the two case studies alongside the reflexive
accounts of the choices made in the consideration of mod-
eling scale, the team processes involved, and the decisions
made. Both studies employed an SoS approach involving
the integration of multiple models to represent the SES of
interest. The fundamental need to consider these scale
aspects has been previously articulated in Elsawah et al.
(2020), Little et al. (2019), Badham et al. (2019), and Ha-
milton et al. (2015), albeit from different perspectives. We
then synthesize the five main lessons learnt from the case
studies, which we hope might enhance future SES mod-
eling activities.

2. The case studies
The two case studies represent different facets of the is-
sues that SES modelers face within an SoS context. A
reflexive account for each case study is provided below
and is aligned with the basic steps in the modeling
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process. The subsections are not organized identically,
however, owing to the different experiences encountered
and the focus on providing a reflexive account. Key infor-
mation is briefly summarized here with an overview pro-
vided in Table 1, and readers who feel sufficiently
informed may skip ahead to Section 3 (Lessons learnt).

Both models are of the SoS type as they leverage con-
stituent models that individually represent separate sys-
tems wherein each model could, potentially, be applied
separately. As is typical of SoS approaches, each case study
(1) considered different time frames and spatial/temporal
granularities, (2) spanned multiple systems, and (3)
involved multiple disciplines and stakeholders. An aspect
of scale to be considered is the process of deciding which
representations are to be included or excluded and how
they are to be represented in terms of the scale of the
modeling to be conducted. Modeling scale therefore in-
cludes all aspects of the modeling process including the
conceptualization of the model, the relationships between
constituent models, model structures, boundaries, parame-
terizations, implementation approach, and the decisions
that underpin each of these. These decisions may be influ-
enced by factors external to themodeling concerns, such as
the available resources or imposed legacy software, but are
also influenced by the disciplinary representation within
the team, the interests represented by stakeholders, and
the level of interdisciplinary cohesiveness.

The first case study, referred to as the sugarcane aphids
in Great Plains (GPSCA) case study, focuses on areawide
integrated pest management of aphids infesting grain

sorghum fields across a large spatial area, incorporating
local- and regional-scale dynamics. More expansive de-
scriptions for each case study are available—Wang et al.
(2019) and Koralewski et al. (2019, 2020a) for the GPSCA
study and Iwanaga et al. (2018, 2020) for the Campaspe
case study. The GPSCA case study emphasizes modeling
choices from a technical point of view, while the Cam-
paspe case study offers a description of the team pro-
cesses, which influenced decisions during model
development.

2.1. The GPSCA case study

The sugarcane aphid is an economic pest of sorghum
worldwide (Singh et al., 2004), and outbreaks in U.S. sor-
ghum fields have been recurring annually since 2013.
Economic losses result from direct feeding, compromised
harvesting efficiency, and damage to harvesting equip-
ment and may exceed 50% of the yield (Bowling et al.,
2016). Aphids are highly prolific and disperse with wind
over long distances within the prairie-steppe region of the
North American Great Plains, which is the principal sor-
ghum production area in the United States (van Rensburg,
1973; Singh et al., 2004; USDA-NASS, 2010; Bowling et al.,
2016).

Two key tactics within an areawide integrated pest
management program for cereal aphids include deploy-
ment of aphid-resistant sorghum cultivars and selective
use of insecticides (Elliott et al., 2008; Giles et al., 2008;
Brewer et al., 2019). The model of Wang et al. (2019) was
developed to support wise use of these management

Table 1. Overview of each case study including the team context, socioenvironmental systems (SESs) involved, and
purpose of the modeling. DOI: https://doi.org/10.1525/elementa.2020.00182.t1

Case Study Team Context SESs Involved Time Steps Purpose

Sugarcane
aphids
in Great
Plains

Interdisciplinary group including
experts in areawide pest
management, entomology, and
ecological modeling located in
several states and employed by
federal, state, and private
institutions

The core modeling team consisted
of three ecological modelers, an
areawide pest manager, an
entomologist, and
a meteorologist/aeroecologist

Four in total:
agroecological systems
(sorghum growth,
aphid life cycle, and
crop management);
meteorological system
(airborne aphid
dispersal)

Once per model run:
crop management
model

Daily: sorghum growth
model, aphid life-
cycle model

Hourly: meteorological
dispersal model

Forecasting sugarcane
aphid infestations of
sorghum fields
within an areawide
pest management
program, providing
infestation forecasts
to areawide pest
managers and
sorghum producers

Campaspe Large group of participants across
different disciplines (>10)
geographically spread across
many institutions (>6). The team
included modeling specialists
across five systems, and one
generalist who developed the
farm model, aided in integrated
design and development, and
led the integration of models

Seven in total:
agricultural,
hydrological (surface
and groundwater),
ecological, climatic
variability, policy, and
recreational suitability

Daily: surface and
groundwater,
climate

Two weekly: agriculture
and policy

Once per model run at
end of scenario:
ecology and
recreational water
suitability index

Knowledge integration
and stakeholder
discussion of the
range of impacts
that changing
climatic and policy
contexts have on
water-related farm
and environmental
concerns
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tactics for sugarcane aphids. The purpose of the model was
to simulate areawide spatiotemporal patterns of sugar-
cane aphid infestations of sorghum fields, with a focus
on timing of initial infestations. Near-real-time model
forecasts could inform growing season activities such as
timing of field monitoring to detect aphids and optimal
insecticide use (Koralewski et al., 2020b). Model outputs
also could be useful for region-scale management recom-
mendations such as deployment of aphid-resistant sor-
ghum cultivars (Koralewski et al., 2020a).

2.1.1. Conceptualization

The core modeling team that developed the conceptual
model consisted of three ecological modelers: an areawide
pest manager, an entomologist, and a meteorologist/aero-
ecologist. Although we all conceptualized the SoS as con-
sisting of linked agroecological and meteorological
systems, agreement on representation of causal processes
operating within, and especially between, these two con-
stituent systems was achieved only after considerable
debate. The debate was centered explicitly on our choice
of appropriate temporal and spatial scales at which to
represent system processes. However, implicitly, we were
debating the level of causality to include in the represen-
tation of those processes. That is, did we require our
model, or parts thereof, to be interpretable as embodying
cause–effect relationships or did we require only that

model outputs correspond well with available real-world
observations. Below, we describe the details of the concep-
tual model of the integrated SoS that emerged as a shared
understanding of the modeling team (see also figure 1 in
Wang et al., 2019).

Important processes modeled in the agroecological sys-
tem included sorghum growth, aphid development, and
crop management. Both sorghum growth (through
phenological stages) and aphid development (through
life-cycle stages) were modeled primarily as a function of
environmental temperature. Crop management (i.e., deci-
sions to plant aphid-resistant sorghum cultivars and rules
for insecticide use) was modeled as a set of external vari-
ables. Important processes modeled in the meteorological
system included emigration (time and location of aphid
“takeoff”), wind-borne aphid migration, and immigration
(time and location of aphid “landing”).

Migration was modeled primarily as a function of wind
velocity and direction and flight duration. The processes of
emigration and immigration linked the agroecological
and meteorological systems, with emigration initiated in
the agroecological model (based on sorghum phenologi-
cal stage and aphid life stage) and immigration initiated in
the meteorological model (based on the deposition pat-
tern of aphids). Additional conceptual details on linkage
of the meteorological and agroecological components are
provided in Koralewski et al. (2019; figure 1 therein).

Figure 1. Relationship and interactions between constituent models and the key outputs of the Campaspe integrated
model (Iwanaga et al., 2020). Each box represents a constituent model. Dashed line around surface and groundwater
models is to simplify the diagram and does not signify a separate model. Arrowed lines indicate the process of data
interoperation; the direction of interaction and the data communicated between models. DOI: https://doi.org/
10.1525/elementa.2020.00182.f1
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The spatial extent of the model included the primary
sorghum-producing areas in the United States, including
Kansas, Oklahoma, and Texas. The spatial resolution was
set to 0.5� latitude by 0.5� longitude, which resulted in
about 700 georeferenced landscape cells of approximately
2,500 km2. This coarse-grained scale facilitated linkage of
the agroecological system of the SoS to an existing atmo-
spheric particle trajectory model (HYSPLIT; Stein et al.,
2015; see Section 2.1.3.2 on model construction). The
number of cells may vary annually depending on whether
or not sorghum is present in the cell during a given year.
The temporal scale was 1 year, which allowed for encom-
passing one sorghum growing season, and thus the max-
imum potential extent of aphid infestations, with
resolution of a daily step to capture important details
related to phenological development of sorghum and po-
pulation dynamics of aphids. Immigration of aphids from
outside of the southern boundary was approximated as
occurring from the Rio Grande Valley along the border
between Texas and Mexico based on reported field detec-
tion of aphids (Bowling et al., 2016). Aphids arrive in the
Valley from Mexico “unannounced” because producer re-
ports of infestations are not available from Mexico on
a regular basis.We elaborate our rationale for scale choices
in the subsection below.

However, before proceeding further, we reflect for
a moment on our modeling team for this case study. Our
team did not include a social scientist. This was not by
design, in the sense of an explicit decision in favor of
exclusion. Rather, it resulted from funding priorities
within the overall project and the associated restriction
on the number of modeling team members. Our team
also did not include sorghum producers. Our entomolo-
gist maintained close ties with numerous producers via his
agricultural extension activities and could explain their
perspectives and main interests with relative confidence.
Nonetheless, sorghum producers did not participate
directly in discussions among the members of the model-
ing team.

Ideally, a social scientist and at least one sorghum pro-
ducer would have been members of the core modeling
team from the beginning. These “social voices” would have
enriched our shared understanding of the SES and, argu-
ably, could have modified the course of model develop-
ment. For example, one of our livelier debates during
model development, which we describe below in Section
2.1.2.2, undoubtedly would have included a more detailed
discussion of the guidelines that have been developed for
sorghum planting dates and subsequent management
activities. We currently are exploring ways to quantify pro-
ducer decision making within predominantly biophysical
models (e.g., Wang et al., 2020b), which may be applicable
to the GPSCA model. But perhaps more challenging than
the quantitative details involved are the financial and
logistical problems that impede direct long-term involve-
ment of stakeholders in the model development process.

2.1.2. Scale choices

The multifarious reasoning that led to our choice of scales
is not intuitively obvious. In principle, we based our

determination of spatial and temporal scales (outlined
in Table 1) on model objectives, the ecology of the organ-
isms involved, the level of detail contained in information
available from literature and from stakeholders (sorghum
producers), and computational considerations. Sorghum
producers did not participate directly in discussions
among members of the core modeling team. However,
our entomologist maintained close ties with numerous
producers via his agricultural extension activities and
could represent with confidence their perspectives and
main interests. Spatial and temporal scales both spanned
several orders of magnitude. The spatial scale of interest
ranged from the regional management perspective
(approximately 1.75 million km2 of modeled area) to that
of the sorghum producers’ and field scientists’, focused on
a single sorghum leaf which, for practical purposes, en-
compasses an aphid colony. Temporal scales of interest
ranged from an approximately 9-month period of sor-
ghum availability in the region (for regional managers)
to a “near-real-time” estimation of aphid density in a sor-
ghum field (for sorghum producers and field scientists).

Scale choices were complicated further because
aphids are small (approximately 0.05 mg) and prolific
(population doubling time as short as a few days). Non-
winged (apterous) morphs are relatively sedentary,
whereas wind-borne dispersal can carry winged (alate)
morphs over long distances (hundreds of kilometer).
Thus, densities of local colonies can exceed 1,000 indivi-
duals per sorghum leaf, while emigrants from a single
colony can be dispersed over thousands of square kilo-
meters. Important life processes occurring during the
terrestrial portion of the aphid life cycle are commonly
measured in terms of daily rates, and the most common
metric used to record field measurements of aphid den-
sities is individuals per sorghum leaf. Sorghum develop-
ment through phenological stages also is measured in
terms of days (or “degree-days”) per stage. However,
important dynamics occurring during wind-borne aphid
migration result from physical environmental conditions
(wind velocities and directions) that are highly variable
over the entire U.S. Great Plains.

Reflecting on these various considerations, we needed to
“scale up” spatially and temporally from representation of
the agroecological processes occurring at the individual
aphid/sorghum leaf interface to generate seasonally vari-
able regional patterns of aphid infestations of sorghum of
interest at the areawide pest management level. Placing our
model objectives within the context of Levins’s (1966) clas-
sical modeling trade-offs (precision vs. generality vs. real-
ism), it also seemed clear that our priority was realism. That
is, we wanted to explicitly consider the agroecological char-
acteristics specific to the south-central U.S. Great Plains.

In addition, we wanted to explicitly consider stochastic
effects on these agroecological processes that are depen-
dent on meteorological conditions. Infestation forecasts
needed to be probabilistic. Within this context, the inher-
ent stochasticity of the SoS and the parametric uncertainty
associated with representations of system processes
shaped our scale decisions. To provide some insight into
our thought processes, we initially focused on the model
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output of most interest to end users and worked our way
back to sets of modeled processes that might generate
that output, noting the relative level of detail included
in representation of the various processes (Wang and
Grant, 2021).

2.1.2.1. Model output
The model output of most interest to end users (sorghum
producers) was a set of calendar dates indicating when
aphids were most likely to first infest their sorghum fields.
We began by conceptually bounding the level of detail at
one end with a deterministic, static, correlative model that
estimates a mean date of the first infestation of the south-
central U.S. Great Plains based on observed first infesta-
tion dates (which date back to 2013). At the other end, we
conceptually bounded the level of detail with a dynamic,
spatially explicit, individual-based model that represents
all of the individual sorghum leaves in the south-central
U.S. Great Plains and all of the individual aphids that
might infest them.

Given the purpose, a useful model needed to be prob-
abilistic, dynamic, and spatially explicit. Thus, regarding
spatial and temporal scales, we divided the south-central
U.S. Great Plains into smaller-sized areas and the approx-
imately 9-month period into shorter time steps. Further-
more, we knew that producers were most interested in
their sorghum fields and in associated management activ-
ities (e.g., planting, monitoring for aphids, pesticide appli-
cations), which might be shifted by a few days or weeks.
Areawide pest managers were interested in helping indi-
vidual producers make such decisions, but via more syn-
optic infestation forecasts, which could be individualized
by local agricultural advisors (e.g., in the United States,
agricultural extension agents working at the county level).
Thus, for end users, the model needed to provide daily
forecasts that could be interpreted at farm-level and
regional-level spatial scales.

2.1.2.2. Process representation
System processes needing to be explicitly modeled
included those at the sorghum/aphid/crop management
interface. As we mentioned in Section 2.1.1 on model
conceptualization, our main debates about scale choices
were primarily debates about the level of causality to
include in the representation of SoS processes. In partic-
ular, we debated whether our model, or parts thereof,
needed to be interpretable as embodying cause–effect
relationships. Below, to avoid an overly confusing descrip-
tion of process representation, we first present our final
shared understanding of the appropriate scales to use. We
then conclude this section with an attempt to provide
some insight into the sorts of debates that led to that
shared understanding.

Guidelines have been developed for sorghum planting
dates and subsequent management activities in terms of
latitudinal differences in weather patterns during the
growing season. Population dynamics of sugarcane aphids
on grain sorghum have been widely studied over the past
several years, although our ability to quantify with confi-
dence the effects of aphid-resistant sorghum cultivars,

natural aphid enemies, and proximate causes of emigra-
tion remains quite limited. The fact that migrating aphids
are dispersed by the wind as essentially inert particles
above the flight boundary layer (i.e., a few meters above
ground level) allows representation of migration via the
use of well-developed meteorological particle dispersion
models but also results in the uncertainty necessarily asso-
ciated with weather forecasts.

Thinking about positioning our representations of
these processes at the sorghum/aphid/crop management
interface with regard to the level of detail included in the
representations, it seemed that the modeled processes
should meet two criteria. They should generate output
directly comparable to personal observations commonly
made by end users, and they should be viewed by research
scientists as being acceptable mechanistic representations.
The most common observational metric used by produ-
cers and field biologists was the number of aphids on
a sorghum leaf. Usually, several leaves per plant and sev-
eral plants per field were sampled on a given day, with
results accumulated over time and summarized at field-,
farm-, county-, and regional-level spatial scales. Regarding
mechanistic (cause–effect) representation, we emphasized
the term “acceptable” to acknowledge that causality is
defined subjectively. The requisite level of detail to claim
that a process is represented mechanistically is to a large
degree problem-specific.

There was a reasonably narrow range of defensible le-
vels of detail to consider for the model to be viewed as
mechanistic. Aphid development, reproduction, mortality,
and emigration, as well as processes affecting the quality
of sorghum leaf (sorghum phenological development),
were represented as functions of environmental tempera-
ture modified by aphid density and seemed a defensible
“mark” along the level of detail scale for the agroecologi-
cal model. One step toward the more detailed representa-
tion might be marked by a representation of the processes
just mentioned explicitly in terms of the physiology
involved in sorghum and aphid development and the fre-
quency of physical contact among aphids. One step
toward a less detailed representation might be marked
by an implicit representation of these processes in terms
of sorghum phenological stage and aphid population den-
sity as functions of days since planting and days since
initial infestation, respectively, and emigration as a func-
tion of population density per se.

The level of detail for representation of agroecological
processes that met the two criteria just described sug-
gested a sorghum leaf and a day as appropriate spatial
and temporal scales. This left us with two final considera-
tions related to scale choice. One involved summarizing
numerically the results of mechanistically modeled daily
processes occurring on individual sorghum leaves in terms
of a set of calendar dates indicating when aphids were
most likely to first infest sorghum fields in the south-
central U.S. Great Plains. The other involved dealing with
potential phase shifts along the level of detail continuum
that might be needed when passing information about
migrating aphids between the agroecological and meteo-
rological models.
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The first step in summarizing results from individual
sorghum leaves involved deciding how many leaves we
needed to represent explicitly, how they might differ from
one another, and how aphids on one leaf might affect
aphids on another leaf. There is, however, relatively large
observed variation in aphids/leaf on a single plant,
aphids/plant within a single field, and aphid densities
among neighboring fields, as well as spatial variation in
environmental temperatures to which leaves (and the
aphids on them) were exposed.We felt comfortable, there-
fore, letting a single sorghum leaf represents a mean-field
approximation of the conditions of sorghum leaves over
an area large enough to be of interest from the synoptic
perspective of areawide managers.

We felt that forecasts summarized probabilistically
from this synoptic perspective also would be interpret-
able at the farm level by producers. Since we would be
executing sets of Monte Carlo simulations to make infes-
tation forecasts, which would encompass the environ-
mental stochasticity inherent in the modeled system,
they could be interpreted in a similar manner to local
weather forecasts. Producers were accustomed to infer-
ring probable future weather conditions for their specific
location based on weather forecasts for areas much
larger than their sorghum fields. They also were accus-
tomed to interpreting field-based observations of aphid
infestations summarized at the county level in terms of
infestation likelihoods for their fields. The final detail
involved in summarizing results based on dynamics
occurring on single sorghum leaves simply involved mak-
ing the required unit conversions. For this, we had esti-
mates of mean number of leaves per sorghum plant,
mean number of sorghum plants per hectare, and num-
ber of hectares of sorghum within various-sized areas of
the south-central U.S. Great Plains.

Regarding potential phase shifts along the level of
detail continuum that were needed when passing infor-
mation between agroecological and meteorological mod-
els, we identified two. One was conceptual and one was
quantitative. Conceptually, aphids were treated as inert
particles in the meteorological model as they are weak
flyers. Within the meteorological model, particle deposi-
tions were updated hourly (during the 12-h migration
time), but deposited particles (immigrating aphids) were
passed back to the agroecological model as daily cohorts.

Quantitatively, aphids underwent a phase shift
within the meteorological model in that we severed the
numerical connection between the number of aphids
emigrating and the number of aphids immigrating by
placing an arbitrarily small number of (super-) aphids
on each sorghum leaf receiving immigrants. Although
not ideal, we felt this phase shift did not compromise
the forecasting ability of the model. Given the variable
size of emigration events, the lack of data on mortality
rates during migration, and the dependency of success-
ful colonization on the time lag between arrival of im-
migrants and arrival of natural enemies, we felt
colonization could be represented appropriately as a sto-
chastic event occurring within any landscape cell in the
agroecological model (Wang et al., 2020a).

Having presented our final shared understanding of
appropriate scales, we now attempt to provide some
insight into one of the livelier scale debates with regard
to the level of detail with which to represent SoS pro-
cesses. As we described above, our final decision with
regard to aphid development, reproduction, mortality,
and emigration was to represent these processes as
functions of environmental temperature modified by
aphid density. Our meteorologist/aeroecologist would
have been satisfied with a “causal” representation of
aphid population dynamics that represented population
density as a function of number of days since initial
infestation and emigration as a function of population
density. Such a representation was perceived as unac-
ceptably phenomenological by our entomologist. Our
entomologist initially proposed a more mechanistic rep-
resentation of the aphid life cycle, which included,
among other things, mortality due to natural enemies
(predators and parasites). Arguably, aphid population
growth depends on timing and magnitude of mortality
imposed by their natural enemies, which depends on
species composition of the community of natural ene-
mies, which depends on the characteristics of the land-
scape surrounding a sorghum field. However, in view of
(1) the site-specificity of such relationships, (2) the fact
that connection of the terrestrial portion of the SoS
model with the aeroecological portion required just
a single number of aphids emigrating from each of the
approximately 2,500 km2 landscape cells, and (3) the
fact that the purpose of the model was to simulate
areawide spatiotemporal patterns of aphid infestations,
our entomologist agreed to a simpler “causal” represen-
tation of the aphid life cycle. The simpler representa-
tion upon which we finally agreed was acknowledged as
acceptably “causal” by our entomologist because of the
general acceptance among subject-matter experts of the
temperature dependency of insect reproduction and
development and the density dependency of aphid emi-
gration. Our meteorologist/aeroecologist doubted that
model output would be improved by this, from his
perspective, more complicated representation but
acknowledged the benefits in terms of increasing model
credibility.

2.1.3. Development

The integrated SoS model was built for use specifically
within the context of the areawide pest management pro-
gram for sugarcane aphids in the south-central U.S. Great
Plains. It was developed by the three ecological modelers,
all of whom worked at the same physical location. The
modelers maintained frequent direct communication with
the areawide pest manager, the entomologist, and the
meteorologist/aeroecologist, each of whom facilitated
indirect communication with a broad array of specific
subject-matter specialists, as well as sorghum producers
throughout the south-central U.S. Great Plains.

2.1.3.1. Collecting data, information, and knowledge
Several important processes included in the agroecologi-
cal model had been studied extensively. Data representing
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growth of sorghum and development of sugarcane aphids
to environmental temperature were available in the scien-
tific literature. Information on crop management (e.g.,
guidelines for planting and harvesting) for sorghum in the
U.S. Great Plains had been summarized and was easily
accessible. Other important processes, while generally
understood conceptually, could not be quantified based
on available data. Proximate causes of aphid mortality and
emigration remained topics of debate among subject-
matter specialists. We drew upon the knowledge of the
core modeling team, supplemented by the array of
subject-matter specialists with whom we communicated,
to quantify these processes.

Most of the important processes needed in the meteo-
rological model had been incorporated into an existing,
readily available, atmospheric particle trajectory model
(see next section), which we used to simulate wind-
borne aphid migration and subsequent immigration (par-
ticle deposition; aphids are weak flyers and, once airborne,
are dispersed essentially as inert particles).

Specifically, the agroecological component uses data
on air temperature at the soil surface and at 2 m above
the soil surface, sorghum planting and harvest dates,
and percentage of land on which sorghum was grown.
Published information was used to model sorghum
growth stages (Gerik et al., 2003), sorghum leaf area
(Roozeboom and Prasad, 2019), sorghum harvest dates
(USDA-NASS, 2010), aphid life stages (Davidson, 1944;
Poché et al., 2016), aphid reproduction (Brewer et al.,
2017; Hinson, 2017), and density-dependent reduction
of aphid population size (Brewer et al., 2017). EDAS 40-
km resolution data (National Oceanographic and Atmo-
spheric Administration, 2019) were used as input for
the atmospheric dispersion model HYSPLIT (Stein et
al., 2015). HYSPLIT also received georeferenced informa-
tion on emigrating aphids from the ecological compo-
nent of the model. References for data and other
sources of other information used to parameterize the
agroecological and meteorological models are available
in Wang et al. (2019).

Documentation to support interdisciplinary cohesion
followed established standards for documenting
individual-based (or agent-based) models in the field of
ecological modeling, including the overview, design con-
cepts, and details (ODD) protocol (Grimm et al., 2006,
2010).

2.1.3.2. Construction
The agroecological component of the integrated model
was constructed using the individual-based modeling
framework NetLogo (Wilensky, 1999). The need to
model aphid life-cycle processes at an acceptably
“causal” scale (see Section 2.1.2.2) prompted our choice
of an individual-based model. Our choice of NetLogo
over other types of modeling platforms within which
individual-based models can be developed (e.g., see Ch.
8 in Grimm and Railsback, 2005) was based on our
familiarity with NetLogo, its wide acceptance for
individual-based modeling in ecology (Grimm et al.,
2020), and its facilitation of model documentation via

the ODD protocol. Our choice of NetLogo imposed
computational limitations with regard to the number
of individual entities that could be represented explic-
itly during simulations, as we describe below. The mete-
orological component was constructed using the
established and widely used atmospheric particle trajec-
tory model HYSPLIT (Stein et al., 2015), which com-
putes airborne dispersal of aphids as inert particles.
The NetLogo and HYSPLIT components were connected
computationally with a custom-developed algorithm
“Link” (Koralewski et al., 2019), with data exchange
possible at a daily time step. The NetLogo platform is
often used for individual-based ecological models (see,
e.g., Thiele et al., 2014).

Two HYSPLIT input files EMITIMES and CONTROL are
used to pass georeferenced information on emigrants
from the agroecological component of the model. HYS-
PLIT estimates synoptic dispersal of aphids aloft. The geor-
eferenced information on aphid immigrants is passed
back to the agroecological component of the model, and
subsequent updates of landscape cell states follow. Con-
sidering the spatial resolution and the regional scale, and
to reduce the overall computational cost, a cohort of
aphids is represented by a collective super-aphid (Scheffer
et al., 1995).

An individual-based modeling approach allowed
explicit representation and customization of the stage-
and morph-specific reaction of sugarcane aphids to chang-
ing environmental conditions (e.g., sorghum phenological
stage and environmental temperature). These reactions, or
behavioral responses, of individual aphids were pro-
grammed in NetLogo via sets of equations, often embed-
ded within logical statements. The rules were realistic, that
is, they were interpretable in terms of sugarcane aphid
physiology and ecology on grain sorghum in the south-
central U.S. Great Plains. Population-level phenomena of
interest (e.g., migration events) then emerged as the
cumulative result of understandable cause–effect reac-
tions of individuals rather than as a correlate of an arbi-
trary index, such as calendar date.

The conceptual basis for our choice to use an exist-
ing atmospheric model was the universal applicability
of the laws of fluid mechanics upon which such models
are founded. Thus, our need for a realistic integrated
model, which required a “custom-built” agroecological
model to accommodate the unique biological character-
istics of the organisms involved, was not compromised
by the generality of a model based in the physical
sciences; of course, as per Levins (1966), we necessarily
sacrificed precision in the sense that any realistic eco-
logical model will contain stochastic effects, which will
inevitably reduce precision (Evans, 2012). As noted ear-
lier, aphids were treated as inert particles during the
migration phase. Parameterization of the particle dis-
persion model required specification of the point
sources (latitude and longitude) of particle emission
(aphid emigration), number of particles (aphids) emit-
ted, altitudes (meters above ground level) at which par-
ticles are dispersed (migration altitudes), and duration
(hours) of dispersal events (migration duration).
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Computational considerations limited the number of
entities that could be dealt with numerically during si-
mulations. We reduced the number of entities involved
in calculations by simulating the phenological develop-
ment of only one sorghum plant within each �2,500
km2 landscape cell and the population dynamics of the
aphids on only one leaf on each plant. That is, each
aphid population consisted of a series of daily cohorts,
with each cohort (superindividual) representing a variable
number of identical aphids. The number of aphids repre-
sented by a superindividual was initialized by a reproduc-
tion or immigration event and subsequently reduced by
mortality and emigration events. Each simulation, which
forecasted spatiotemporal patterns of aphid infestations
of sorghum during one growing season, required less
than an hour of runtime on a desktop personal com-
puter, and the necessary data input files for the meteo-
rological model fitted comfortably within available data
storage space.

Worthy of comment here is the fact that we did not
face model construction problems related to concurrent
development of the agroecological and meteorological
models. The following case study describes communica-
tion problems, both human and computational, associ-
ated with the integration of models that were being
developed concurrently (see Section 2.2.3.3). Although
we needed to develop a customized algorithm (“Link”)
to connect NetLogo and HYSPLIT, the information passed
between the two models (aphids treated as inert parti-
cles) did not change as a result of coding changes in
NetLogo during the development of the agroecological
model.

2.1.3.3. Model calibration
Model calibration was twofold. First, sorghum develop-
ment was calibrated to adjust simulated sorghum harvest
dates and number of days from planting to harvest to
those reported by USDA-NASS (2010). Second, the
regional migration of aphids was calibrated to adjust the
simulated spatiotemporal pattern of infestations to field
data from sorghum producers in Texas in 2017. This step
was accomplished by adjusting colonization probabilities
and did not require changes to the meteorological com-
ponent of the integrated model.

2.1.4. Uncertainty analysis

The primary source of uncertainty in the integrated SoS
model arose at the intersection of aphid terrestrial ecology
and airborne aphid dispersal. At the time this study was
published, we based this assessment on an informal sen-
sitivity analysis that consisted of qualitative analyses of
aphid infestation maps (based on expert opinion) pro-
duced by simulations with a variety of different iterations
of parameters in the agroecological and aeroecological
portions of the model (the maps analyzed were analogous
to those in figure 8 of Wang et al., 2019). We describe the
manner in which we conducted this initial, and a subse-
quent, sensitivity analysis in the next section on model
testing and evaluation. Initiation of emigration from local
populations likely depends on (1) host plant growth stage,

(2) pest density and (3) developmental stage, and (4)
weather or some combination thereof (Parry, 2013 and
references therein). There also was uncertainty regarding
duration of migration events, mortality while aloft (and
thus also vigor upon landing), and aphid responses to
meteorological factors in general while aloft (Eagles et
al., 2013). Since processes governing initiation of emigra-
tion were modeled at the surface of a sorghum leaf,
whereas processes governing airborne migration were
modeled over the entire south-central U.S. Great Plains,
scale issues pervaded uncertainty analysis. Furthermore,
end users of the model fell into two groups with different
spatiotemporal perspectives on system uncertainty.

Model purpose dictated that uncertainty analysis be
focused primarily on forecasts of timing of initial aphid
infestations of sorghum fields. Day-of-year of initial
infestation is a common metric used by both areawide
pest managers and sorghum producers to analyze and
discuss infestation dynamics. However, a statement that
an infestation may occur sometime during a 10-day
period is likely to be interpreted quite differently by
an areawide manager compared to a producer. From
the spatiotemporal perspective of an areawide manager,
a 10-day window of uncertainty associated with the
northward advance of an aphid infestation front over
the south-central U.S. Great Plains during the sorghum
growing season may provide useful planning informa-
tion. But from the spatiotemporal perspective of a pro-
ducer, such a window of uncertainty associated with the
first appearance of aphids in their sorghum field may
be less useful. Likewise, a forecasted infestation front
advancing via 2,500 km2 “footsteps” may provide useful
areawide management information but be less useful to
a producer with a few thousand hectares of sorghum.
Nonetheless, although synoptic areawide forecasts may
not contain the specificity desired by producers, they do
contain useful information if the forecast uncertainty is
interpreted within the appropriate spatiotemporal con-
text. Analogous to regional weather forecasts, uncer-
tainty inevitably increases with decreasing spatial
scale. SoS modelers might make more effective use of
this analogy when interpreting their uncertainty analy-
ses to end users.

2.1.5. Testing and evaluation

The initial assessment of model structure, linkages
between model components, and overall model function
was performed to verify overall correspondence with
model purpose and to identify potentially missing compo-
nents. Model behavior was then evaluated regarding the
ability to produce the general south-to-north temporal
trend in emergence of sorghum and the subsequent infes-
tation of sorghum fields by sugarcane aphids.

Simulated and observed spatiotemporal patterns of
aphid infestations were then compared to validate the
model. The simulated data were based on 10 replicate
stochastic simulations. The field data were collected in
Texas, Oklahoma, and Kansas during 2017 and were not
used in model development. The average simulated dates
of first aphid infestations were within the range of
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observed dates of first infestations in four of the five sor-
ghum growing regions (Wang et al., 2019; figure 5). The
ranges of observed dates were narrower than the corre-
sponding simulated ones, which was attributed to the fact
that all simulated infestations were detected whereas field
data were limited by temporal and spatial field sampling
constraints. Initial testing and evaluation details are avail-
able in Wang et al. (2019).

After publication of the work reported above, in which
model testing was limited by the ever-present combina-
tion of limited funding and impending deadlines, we were
fortunate to have the opportunity to extend our testing in
two areas of particular interest. The testing was basically
a sensitivity analysis that consisted of varying the value of
one parameter at a time in either the agroecological
model or the aeroecological model and qualitatively asses-
sing the effects on SoS model outputs. Both involved
aphid migration, the key process (which includes the pro-
cesses of immigration and emigration) connecting aphid
terrestrial ecology and airborne aphid dispersal. We were
interested particularly in evaluating more formally the
uncertainty in model outputs describing spatiotemporal
infestation trends resulting from uncertainty in the values
of key parameters affecting migration. First, we evaluated
the effects of altering timing of first appearance of aphids
in the southernmost U.S. Great Plains. The first appearance
of aphids is an initial condition of the agroecological
model representing immigration from an external source
(Mexico). Next, we evaluated effects of altering dispersal
duration, minimum dispersal height (meters above
ground level), and maximum dispersal height. Dispersal
duration and heights are parameters controlling airborne
dispersal in the aeroecological model. Results of these
new tests indicated alteration of the timing of first appear-
ance of aphids in the southernmost U.S. Great Plains
affected forecasted spatiotemporal patterns of infestation
(as indicated by georeferenced probabilities of first infes-
tations) throughout the entire south-central Great Plains
region (Koralewski et al., 2020a, 2020b). However, alter-
ation of the three dispersal parameters, over the 63 com-
binations of values tested, had little effect on
georeferenced probabilities of first infestations.

These new results more clearly identified the timing of
first aphid infestations in landscape cells as the primary
source of forecasting uncertainty in the integrated SoS
model. They also suggested some rescaling of modeled
processes that would be interesting to examine from the
standpoint of increasing utility of infestation forecasts for
sorghum producers, specifically, reducing the level of
detail with which we represent processes in the agroeco-
logical model and increasing the spatial resolution with
which we represent migration in the aeroecological
model. We have conducted a series of thought experi-
ments, which suggests accurate forecasting of timing of
initial infestations is more important than accurate fore-
casting of magnitudes of migrations and initial infesta-
tions within the context of areawide pest management
(Wang et al., 2020a). Given the high fecundity and rapid
development of aphids at temperatures characteristic of
the sorghum growing season, time lags between initial

infestation, and the presence of potential emigrants is
only a few days. Aphid colony growth versus local extinc-
tion depends on interaction of myriad processes (see Sec-
tion 2.1.2.2) that can be aggregated into a single stochastic
variable without increasing the level of uncertainty asso-
ciated with colony survival and production of emigrants.
However, increasing the spatial resolution of simulated
immigration points poses a technical problem. Although
there is increasing availability of high-resolution atmo-
spheric data and increasing sophistication of atmospheric
particle trajectory models, it is unlikely that data support-
ing field validation of fine-scale immigration forecasts will
be available in the foreseeable future.

2.2. The Campaspe case study

The Campaspe study focused on the long-term manage-
ment of water resources between agroeconomic and envi-
ronmental concerns at a regional scale, under a backdrop
of uncertain future climate and policy conditions. The
study area, the Lower Campaspe subcatchment, is in
South-East Australia and part of the Southern Murray–Dar-
ling Basin. The area is of ecological, socioeconomic, and
agricultural importance. Increasing agricultural and envi-
ronmental concerns and the impact of recent droughts
(e.g., the Millennium Drought, 1996–2010; Kendall, 2013)
have spurred a series of hotly contested water policy re-
forms. Regionally, riverine health is said to be poor (Mur-
ray–Darling Basin Authority, 2012; North Central CMA,
2014) and is set to become increasingly challenging, espe-
cially under uncertain climate conditions (Dey et al., 2019)
that are likely to exacerbate water availability. The Cam-
paspe integrated model (CIM) was developed to facilitate
discussion among stakeholders of the long-term implica-
tions of water management decisions and potential policy
changes, including conjunctive use of surface and ground-
water, under a range of uncertain futures.

The interplay between the scale decisions made by the
team and the implications regarding modeling scale and
treatment thereof is explored here. Some context on the
team and the model development approach is first pro-
vided (in Sections 2.2.1 and 2.2.2), followed by an explora-
tion of the scale issues, and the decisions in their treatment
in Section 2.2.3. The team aspects and decision choices
from a scale perspective are the focus of the exploration.

2.2.1. The team context

The team consisted of specialists and research students
across the fields of ground and surface water hydrology,
the social sciences, software engineering, economics, sys-
tems analysis, and uncertainty assessment. Local specia-
lists in water management, agricultural and ecological
matters were engaged as part of the project. Organization-
ally, the team spanned six Australian institutions. Sub-
groups within the team each focused on an aspect of
the SES. The bulk of the team had prior working relation-
ships conducting integrated assessments, but this was the
first time their models were so intimately integrated and
in a manner that accounted for feedbacks between
systems.
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The team previously underwent a self-reflection pro-
cess using a survey-based approach (discussed in Zare et
al., 2021). The “Monitoring and Evaluation” process
described therein aided in identifying opportunities for
improvement of practices that could better structure the
modeling processes and enhance team efficiency.
The account provided here differs from the first in that
the focus here is on the issues of scale that arise through-
out rather than demonstrating the value of self-reflection
in the modeling process. Common experiences then
inform the lessons learnt (discussed in Section 3).

2.2.2. Development and application

The CIM was developed to represent the spatiotemporal
forcing and system interactions that changing climatic,
market, and policy contexts have on water-related farm
decisions and profits, as well as catchment-scale groundwa-
ter and ecological concerns. Team members self-organized
to develop constituent models for this SoS model and, at
least initially, focused on the processes and issues of con-
cern specific to their system of interest. The approach, and
the number of people involved, then had interrelated im-
plications regarding the treatment of scale issues and the
decisions therein (which are explored in Section 2.2.3).
Here, the approach to construction and simulation of the
model is described to provide some context.

2.2.2.1. Construction
To address the spatiotemporal forcing and system interac-
tions that changing climatic and policy contexts have on
water-related farm and environmental concerns, an inte-
grated model built from a collection of system-specific
models was developed. Having experience in integrated
assessment, modelers were aware that models would be
dependent on data interoperated between models. A prac-
tical approach was taken in integrating these models, and
so the CIM operates on a linear feed-forward concept
where outputs from one model are fed into other models
with which it has a direct relationship (see Figure 1).
Interoperation of data occur at a daily time step for sur-
face and groundwater models and a two-weekly step for
policy and agricultural models. Feedback between models
occurs once at their respective time steps, except for the
two indicator models (i.e., ecology and recreation impact
evaluation) that are run at the end of a scenario. Further
detail on the models is provided in Appendix A.

It was known and expected early in the modeling pro-
cess that the constituent models were to be developed in
a variety of approaches and programming languages. Dif-
ferent development environments (e.g., laptop vs. super-
computer) would have to be accommodated. Technical
integration of the constituent models was achieved
through a purpose-built (software) framework developed
in Python. The primary reason for Python is that it is cross-
platform and is popular within the sciences as a “glue”
between models (Muller et al., 2015; Dysarz, 2018).

2.2.2.2. Simulation approach
Exploratory scenario modeling (ESM) was the selected
approach in simulating outputs with the CIM as it allows

for the consideration of a multitude of plausible futures in
conjunction with scenario, model, and decision uncer-
tainty (Maier et al., 2016; Horne et al., 2019). Certainly,
the involvement of researchers with a history and exper-
tise in uncertainty assessment brought considerations of
uncertainty to the forefront. Another key reason for the
adoption of ESM was to better enable the communication
of the scale of uncertainty to local stakeholders, which
may influence the decisions enacted (Maier et al., 2016;
Little et al., 2019).

Exploratory approaches involve many model runs, with
each run representing a possible plausible future (i.e.,
a scenario) under a variety of conditions. With the CIM,
these include hypothetical policy changes (e.g., conjunc-
tive use of surface and groundwater resources), changing
climate conditions, market prices for commodities and
input costs, and on-farm management options to allow
assessment of impacts on the agricultural, groundwater,
recreational, and ecological systems.

2.2.3. Scaling issues

The scales to be represented in the CIM were identified
through analyzing the needs and purpose of the individ-
ual systems of interest as well as the intersystem relation-
ships that needed to be represented. These included the
agricultural, hydrological (surface and groundwater), eco-
logical, climatic variability, policy, and recreational sys-
tems. Specific aspects of these to be represented by
models were informed by the range of local stakeholder
interests and concerns. Interactions between the seven
systems then enhance or degrade the ability to meet the
needs of all water users over time. From these, the spatial
and temporal scales (including extent and granularity)
that were amenable to the context and purpose of the
model were identified.

Nominally, each model was informed by both the nat-
ural and anthropogenic properties of the catchment.
These included water management zones (i.e., areas sub-
ject to differing policies), aquifer boundaries, the hydro-
logic subbasins in the study area, and the available data.
The spatial area represented by the surface water, ground-
water, and farmmodels is depicted in Figure 2, and a sum-
mary of the spatial and temporal scales internal to each
model is provided in Appendix A. Further details on the
modeling context and findings are available in Iwanaga et
al. (2018, 2020).

Because of the number of models and disciplinary ex-
perts involved and some geographic dispersion between
the team members, maintaining a high degree of cohesion
throughout the modeling process was challenging. In the
subsections below, a reflexive account is given of the con-
siderations of the SoS approach on the level of detail,
participation, interdisciplinarity and team cohesion, and
subsequent implications encountered in practice.

2.2.3.1. Scale of detail
Identifying and representing the systems of interest at
a level of detail commensurate with the modeling purpose
is one challenging aspect that leads to multiple, equally
plausible system representations. The farming system, for
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example, was represented as a collection of 12 spatially
lumped zones primarily determined by local planning
areas (known as the Goulburn–Murray Water Supply Pro-
tection Areas). Its model additionally operates on a 2-week
time step to match the typical irrigation time frame con-
sidered by farmers. In other words, anthropogenic consid-
erations (governance boundaries and water use behavior)
influenced the representation more so than biophysical
concerns (e.g., soil attributes).

As the quantities of interest were to be predicted pri-
marily at the catchment level, it may have been possible to
aggregate some representations to a coarser level without
compromising the modeled outcomes. Toward one
extreme, the catchment could be represented as a single
spatial zone in the farm model rather than the adopted 12
zones. On the other end, the ecological indicator model
provides a long-term indication of the average suitability
of streamflow for ecological purposes (e.g., averaged value
over decades). Expanding scale considerations to holisti-
cally capture the temporal dynamics, its influence on the
constituent systems, and how these may adapt and evolve
(e.g., adaptive management of stochastic environmental
flow) may influence modeled outcomes (Horne et al.,
2019; John et al., 2020). Further research is necessary to
determine whether increased or decreased detail is in fact
appropriate for the context in which the systems are re-
presented. A move toward a finer level of detail than that

chosen, however, would require more data at the farm and
field level (e.g., long-term groundwater pumping and irri-
gation usage) that were not available.

In an ideal setting with more time and resources, one
would undertake some analysis of the possible alternative
scale assumptions to explore their effects on model out-
puts. In this way, one could decide on the trade-offs
among different scale choices regarding improved model
performance versus resources required to implement
them. At the very least, for transparency, the scale choices
would be documented, and the ones selected for the mod-
eling justified with a narrative that captures the decision
context, the decision, and the known implications and
consequences of those decisions. There are many “good
practices” for documentation in both software and model
development. Software practices include the Architectural
Decision Records (Emery and Hilliard, 2008; Zdun et al.,
2014), which advocate storing such documentation along-
side code in version control. Likewise, the TRACE docu-
mentation framework suggests keeping “computational
notebooks” in version control as a complement to tradi-
tional “pen-and-paper” notebooks with similar aims of
documenting decisions made throughout the modeling
(Ayllón et al., 2021).

Processes and phenomena couched in ambiguous or
disciplinary-specific (or context-specific) terms may drive
misconceptualizations of the constituent models. For

Figure 2. Surface water area (Panel a, left-hand side with subcatchment identifiers annotated) and groundwater area
(Panel b, right-hand side) with farm management zones (semitransparent gray areas in both panels). Surface water
area extends further south compared to the other models, whereas the represented groundwater area extends further
east and west. Figure adapted from Iwanaga et al. (2018). DOI: https://doi.org/10.1525/elementa.2020.00182.f2
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example, surface and farm models both applied separate
representations of “effective rainfall.” Although the sur-
face water model provides a physically based estimation
of effective rainfall at a subcatchment level (see Croke and
Jakeman, 2004; Ivkovic et al., 2014), the farm model ap-
plies a soil moisture accounting method that is recom-
mended to farmers in the region for each of the 12
farming zones represented (Iwanaga et al., 2020). The
moisture accounting approach informs irrigation sche-
dules, helping farmers determine the timing and volume
of irrigation, but is not a physically based estimation, to
the surprise of some. Considerations around the scale of
interdisciplinary communication are explored in Section
2.2.3.3.

Often in SoS modeling, the appropriate level of detail is
not readily apparent, particularly during the earlier mod-
eling phases when model development tends to focus on
higher level considerations. Choices of scale are often
framed by one’s disciplinary focus, and individual prefer-
ences may result in decisions that lead down unintended
pathways (Lahtinen et al., 2017). Modeled scales, and their
most appropriate level of representation, are often not
readily apparent and could be construed to be somewhat
arbitrary, but not senseless, for example, when being con-
strained by “real-world” considerations. Insufficient con-
sideration of the interdisciplinary aspect and challenges
in cross-disciplinary communication may then have impli-
cations in the testing, evaluation, and application of the
model (i.e., different paths are taken, as in Lahtinen et al.,
2017), particularly in the (disaggregated) model develop-
ment phases (revisited in Sections 2.2.3.4, 2.2.3.5, and
2.2.3.6).

2.2.3.2. Scale of participation
A catchment-wide survey of farmers, a series of workshops
with local experts, and targeted engagement with ecolo-
gists and those representing recreational interests were
among the participatory processes used to collect expert
knowledge and perspectives. Furthermore, scenarios of
interest were identified and co-developed through stake-
holder engagement. In effect, system experts and stake-
holders act as representatives of the systems under
consideration including the issues and concerns that are
most pertinent with respect to the modeling. The partic-
ipatory process aided in constraining the overarching sce-
narios to those that were deemed both technically
plausible and socially acceptable regarding agricultural
water use (Ticehurst and Curtis, 2016, 2017).

Aside from the usual budgetary considerations (of
time, money, and personnel), timing was a crucial factor
in terms of the social (local stakeholder) engagement pro-
cess. Not all system experts and stakeholders could be
expected to attend face-to-face meetings due to timing
and scheduling conflicts and the limited resourcing avail-
able. Those involved ultimately had the available time,
inclination, and goodwill to participate in the time frame
selected and required by researchers. This is also true in
the context of writing this reflexive account as not all
involved in the original case study could contribute (as
noted in the Introduction).

A strong focus on the agricultural system and related
water management (albeit underpinned by surface and
groundwater modeling) is therefore evident in the model
conceptualization as most stakeholders were linked to the
agricultural and water sector. A consequence is that the
model does not consider certain sociocultural values such
as those held by local indigenous peoples. Potential adap-
tive management processes wherein water use policies
change in response to improving or deteriorating ecolog-
ical flow suitability were also not considered to be in
scope (see description of the ecology model in Section
2.2.3.1).

Although not an active or conscious decision, the con-
sequential filtering of participants in this manner may
have introduced a self-selection bias in the sample of local
stakeholders that took part in discussions. Commensurate
with the specified scope—one of investigating and discuss-
ing water management and policy changes under uncer-
tainty—future work building on this case study will likely
feature a greater emphasis on the social dynamics. Incor-
porating reflexivity as part of the modeling can aid in
managing the scale of participation and recognizing
when/where the bounds may not suit objectives. In the
grander scheme of things, however, enabling such work
requires that commensurate funding be available to
enable greater levels of participation (Iwanaga et al.,
2021b) and to capture lessons learnt through reflexivity
(Montana et al., 2020).

2.2.3.3. Scale of interdisciplinarity and communication
Interdisciplinary work at the heart of SoS modeling comes
with unique challenges not found in single-system con-
texts. Many of these are detailed by Iwanaga et al. (2021b),
but key to the discussion here is that in SoS, there are
several sectors and disciplines involved with associated
systems and models being concurrently developed and
ultimately integrated. Changes to one model, because of
new information or simply because of continual improve-
ments, may necessitate changes to another model. A con-
tinual challenge throughout the project lifecycle was
effectively scaling communication and participation to
an appropriate level to facilitate a deeper understanding
of the SES being modeled. Modelers self-organized into
subteams to accomplish goals but were, for the most part,
focused on their sectoral concerns. Separate and mis-
matched conceptualizations of the modeling arose
throughout the modeling cycle, in part due to this
partitioning.

Members of the team can take the role of a mediator,
resolving or otherwise addressing inconsistencies and mis-
matches. Methodological conflict can be addressed at the
technical level via model interfaces, which translate one
conceptualization to another. In the CIM, for example,
lumped 2-weekly farm water extractions were translated
into daily averages for the ground and surface water mod-
els. Mediators may also handle task-related and interper-
sonal conflict (De Dreu, 2008) but may only be effective in
cases where the role is assumed by someone with suffi-
cient standing within the team and/or a cooperative team
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culture exists (De Dreu, 2008; Gren and Lenberg, 2018;
Hidalgo, 2019).

Certainly, those managing self-organizing teams can
guide interdisciplinary communication by holding regular
meetings or team bonding activities (as suggested in Zare
et al., 2021). Prior research suggests goal interdepen-
dence—where the success of one is contingent on the
success of another—can improve team performance by
setting the stage for effective collaboration (Knight et
al., 2001; Tjosvold and Yu, 2004; Lee et al., 2015), partic-
ularly where flexibility and rapid response to complex and
emergent issues are important (cf. Hansen et al., 2020).
Effectiveness of such management strategies is likely to be
highly dependent on team context, however. Depending
on the larger cultural context, it may be preferable to
allow (or guide) team cultures to evolve organically with-
out direct intervention on the frequency and scale of team
interactions (e.g., by mandate from management).

In the case of the CIM, each system of interest had
different—but at times overlapping—concerns and issues
(with some examples provided in Section 2.2.3.1). Close
coordination between collaborators was needed to avoid
conceptual mismatches in the models and their coupling,
given the variety of scales involved and the separate, but
interdependent, development paths for each model. Main-
taining a high frequency of face-to-face meetings between
team members was problematic because of the geo-
graphic spread of participants and financial constraints
limiting travel, with the default mechanisms being emails
and phone calls between individuals and within sub-
groups. In retrospect, more regular virtual meetings with
the whole team may have helped in the longer run, par-
ticularly around technical scaling issues.

It is now seen by the team that the use of technologies
and practices available to ease the burden of maintaining
communication and documentation of decisions would be
valuable (Zare et al., 2021). Certainly, there was a prefer-
ence toward established, often disciplinary-specific, work-
flows rather than approaches that are perhaps more
suitable for the interdisciplinary SoS context wherein
team members are also geographically dispersed. For
example, most modelers involved in writing code did not
actively use version control, making difficult the review
and dissemination of code, changing code, and document-
ing the reasons behind those changes. Code was instead
often shared via email. Given the evolving needs and re-
quirements of both the modeling and interdisciplinary
context, it is expected that new skills and approaches
should be progressively tried and, where found applicable,
incorporated into the modeling workflow (Knapen et al.,
2013; Hidalgo, 2019).

Separate and mismatched conceptualizations and ex-
pectations (forewarned in Knapen et al., 2013; Kragt et al.,
2013; Verweij et al., 2010) of model components arose
through insufficient communication. The issues that con-
sequently arose were challenging, not to mention time
consuming, to identify and correct. To give examples, in
one case, numerical values were hardcoded into a model
with the expectation that they would be changed manu-
ally for every run; an approach that is inappropriate given

that the exploratory approach requires hundreds to thou-
sands of model runs. In another case, input fed in from
another model was found not to affect any calculations, as
the integrated context was not considered.

It is worth noting that commonly suggested solutions
to the above, such as adopting “advanced” communication
platforms or increasing the frequency of communication,
are tools and strategies that can help maintain existing
interdisciplinary foundations (to paraphrase Heffernan,
2011). Care should be taken as use of such communica-
tion technologies should not be conflated with, nor
a replacement for, interdisciplinarity itself. Recent
research suggests continual monitoring, regulation, and
a collaborative team culture are ideal, lest discrepancies
affect overall team efficacy and performance (Driskell
et al., 2020). Supporting lines of evidence show that a level
of empathy and receptiveness to the experiences and
knowledge outside of one’s own (“social intelligence” in
Woolley and Malone, 2011) is also needed to effectively
leverage the diverse abilities found within interdisciplin-
ary teams (Thomas, 2012; Thomas and McDonagh, 2013).
This suggests that it is the culture of empathetic open-
mindedness, inclusivity, and a motivation to achieve team
goals that likely drives communication and the cross-
pollination of interdisciplinary ideas, more so than the
method and scale of communication.

2.2.3.4. Computational scalability
The computational approach is a pertinent scale consid-
eration, especially when uncertainty primarily involves
running many scenarios. In this respect, the computa-
tional scalability of the CIM became a concern to manage,
mainly due to the combined runtime of the constituent
models and overhead associated with their interactions. A
major decision taken was to run the SoS model on a 5-km
square grid rather than the initially chosen 1-km grid.
Even then, a single run of the CIM could take 30 min or
more, with initial implementations prior to optimizations
exceeding an hour. Runtime was not an obvious issue
during the disaggregated development of constituent
models, even when partially integrated, especially early
in the development process when the full scale and num-
ber of interactions was neither apparent nor known.

One technical barrier to increased computational per-
formance was the use of files as an intermediary format to
interoperate between models. This decision was somewhat
imposed rather than selected due to the use of legacy
models. Using the MODFLOW implementation for the
groundwater model component as an example, computer
memory (i.e., RAM), was far more limited and expensive at
the time of MODFLOW’s development in the 1970s
(McDonald and Harbaugh, 2003). Consequently, interme-
diate results and parameter values between time steps (for
the purpose of the CIM) were required to be written out to
files rather than kept in memory. Although this process
was automated through the FloPy package (Bakker et al.,
2016), the comparatively high cost of file read/write activ-
ity was unavoidable and constrained the possible avenues
for optimizing runtime performance. The issue was side-
stepped by using a high-performance (at least at the time
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of writing) workstation with 32 cores, running thousands
of simulations over a period of days to obtain results. This,
however, is not ideal and may not be a viable solution for
many.

Use of Python itself became an issue as the number,
and complexity, of the models that were coupled
increased. Python cannot achieve the same level of com-
putational performance as lower-level languages (e.g., Ju-
lia, C, Fortran). The same is true for any high-level dynamic
and interpreted programming language. Under usual cir-
cumstances, this is not a big issue as Python is used to
leverage libraries and methods written in lower-level lan-
guages (see, e.g., NumPy; Harris et al., 2020), or otherwise
“slow” parts of a Python program can be abstracted away
into a lower-level language (usually Cython or C). Both
strategies were taken with the farm model to improve
computational performance. In the case of the CIM,
Python handled the interoperation of data between mod-
els and so computational performance could not be
improved without significant overhaul of the design and
structure of the interfacing code, which was not possible
in the available time.

As noted earlier (in Section 2.2.2.1), Python was
selected for its common use as a “glue” language in the
expectation that a variety of languages and approaches
would be adopted by the team. It is also well-regarded
as a platform for rapid prototyping. In future, an alterna-
tive language that is as flexible as Python but is more
efficient computationally could well be sought as
a replacement. High-performance integration necessitates
a high-performance language. The Julia language (Bezan-
son et al., 2017), a recent addition to the scientific pro-
gramming landscape, is one promising avenue in this
regard.

2.2.3.5. Testing and evaluation
One salient issue that arose in the development of the CIM
was the difficulty in assessing the behavior and perfor-
mance of the integrated model. Calibration of models all
together throughout their development was not possible
as each model component was at a separate stage in the
model cycle. It is acknowledged that models that are cali-
brated separately may exhibit unexpected behavior when
integrated. Model behavior, both in the integrated and
disintegrated context, was therefore evaluated against
available observations and through stakeholder
engagement.

Additional concerns revolved around uncertainties that
will propagate and compound. Conceptual (or hypothesis)
testing was one approach applied to address such con-
cerns. This testing approach involved the identification
of questions with a known range of acceptable answers
and the subsequent testing of these against the model.
The conceptual testing approach is adjustable to the avail-
able data and is especially useful in data poor contexts.
Framing the context surrounding expected model behav-
ior provides a high-level check of conditions, which can
indicate the model is not fit for purpose and that changes
are required. The greater the comprehensiveness of such

tests, the higher the confidence that the integrated model
is fit for purpose (Davidson-Pilon, 2016).

One form of conceptual testing applied was property-
based sensitivity analysis. The property-based approach
attempts to falsify the conceptual integrity of the inte-
grated model by the sensitivity of model parameters
within a restricted area of parameter space (Iwanaga et
al., 2021a). Unexpected sensitivity results (e.g., too high,
too low, or no sensitivity) then indicate an issue with the
model implementation or integration, such as the inad-
vertent absence of model coupling. Failure of a model to
conform to expected/known behavior can then falsify the
assumption that the model is functioning correctly or
alert to a change of context that invalidates previous
understanding of the model (Claessen and Hughes,
2000). Failure of a test then avoids the computational
expense of conducting a larger scale global analyses,
which, due to the presence of errors, would return mis-
leading and unreliable results.

2.2.3.6. Complexity and model uncertainty
A central challenge in the development of the CIM was
determining an appropriate level of complexity while also
considering its influence on (model) uncertainty. Com-
plexity of the CIM arose from the variety of workflows,
terminologies, expected spatial/temporal scales, and re-
quirements both to individual constituent models and
those pertaining to the SoS model and context. Modeler
experience (and thus preferences) and available data
informed several considerations throughout the modeling
process.

As an example, the ground and surface water models
were implemented through modifications of existing
models, a decision based on prior modeler experience.
These were MODFLOW-NWT with FloPy (Bakker et al.,
2016) and IHACRES_GW (Ivkovic et al., 2014), respectively.
Modified implementations of the groundwater model
were additionally applied for other studies that were
occurring concurrently (e.g., Partington et al., 2020). Avail-
able climate data were at a 5-km grid resolution, which
was then the minimum granularity possible, without
using interpolation, for the operation of the groundwater
model. These models provided inputs for the policy, farm,
and ecological indicator model with data upscaled or
downscaled as appropriate for their respective purposes
(see Appendix A).

The number of models involved and their structure,
parameters, resolution/granularity, and data (and sources
of data) were all sources of complexity. Increased complex-
ity through the inclusion of additional systems, their in-
teractions, and computational infrastructure generally
results in compounding uncertainty (Dunford et al.,
2015). This is the uncertainty that arises from the interac-
tions between constituent models with the possibility of
each interaction introducing, and propagating, some error
(Refsgaard et al., 2007; Dunford et al., 2015). The error
propagated may differ depending on what computational
platform is in use (Iwanaga et al., 2020).

Additional model complexity allows for further inves-
tigation into the possible sources of uncertainty to be
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considered. Reduction of model complexity and uncer-
tainty is often conflated with reducing its parameteriza-
tion (or dimensionality), which facilitates the apportioning
of parameter uncertainty to a smaller number of (consid-
ered) uncertainty sources. Reducing complexity via con-
straining the number of parameters does not, however,
reduce uncertainty in the sense that the effect of random
influences or incomplete knowledge is reduced (aleatory
or epistemic uncertainty, respectively, as defined in Beven,
2009). On the other hand, model parameterization can be
reduced where sensitivity and/or other analysis show that
quantities of predictive interest are not influenced by cer-
tain choices. These sources of uncertainty can be explicitly
documented following processes and considerations as
described in Refsgaard et al. (2006, 2007), van der Sluijs
(2007), and Reichert (2020).

The decision to adopt established disciplinary-specific
models (e.g., MODFLOW-NWT) did quicken model devel-
opment compared to starting from scratch but introduced
additional complexity and considerations. For one, the
MODFLOW-based model was to serve multiple purposes
(across multiple studies), and so infrastructure to support
the generic application and data processing was devel-
oped. Use of MODFLOW in this context is one example
of a constituent model that is amenable to the overarch-
ing modeling purpose, but not necessarily complementary
to it. Other constituent models of the CIM required indi-
cations of average depth to groundwater for both general
and specific locations, whereas MODFLOW operates on
a grid-cell (or mesh). Given MODFLOW’s computational
expense and additional complexity involved, it may have
been worthwhile to develop a bespoke model specific to
the Campaspe context of lesser complexity. Both ap-
proaches are arguably acceptable.

The question then is what level of complexity is war-
ranted for the purpose and context of the model, recog-
nizing constraints due to resources and legacy issues. In
the context of the CIM, different scenarios to be explored
required different model structures and formulations.
Constituent models that could generically represent sys-
tem behavior across the range of scenarios were consid-
ered a necessity. This contrasts with the development of
several models specialized for each scenario context, for
example, separate models for wet climate conditions,
enactment of conjunctive water use policies, and so on.
Considerations external to the SoS modeling exercise, as
well as prior modeler experience, were additional factors
that influenced the choice of constituent models, their
implementation, and the process of modeling. Choice of
preexisting models arguably allowed models to be devel-
oped more quickly, but at the cost of adding model
complexity.

A point of interest here is that such considerations
regarding the model complexity and uncertainty and their
effect on quantities of interest cannot be known in
advance, at least not without significant experience with
the specific set of constituent models that make up the
SoS model. In the context of model development, changes
to constituent models invariably happen, which may suf-
ficiently change the context of their application.

Prematurely attempting to reduce model complexity and
uncertainty before the full context is known (e.g., prior to
model integration) is therefore inadvisable (as alluded to
in Section 2.2.3.3).

3. Lessons learnt
We conclude our reflexive exercise on two SoS case studies
with a synthesis of lessons across five fundamental themes
elicited through reflexive self-analysis and discussions
between and across the teams involved and supported
by corroborating experiences drawn from existing litera-
ture. We, at least, would take these lessons forward and
incorporate into future SES modeling activities. Although
these lessons are also somewhat applicable to single sys-
tem modeling, we believe they become especially impor-
tant in the interdisciplinary SoS modeling context. It is
acknowledged again here that although efforts toward
discussions with team members were made, not all were
able to contribute to the reflexive accounts presented.
Certainly, availability and the necessary time commitment
placed a limit on the scale of participation (as in Section
2.2.3.2).

3.1. Foster constant collaborative learning and

reflection

The two case studies detailed in this article both featured
a wide variety of disciplinary experts working together.
One challenge is a risk that interdisciplinarity can be
eroded as researchers gravitate toward the systems that
they are familiar with. In the GPSCA case study, even
though team members may have initially viewed the prob-
lem at hand through different disciplinary lenses, team
members shared certain fundamental concepts. In the
Campaspe case study, some conceptual mismatches arose
that led to problematic issues in the integration of mod-
els, lengthening the development/modeling cycle. In our
experience, the most efficient way to move an interdisci-
plinary conversation forward is to look backward in search
of those shared concepts (Banerjee et al., 2019). Once we
have found common ground, we can move the conversa-
tion forward along diverse paths under the guidance of
experts who then can explain where they are leading us
and why via timely additions of new concepts to our com-
mon knowledge base. Common roots were found in the
concepts of system dynamics (e.g., Forrester, 1961, is a sem-
inal work in industrial dynamics and is well-known to
systems ecologists) and general systems theory. An open
attitude and commitment to continual learning, both
individually and as a group, is necessary for these guided
paths between disciplinary domains to appear (empa-
thetic horizons in Thomas and McDonagh, 2013) and
break down disciplinary barriers (MacLeod and Nagatsu,
2018). At the very least, shared concepts avoid potential
mismatches in modeler understanding.

Communication among interdisciplinary team mem-
bers is crucial toward the development of a cohesive sys-
tems representation, and its importance cannot be
understated. One strategy is to adopt documentation prac-
tices to ensure the existence of a collective, and cohesive,
body of knowledge (Cockburn and Highsmith, 2001; Kragt
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et al., 2013). Specific to scale choices, the level of shared
understanding and other major considerations could be
explicitly catalogued in a “core” table. This table would
detail the spatial and temporal scales (Koo et al., 2020),
knowledge sources (Kragt et al., 2013), expected compu-
tational requirements, major uncertainty sources (Re-
fsgaard et al., 2007; van der Sluijs, 2007; Reichert,
2020), the relevant system(s) affected, and the modeling
process (Hutton et al., 2016; Ayllón et al., 2021).

The ODD protocol (Grimm et al., 2006, 2010) was used
to capture these considerations in the GPSCA study, adop-
tion of which mandates that pertinent aspects of scale and
their representations are documented. The common team
goals and the minimum skills/knowledge needed to
achieve those goals (e.g., specific expertise in aspects of
software and model development) could advantageously
be made explicit as part of this process as well. Moreover,
such a table is recommended here to be continually up-
dated to consider new information and lessons learnt
throughout the modeling cycle.

Others have suggested increasing the number of meet-
ings on the progress of the modeling and to incorporate
reflexive evaluation of the team (Preston et al., 2015; Don-
gen et al., 2018; Delice et al., 2019; Gool et al., 2019).
Increased frequency and number of meetings (whether
face-to-face or virtual) in effect raises the minimum num-
ber of interactions between team members so that knowl-
edge sharing can occur. Contextual examples of how these
may be helpful with regard to teams are discussed else-
where (see Kragt et al., 2013; Cockerill et al., 2019; Zare et
al., 2021); however, support for reflexive activities must be
available at the organizational level (Salas et al., 2018).

What is perhaps more important than meetings, how-
ever, is a team (and organizational) culture that allows for
empathetic and inclusive communication to occur. Team
members may speak different languages or at least adopt
heavy disciplinary accents. Preferring one language or dia-
lect at the expense of a “shared language” (Thomas and
McDonagh, 2013) could lead to a disregard of relevant
knowledge no matter the number, length, format or
medium of meetings, or how expansive the documenta-
tion (as alluded in Section 2.2.3.3). An overreliance on
technological solutions to communication without
acknowledging the role of team and organizational cul-
ture may lead to more, rather than fewer, misunderstand-
ings (cf. Andres, 2012; Benishek and Lazzara, 2019).

In addition to the reflexive monitoring and evaluation
of team processes (as in Driskell et al., 2020; Zare et al.,
2021), we recommend that such processes additionally
account for the culture that underpins knowledge sharing
and communication. Ignoring the role of team and orga-
nizational culture risks naturalizing the intuitions of its
most privileged members (cf. James, 2014). An open atti-
tude and commitment to continual and collaborative
learning, both individually and as a group, is necessary for
disciplinary barriers to be broken down and perspectives
to be embraced (Woolley and Malone, 2011; Thomas and
McDonagh, 2013; MacLeod and Nagatsu, 2018). In
essence, teams would ideally culturally evolve throughout

the modeling cycle toward more effective models of (inter-
disciplinary) cooperation (cf. Wilson and Wilson, 2007).

3.2. Document the rationale and reasons for scale

choices

Debates about appropriate scales at which to represent
structures and processes in multidisciplinary models
should pervade discussions among modeling team mem-
bers, particularly during conceptualmodel formulation and
initial attempts to quantify linkages among model compo-
nents. Most commonly, however, we begin model formula-
tion with preconceived notions about the appropriate
scales with which to represent the structures and processes
in those parts of the system with which we are familiar,
framed by workflows with which we are accustomed to.
These preconceived notions typically are based on the way
we have found most useful to think about such structures
and processes in the past. Thus, the conceptualizations are
coherent from a disciplinary perspective, but the cohesion
breaks down when encountering other disciplines.

Our perceived usefulness of system representations is
biased by our disciplinary training and experience (Huu-
toniemi et al., 2010). Such preconceived notions may
blind us to alternate, yet still valid, representations or
otherwise cause their dismissal as being of little use or
simply incorrect. For example, the choice of a daily time
step in the GPSCA study was informed by a shared famil-
iarity with daily weather reports and the concept of
degree-days of development of plants and insects. A
2-day time step may have been considered, thus cutting
computing time in half, arguably without sacrificing use-
fulness of model output to end users. But a 2-day time
step never crossed our minds. With the Campaspe case
study, the primary focus on water-related agricultural con-
cerns is partly a result of the level of engagement with
agricultural experts (see Section 2.2.3.2), but also that the
agency requirements for assessing the instream and ripar-
ian ecological impacts were quite modest. Consequently,
the possibility of representing adaptive management pro-
cesses of ecological issues was not actively considered
(described in Section 2.2.3.1).

In building a shared understanding to develop a cohe-
sive and complete treatment of scale, it may be more
productive to agree to disagree on certain scaling issues
that are particularly problematic during conceptual model
formulation. Issues that are virtually impossible to resolve
conceptually were almost always, in the case of the GPSCA
study, clarified via quantification of the factors involved.
The issues were clarified in the sense that differences in
model output resulting from the use of different scales are
made precise. Another reason to move on is that scale
transitions that seem easy to accomplish when described
in narrative form may be surprisingly difficult to accom-
plish computationally and which may require modifica-
tions that obviate the initially identified scale problems.

The choices made regarding scale were therefore influ-
enced by the people involved and of course their perspec-
tives and judgments. A “perfect” model is not possible, so
we choose scales, which we believe best represent the
system given “real-world” constraints. These choices are
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a series of subjective decisions involving consideration of
model objectives and available information and resources
at the time. A different group of people may arrive at
a completely different, and perhaps equally plausible,
valuable, and useful, model. The considerations and
choices in the treatment of scale should be documented
and made transparent for this reason. Such documenta-
tion allows researchers external to the process (and their
future selves) to better understand the sociotechnical con-
text in which the modeling decisions were made, the rea-
soning behind the decisions, and any implications or
consequences from those decisions. Thus, documentation
of the process helps illuminate model limitations and
uncertainty (Refsgaard et al., 2006; van der Sluijs, 2007;
Reichert, 2020).

We offer a final comment regarding the paucity of
documentation available describing the debates preceding
final SoS scaling decisions. For example, the ODD proto-
col, which is widely used to document agent-based models
in ecology and which we used to document the GPSCA
model, begins with a statement of model purpose fol-
lowed by a second section that defines model entities
(agents), state variables (attributes of agents), and (tempo-
ral and spatial) scales. Although this second section re-
quires a justification of the final scale choices for each
model component, it does not require documentation of
the pros and cons of the alternative scales that were
debated over time. Thus, a rich source of information
defining the larger context of the modeling decisions,
which would be particularly useful when contemplating
reuse of the model, often is lost.

3.3. Acknowledge that causality is defined

subjectively

When we described process representation in our GPSCA
study (Section 2.1.2.2), we referred to the concept of a con-
tinuum of levels of perceived causality, of “subject-matter
interpretability,” extending in a theoretical sense from
purely phenomenological/correlative to entirely mecha-
nistic/explanatory. In practice, how different people per-
ceive the representation of any given process in an SoS
model will almost surely differ. In terms of model credi-
bility, the important point is that all stakeholders, and
here we include members of the modeling team as well
as end-users of the model, perceive that the model behav-
ior of most interest to them results from processes repre-
sented at an acceptable level of causality, at an acceptable
level of subject-matter interpretability. Of overriding
importance is that end users can explain, and hence
understand, model output in cause–effect terms meaning-
ful to them. But it also is important that members of the
modeling team perceive the representations of processes
in their areas of expertise as scientifically credible, given
the objectives of the integrated SoS model. The cause–
effect relationships responsible for output of the inte-
grated model may be explained acceptably to end users
in highly aggregated terms, whereas subject-matter spe-
cialists may require relatively detailed representations of
some modeled processes in order for them to acknowl-
edge those representations as causal.

Debates related to scale decisions in integrated SoS
modeling are inextricably related to perceptions of cau-
sality. Scale decisions include not only those associated
with defining temporal and spatial scales per se but also
decisions associated with identifying which components
and processes in the real system to include in the model
and deciding at what level of detail to represent them. In
our GPSCA case study, such debates arose regarding the
level of detail with which to represent processes related
to the aphid life cycle and the phenological development
of sorghum. As described in Section 2.1.2.2, the final
decision, which resulted from a lively debate among
modeling team members, was to represent these pro-
cesses as a function of environmental temperature mod-
ified by aphid density. Our meteorologist/aeroecologist
would have been satisfied with a “causal” representation
of aphid population dynamics that represented popula-
tion density as a function of number of days since initial
infestation and emigration as a function of density. Such
a representation was perceived as unacceptably phenom-
enological by our entomologist. Our entomologist ini-
tially proposed a more mechanistic representation of
the aphid life cycle, which included, among other things,
mortality due to natural enemies (predators and para-
sites). However, in view of the site specificity of such
relationships and the fact that the purpose of the inte-
grated SoS model was to simulate areawide spatiotem-
poral patterns of aphid infestations, our entomologist
agreed to a simpler “causal” representation of the aphid
life cycle.

As mentioned in Section 2.2.3.1, there were several
approaches to represent the spatial areas for the various
models in the Campaspe case study. Each were arguably
plausible, and objections could be raised depending on
modeler perspectives and understanding of the modeling
context. Here, we remind modelers that representing
greater detail may not be appropriate given the model
purpose and context. The “bigger picture” should be kept
in mind.

The lesson learnt is that it would serve modeling
teams well if their members explicitly acknowledged the
subjective nature of their perception of causality at the
very beginning of the modeling process. A discussion
focused on the concept of a continuum of levels of per-
ceived causality would be time well spent. The initial
response to such a discussion most likely would be
“everyone already knows that,” which probably is true
enough if viewed as an abstract concept. But based on
our experience, we are quite sure that if early discussions
among modeling team members were documented and
reexamined, it would be obvious that the subjective
nature of defining causality is seldom recognized in
practice.

3.4. Embrace change and reflect throughout the

iterative modeling cycle

The modeling process is commonly described as undergo-
ing a “cycle” of iterations of a set of (concurrent) phases
and steps. Although the number of steps and activities
conducted may differ depending on purpose and
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conceptualization of the cycle (Boehm, 1986; Jakeman et
al., 2006; Pianosi et al., 2016; Badham et al., 2019; Arnold
et al., 2020; Zare et al., 2021), each step is intended to be
revisited as often as needed to incorporate newly discov-
ered or available knowledge, or ideas generated on deep
reflection, as “[t]he first model is rarely the best model”
(Sterling et al., 2019). It may at times be necessary to
abandon an iteration and start over.

Arguably, recognizing and embracing the need for
change is fundamental to the flexibility that iterative ap-
proaches afford (Dingsøyr et al., 2012; Strode et al., 2012).
In the SoS context, the modeling process may have to be
restarted due to discovery or incorporation of new knowl-
edge for another constituent system, necessitating changes
to one’s own constituent model or even the modeling
process. A shift in scales may be a (pragmatic) necessity
to accommodate the integration of constituent models
and such a decision may be governed, or have implications
toward, data availability/requirement, computational
capacity, and model purpose.

Change is inevitable due to the complexity of the sys-
tems being studied and the speed at which new informa-
tion may come to light. Where team members are more
accustomed to single-system investigations, a cultural
shift in thinking may be required to enable flexible
response to the (continuous) adjustment of scale, in all
its forms. New information may necessitate skills to be
acquired or adapted to an unfamiliar modeling context
(Knapen et al., 2013; Voznesenskaya et al., 2019). As noted
in Section 3.1, being overly tied to a single disciplinary
perspective results in an inflexible system conceptualiza-
tion that is resistant to “new” knowledge or perspectives.
The adoption of new practices, technologies, and work-
flows more amenable to the new modeling context is
therefore restricted and hampers team productivity (Cock-
burn and Highsmith, 2001; Hoda et al., 2013). The lack of
version control of model code and data and the conse-
quent effect in the development of the CIM was given as
an example in Section 2.2.3.3. Change should be
embraced for the lessons learnt to be effectively carried
over between iterations and for knowledge to be cross-
pollinated between team members (Knight et al., 2001;
Lee et al., 2015).

3.5. Regularly test the integration

The reality of iterative development means that (1) con-
stituent models may be of varying complexity and devel-
oped against different schedules, (2) changes made in one
model may necessitate changes in another, (3) the neces-
sary computational requirements and available computa-
tional infrastructure may preclude the possibility of
calibrating all models at once, and (4) issues may only
become a highlighted concern in the integrated context
as the implications of the scale and volume of interactions
may not be apparent until all models are coupled.

A somewhat naive view is that any topically relevant
sectoral model can be coupled and applied to represent an
SoS. This may be true at a technical level but without
regard for its conceptual, and contextual, appropriateness,
the resulting model is likely to be unwieldy, overly

complex, and unsuited for a given purpose (e.g., Voinov
and Shugart, 2013). In addressing water resource manage-
ment problems, for example, Croke et al. (2014) argue that
hydrological model choice requires engagement with
appropriate concepts, model structures, scales of analyses,
performance evaluation, and communication. Again, such
issues may not be evident until the scale of the modeling
becomes sufficiently expansive. Thus, the relevance of any
constituent model to the integrated model’s purpose and
the propagation of uncertainty needs serious evaluation.

Specific to model coupling, future work could investi-
gate a typology of design elements, which make models
more amenable for their use in SoS modeling contexts and
classify system models along those lines. In the short-to-
medium term, strategies and plans to address or mitigate
the impact of a constituent model that turns out to be not
wholly suited to the SoS modeling context, such as when
the scales of the problem involved increase could be
explored. In the case of the CIM, computational perfor-
mance became a concern as the scale of the modeling
increased. One approach would have been to develop
a model specifically for the integrated context, as opposed
to the (continued) use of a legacy model. In the end, the
issue was sidestepped by leveraging high-performance
computing infrastructure. Ideally, such considerations
would be considered and planned for early in the model-
ing process.

Methodologically, conceptual-or-hypothesis testing is
one (but not the only) approach that may be applied to
address concerns around the structure of the SoS model
(Wilson et al., 2017; Iwanaga et al., 2020). Such testing
approaches involve the identification of questions with
a known range of acceptable answers that the SoS model
can produce. The greater the number of such tests that can
cover the range of possible realities being simulated by
the model, the more confident modelers can be that the
integrated model is functioning correctly, both technically
and conceptually. Property-based sensitivity analysis is one
approach (of many) leveraged in the development of the
CIM to alert modelers of technical and conceptual issues
in model integration (Iwanaga et al., 2021a). Continual
testing and integration throughout the modeling process
could then highlight context change (e.g., cases wherein
previous understandings are falsified) and facilitate under-
standing of model structure and behavior (Iwanaga et al.,
2021a).

In this manner, conceptual tests frame the context for
incorrect model behavior. Frequent integration and test-
ing, even at this highly aggregated level, is likely to high-
light conceptual mismatches between the knowledge of
disciplinary experts and model implementations. Testing
of the models and their integration throughout the
development cycle then plays an important role in ensur-
ing issues are identified earlier in development (Warren,
2014). Earlier correction of issues helps to avoid
“wasteful” model runs and quickens the pace through
the modeling cycle. It would be beneficial if all modelers
involved strive to enable repeated, and frequent, integra-
tion and testing.
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Appendix A

Table A1. Individual systems represented in the Campaspe integrated model and their spatial, temporal, and data
aspects. DOI: https://doi.org/10.1525/elementa.2020.00182.t2

Constituent System Spatial Temporal Metrics/Data

Climate 5 km grid (0.05�,
interpolated)
matching the
groundwater area

Daily time step. Available data
constrained the time frames
considered

Data represented differing levels of
aridity ranging from extreme dry
to “wet” over a 30-year time frame.
Data sourced via Climate Change
in Australia (CSIRO, 2020)

Groundwater,
implemented with
MODFLOW-NWT with
FloPy interface (Bakker
et al., 2016)

5 km grid, seven layers of
variable thickness
based on
hydrogeologic units

Higher spatial
resolutions were
impractical due to the
long runtime of
MODFLOW-NWT

Largest spatial extent,
extending further west
than other models.
Covers 4,896 km2.

Assumes irrigation
events are uniformly
applied across farm
zone areas

Daily time step

Assumes irrigation input from the
farm model is to be uniformly
disaggregated across 14 days

Estimates distance to water table,
which influences farm
groundwater pumping costs
(farmer decisions) and
groundwater allocations (policy)

Provides estimations of surface–
groundwater exchange along the
river

Surface water,
implemented with
IHACRES_GW (Ivkovic
et al., 2014)

Lumped, node-based
routing model. Nodes
represent
subcatchments. Covers
3,518 km2

Extends further south
compared to the
groundwater model to
estimate inflows to
the dam

Assumes irrigation
events are uniformly
applied across farm
zone areas

Daily time step

Assumes irrigation input from the
farm model is to be uniformly
disaggregated across 14 days

Calculates dam levels, influencing
water allocations for both
environmental and agricultural
users and perceived recreational
value

Stage height along the river is also
provided for policy and ecology
models

Farm model Lumped, zone-based.
Each zone represents
farming areas of
variable size. Covers
2,154 km2

2 week time step, indicated to be
the usual time frame in which
irrigation decisions are made (Xie
et al., 2019)

Total volume of rainfall over the
previous 14 days is used to
determine irrigation schedule

Crop yield, farm profit estimations,
water use (in ml)

Incorporated data from farmer
surveys

Policy model Regional/catchment-
wide

2 week time step

Temporally, the model operates on
a 14-day time step matching that
of the farm model. In reality,
such allocations are announced
every 6 weeks and so constitutes

Surface water allocations,
determined by dam levels.
Groundwater allocations
determined by groundwater level
at two bores (one in the south,
one in the north)

(continued)
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