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ARTICLE INFO ABSTRACT
Keywords: System-of-systems approaches for integrated assessments have become prevalent in recent years. Such ap-
Social-ecological modeling proaches integrate a variety of models from different disciplines and modeling paradigms to represent a socio-

Interdisciplinary modeling
Integrated modeling

Scale issues
System-of-systems approach

environmental (or social-ecological) system aiming to holistically inform policy and decision-making pro-
cesses. Central to the system-of-systems approaches is the representation of systems in a multi-tier framework
with nested scales. Current modeling paradigms, however, have disciplinary-specific lineage, leading to in-
consistencies in the conceptualization and integration of socio-environmental systems. In this paper, a multi-
disciplinary team of researchers, from engineering, natural and social sciences, have come together to detail
socio-technical practices and challenges that arise in the consideration of scale throughout the socio-
environmental modeling process. We identify key paths forward, focused on explicit consideration of scale
and uncertainty, strengthening interdisciplinary communication, and improvement of the documentation pro-
cess. We call for a grand vision (and commensurate funding) for holistic system-of-systems research that engages
researchers, stakeholders, and policy makers in a multi-tiered process for the co-creation of knowledge and
solutions to major socio-environmental problems.
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1. Introduction

Socio-environmental systems (SES) function across a range of inter-
related scales that collectively represent a system of systems (SoS).
The term SoS has been used since the 1950s and various definitions exist
(Nielsen et al., 2015). In this paper, we distinguish between an SoS as a
collection of human and natural systems, and SoS models which are
engineered representations of an SoS. The former is defined as an
interconnected collection of multiple, heterogeneous, distributed sys-
tems that collectively may give rise to emergent behavior, where each
system represents a process or set of processes. In the modeling of SoS,
we follow Little et al. (2019) who define SoS models as “a collection of
independent constituent systems, in which each fulfills its own purpose
while acting jointly towards a common goal.” (p. 84). In environmental
modeling, SoS models may take the form of Integrated Assessment
Models (IAMs) or, more generally, Integrated Environmental Models
(IEMs), which are commonly applied to inform environmental man-
agement processes (Ewert et al., 2011; Iwanaga et al., 2020; Letcher
(Kelly) et al., 2013; Matott et al., 2009).

Central to SoS modeling is the view of system representations as a
multi-tier structure with different levels of abstraction, where systems
and indicators at lower levels can be scaled up to higher levels. These
representations capture processes that operate at different scales (e.g.
temporal, spatial, organizational) in contrast to ‘single-system’ ap-
proaches, which assume such drivers to be exogenous and, crucially, do
not account for any feedback mechanisms between the represented
systems. This view also sets the focus on how to integrate knowledge
from the different disciplines involved and coordinate information ex-
change among these in a consistent and meaningful way. Knowledge
integration is not limited to the technical coupling of models, but to
integration among multi-scale stakeholder and expert processes. This
combined socio-technical focus makes scale issues and their treatment a
core consideration of SoS modeling.

1.1. The need for a holistic treatment of scale

A crucial ingredient in SoS modeling is attending to the socio-
technical processes involved. Representation of scales is defined by
modelers for a particular purpose and is ultimately subject to human
processes (Meadows, 2008). Accordingly, the representation of an SoS is
the end-product of what the people involved implicitly or explicitly have
chosen to represent, and how they implemented their choices. These
then influence the model structure and uncertainties embedded, and the
consideration of its different dimensions, analyses conducted, and data
and methods used (Glynn et al., 2017; Gorddard et al., 2016; Voinov
et al., 2018). Such choices are subject to the available knowledge, ex-
periences, biases, beliefs, heuristics and social values, as well as the
perceived purpose(s) of the modeling.

A key scale issue in SoS modeling is the development of a consistent
and defensible characterization of scale (Elsawah et al., 2020). Existing
systems analysis and modeling approaches tend to come from
entrenched disciplinary paradigms and so with a specific focus on their
scales and facets, and embedded language and terms. Inconsistencies
then manifest in the conceptualization and treatment of scale in SoS
approaches, which prevent researchers from: (1) understanding the
implications of scale choices; (2) formulating, implementing and vali-
dating models that are relevant to the questions of interest; (3) pre-
dicting future SoS responses in support of decision making (Elsawah
et al., 2020; Little et al., 2019; Razavi et al., 2020); and (4) communi-
cating modeling results in ways that help identify trade-offs and syn-
ergies within an SoS and among the systems under investigation
(Fridman and Kissinger, 2019; Miyasaka et al., 2017). Addressing issues
that arise from the conceptualization and representation of multiple
scales are often omitted or left for future discussion (Ayllon et al., 2018).

Discrepancies in the treatment of scale can be addressed firstly by
developing a shared understanding of the system(s) being analyzed
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through a holistic interdisciplinary process (Thompson, 2009; White
etal., 2019). There is increasing recognition that holistic approaches are
necessary to enable an integrated assessment of scale issues in
socio-environmental (social-ecological) systems (Schliiter et al., 2019a,
2019b; Hoekstra et al., 2014). The rise of inter/multidisciplinary fields,
such as socio-hydrology (Elshafei et al., 2014; Sivapalan et al., 2012)
and eco-hydrology (Hannah et al, 2004; Porporato and
Rodriguez-Iturbe, 2002), gives further credence to this need. For SoSs in
particular, it is necessary to additionally acknowledge the
socio-technical influences on their modeling. Explicit inclusion of the
socio-technical perspective pushes beyond traditional modeling ap-
proaches, as it advocates assimilation of not only the data and mecha-
nistic processes across different systems, but also includes the
knowledge and information held in the social institutions involved in the
modeling.

1.2. Purpose

The purpose of this paper is to advance knowledge and imple-
mentation of interdisciplinary SoS modeling by identifying and articu-
lating the practices, issues and challenges involved with respect to issues
of scale. Central to this interdisciplinary lens is making concrete the
multidimensional nature of scale issues and the interplay among these.
Here, the term “interdisciplinary” is favored over trans- or multi-
disciplinary as the focus is on the “blending” of disciplinary knowl-
edge (White et al., 2019).

The primary audience of the paper is modelers, albeit in different
domains and scientific disciplines with an interest in adopting an SoS
approach as a methodological framework in SES modeling. In the
following (Section 2), we first provide definitions for the key terminol-
ogy used throughout this paper. These definitions are not intended to be
universal but are provided to contextualize and aid in communication
given the range of disciplines involved in SES modeling. In Section 3, we
explore issues of scale which need to be considered throughout the
modeling. We then describe in Section 4 the long-term challenges to-
wards resolving such scale issues and suggest paths to be taken in the
shorter-term.

2. Concepts and definitions of scale
2.1. The process of defining scales

SoS models principally provide a representation of the interactions
that occur between the systems involved. Holistic integration of
knowledge from the various disciplines involved is necessary so that the
implications of the different methodological choices on scale can be
understood (Elsawah et al., 2020). To this end, a three-day workshop
was held in October 2019 in which a culturally and disciplinary diverse
group of 20 participants convened to share their knowledge. An addi-
tional 3 contributed in complementary ways to the drafting of this
paper. Contributors originated from Europe, North America and the
Asia-Pacific and included engineers, economists, social scientists,
mathematicians, physicists, hydrologists, computer scientists and
ecologists.

To prevent miscommunication, we developed a set of terms (outlined
in Section 2.2) to build a shared language (Rubin et al., 2010; Spitzberg
and Cupach, 1989; Thompson, 2009). Although prior definitions of
“scale” are available (see for example Cash et al., 2006; Gibson et al.,
2000), it was considered useful to develop a shared, empathetic un-
derstanding of each other’s perspectives (Banerjee et al., 2019; Thomas
and McDonagh, 2013). The process additionally served to break down
cognitive constraints (MacLeod and Nagatsu, 2018), which may other-
wise blind researchers to relevant notions of scale allowing disciplinary
bias to creep in and knowledge gaps to form. The range of disciplines
involved in SES modeling often makes addressing cognitive constraints
difficult, as there are different notions of scale, and related terms are
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Table 1
Brief descriptions of the primary terms defined in this paper and relevant literature. Where no references are provided, the terms are assumed to be generic and widely
known.
Term Definition Relevant Literature
Spatial/temporal Spatial and temporal aspects define, respectively, the bounds or horizons over the space ~ N/A
and time frame of the events and processes of interest as well as their discretization in a
model.
Multi-system model A catch-all term referring to any model that represents multiple systems. N/A

Emergence or emergent
behavior/simplicity/
complexity

System and System of systems

Integrated model

Here, emergence relates to the behavior of the system and can span from simple to
complex. Emergent complexity describes the complex, possibly chaotic, behavior that
arises from the collective interactions of simple constituent systems, whereas emergent
simplicity is the opposite.

At its core a “system” refers to a collection of processes and mechanisms that may interact
depending on context.

A system of systems is represented as a collection of autonomous constituent systems that
give rise to collective behavior. A constituent model may, itself, be a system-of-systems
model. A system-of-systems model then is an interconnected, tiered, network of models.
A model which consists of two or more separate and separable models, connected through
a common computational framework to allow automated interactions between models to

Bar-Yam (1997)

(Eusgeld et al., 2011; Little et al., 2019; Tranquillo,
2019)

(van Ittersum et al., 2008; Voinov and Shugart,
2013; Whelan et al., 2014)

occur.
Resolution/Granularity
distance, volume, time, social unit, etc.)
Actor

The represented unit of scale at which a system component is modeled (e.g. unit of

Actors are entities, both human and non-human (e.g. objects, biota, flora and fauna,
institutions, and organizations), which influence the modeling, the pathways taken

(Ewert et al., 2011; Groen et al., 2019; Neumann
et al., 2019)

(Cresswell et al., 2010; Macy and Willer, 2002; Tate,
2013; Hobday et al., 2018; Schneider et al., 2013)

throughout the modeling process, and their representations within a model.

Actors may themselves be composed of actors, such that a system is an actor within a
larger system (e.g. engine in a car, team within a company, etc.). Actors may influence one
another through a network of relationships and be modeled as such. Actors may embody
collective culture and personalities, as may be the case with teams and organizations.

Hierarchy/Level

another.

The ordered linkage crossing scales, which may be spatial/temporal (neighborhood to
city) or virtual/conceptual (employee and employer), and these may be nested within one

(Ostrom, 2007; Schweiger et al., 2020; Steinhardt
and Volk, 2001)

used in different ways depending on context. This variance has been
observed in the use of common terms with conflicting definitions be-
tween (and sometimes within) disciplinary fields (Bridle et al., 2013).

2.2. Scale terminology in SoS modeling

Defining the terminology associated with scales was an arduous
process at first, owing to the diversity amongst workshop participants. A
brief overview of the resulting primary terms used in this paper is pro-
vided in Table 1. For the discussion here, “scale” is taken to have an
expansive definition, covering the scope of work to be conducted in the
treatment and representation of system processes. Aspects of scale that
had unanimous consensus included the commensurability of the choice of
scale within the purpose of the modeling, and the consistency of spatial
and temporal scales across models. It was also acknowledged that scale
can mean many things beyond the spatial and temporal, for example the
less tangible such as treatment of ethical considerations within the
modeling process (e.g. Hayha et al., 2016). Regardless of definitions,
treatment of scales - and the choices made in this treatment - influences
the model uncertainties and the outcomes of the modeling.

Commensurability refers to the appropriateness of the selected ap-
proaches and methods for the SoS modeling purpose. Broadly speaking,
these approaches can be described as being subject to socio-technical
considerations, which are the focus of the discussion in this paper. The
social (human) aspect of modeling includes the circumstances of
collaboration, project management and participatory processes, as well
as those settings influencing the technical aspects, including modeling
and computational considerations.

The spatial and temporal features of a system are often the primary
aspects around which scale is traditionally considered and framed.
These define the time and space of interest (both their horizons and
discretization) and the events and processes that are considered
important to represent (Cash et al., 2006). The spatial scales selected
may be influenced by the temporal scales of interest, and vice versa.
Their dependence can be intensified by the fact that spatio-temporal
scales are often influenced by factors outside their defined boundaries.

Such influences may be important but may not be well understood or
ignored (Zhang et al., 2014b, 2014a).

Resolution defines the granularity of system representation and refers
to the unit of spatial/temporal scale represented in each system. Reso-
lution may be spatial or temporal in nature but extends in other ways
such as to social units (individuals to families to communities, etc.) and
thus may be represented so as to conform to a semantic or conceptual
hierarchy (Cash et al., 2006). Choice of resolution is highly dependent on
the modeling context, generally informed by the availability of data, the
needs of the model (including for numerical stability, sensitivity and
model identifiability), and model purpose.

Hierarchy and their respective levels of organization relate to the
representation of nested relationships among systems (Ostrom, 2007).
For example, various governance systems may co-exist at a range of
scales with separate administrative or institutional concerns (Daniell
and Barreteau, 2014). Team-based organizations are one example where
the hierarchical scales may not be constrained to specific locations, with
members performing a variety of roles within an organization that may
be geographically spread across different time zones.

Actors influence and define the aspects of scale that are considered
and may be both human and non-human entities which affect or influ-
ence one another. The term has its roots in the social sciences (an
example may be found in Wessells, 2007). Actors have roles and carry
out one or more activities in the system and can be represented indi-
vidually or collectively. Human actors have attributes such as values,
goals and mental models, which influence their behavior (Pahl-Wostl,
2007). Non-human actors are defined here in a literal sense (i.e. not an
individual biological person) such that organizations, flora and fauna
are non-human actors but may still exhibit collective culture and per-
sonalities (Hobday et al., 2018; Schneider et al., 2013). A system can
encapsulate many actors and may be an actor itself.

The different types of system modeling encompass many terms that
are often used interchangeably across the sciences. As alluded to in the
introduction we are guided by, but do not directly adopt, definitions as
applied in system-of-systems engineering (cf. Dahmann and Baldwin,
2008). Here, a single-system model targets a specific system, for instance



T. Iwanaga et al.

an agricultural system without explicit representation of the hydrolog-
ical dynamics or climatic influences. Consequently, single-system
models constrain themselves to the concerns and considerations of a
single sector. Models concerned with a single system may, of course, use
several models internally (e.g. crop growth, soil water properties, etc.)
and these are referred to here as component models.

A direct approach to representing additional systems can be
accomplished by applying, albeit separately, a selection of single-system
models for a given problem domain. In such cases, knowledge gained in
the application of a model may inform the use of another. Data from one
model may be fed into another, and vice versa, typically via manual
processes. For example, a weather forecast model may be used to pro-
vide inputs to an agricultural model to determine seasonal effects on
crops, and the agricultural model may provide land surface boundaries
to the weather forecast model.

Multi-system representations can be integrated by coupling models
together such that data interoperation occurs in an automated fashion.
Individual “system level” models are then referred to as constituent
models. The advantage of multi-system models over their single system
relatives is that the impacts and feedback mechanisms can be repre-
sented across/between their individual scales (Elag et al., 2011;
Tscheikner-Gratl et al., 2019; Wang et al., 2019). Multi-system models,
with their explicit representation of system interactions, are therefore
capable of providing more holistic assessment compared to the use of
individual models in isolation (Kelly (Letcher) et al, 2013).
Component-based modeling stems from Component-Based Software
Engineering (Vale et al., 2016; Hutton et al., 2020) and common usage
in environmental modeling typically makes no distinction between
constituent and component models (e.g. Malard et al., 2017). A
conscious decision has been made here to adopt the term “constituent”
from the systems engineering field (Nielsen et al., 2015) to convey this
distinction.

It is important to note that “integrated” and “multi-system” models
could then equally apply to both single-system models with several
component or constituent models. The requirement for a model to be
regarded as “integrated” is that its (component or constituent) models
are coupled together through the use of a common automated infra-
structure to facilitate data interoperation (see for example, Malard et al.,
2017; Whelan et al., 2014). By necessity, multi-system integrated
models are more complex and may involve a variety of modeling par-
adigms (e.g. Bayesian networks, agent-based, system dynamics, etc.)
and their combinations.

An SoS model is then regarded here as an integrated model with
constituent models. Each constituent model may be a single-system or
another SoS model such that a tiered network of relationships between
models is formed, with each representing a layer of abstraction. In SoS
modeling, each constituent model may operate across different spatial/
temporal scales, hierarchical levels, and resolutions to incorporate
multiple aspects of distinctly separate (disciplinary or sectoral) domains
and modeling paradigms. An SoS perspective allows, but does not pre-
scribe, consideration of complex system properties including non-
linearities, interdependencies, feedback loops, thresholds and
emergence.

3. Scale issues to consider

Models are developed through a life cycle of various phases, each
with specific considerations and steps (the “modeling cycle”; Grimm and
Railsback, 2012; Hamilton et al., 2015; Jakeman et al., 2006). SoS
modeling is more complex compared to ‘single-system’ models due to
the number of people and disciplines involved as well as the de-
pendencies between the constituent models. Similarly, management of
the modeling process is made more complex, as there is not a single
modeling cycle, but multiple cycles occurring asynchronously. Each
actor and model may have separate objectives and purposes, priorities
and differing levels of available resources not to mention the need to

Environmental Modelling and Software 135 (2021) 104885

consider the availability of resources for the SoS modeling as a whole.

The sections below are adapted from the modeling phases identified
in Badham et al. (2019) and Hamilton et al. (2015), wherein the actions
undertaken in each modeling phase are described. In contrast, we
identify the relevant phases within an SoS context and outline the
considerations with respect to scale issues. Fig. 1 depicts the high-level
considerations/objectives within each phase. While the sections below
are presented in a sequential manner, we stress that modeling is an
iterative and concurrent process.

3.1. Scoping phase

In this phase, the objectives of the modeling are clarified by defining
the problem and how modeling is intended to address it. Examples of
model (or modeling) purpose could be to fill gaps in knowledge, to
support learning and communication processes, to validate current un-
derstandings and assumptions, to predict what might happen in the
future, or to carry out scenario analysis (Badham et al., 2019; Kelly
(Letcher) et al., 2013). Ideally, this scoping phase results in a clear un-
derstanding of the model types and components that need to be devel-
oped or, in later iterations, their limitations with respect to the model
purpose and how to address these.

3.1.1. Problem definition and scoping

While the overarching purpose of the SoS model may be known, the
specifics may be less clear at the outset. Development of a consistent and
shared view of the scales to be considered involves communication of
the scope and interactions across the constituent systems between all
involved (see Fig. 2). This process can aid in identifying and addressing
areas that require reconciliation of different views that often exist across
the stakeholders. Awareness of the scale issues will likely evolve as the
modeling progresses through the iterations. The choice of modeling
pathways and methodological framework employed is heavily informed
by this awareness (MacLeod and Nagatsu, 2018).

Involvement of stakeholders, including domain experts, through
participatory processes can inform the identification of relevant scales in
the face of uncertainty and (poor) data availability (Hamilton et al.,
2015; Kragt et al., 2013). Stakeholders can also play a role in selecting

Consider and incorporate
all perspectives on goals,
knowledge gaps,
uncertainties and
modeling pathways

Maintain knowledge to

ensure model and
knowledge integration
across evolving model
designs

Ensure conceptual and
technical validity of system
and scale representations
through interdisciplinary
communication

Communicate insights and
uncertainty under changing
contexts and scales

Fig. 1. The phases in the modeling cycle (adapted from Badham et al., 2019,
and Hamilton et al., 2015) with key considerations within each phase.



T. Iwanaga et al.

and combining data, furthering holistic consideration of system actors
and aid in developing the model purpose. The relationship between
actors and their roles in framing the scale, scope and purpose of the
modeling has been previously recognized (Kragt et al., 2013; Refsgaard
et al., 2007) and is further explored in the next subsection.

Insufficient consideration or agreement regarding the overarching
purpose of the SoS model may ultimately affect model performance and
outcomes (Connor et al., 2019). The higher number of actors in SoS
modeling increases the difficulty in reconciling different or mismatched
perspectives, requirements and purposes. This is a “problem of hetero-
geneity” (O’Connell and Todini, 1996) and is not restricted to any single
discipline. Often, and by necessity, the scale of the modeling is to be
commensurate with its purpose, including the level of certainty being
sought, and the available resources.

Purpose and use of constituent models may be mismatched if con-
flicting perspectives over the scope of the modeling are not addressed.
Modelers that have different goals in mind may only consider scales
relevant to their immediate (and often discipline-specific) concerns,
leading to an improper selection of constituent models. There is poten-
tial for a high degree of mismatch between constituent models even if
modelers coordinate their efforts. Unexpected cascades of effects
through scales is commonplace in complex systems (Tranquillo, 2019),
and could arguably be taken as the rule rather than the exception.

Change in scale may also occur during the modeling process, due to
new information that triggers a necessary change in model context. The
scale of model interactions to be represented can also influence the
number and type of constituent models included, and overall system
complexity. The choices regarding scale then have implications for how
well interactions among systems can be represented with respect to the
model purpose. Scope creep, wherein the scale of the modeling is
continually extended to cover contexts not originally envisioned (cf.
Barton and Shan, 2017), may eventually compromise modeling efforts,
as available resources get stretched too thinly to achieve sufficient
progress (Sarosa and Tatnall, 2015).

Choice of scales is further compounded in cases where system bounds
cannot be clearly and definitively defined. Coastal zones, atmospheric
systems, and natural resource management systems are examples of
systems with ambiguous system boundaries. Social systems and their
dynamic structures are another example that do not have clear bound-
aries yet place important, even governing, conditions on system
behavior. Such social systems, and their influences, are so far under-
represented in current integrated assessment efforts (Zare et al.,
2017). The lack of clear boundaries of such systems are often considered
to be part of the problem (Voinov and Bousquet, 2010).

Reconciling conceptual differences and perspectives between human

Human actors with a variety of disciplinary backgrounds
interact to facilitate knowledge transfer
and break down cognitive constraints

Discussions continue in smaller dynamic
groups on specific issues to resolve mismatches in
scale conceptions

Lessons learnt are communicated between groups
and the process starts again if needed
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actors can be demanding but not insurmountable. There are various
methods available for group decision making, such as the Delphi tech-
nique (Gokhale, 2001), which can be used to help the group reach
agreement on the definition of the problem and/or the system bound-
aries. The subsequent modeling itself can be used to combine and
reconcile different views among stakeholders, and may be useful in
cross-cultural or particularly contentious settings (cf. Potter et al.,
2016). The influence of modeler and stakeholder bias can also be con-
strained such as by using numerical optimization and/or exploratory
modeling processes (Martin et al., 2017; Reichert, 2020). The influence
of personal preferences is restricted by using the exploratory approach
as it focuses on identifying the relevant scales and conditions (or com-
binations of conditions) that normally lead to desirable outcomes.

3.1.2. Stakeholder planning

Here, “stakeholder” refers to the individual or groups that may affect
or be affected by the modeling or have an interest in its outcomes
(Freeman, 2010). Thus, in this context, the modelers (and teams of
modelers) are also stakeholders. There is a plethora of
stakeholder-focused approaches (e.g. in integrated modeling, partici-
patory modeling), but these methodologies are still limited in their ca-
pacity to deal with scale-specific questions and challenges brought by
SoS modeling (Jordan et al., 2018). Generally, participatory approaches
aim to bring together the multiple goals, issues, and concerns of interest
from multiple scales and governance systems by developing a mutually
beneficial relationship between stakeholders (Thompson, 2009).
Thoughtful consideration of transparency, traceability and governance
issues in engagement and participatory processes (Cockerill et al., 2019;
Glynn et al., 2017) will be essential for optimizing saliency, legitimacy,
and credibility of the SoS modeling (Cash et al., 2003).

The participation of a higher diversity of stakeholders in such pro-
cesses allows for a more holistic representation to be developed,
covering potential ‘blind-spots’ in the system conceptualization and
avoiding the “siloing” of knowledge (Hoekstra et al., 2014). Including
further perspectives may increase the complexity of the modeling, and
so requires careful management of individual expectations and biases
(Martin et al., 2017). Management of an SoS may at times be predicated
on effective management of stakeholders and their level (and capacity)
of involvement (Ostrom, 2007; Boone and Fragaszy, 2018).

Increases in the variety of perspectives also increases potential for
conflict - defined here as disagreements of any degree - between teams,
team members and/or stakeholders. On the one hand, there is evidence
that conflict plays a positive role in learning and effective teamwork
(Tjosvold et al., 2003). Such positive benefits, however, may only occur
in cases where there are high levels of pre-existing trust within the
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Fig. 2. Continuous and repeated interactions between human actors (domain experts, stakeholders, modelers, etc. represented by the different colored circles), and
between their social groups, are necessary throughout the modeling process to ensure mismatches in system conceptualization and constituent model scales

are avoided.
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group, and when the conflict is task-related rather than interpersonal
(De Dreu, 2008). Power dynamics within teams and stakeholders
therefore need to be considered (National Research Council, 2013).
Identification and focus on objectives that require participants to work
together (known as goal interdependence) is an identified foundation
towards project success and may additionally help in avoiding conflict
(Knight et al., 2001; Lee et al., 2015; Tjosvold et al., 2003). Careful
design and management of interactions between teams and stakeholders
requires an explicit consideration of how the multiple, and at times
contradictory, objectives might align or connect. Approaches to conflict
resolution and prevention (e.g. boundary critiquing, Midgley and
Pinzon, 2011) are promising, but still under-utilized techniques.

Effective stakeholder engagement will in practice be impacted by
geographic spread (Allen and Henn, 2006), as the realities of scheduling
rarely allow all stakeholders to be engaged at the same time and place.
Additionally, a diversity of stakeholders (e.g. policy makers, scientists,
and the public) mean material and modes of communication may need
to be tailored for each. Online participation platforms and technologies
extends the reach to participants and are appealing for their asynchro-
nous and distributed modes of engagement (Yearworth and White,
2018). These relatively new technologies are simply tools, however, and
a capacity to both use and leverage their advantages is also required
(Cooke et al., 2015). Regardless of how interactions are to occur,
without documenting a Record of Engagement and Decision-making
(ROED, Cockerill et al., 2019), the original purpose, assumptions, and
social and biophysical context of the engagement and resulting model
choices might be lost, leading to mismatches in understanding,
conceptualization, and implementation. The literature is still limited on
the effectiveness of using different participatory methods for different
purposes and audiences (Voinov et al., 2018). Nevertheless, plans for
stakeholder engagement for SoS modeling should explicitly consider the
scaling challenges, and devise strategies to deal with these.

3.1.3. Preliminary conceptual model

The preliminary conceptual model represents the current under-
standing of the system and the relationship between constituents,
including identification of key drivers, interactions and outputs of in-
terest (Badham et al., 2019). In describing and capturing the essence of
the system, development of the conceptual model helps with the design
of the subsequent (computational) model as well as making concrete the
model purpose. Two scale-specific aspects are to be considered here: the
approach used for conceptual model development (see Table 2 for a
general overview) and the formal representation (e.g. equations, tech-
nical specifications, etc.). The processes that are included or excluded
based on actors’ perceptions, priorities, beliefs, and values under the SoS
context will inevitably influence the data leveraged, the properties of the
computational model, and therefore the paths taken.

Few mapping techniques exist that focus on illustrating multi-scale
representations. Scale separation maps (Hoekstra et al., 2007) or
Stommel diagrams (Scholes et al., 2013) represent the scales of the
constituent systems on a two dimensional space-time map. System dia-
grams, such as the representations used in van Delden et al. (2011) and
Oxley and ApSimon (2007), organize the system components according
to their spatial and/or temporal scales, and show the interactions be-
tween these components. On the other hand, coupling diagrams (Fal-
cone et al., 2010) show the flow of data between models.

A further approach is to use the ODD protocol, named after its three
blocks: Overview, Design concepts, and Details (Grimm et al., 2006).
The original purpose of the ODD protocol was to describe and enable
transparent communication of agent-based models (ABMs) to ensure
their replication and the reproducibility of results based solely on the
model description (Grimm et al., 2020). The conceptualization involved
in the Overview block mandates identifying the scales of the processes or
system components to ensure a shared understanding of the system
being modeled. This is further complemented with the identification of
relevant resolutions and spatial/temporal bounds. At this stage, the
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Table 2
Description of the general approaches in the development of multi-scale models,
adapted from Ingram et al. (2004).

Approach Description

Top-down Creation of a coarse generalized model which is then progressively
refined to an appropriate mix of scales.

Bottom-up Models are developed at the smallest resolution initially
conceptualized to be necessary and are then expanded to encompass
scales as further information becomes available.

Middle-out  Development of the SoS model begins at the scale richest in data or
information, working “outwards” towards smaller and larger scale
models, as necessary. In SoS modeling, what is “richest” is likely to be
subjective to each discipline and available understanding.

Concurrent  The process of constructing models to represent all hierarchical levels

at the same time.

bounds can be vaguely defined (e.g. local, regional, global). This initial
assessment of the scales involved may be revised throughout the
modeling process as understanding improves. The ODD protocol is
under continual development, and planned additions extend its
consideration and applicability of use to other areas not previously
considered (as outlined in Grimm et al., 2020).

If differences in conceptual understanding of the scales and their
interactions cannot be reconciled at this stage, it is possible to create
multiple alternative models representing the different hypotheses which
can be tested in later stages of the modeling process. Such an approach
can also assist in assessing uncertainty rooted in model building choices,
as the treatment of scale may affect model outputs and outcomes
(further discussed in Section 3.2.4). Although conceptual diagrams can
be developed without specifying the scales involved, explicit consider-
ation of scale is valuable for avoiding misinterpretation of the concep-
tualization and ensuring key variables and processes are included. A
useful reflexive exercise, not usually reported but aiding transparency, is
to identify what alternative approaches were considered, or could have
been considered, and how these may have affected results and outcomes,
if adopted.

3.2. Development phase

3.2.1. Collecting data, information, and knowledge

Data, information and knowledge for each constituent model may
come from the field or through literature, solicited through expert and
stakeholder engagement, or collected through analysis. Considerations
towards data collection in the integrated setting have been previously
explored in Badham et al. (2019). Correctly communicating and inter-
preting data across heterogeneous systems, however, requires that the
data are interoperated between constituent models and that model
behavior across scales remains valid and meaningful (Renner, 2001).
For this purpose, metadata serves an essential role.

Transparency in the collection process and approval from those
involved in the modeling are necessary to ensure that collected data
remain conceptually relevant across scales. Furthermore, transparency
in the context of data collection and usage is a key factor to develop trust
among stakeholders and model users, and future adoption of the con-
stituent models (Barba, 2019; Gray and Marwick, 2019). Data may need
to be transformed to be fully relevant for the context of its intended use,
such as up-or-downscaling to ensure compatibility with other processes.
Ideally, metadata would include information on the data collection,
uncertainty and transformation process, which aids in determining the
appropriateness of data for the SoS model. Explicit descriptors of both
input and output data can assist in identifying the commensurate level of
data collection with respect to available resources.

Modeler bias can have a compounding effect as the choice of data
collection, as well as the metadata that describes the data, influences
how system interactions are perceived, and thus conceptualized (Bhat-
tacherjee et al., 2008). What may be considered irrelevant in one field
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may dictate modeling pathways in another. In an SoS setting there are
many more participants involved and so there is a high degree of un-
certainty stemming from the decisions made as a result.

Data quality and informativeness (e.g. accuracy or precision) pro-
vided by constituent models may also be diverse. Diversity of data ob-
tained from a diversity of sources, however, runs the risk of conflicting
information (Gray et al., 2012). Modelers from different disciplines may
also utilize different scales for the same process, resulting in in-
consistencies, and thus errors, the sources of which are difficult to
identify. In this regard, non-quantitative sources of information, gath-
ered from literature and/or through stakeholder engagement, may
become key assets that resolve such issues (Grant and Swannack, 2007).
In cases where data describing a particular linkage in an SoS model are
not available, theoretical relationships, generally applicable empirical
relationships, or model process and output can be useful representations
for the purpose of the SoS model (Rai et al., 2002). The documentation
developed in the Scoping phase can be leveraged to ensure applicability
and validity with regard to the model purpose.

3.2.2. Construction

Construction of computational SoS models requires the marrying of
domain expertise from across the various disciplines involved with
technical software development knowledge. While the overarching
context may be well-defined within the scoping phase, it is in this
Construction step that the individual components, and the scales they
represent, are developed, and coupled, tested and validated. Here,
existing models may be repurposed or new models developed. The
specifics of their initialization, interoperation, method of execution and
management of the data involved are to be determined and prototyped
in this phase (Igamberdiev et al., 2018; Madni and Sievers, 2014).

A balanced approach is needed in SoS model development that takes
several factors into account. There is a danger that the models them-
selves become treated as pieces of software that merely require
connection, ignoring the socio-technical context for their intended use
(Voinov and Shugart, 2013). Another issue is the overparameterization
of constituent and component models (Brun et al., 2001; Nossent and
Bauwens, 2012), as simply integrating these models to form an SoS
model exacerbates issues of uncertainty and identifiability (consider-
ations of which are explored in the following sections). At the same time,
ignoring the technical considerations of integration is also inadvisable
(Verweij et al., 2010). Mitigating the issues that consequently arise be-
comes increasingly difficult as more systems and scales are included
(Voinov and Shugart, 2013; Wirtz and Nowak, 2017).

Requisite systems could be represented at the level of detail neces-
sary for the SoS model purpose through a tiered modeling structure
(Little et al., 2019). Implementation of such a tiered approach can
involve developing metamodels or entirely different system models.
Metamodels being simplified representations of more complex models
(revisited in Section 3.3). Two pertinent issues in SoS model construc-
tion are the focus below: managing the conceptual inter-connection
between models, and the process of integration.

3.2.2.1. Conceptual integration. Conceptual integration of constituent
models can benefit from requiring that constituent models be mecha-
nistic as opposed to black boxes. When a model is implemented as a
black box, it becomes difficult to evaluate and understand (Lorek and
Sonnenschein, 1999). SoS modeling may make use of pre-existing
models which constitutes re-purposing, implying the transference of
the model assumptions, limitations, and scale to a new context. It is
emphasized here that model suitability within its original context is not
necessarily applicable to the new context (Ayllon et al., 2018; Belete
et al., 2017; Voinov and Shugart, 2013). Availability of code alone, for
example, does not imply transparency. What is important is the
contextual information that is necessary to assess the suitability of the
model purpose and functionality.
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A key challenge then is ensuring the box remains open and trans-
parent rather than closed and opaque. Opaque development can be
attributed to the modular nature of constituent model development,
with the teams working separately - both conceptually and geographi-
cally - and often split along disciplinary lines. Such teams can be
described as self-organizing (Sletholt et al., 2012) but may lack
cross-disciplinary knowledge (cross-functionality, as in Hidalgo, 2019;
Hoda et al., 2013). The lack of interdisciplinary communication between
teams then results in black, or at best gray, box models to those not
involved in their development.

What is important in this interdisciplinary context is clear docu-
mentation and an organizational culture that supports the perpetuation
of the relevant contextual knowledge. As previously mentioned in Sec-
tion 3.1.3, describing the model and its conceptual linkages in a single
canonical document via the ODD Protocol (introduced in Section 3.1.3)
is one approach that could be leveraged. Furthermore, a “nested ODD”
approach may be adopted in the case of complex SoS models wherein the
constituent models may be another SoS model.

3.2.2.2. Technical integration. Technical integration refers to the cor-
rectness of model interactions, recognizing the distinction between
conceptual or abstract representation (e.g. an equation or flow diagram)
and its implementation as software. Successful technical integration of
computational models requires the necessary engineering expertise to be
available (Knapen et al., 2013). Crucial considerations are that constit-
uent models interact and accordingly that errors will propagate (cf.
Dunford et al., 2015), and that each constituent model may undergo its
own separate development cycle which invariably necessitates continual
adjustments to be made.

Flexibility of integration is often desirable as it allows the model to
be resilient against changes in the modeling scope. Flexibility facilitates
investigations into model structure (of both constituent and component
models) and the technical design considerations that lead to flexibility
allows for the composition of different combinations of relevant code
and data represented through a nested hierarchy (e.g. ‘loose coupling’;
Elag et al., 2011; Vale et al., 2016; Whelan et al., 2014). Use of inte-
gration frameworks are helpful in that they allow the treatment of in-
dividual models as loose, composable, modules that provide some
flexibility in dealing with the range of scales involved.

Current integration frameworks typically have their roots in specific
disciplines and tend to focus on physical processes (cf. Ayllon et al.,
2018). The Open Modeling Interface (OpenMI, Moore and Tindall,
2005), for example, has had to evolve from its initial focus in the hy-
drological sciences to accommodate an interdisciplinary modeling pro-
cess (Buahin and Horsburgh, 2018). Thus, while the processes and
requirements of such frameworks may be generally applicable, there
remains some difficulty in their generic implementation and adoption
within the interdisciplinary context of SoS modeling.

In some cases, such frameworks may be overly complex or otherwise
unsuitable for the purpose and context in which the modeling is being
conducted. Such difficulties may be resolved in the future as improve-
ments to these frameworks are ongoing (Voinov and Shugart, 2013).
Often modelers adopt a less formalized approach to avoid an inappro-
priate or constraining framework. In either case, ensuring semantic and
conceptual correctness between models is typically left to the modelers
themselves (cf. Hutton et al., 2020). Direct, manual, “tight-coupling” of
models without the use of integration frameworks is still very much the
norm.

More recent efforts include a collaborative web-based platform
through which the conceptual, semantic and technical integration oc-
curs (OpenGMS, in Chen et al., 2019; Chen et al., 2020). Faster feedback
between participants then allows identified issues to be addressed
earlier. Other approaches provide a curated ontological set of de-
scriptors for common phenomena of interest (e.g. snowmelt or rainfall).
These can be referred to as “system variables” (as in Pacheco-Romero
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et al., 2020) and efforts to record their quantities (e.g. centimetre,
grams, etc.) and relevant operators in a specific metadata format have
also been undertaken (e.g., the Standard Names, in Hobley et al., 2017).
Having the inputs and outputs described and documented in such a way
aids in reducing potential mismatches in later (re)use and could be used
to enable later automated model coupling. Frameworks do not yet fully
automate conversions or identify incompatible or inconsistent usage (e.
g. litres per second to degrees Celsius) although this is likely to change in
the near future.

Both the selected framework and constituent models may change
over the course of the modeling cycle along with the scales represented.
Such changes may affect its appropriateness with respect to the model
purpose. For example, adoption of a particular framework or model may
increase the computational requirements or necessitate changes to
constituent models to allow interoperation. Inadequate consideration of
the concerns and requirements of the modeling as a whole may occur in
cases where cognitive constraints are still in place. The modeling process
may be smoothed if requirements of the later phases are kept in mind
during the design, construction (or selection) of models, and the re-
sources allocated — including the availability of expertise — to each of
these activities.

3.2.3. Model calibration

Calibration is the process of tuning parameters or altering the func-
tional forms of equations or relations to achieve desired model behavior
(Bennett et al., 2013). In SoS modeling, issues such as non-identifiability
and equifinality (Beven and Freer, 2001; Guillaume et al., 2019), curse
of dimensionality (Bellman, 2015), computational burden (Razavi et al.,
2010), and data representativeness (Beven and Westerberg, 2011; Singh
and Bardossy, 2012) may all be amplified.

Calibration implies the existence of appropriate and sufficient data to
calibrate models against. Availability of data relevant for the modeling
purpose is a requirement no matter how perfect the model may be.
Conversely, a lack of data does not imply subsequent modeling is not
useful. A model with high uncertainty may still characterize uncertainty
in a way that is meaningful to decision makers, for example indicating
the comparative tradeoffs between available management options
(Reichert and Borsuk, 2005). Assessment of uncertainty can be helpful in
determining the relative “worth” of data to be collected to better char-
acterize uncertainty and inform future modeling or research
(Lopez-Fidalgo and Tommasi, 2018; Partington et al., 2020). Such
optimal experiment design approaches may also be leveraged to maxi-
mize the use of available data (Bandara et al., 2009; Lopez-Fidalgo and
Tommasi, 2018; Vanlier et al., 2014).

Arguably, model calibration within the SoS paradigm can take three
general approaches: (1) calibration of each constituent model indepen-
dently before integration, (2) calibration of all models together after
integration, or (3) a combination thereof. The first approach is the
simplest and most straightforward as each constituent model would be
calibrated within its own domain (Phillips et al., 2001). While prag-
matic, it ignores the effect of representing different scales across the
represented SoS and system-system interactions, which in turn affects
model behavior and performance of the individual constituent model. If
a model is considered “calibrated” when both an acceptable level of fit
and reasonable parameter values are found (as in Anderson et al., 2015),
calibration in the disintegrated context does not necessarily transfer to
the integrated context. In other words, what is “reasonable” in one
context may not be so in another, and the selected parameter values may
not be robust to the change in context that integration brings due to the
different scales, interactions and data space involved.

The second approach is seemingly the most comprehensive approach
to model calibration, as every possible interaction between models could
be present in the process of model calibration (Huang et al., 2013).
Interdisciplinary knowledge is leveraged to ensure calibrated values are
both reasonable for the expanded operationalization. This then enriches
the data space for individual constituent models and improves their
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performance (Jones et al., 2017). The approach, however, has the
following major barriers:

o The search space for model calibration will be excessively large (Ling
etal., 2012). In addition, new (possibly erroneous) interaction effects
might emerge between the parameters of one model with those of
another model, especially with different scales of information, which
makes the response surface extremely complex for model calibration.
The calibration process might then become computationally
cumbersome and/or infeasible.
The available data with different scales may not be enough to
properly constrain the model in the process of calibration (Ingwersen
et al., 2018), as it is not identifiable from the data (Guillaume et al.,
2019). There is a risk of overfitting as well, as the available data
might be insufficient to produce a generalized model that covers the
integrated domain.
e Expert knowledge for each model may have scale constraints and
may not be easily transferable to the full SoS domain (Howard and
Derek, 2016).

In the third approach, models are integrated one-at-a-time, incre-
mentally adding complexity so that the influence of each constituent
model can be directly attributed and subsequent issues can be addressed.
This approach may include modifying the conceptualization as neces-
sary and sequentially calibrating the resulting integrated configurations
(Duchin, 2016; Duchin and Levine, 2019). While this approach may be
as pragmatic as the first, and perhaps as comprehensive as the second,
the disadvantage is the time and computational cost to perform
sequential coupling and calibration. Such an approach would seem more
practical in cases where there is little disciplinary friction and a rela-
tively small number of models to be integrated.

In all approaches above, the role of expert knowledge in determining
the acceptability of the calibration cannot be understated. In manage-
ment contexts, for example, change in policy (e.g. the governing rule-
sets) may impart shifts in system behavior that may be hard to discern by
examining quantitative data alone, and even more difficult to represent.
Machine learning approaches may assist in identifying and representing
non-stationary system behavior (e.g. Rui Wu et al., 2019; Razavi and
Tolson, 2013) but still require intensive data for training and validation
by experts where possible (Razavi and Tolson, 2013), and scale issues
still exist between different single-system models or different levels of
model integration. Such information in one system may have implica-
tions for how other constituent models are calibrated, and so interdis-
ciplinary communication, awareness and consideration of the
intertwining issues is necessary to safeguard against mismatches.

A calibration method which seems not to have been used explicitly
for SoS models is pattern-oriented modeling (Grimm and Railsback,
2012; Railsback and Grimm, 2019; Wiegand et al., 2004, 2003). Here, a
set of patterns observed at different scales and levels of organization is
used to reject, as a set of filters, unsuitable parameter combinations and
process representations, and may be closely related to the use of hy-
drologic signatures for (hydrological) model calibration and testing
(Gupta et al., 2008). As for parameters, this approach corresponds to the
rejection method in Approximate Bayesian Computing (van der Vaart
et al., 2016). The basic idea is that a combination of “weak” patterns,
which by themselves do not contain much information and thus would
not reject many parameter combinations, can be as efficient as using a
“strong” pattern, which is highly distinctive, but might not be available.
For models with multiple scales, this approach holds high potential as it
would help to keep both the SoS and constituent models within realistic
operation spaces.

3.2.4. Uncertainty analysis

SoS models often target large problem domains which necessitate
complex models for their assessment and by their nature have a high
degree of uncertainty. For the discussion here, we speak to the
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quantitative and qualitative aspects of uncertainty, which may be
further classified based on their source or primary influence. Prior
literature, for example, speaks of model structure, technical, parameter,
scenario, contextual and predictive uncertainty (for further description,
see Beven, 2009; Pianosi et al., 2016; Walker et al., 2003).

Quantitative approaches aim to measure the effect of uncertainty in a
specific parameter, input or assumption on an output and allow the
numerical characterization of the output distribution and therefore
model behavior (Saltelli et al., 2019; Zimmermann, 2000). Qualitative
uncertainty, however, cannot be characterized with a value and arises
from sources such as the biases and subjective beliefs of human actors
(Chen et al., 2007). Qualitative uncertainty can also arise from the
modelers’ subjective judgment, linguistic imprecision and disagreement
across actors involved (Linkov and Burmistrov, 2003; Refsgaard et al.,
2007).

One reason for increased model uncertainty in SoS modeling is the
complexity that is largely a result of the increased scope of modeling,
which comes with a larger number of models and people (and their
perspectives) involved. The increase in the number of actors typically
results in an increase in the overall number of parameters and their
possible interactions (Oreskes, 2003), the number of possible decision
pathways in the modeling process (Lahtinen et al., 2017), and the level
of stakeholder influence at each decision fork (Ostrom, 2007).

Increasing model complexity allows for a higher-fidelity model, but
can also increase the perceived uncertainty in a traditional sense; known
as the complexity paradox (Oreskes, 2003). Characterizing “true” un-
certainty in an SoS model, however, is impossible as it requires a model
that represents everything perfectly including unknown unknowns
(Hunt, 2017). Uncertainty may then compound with each interaction
across constituent models in the SoS framework, propagating some
amount of error (Dunford et al., 2015). Thus, it becomes progressively
difficult to gain insights as to what effect and influence the combinations
of these have (structural and parameter identifiability as in Bellman and
/o\strém, 1970; Guillaume et al., 2019). High levels of model uncertainty
need not be a barrier to effective decision support, however, and is
ameliorated by providing estimates or assessments of such uncertainties
(Reichert and Borsuk, 2005), both quantitative and qualitative. Different
strategies and further considerations for uncertainty assessment are
needed in SoS modeling compared to single-system modeling.

One commonly suggested approach to restricting model complexity
(and possibly runtime) is to screen for insensitive parameters (Pianosi
et al., 2016). Such parameters are said to have negligible influence on
model output and so may be “fixed”, i.e., made static in subsequent
analyses, or otherwise removed from the model. Another is to “tie”
related parameters so that they may be represented by a single
“hyperparameter” (Raick et al., 2006). Reducing the number of pa-
rameters, however, does not necessarily equate to a reduction in un-
certainty. Rather, it may simply mean consideration of an uncertainty
source is determined to be unimportant for a given context or purpose
(Pianosi et al., 2016), and doing so may trade off model fidelity under
new unseen conditions.

Use of a constituent model within an SoS model as opposed to its
individual operation, or its modification or simplification through
parameter screening and tying constitutes a change in context. There-
fore, parameters initially found to be influential might become inactive
and non-influential (and vice versa), or the relationships that led to
parameters being tied may change. The change of context also changes
the relevance of the assumptions and objectives, and what constitutes an
appropriate uncertainty analysis (Song et al., 2015). Uncertainty anal-
ysis conducted in one context is not valid across all scales. Thus, pre-
mature model simplification may ultimately affect the appropriateness
of the SoS model for its overarching purpose. A comprehensive sensi-
tivity analysis under current and possibly alternative conditions can
provide valuable insights into a key question: “when and how does un-
certainty matter?, as discussed in Razavi et al. (2019). An alternate view
is that, given the likelihood of limited computational resources, efforts
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to characterize and communicate uncertainties to stakeholders may be
more beneficial than an exhaustive sensitivity analysis (Reichert, 2020;
Anderson et al., 2015).

An additional consideration is that a constituent model may be a
legacy or third-party model that cannot be modified (e.g., due to lack of
access to the underlying code). This would introduce some hidden or
uncharacterized uncertainty into the SoS modeling. In this case, meta-
modeling (expanded on in the next subsection) might provide some help
in simplifying the model.

Explicit documentation of the criteria used for each constituent
model can ensure relevance of its application and reduce contextual
uncertainty (see Walker et al., 2003) across all the scales involved.
Accordingly, in the recent update of the ODD protocol (Grimm et al.,
2020), a standard format for describing models, the element “Purpose”
has been changed to “Purpose and patterns”, with patterns being the
multiple criteria for ensuring a model’s structural realism, as defined in
the “pattern-oriented” modeling strategy (Grimm, 2005; Grimm and
Railsback, 2012). The effect and relative importance of model structure
uncertainty may be assessed through expert and stakeholder knowledge
of alternate models (van der Sluijs, 2007) and Bayesian approaches
could be applied to characterize the known unknowns (Clark, 2005).
Uncertainty matrices have also been suggested as a tool to qualitatively
identify and document the source, type and nature of uncertainty and
assess its relative priority in a table-like format (see Refsgaard et al.,
2007; Koo et al., 2020).

Increased consideration of technical uncertainty (adopting the term
from Walker et al., 2003) is another area which warrants further
consideration in the SoS modeling context. Choice of what infrastructure
and technologies to use is likely to stem from the prior experiences of the
team(s) involved. Constituent models may be run on different infra-
structure than was originally intended, especially as issues around
computational reproducibility are addressed (Barba, 2019; Hutton et al.,
2016). Identical code run under different computational environments
may produce different results (see for example Bhandari Neupane et al.,
2019). Such infrastructure may differ in physical or virtual architecture
(e.g., laptop, supercomputer, or operating systems) or method of gen-
erating/interpreting code (e.g., different languages, compilers, package
versions). Various combinations of these may be used and may also
differ in the development and application phases. For these reasons the
influences of different and interoperating infrastructure are important
considerations (Iwanaga et al., 2020).

Correlation between parameters is another issue that is often ignored
in the characterization and attribution of uncertainty (Do and Razavi,
2020). Correlation refers to statistical dependency between parameters.
It is different from interaction effects which refer to the presence of
non-additive operations among two or more factors embedded in
constitutive equations of the model. In SoS modeling the issue is further
escalated as possible correlations between the factors of different models
needs to be accounted for. Ignoring correlations can falsify any esti-
mation of uncertainty (Do and Razavi, 2020).

3.2.5. Testing and evaluation

Testing and evaluation can assist in the assessment of the ramifica-
tions of scale choice. In this step reasonableness of model structure and
interpretability of relationships within models are assessed along with
the traditional analysis of model behavior. Not all outputs produced by
the constituent models may be relevant for the SoS model purpose and
the validity of their outputs are affected due to the integrated nature of
SoS modeling. For any evaluation to be effective, the specific model
outputs of interest that are relevant for the model purpose must be well
understood. Outputs may be at a particular spatio-temporal scale, for
instance a long-term average of a model output over a large spatial
domain or an extreme event at a specific point location. Issues may also
stem from the conceptual suitability of constituent models as uncer-
tainty may be propagated throughout and may compound as more
models are integrated (Dunford et al., 2015). Thus, the first step in
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testing and evaluation involves attempting to refute aspects of SoS
model structure and functional relationships within the model based on
their lack of correspondence with the represented system and the model
outputs. Stakeholders could be leveraged to evaluate the conceptual
alignment and appropriateness of the SoS representation at the selected
scales.

Evaluation of the behavioral relationships at the integrated level is
similar to scientific hypothesis testing (Wilson et al., 2017) or “con-
ceptual testing” (Iwanaga et al., 2020) wherein functional relationships
within the SoS model are examined. Such tests may be especially useful
in cases where the internal workings of a model are inaccessible or
otherwise unknown but expected behavior of the constituent model in
the integrated context can be characterized (Iwanaga et al., 2020). These
approaches can be used to identify impossible or implausible aspects of
the SoS model output. If any aspect of model structure or any functional
relationship within the model can be shown to be an inadequate rep-
resentation of the corresponding aspects of the real system, then that
particular portion of the model is refuted (Li et al., 2016). Examination
of model behavior over a range of inputs will also help to expose addi-
tional inadequacies in the model (Bennett et al., 2013).

The interesting aspect in this regard is that successful testing and
evaluation of the constituent models does not guarantee correctness of
the SoS model and vice versa. Testing and evaluation may happen at
different scale levels, and acceptable model behavior depends on the
model purpose and consequent measures or indicators of interest. Model
behavior of constituent models could be examined quantitatively
through assessment of the intermediate data in the models to ensure
their behavior is consistent with a priori expectations.

Itis necessary to test the software used to interoperate data across the
different hierarchical levels using relevant testing approaches. These
include checking the mapping of input-outputs between models, con-
version of units, use of metadata to perform semantic operations, and
translation of spatial temporal dimensions (Ayllon et al., 2018; Belete
et al., 2017; Voinov and Shugart, 2013). Testing processes found in
software engineering may additionally aid in conducting such checks
(see for example, Laukkanen et al., 2017; Verweij et al., 2010; Yoo and
Harman, 2012).

It may also be possible that some data gaps or uncertainties from
constituent models have a lesser or negligible effect on the SoS model
depending on how the constituent model is leveraged at the SoS level.
Furthermore, constituent models may present overlapping and/or con-
flicting data or assumptions that will only be revealed when testing and
evaluating their integration. A common example is double counting un-
certainty due to embedded assumptions in the model or failure to detect
correlated variables with a common cause.

The next step focuses more specifically on the correspondence be-
tween model projections and observed data. Strictly speaking, data used
in model testing and evaluation must be independent of data used to
develop the model (Raick et al., 2006). A variety of visual, statistical,
and machine learning methods are widely used to evaluate SoS models.
The choice of method, however, should be based on the fundamental
questions of what scenarios and observations to use in the evaluation.
Evaluation of models under the range of conditions similar to those of
interest can aid in identifying limitations of the model (Ramaswami
et al., 2005).

Sensitivity analysis is now regarded as standard practice in modeling
(Norton, 2015; Pianosi et al., 2016; Razavi and Gupta, 2015). The
sensitivity of SoS model behavior to changes to its constituents and their
interactions is the target of the assessment (Moriasi et al., 2007). An
issue stemming from the likely overparameterization of constituent
models is equifinality and the lack of identifiability. Equifinality refers
to the phenomenon of different implementations or combinations of
model structure, parameter values, and their interactions producing
equally acceptable results (Wagener et al., 2003; Beven, 2006). Identi-
fiability then refers to the ability to attribute the influence on model
outputs to unique model parameters or structure (Munoz et al., 2014;
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Guillaume et al., 2019). Therefore, the greater the number of parame-
ters, the less identifiable the model becomes.

Sensitivities are assessed as part of identifiability analysis, typically
by ranking parameters based on their influence on outputs which can aid
in determining what parameters require focused efforts to reduce un-
certainty or improve identifiability (e.g. Factor Prioritization; Nossent
and Bauwens, 2012). Information from sensitivity and identifiability
analysis can then aid in simplifying the model (as discussed in the pre-
vious section). Similar to what was noted in Section 3.2.3, naively
applying sensitivity and identifiability analysis without consideration of
the SoS context may adversely affect modeling outcomes.

Assessment of sensitivities would ideally rely on global, rather than
local analyses for reasons that have been expounded in prior literature
(see for example Pianosi et al., 2016; Saltelli and Annoni, 2010). Use of
global sensitivity analyses in model assessment has seen increasing use,
despite the lack of uptake or reported use of available software tools to
conduct such analyses (Douglas-Smith et al., 2020). Still, the importance
of such analyses tends to be under-appreciated (Saltelli et al., 2019).

One practical reason for the lack of global sensitivity analyses is that
they are typically computationally expensive to perform and the SoS
models themselves typically exhibit long runtimes. Dependencies and
correlations between parameters across constituent models and their
respective scales pose another challenge (Koo et al., 2020). Metamod-
eling (expanded on in the next section) along with recently developed
sampling and analysis methods may be more amenable to the SoS
context. Examples of such methods that warrant further investigation
include moment-independent methods (such as PAWN; Pianosi and
Wagener, 2015) which can be applied independent of the sampling
scheme used, and variogram-based approaches (e.g. STAR-VARS; Razavi
and Gupta, 2015) which can reportedly account for temporal and spatial
correlations. Adaptive sampling of the parameter space, through
sparse-grids for example, in combination with these analysis techniques,
may also aid in reducing the computational costs associated with
sensitivity and uncertainty analyses (Buzzard and Xiu, 2011; Xiong
et al., 2010).

3.3. Application phase

A critical aspect in the application of SoS models is that constituent
models evolve independently. Development of each constituent model,
by necessity, is led by disciplinary experts and undergoes separate,
asynchronous, development cycles. As each model may come from
different paradigms and sources of knowledge, the implementation may
be adjusted over time or even replaced in response to newly acquired
knowledge. Advancing towards trial model applications using the ex-
pected type and volume of data as early, quickly and often as possible
allows modelers to encounter issues in the model application earlier in
the process (Warren, 2014). Experience gained with each iteration
subsequently serves to rectify and protect against future application
challenges. Application of the model then requires monitoring and
scrutinizing to ensure the underlying models (including their metadata,
represented knowledge and application context) remain current and
appropriate.

When models are integrated, the runtime may prevent practical
application for its primary purpose, such as social learning through
interactive use with stakeholders, or for global sensitivity analyses. One
option to overcome this problem is to simplify the constituent models for
the specific purpose. Doing so requires a high degree of knowledge of the
constituent models, however, and may not be practical in cases where
legacy models are used. Spatially explicit models can especially be a
problem in regard to runtime, and a solution for reduction in compu-
tational burden may be achieved through aggregating grid cells into
similar zones (e.g. groundwater model aggregated into hydraulic con-
ductivity zones; Elsawah et al., 2017).

In cases of high runtime, replacing the most computationally
expensive constituent models with metamodels may be a viable option.
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Metamodels approximate the input-output behavior of the original
model (Castelletti et al., 2012; Christelis and Hughes, 2018; Pietzsch
et al., 2020) and therefore provide simplified representation(s) of more
complex models (Asher et al., 2015; Razavi et al., 2012). Metamodels
leverage the emergent simplicity of complex systems and although there
are a variety of methods available to accomplish this, generally meta-
models require the complex models (i.e. the original constituent models)
to be available beforehand. Metamodels, being approximations of an
original model’s response surface, are most relevant to the conditions
existing in the datasets upon which they are tuned, so care needs to be
taken if using them under conditions that transcend those extant in the
data. System forcing data beyond that experienced, such as climate
change or groundwater extractions, are of particular concern in this
regard. If possible, simply allocating more computational resources (e.g.
supercomputers) may be the most pragmatic and resource efficient
alternative, especially considering the time taken to investigate and
implement the options listed above. It is acknowledged, however, that
more computational capacity may not be available.

3.3.1. Analysis and visualization

In the management context, where SoS models are typically applied,
there is a need to adequately describe the level of uncertainties in the
SoS model and its predictions. Individual stakeholders may react
differently to uncertainties and levels of uncertainty (Cockerill et al.,
2019). Presenting scenario results relative to the modeled baseline
neatly reduces the inherent biases that come with relying on stakeholder
preferences to inform desirable thresholds, as would usually occur in
multi-criteria, or multi-objective, analysis approaches (Maier et al.,
2016; Martin et al., 2017; Reichert and Borsuk, 2005). With such an
approach, the acceptability of a (possible) maximum or minimum
relative change becomes the focus of stakeholder discussion.

Software tooling for supporting analyses of model results (including
sensitivity and uncertainty analyses) typically necessitates interaction
between the analysis software and the model(s), which may require the
development of additional interfaces (i.e. code or supporting software).
Due to the number of models involved, the associated parameters, and
the possibly dynamic model structure (Wirtz and Nowak, 2017), main-
taining these interfaces in the SoS context may quickly become un-
wieldy. Additionally, it may be desirable to replace entire models to
analyze the influence of model structure and the scales they represent
(Ewert et al., 2011), thus potentially rendering existing interfaces
obsolete. Recent efforts circumvent this issue by supporting the
near-seamless transition between the nested hierarchical representation
common in SoS design to the conceptually simpler “flat” structure ex-
pected in typical analyses (e.g. Schouten and Deits, 2020). An example
of nested and flattened representations of a node network is provided in
Appendix 1.

A common requirement shared with tooling for conducting analyses
(e.g. for sensitivity and uncertainty analysis, and exploratory modeling)
is the provision and definition of parameter values. These may consist of
a “default” value, a range within which values may vary, whether these
values are categorical, scalar, or regarded as constants (examples may be
found in Adams et al., 2014; Kwakkel, 2017; Pianosi et al., 2015; Razavi
et al., 2019). Categorical values may indicate substitution with other
data types or a collection of data types (e.g. rasters, climate sequences,
etc.). Such information may be the minimum necessary to conduct such
analyses, to reproduce and replicate results, and to support later auto-
mation of these activities. Parameter values in effect represent di-
mensions of scale and the inappropriate selection of their values and
ranges may result in misleading results (Shin et al., 2013; Wagener and
Pianosi, 2019).

3.4. Perpetuation phase

As in Badham et al. (2019), perpetuation is about the intended in-
fluence the modeling is to have into the future. The focus here is on the
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scale of documentation and process evaluation in SoS modeling which is
informed by the level of consensus among stakeholders and modelers as
to its purpose. In the research context, for example, there is a newfound
expectation that the model be developed and provided in a manner that
supports reproducibility and replicability. Reproducibility is the ability
to recreate results, whereas replicability captures the ability of the
model to generate new but consistent data in other applications (Patil
et al., 2016).

Where SoS models are used by external stakeholders, some amount
of technical support is likely expected. Without this, use of the model
and thus its impact is likely to be minimal. Computational models are
software in that they are made of code, and so continued use comes with
a baseline cost to cover maintenance, improvements, and updating of
documentation. Such capacity is crucial in contexts where long-term
management and decision support is an acknowledged requirement. In
such cases the design, implementation and documentation of the model
should plan for these long-term activities from the beginning. In the SoS
context this implies retaining the interdisciplinary knowledge within a
team or organization (e.g. Cockerill et al., 2019; Kragt et al., 2013).

3.4.1. Documentation

Whereas earlier sections spoke to the content of documentation, this
section focuses on the role of documentation in an interdisciplinary
setting such as SoS modeling. Documentation is a conduit through which
information and knowledge are propagated and provides the necessary
context for model evaluation (Cockerill et al., 2019). Without sufficient
documentation, it is difficult to understand the context that led to any
specific issue, including mismatches between constituent models. Lack
of context then affects the perceived validity of the model conceptuali-
zation, restricts model use, rendering the model inappropriate or invalid
for its purpose.

The act of documenting itself allows for reflexive and transparent
communication and for new insights to be gained. Undocumented as-
sumptions regarding scale and their influence may compromise other
constituent models, thus holistic awareness of the SoS issues can be
obstructed by a lack of documentation. Long-term maintenance and use
of the model may also be impeded (Ahalt et al., 2014). No individual
holds the knowledge and awareness of the modeling details in their
entirety, let alone the effects of interactions between models. It is
therefore important to recognize that writing and maintaining docu-
mentation should be a team effort, and a culture to support this should
be fostered.

In practice there are few incentives for documenting models to such
an extent. A key problem in SoS model documentation is that details of
the constituent models important for the SoS team may be considered
unnecessary for the teams developing the constituent models. Once
again, this stems from potential disconnects between the purpose of the
SoS model and the individual (or original) objectives of each constituent
model. In the sciences the focus is often on the publication of papers at
the expense of ensuring model reuse or reproducibility and replicability
(Easterbrook, 2014; Joppa et al., 2013; Peng, 2011; Schnell, 2018).
There is an increasing push to change the culture surrounding the
publication process, however, to better recognize, credit and incentivize
model code publication. For example, a number of organizations have
begun supporting “Open Code Badges” to highlight reproducible work
(https://www.comses.net/resources/open-code-badge/).

3.4.2. Process evaluation

The extent to which the modeling has achieved its overarching
purpose is evaluated in this step (Badham et al., 2019). This evaluation
extends beyond the technical performance of the SoS model (Bennett
et al.,, 2013) to consider outcomes of modeling as a social process.
Success of a model depends on the beliefs and expectations of the
intended users and in their satisfaction with the model and its results
(Hamilton et al., 2019). It may also depend on the biases and beliefs of
the model creators (Glynn et al, 2017) and in an alignment of
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expectations between creators and users (Sterling et al., 2019). The
suitability of the success criteria is dependent on the context of the
project, including not only the model purpose, but also the character-
istics of the problem, such as its complexity and the resources that were
available (Hamilton et al., 2019).

Process evaluation in SoS focuses on two facets: achievement of goals
and longevity of the models. In terms of goal achievement, process
evaluation considers whether the goals of the SoS model were supported
by its constituent models and, where applicable, whether constituent
models achieved their own goals. Although satisfying the goals of the
constituent models may seem an indirect path to satisfying the goals of
the SoS model, this interpretation is misleading. An SoS approach to
modeling, instead of simply a multi-modeling approach, leverages the
autonomy and independence of the constituent models. Constituent
models still need to be capable of yielding their own outcomes,
regardless of how those models are used in the context of the SoS model
(Salado, 2015).

Evaluation of the longevity of the SoS model, referring to the ability
to leverage or reuse the SoS model over time, requires the development
and assessment of a targeted plan for its sustainment that includes: (1)
monitoring the evolution of the constituent models; (2) identifying al-
ternatives for models that may cease their validity, availability or
accessibility during the lifetime of the SoS model; (3) establishing a
strategy for the continued evolution of the SoS model, including the
development of potential transformation frameworks and implementa-
tions; and (4) identifying opportunities to facilitate the sustainment of
constituent systems aligned with the sustainment of the SoS model.

Process evaluation for SoS models may consider adopting a reflexive
process in which questions are asked of those involved in the modeling,
such as ‘did the modeling process help to improve understanding of the
system/problem?’ or ‘did the modeling process help facilitate commu-
nication between stakeholders?’ (Hamilton et al., 2019). The line of
questioning can then leverage input from the various perspectives
available, including those of experts and stakeholders for the different
constituent systems of an SoS. Bias in the model, such as whether their
respective positions were adequately represented, may then be assessed.
Alternative conceptions and processes of the system and their scales
could also be assessed at this stage (Voinov et al., 2016).

4. The paths forward
4.1. A grander vision and commensurate funding

Addressing all the scale-related issues outlined in the paper requires
a level of cooperation and concerted integrative effort that is by and
large not possible given the usual short-term funding of the sciences (e.g.
Saltelli, 2018). Recent publications have also brought attention to de-
ficiencies in the current science resourcing structure, characterized in
part by competition over limited funding and an emphasis on (number
and citation counts of) publications. Existing funding mechanisms may
well be detrimental to the quality of science produced (Binswanger,
2014; Sandstrom and Besselaar, 2018).

Limited resourcing is one reason for the multiple, albeit siloed, ef-
forts with a focus on single case studies (Pulver et al., 2018; Hoekstra
et al., 2014), and the necessity of excluding salient aspects of the
modeling (such as adequate participatory processes; Eker et al., 2018) or
making less than ideal choices about the model or data (e.g. using
existing coarser scale data rather than collecting new data at a finer
scale). Commentary by researchers highlight the importance of inter-
disciplinary work (Kretser et al., 2019; Meirmans et al., 2019), which is
typically not funded to the same extent as monodisciplinary efforts
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(Kwon et al., 2017; Bromham et al., 2016). Regardless of the importance
of such holistic assessments these real-world constraints essentially
make holistic SoS modeling and analyses unrealistic.

On the other hand, examples of large concerted efforts can be found,
such as in astronomy and physics which have produced groundbreaking
work with the Event Horizon Telescope (e.g. first photograph of a
blackhole, Akiyama, 2019) and the Large Hadron Collider (e.g. discov-
ery of the Higgs boson, Aad et al., 2012). These resource intensive
projects are important and could substantially influence future societal
development. At the same time, lesser importance is placed by funding
organizations on interdisciplinary socio-environmental works which
arguably have a more immediate impact and benefit to society.

A grander vision for SoS research, in line with large-scale collabo-
rations in other fields, is vital to achieve a truly holistic consideration of
SoS modeling for resolving socio-environmental issues. Realizing this
vision itself requires fundamental shifts in how such interdisciplinary
work, and associated expertise, are viewed and funded (Elsawah et al.,
2020). Greater funding focused on education and training of interdis-
ciplinary system practitioners is fundamental for greater cohesion and
consensus in the socio-environmental sciences (Little et al., 2019). While
alternative funding models have been suggested for the sciences (see for
example Meirmans et al., 2019; Higginson and Munafo, 2016), the
current state of affairs is unlikely to change in the near future. Thus, any
benefits from a systemic change, if they occur at all, will be experienced
only in the long-term.

Although disciplinary experts may collaborate, pool resources,
engage with stakeholders and gain experience in interdisciplinary work
in the process of investigating a socio-environmental issue, this is not an
effective way forward. In the medium-term, existing case studies could
be leveraged to perform a comparative meta-analysis to determine the
level of influence system connections have, and the scales at which such
connections matter (Pulver et al., 2018). Such meta-analyses could
extend to the practices used to manage the socio-technical influences in
the modeling process. Shifts towards leveraging collections of studies for
meta-analyses are emerging in fields such as psychology to allow for
what is known as “statistical objectivity” towards reported findings in
the literature (Freese and Peterson, 2018). Although the focus there is in
resolving issues of replicability, the same approach can be additionally
leveraged to characterize scale commonalities.

We conclude here by re-emphasizing three key considerations which
can reinforce current SoS modeling efforts in a move towards the larger
consensus needed for this grander vision.

4.2. Strengthen interdisciplinary communication

Here lies the crux of the challenge in developing a tiered SoS model.
It is not only necessary for the science and engineering to mesh together
appropriately, but it is fundamental that the modeling process also
consider and embed the socio-technical considerations. While we as
modelers struggle with the former, the latter is too often ignored. As
there are a variety of participants, and therefore disciplinary perspec-
tives involved, a key set of considerations are in the social dimensions
that provide the interface between modeling efforts.

Integrating multiple perspectives requires an integrative approach
which is ultimately necessary to navigate towards a beneficial system
change (why else do we model?). Choices made in the treatment of scale
are unavoidable and may result in conflicting decisions with separate
implications. Just to name one, members of teams may have a path pre-
selected without full consideration of the implications on the system
representations, leading to further issues when such decisions are not
communicated.
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The next generation of systems modelers would ideally embody a
culture that is cognizant of the socio-technical issues, considerations,
and their influences throughout the modeling process (e.g. Little et al.,
2019). Such a systemic cultural shift can only be developed in the longer
term, however, and so in the meantime clearer communication requires
adequate resourcing for documenting decisions made, and code and
data used, including their maintenance. Practices for the co-production
of knowledge to fulfill the needs and requirements of the modeling is
necessary for advances to be made (Norstrom et al., 2020).

There is often a preference for face-to-face meetings to facilitate the
necessary level of communication but that may not always be possible.
Geographic distance, scheduling conflicts, travel restrictions and other
factors may preclude such activities. Communication technologies play
a critical role in mitigating some aspects of the issue. For example, travel
and social distancing restrictions during the COVID-19 pandemic has
prohibited many teams from meeting in person, forcing reliance on
technologies such as video conferencing. Regardless of the mode of
communication, a team and organizational culture of consistent and
continual communication is one necessity repeatedly highlighted to
resolve a variety of scale issues and the conflict that may arise between
actors throughout the modeling process. Incorporating knowledge
beyond the bounds of one’s own disciplinary training is crucial to the
holistic attention to and incorporation of scales and to avoid the siloing
of information and knowledge, and to break down cognitive constraints.

4.3. Improve documentation processes

The importance of documentation is another aspect that was
repeatedly raised throughout this paper. Documentation of the modeling
process communicates, and makes accessible, the decisions, actions, the
context of those decisions and actions, and reflection on those choices to
those who may or may not have been active participants in their making.
Insufficient documentation affects many aspects from the pace of model
development throughout the modeling cycle, quality of model integra-
tion especially across disciplinary boundaries, and the perceived quality
of the modeling conducted. A lack of documentation accessibility
additionally affects the (re)use and maintenance of the SoS model (or its
constituents) and so could lead to duplication of effort across those
involved in modeling SESs.

One approach to ensure that documentation is made a priority is to
adopt a documentation-driven development and design approach
(Heeager, 2012). Such approaches are exemplified by the ODD Protocol
(Grimm et al., 2020, 2014, 2010). In this paradigm, documentation is
developed first, serving as a vehicle for discussion, ideally prior to any
model development (Heeager, 2012). Ambiguities in the documentation
(and thus the modeling) may be addressed earlier in the process as a
result, and documentation could be iteratively revised, commensurate
with any changes to modeling scale. Furthermore, maintaining Records
of Engagement and Decision-making (RoED, Cockerill et al., 2019) to
document the process and pathway decisions were made in a
context-appropriate manner may be crucial to ensuring conceptual and
technical validity throughout the modeling cycle. Sufficient, rather than
exhaustive, documentation to describe model context would be
preferred (Ambler, 2002; Cockerill et al., 2019).

4.4. Explicit consideration of scale and uncertainty

There is an increasing expectation that SoS models can more
completely represent processes within an SES, however, it is impossible
to model everything for all purposes. Further explicit consideration of
the inter-relationships between scales, choices made in representing
scale, and their influence on uncertainty is paramount in the SoS
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context. Identifying, managing and reconciling the disparate treatment
of scale is a key step towards a holistic approach, as opposed to the
concurrent, but separate, processes currently applied (Cheong et al.,
2012; Elsawah et al., 2020).

As noted several times throughout this paper, the socio-technical
context has an inordinate influence on uncertainty. In addition to the
communication and documentation considerations outlined above, an
avenue for a more holistic assessment of uncertainty includes the use of
robustness analysis (Grimm and Berger, 2016). In such analysis, a model
with multiple systems is systematically deconstructed through forceful
changes to the model parameters, structure, and process representations
within each system to assess uncertainty. Use of these approaches with
pattern-oriented modeling processes, which filter unsuitable represen-
tations across scales, may also be helpful in this regard (Grimm and
Railsback, 2012; Gupta et al., 2008).

Additionally, qualitative and quantitative uncertainties could be
jointly assessed through the representation of multiple plausible futures
that stem from different sets of assumptions through exploratory ap-
proaches (Maier et al., 2016; Roberts et al., 2018; Rounsevell and
Metzger, 2010). A related approach is a multi-model approach wherein
an ensemble of equally plausible models are applied to identify the in-
fluence of structural and qualitative uncertainty (Matott et al., 2009;
Tebaldi and Knutti, 2007; Uusitalo et al., 2015). Using an ensemble of
estimates (such as the average or median of model outputs) may have
the benefit of providing more robust and accurate forecasts (Willcock
et al., 2020). Applying these on different computational platforms may
additionally assist in identifying technical uncertainties (Iwanaga et al.,
2020).

It was noted throughout this paper that the scale of the modeling
itself should be commensurate with the available resources and purpose.
A holistic SoS model may not be entirely possible given resource con-
straints, however relationships between systems can still be acknowl-
edged and represented (albeit simplistically). Doing so allows some
assessment of the uncertainties at least, and constitutes a step towards
holistic SoS modeling so long as the underlying assumptions are
explicitly documented (e.g. Kloprogge et al., 2011).
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Example of hypothetical model inputs for a hydrological routing model provided in a nested data structure (left column) compared to a more
traditional “flat” format (right column). Nested structures are arguably better suited for representing collections of data structures and their re-
lationships (e.g. a network or graph structure) and, pragmatically, are typically more amenable to the inclusion of comments and multiple values
associated with specific parameters, reducing cognitive overhead. While perhaps more readable, a disadvantage of nested representations is the
additional complexity that may be perceived.

Nested

Flat, table-like

999002:
node_type: “StreamNode”
# Interpret as links to
# other nodes

ID, node_ type, prev_node, next node, d, d min,
d max, d2, d2 min, d2_max, e, e min, e max, f,
f min, f max, alpha, alpha min, alpha max, a,
a_min, a max, b, b min, b_max,

# Default, Min, Max values
# (assume constant if scalar)

d:
d2:
e:
£:

alpha:
a:

b: 0.
initial_ storage:
storage_coef:
area:

prev _node: i

— 399000 initial storage, storage_coef, area

— 999001 999002, "StreamNode", [999000, 999001],
next node: 999003, 200.0, 150.0, 225.0, 2.0, 1.5, 2.2,
formcla_type: i.0, 1.0, 1.0, 1.4, 1.2, 1.5, 0.95, 0.9, 0.9,
node_params: 0.9, 0.1, 0.1, 0.1, 0.0, 2.9, 452.22
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