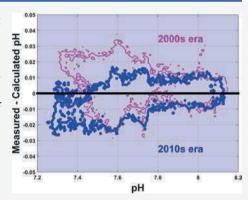


pubs.acs.org/est Critical Review

Global Ocean Spectrophotometric pH Assessment: Consistent Inconsistencies

Marta Álvarez,*,[#] Noelia M. Fajar,[#] Brendan R. Carter, Elisa F. Guallart, Fiz F. Pérez, Ryan J. Woosley, and Akihiko Murata

Cite This: Environ. Sci. Technol. 2020, 54, 10977-10988


ACCESS

III Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: Ocean acidification (OA)—or the decrease in seawater pH resulting from ocean uptake of CO₂ released by human activities—stresses ocean ecosystems and is recognized as a Climate and Sustainable Development Goal Indicator that needs to be evaluated and monitored. Monitoring OA-related pH changes requires a high level of precision and accuracy. The two most common ways to quantify seawater pH are to measure it spectrophotometrically or to calculate it from total alkalinity (TA) and dissolved inorganic carbon (DIC). However, despite decades of research, small but important inconsistencies remain between measured and calculated pH. To date, this issue has been circumvented by examining changes only in consistently measured properties. Currently, the oceanographic community is defining new observational strategies for OA and other key aspects of the ocean carbon cycle based on novel sensors and technologies that rely on validation against data records and/or synthesis products. Comparison of measured spectrophotometric pH to calculated pH from TA and DIC measured during the 2000s and 2010s

eras reveals that (1) there is an evolution toward a better agreement between measured and calculated pH over time from 0.02 pH units in the 2000s to 0.01 pH units in the 2010s at pH > 7.6; (2) a disagreement greater than 0.01 pH units persists in waters with pH < 7.6, and (3) inconsistencies likely stem from variations in the spectrophotometric pH standard operating procedure (SOP). A reassessment of pH measurement and calculation SOPs and metrology is urgently needed.

1. INTRODUCTION

1.1. General Background about Ocean Acidification.

Human activities, fossil fuel combustion, cement production, and land use change have released an enormous amount of CO_2 into the atmosphere with two main consequences: global warming and ocean acidification (OA). These two processes are occurring at unprecedented rates, with unknown consequences for ocean ecosystems. Great concern about OA consequences for marine life and ocean resources has stimulated global coordination and synthesis efforts (e.g., Global Ocean Acidification Observing Network, GOA-ON; International Ocean Carbon Coordination Project, IOCCP; Ocean Acidification International Coordination Centre, OA-ICC).

Ocean pH is included within the inorganic carbon system as an ocean essential variable. It has been recently declared a Climate Indicator by the World Metereological Organization and adopted as a Sustainable Development Goal Indicator (#14.3.1) by the United Nations General Assembly. Despite this importance, measurements of pH in the ocean are still scarce compared to the other CO_2 variable measurements such as total alkalinity (TA), dissolved inorganic carbon (DIC), and partial pressure of CO_2 (pCO_2). Seawater pH was first defined and measured more than a century ago^7 and has been measured ever since on oceanographic expeditions and open-ocean and

coastal¹⁰ time series in order to detect OA and associated chemical and ecological changes.

The first potentiometric pH Spanish measurements were done in 1977 during the GALICIA IV¹¹ cruises, but it was only after the slow introduction of more precise spectrophotometric techniques¹² (see section 1.2) that pH data collection on repeat hydrographic sections started in the early 1990s. ^{13–17} However, no pH data were included in the first oceanographic data global consistency exercise, the Global Ocean Data Analysis Project (GLODAP); ^{18,19} only 40% of the total data included pH in Carbon in the North Atlantic (CARINA)²⁰ data product; and only 31% included pH data in the second GLODAP data product. ^{21,22} As a consequence, estimates of water column OA ascribed to anthropogenic input are generally indirectly derived avoiding the use of direct pH measurements. ^{23,24} As discrete and sensor-based (e.g., Ion Sensitive Field Effect Transistor, ISFET, ^{25,26} electrodes) pH measurements become more

Received: November 15, 2019

Revised: June 8, 2020 Accepted: June 9, 2020 Published: June 9, 2020

widespread, it is essential to ensure high quality calibrations and intercomparability among different observational platforms, from ships to new technologies (e.g., gliders and Argo floats).

1.2. Evolution and Current Status of Ocean pH Methodology and Metrology. The reason behind the less frequent ocean pH measurements is both methodological and metrological as described and discussed in recent reviews. ^{8,27,28} Ocean pH was first measured potentiometrically, and there are inherent caveats for this technique in seawater studies: the medium-high ionic strength of seawater precludes the use of conventional pH calibration standards. ^{27,29,30} Further complexity is added by the fact that pH can be defined on four different scales that differ by the chemical species concentration involved in their definition. ^{12,27,31,32} There are 0.1 pH unit differences between the different scales, differences that roughly equal the entire surface ocean change in pH from OA. ^{27,28,32}

Spectrophotometric approaches based on sulfonephthalein indicators emerged as an alternative to potentiometric pH measurements in the late 1980s. These measurements should also be traced back to standard buffers, usually prepared in synthetic seawater and measured using Harned-cell measurements. Urgent research is needed to develop standard equations to convert spectral absorptions to an International System Units traceable pH. 37

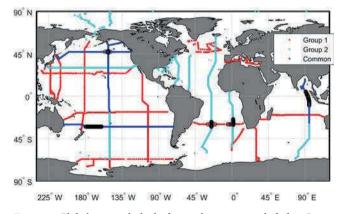
The fast, precise, and relatively inexpensive spectrophotometric method first described by Clayton and Byrne¹² (hereafter C&B93) was adopted as Standard Operational Procedure (SOP6b).³⁸ This method consists of adding a known volume of pH-sensitive indicator, usually m-cresol purple (mCP), to the seawater sample and the measurement of an absorbance ratio between specific wavelengths at a controlled temperature. C&B93¹² characterized the dissociation constant for Kodak mCP for a wide range of temperature and salinity, though the temperature dependence of the indicator optical properties was not initially assessed. From repeat measurements, C&B9312 ascribed a precision of 0.0004 units for this pH method. Assuming proper sample handling and preservation, along with a high quality spectrophotometer with good wavelength and absorbance accuracy, pH accuracy depends on (a) the quality of the Tris buffer experimentally used for characterizing the indicator, (b) any differences between the behavior of mCP in Tris buffer versus seawater, (c) the accuracy of the molar absorbance ratios, and (d) the accuracy of the assigned total scale Tris pH values. In this regard, a few years later, DelValls & Dickson³⁴ proposed an increase of 0.0047 pH units for pH measurements obtained through this method because C&B93¹² Tris buffers were based on Ramette et al.³⁹ After applying this correction, Clayton et al. 40 ascribed an accuracy to spectrophotometric pH values of 0.002 pH units based on an internal consistency exercise, though it has not always been accepted or applied.41-47 Considering all uncertainties in the Tris buffers prepared in synthetic seawater that are used to calibrate measured pH, the final pH uncertainty is higher: ranging from 0.004^{34,36} to 0.01, 48,49 when considering temperature corrections, as pH is seldom measured at in situ temperature.

Fourteen years after C&B93, ¹² Yao et al. ⁵⁰ studied the effect on the pH measurements of impurities in the mCP indicators. The most important impurities are compounds perturbing the absorbance properties of the dye. Common impurities result in an negative bias for measured pH that ranges from -0.003 to -0.02 pH units, ⁵¹ with the bias being larger at high pH values. This magnitude depends on the manufacturer (i.e., the type and quantity of impurities), but even varies from batch to batch of a

single manufacturer. Initially Yao et al. ⁵⁰ proposed an equation to empirically correct the effect of impurities based on calibrations against the Kodak indicator used by C&B93. Nevertheless, the equation was only suitable for pH measurements obtained with indicator from the manufacturer Sigma-Aldrich. Given the range of manufacturers, the approach has recently evolved toward removing the impurities with high performance liquid chromatography (HPLC)⁵¹ or flash chromatography⁵² to produce purified mCP (PUR mCP). The optical properties of PUR versus unpurified mCP (UNPUR mCP) were evaluated, and Liu et al. ⁵¹ proposed a new PUR mCP parametrization. This parametrization has been independently validated by several laboratories ^{53,54} and even extended to wider temperature and salinity ranges, for fresh, estuarine and seawater ⁵⁵ or even more extreme conditions, including seawater near the freezing point and brines with extreme salinity values. ⁵⁴

Liu et al.51 proposed to correct UNPUR mCP pH measurements with empirical formulas, making PUR and UNPUR mCP paired pH measurements over a wide range of pH values, so as to obtain an UNPUR mCP batch and manufacturer specific correction. Alternatively, for the most common impurities absorbing at 434 nm at high pH values, Douglas and Byrne⁵⁶ suggested an UNPUR mCP batch-specific correction at this wavelength, which would produce very similar PUR and UNPUR adjusted pH values. However, this approach can only be applied when the UNPUR mCP indicator manufacturer and lot are known and the UNPUR mCP indicator used are available for evaluation. In addition, PUR mCP is not yet commercially available, and most laboratories currently rely on PUR mCP from Dr. Byrne's lab (University of South Florida). Not all laboratories can yet access and afford PUR mCP.

1.3. Measured vs Calculated pH. As noted before, although the manual C&B93¹² method for pH is accessible, relatively cheap and fast seaboard pH measurements on hydrographic sections are still scarce compared to more timeconsuming and expensive TA and DIC measurements. Within ideal conditions (properly sampled, preserved, and analyzed by well trained personnel), spectrophotometric pH measurements have a precision of about 0.0004 pH units and an ascribed accuracy of 0.004 pH units, 57,58 while calculated pH from DIC and TA (pH = f(DIC,TA)) was ascribed to have a mean uncertainty that ranges from 0.004 to 0.008 pH units,³¹ depending on the seawater characteristics, 59,60 and only considering the standard uncertainties of measured TA and DIC. If including the uncertainty in the first and second CO₂ dissociation constants, ⁴⁸ at surface conditions, calculated [H⁺] uncertainty would be 3%, 48 or 0.013 pH units. Given that longterm pH change assessment requires uncertainties of order 0.003 pH units, 61 it is clear that the field would benefit from consistent implementation of a well-defined pH methodology and metrology.


Nearly 30 years after C&B93, 12 the evolution of the pH methodology from manual to mainly automated systems along with the introduction of PUR mCP have been unable to resolve the clear pH dependent discrepancy between spectrophotometrically measured and calculated pH (ΔpH). 49,62,57 A recent work 57 evaluated the pH discrepancies from four transoceanic Pacific and Indian Ocean 2014–2016 cruises led by a single research group using PUR mCP. Unique adjustments to the CO $_2$ constants and the total boron to chlorinity ratio were proposed, alongside a contribution of 4–6 μ mol·kg $^{-1}$ from organic TA, that is mainly constant with depth and basin, in

order to match the general consistency of these pH, TA, and DIC measurements with our current knowledge on the acidbase seawater CO_2 system. These adjustments, although plausible for these cruises, might likely not be the ultimate solution for explaining pH measurements inconsistencies, thus leaving an open door to new approaches to tackle the Δ pH (measured pH minus pH calculated from TA and DIC) versus pH inconsistency. In this work, we used the best publicly available CO_2 measurements and ancillary data with a global coverage using hydrographic sections from the 2000s Climate and Ocean — Predictability Variability and Change (CLIVAR) era to the 2010s Global Ocean Ship-Based Hydrographic Investigations Program (GO-SHIP) era, led by different research groups in order to

- evaluate the CO₂ community improvements regarding pH, DIC, and TA internal consistency with a focus on the pH measurement evolution,
- assess the magnitude and distribution of ΔpH focusing on the sources of uncertainty both in the pH method and calculated pH,
- evaluate the implications of these inconsistencies for current and future OA studies, and
- propose ways forward to tackle remaining complications for seawater pH.

2. MATERIALS AND METHODS

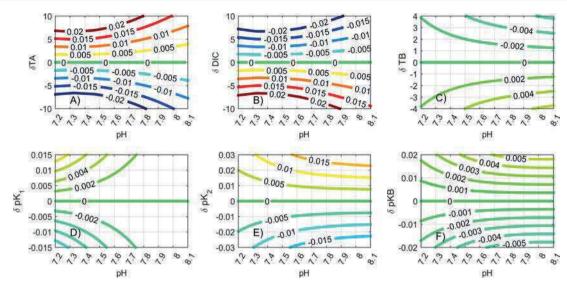
2.1. CO₂ and Ancillary Data. Two groups of data from hydrographic transoceanic sections were selected. In addition to CO₂ data, we also used data relative to inorganic nutrients (phosphate and silicate), apparent oxygen utilization (AOU) from dissolved oxygen, and dissolved organic carbon (DOC). Group 1 cruises (Table S1 and Figure 1) from the CLIVAR

Figure 1. Global map with the hydrographic cruises included in Group 1 (red dots), Group 2 (cyan dots), and those included in both (blue dots). Analyzed crossover areas discussed in Section 3.2 are shown as black circles.

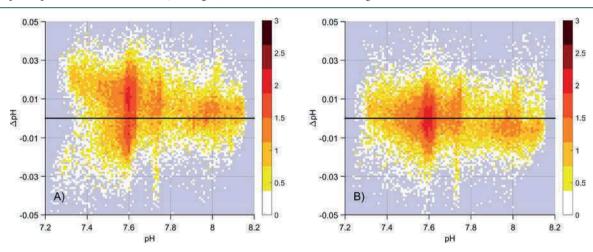
program were downloaded from the GLODAPv2.2016 data product. ^{21,22} These data are strictly quality controlled to ensure the highest accuracy and consistency of CO_2 and ancillary data and, when flagged as fully quality controlled, are expected to have a consistency better than 6 μ mol·kg⁻¹ for TA, 4 μ mol·kg⁻¹ for DIC, and 0.005 pH units for pH.

We selected Group 1 cruises from GLODAPv2.2016 based on the following criteria: (1) pH should be measured using a spectrophotometric technique¹² using UNPUR mCP; (2) pH, TA, and DIC should be available, as well as the measured

temperature, salinity, silicate, and phosphate values required for carbonate system calculations; (3) quality flags for ancillary, pH, TA, and DIC should equal 2; i.e., the measurement is acceptable in the original and product files; (4) secondary quality control (2QC) flags for pH, TA, and DIC should equal 1; i.e., a crossover analysis or intercruise check was performed, and ΔDIC (measured DIC - DIC = f(pH,TA)) values for deep waters should be $\pm 5~\mu\text{mol}\cdot\text{kg}^{-1}$ (Figure S1). The GLODAPv2 strategy 63 to assess pH was to first carryout crossover analysis wherever possible, but since pH measurements are fewer than those of DIC and TA, an internal consistency analysis was adopted using the ΔDIC (measured DIC - DIC = f(pH,TA)) magnitude and distribution in deep waters. Then pH adjustments were proposed based on these analyses.


Group 2 cruises (Table S2 and Figure 1) correspond to the 2010s GO-SHIP program and contain TA, DIC, and spectrophotometric pH. Group 2 cruise pH values were mostly obtained using PUR mCP, though some cruises were measured with UNPUR mCP and had methodological adjustments designed to make the values comparable to PUR mCP measurements. The same selection criteria as in Group 1 were also applied to Group 2 cruises selected from GLODAPv2. Three cruises that meet these criteria were included in GLODAPv2.2016,²² and eight were included in GLO-DAPv2.2019.⁶⁴ Five additional cruise data sets were added for this study: two P06 legs in the Pacific ocean, I09N in the Indian ocean, ARC01 in the Arctic ocean and the coastal Gulf of Mexico GOMECC2 data sets. These data sets were downloaded from CCHDO (https://cchdo.ucsd.edu) and their spectrophotometric pH measurements used PUR mCP.

This work presents the distribution and magnitude of ΔpH for original and corrected pH data in Group 1 and original pH data in Group 2. This a priori incongruence reveals useful information and will be assessed in the Results and Discussion.

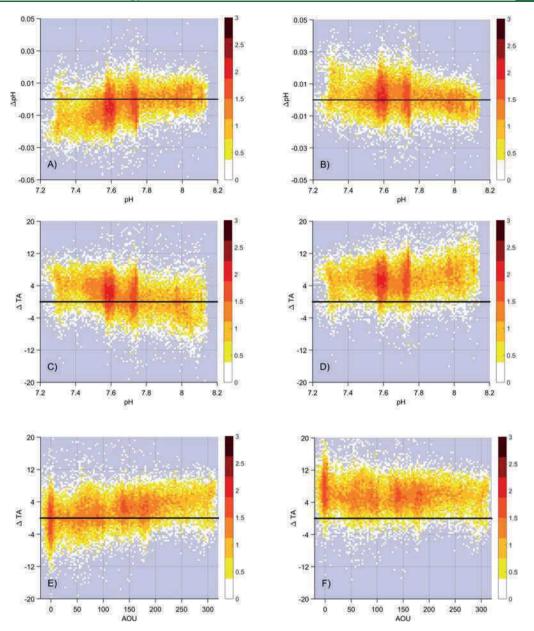

2.2. Thermodynamics Calculations. All thermodynamic calculations were performed using the CO2SYS package for Matlab, ⁶⁵ with option 10 for the CO₂ constants ⁴⁴ and option 1 for the total boron to chlorinity ratio (TB) ⁶⁶ and sulfate constant (K_{SO_4}) , ⁶⁷ as agreed by the GLODAPv2 team. ^{22,63} Measured phosphate, silicate, salinity, DIC, TA, temperature, and pressure are inputs to the CO2SYS package. The contributions of borate (estimated from salinity), silicate, and phosphate to TA are needed to estimate carbonate alkalinity by residual: organic alkalinity contributions are neglected in these routines.

Before exploring ΔpH versus pH (hereinafter pH on the total scale at 25 °C and atmospheric pressure) results, it is crucial to understand the magnitude of systematic uncertainties affecting pH = f(DIC,TA) from TA and DIC measurements, CO_2 constants, and the acid—base borate system. Random uncertainties are not considered in this work. At a constant temperature, seawater pH is closely related to the TA/DIC ratio, which relates to the seawater buffering capacity. The closer to 1, the lower the buffer capacity; i.e., waters with a low pH (i.e., a low TA/DIC ratio) are prone to larger acid—base changes when perturbed. We present our results as a function of pH following recent works 49,57 dealing with the pH inconsistency, although the TA/DIC ratio would be nearly equivalent at constant temperature.

Uncertainties for calculated pH, pH = f(DIC,TA), are obtained by perturbing seawater properties by a range of values from zero up to about five times the total estimated standard uncertainty for the input variables according to Orr et al.⁴⁸ (2

Figure 2. Sensitivity of calculated pH (pH = f(DIC,TA)) as a function of pH, to errors in the input variables (A) TA, (B) DIC, (C) the total boron to chlorinity ratio (TB), (D) the p K_1 CO₂ constant, (E) p K_2 CO₂ constant, and (F) the borate constant p K_B . The respective errors (δ), as well as the pH sensitivity isolines, correspond to the modified minus the reference values. All the calculations were performed on the total scale, at 25 °C, 35 salinity and atmospheric pressure. δTA and δDIC in μmol·kg⁻¹, δTB in %, other constants in logarithmic scale.

Figure 3. Two-dimensional histograms for Group 1 data showing the number of data points falling within bins of Δ pH (*y*-axis, Δ pH, i.e., measured pH minus pH calculated, pH = f(DIC,TA)) versus pH (*x*-axis); (A) original GLODAPv2.2016 pH data and (B) corrected GLODAPv2.2016 pH data. The *z*-axis shows the histogram frequency in logarithmic scale. The pH is on the total scale, at 25 °C and atmospheric pressure.

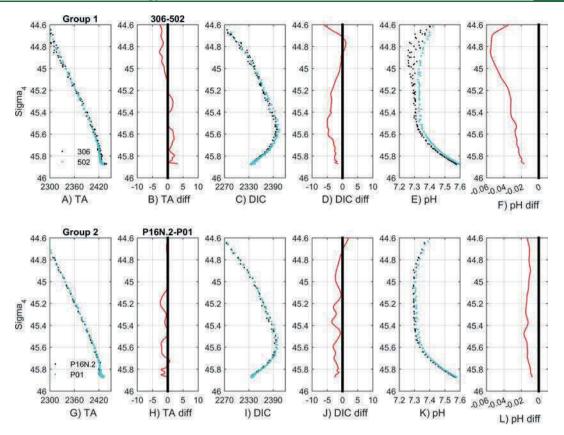

 μ mol·kg⁻¹ for TA and DIC, 0.0075 for p K_1 , 0.015 for p K_2 , 0.01 for p K_B , 2% for TB). If TA is overestimated (equivalent to positive values in the y-axis of Figure 2A, δ TA > 0, i.e., perturbed minus reference TA), calculated pH would be overestimated (equivalent to positive pH error isolines, or lines of constant perturbed minus reference pH, in Figure 2A). The wider separation between error isolines in Figure 2A at higher pH values means that calculated pH is less sensitive to TA uncertainties. Since DIC and pH are inversely correlated, the sensitivity of calculated pH to DIC uncertainties (Figure 2B) is nearly a mirror image of that from TA (Figure 2A). Uncertainties in TA or DIC greater than 2 μ mol.kg⁻¹ would cause an uncertainty in pH = f(DIC,TA) higher than 0.005 pH units.

Regarding the equilibrium constants (Figure 2D–F), p K_2 has the largest influence on pH = f(DIC,TA) at any pH (Figure 2E), though p K_1 may play a significant role at pH < 7.6 (Figure 2D). Uncertainties in TB are more influential at high pH: a TB uncertainty of 2% would influence pH by 0.002 pH units (Figure

2C). A p K_B systematic uncertainty of 0.004^{S7} would cause an uncertainty lower than 0.001 pH units (Figure 2F).

3. RESULTS AND DISCUSSION

3.1. Distribution and Magnitude of \Delta pH. The ΔpH distribution is shown as a function of pH (Figure 3), the same reference variable as used in Figure 2. Group 1 original data (Figure 3A) present trends in ΔpH versus pH that vary by cruise (Figure S2), with 62% of ΔpH values within 0.01, and 40% within 0.005 with no clear pattern with pressure (not shown). There are ΔpH values well above 0.01 and below -0.01 for waters with pH < 7.6. Points with $|\Delta pH| > 0.01$ represent 48% of the data in Group 1 and are usually found in high AOU (>200 μ mol·kg⁻¹) waters above 2000 dbar. Extreme pH values <7.3 are only found in the hypoxic layer of the oxygen minimum zone (OMZ) of the North Pacific Ocean at about 500 dbar. ^{72–74} The ΔpH distribution for GLODAPv2 adjusted Group 1 data (Figure 3B) scatters around zero with no clear trends (Figure S2 vs S3), 80% of ΔpH values are within 0.01, and 56% within


Figure 4. Group 2 data, original (left column) and modified, following Fong and Dickson, ⁵⁷ (right column) pK's and TB values, two-dimensional histograms showing the number of data falling within bins of (A, B) Δ pH (*y*-axis, Δ pH, i.e., measured pH minus pH calculated, pH = f(DIC,TA)) vs pH (*x*-axis); (C, D) Δ TA (*y*-axis, Δ TA, i.e., measured TA minus TA calculated, TA = f(pH,DIC)) vs pH (*x*-axis); (E, F) Δ TA (*y*-axis) vs AOU (*x*-axis). The *z*-axis shows the histogram frequency in logarithmic scale. The pH is on the total scale, at 25 °C and atmospheric pressure, TA & AOU in μ mol·kg⁻¹. Note: calculated pH in (B) contains an organic TA contribution of 5.9 μ mol·kg⁻¹; in D and F no organic TA is considered.

0.005, and therefore, pH, TA, and DIC are internally consistent, as forced by the GLODAPv2 corrections.²²

A more thorough inspection of the results in Figure 3A at low pH reveals that negative ΔpH values mostly correspond to U.S. (expocode 35*) cruises, while positive ΔpH values correspond to Japanese (expocode 49*) cruises (Figure S2 and Table S1). This fact implies a methodological bias in either pH, TA, and/or DIC. With regard to pH methods, most Japanese laboratories in Group 1 measured pH with an identical automated system, while the U.S. laboratories used automated and manual pH methods. With regard to TA methods, U.S. laboratories used a mixture of open- and closed-cell potentiometric systems for TA, while Japanese laboratories used an automated open-cell titration system or spectrophotometric determination. With regard to DIC methods, both U.S. and Japanese groups used a

coulometric procedure with different extraction units, which were usually calibrated with gas loops or Na₂CO₃ standards. In addition, DIC and TA were metrologically referenced to CO₂ Certified Reference Materials⁷⁵ and double checked with the crossover analysis, with most of the cruises flagged as good (Table S1). Without disregarding sampling issues for very high DIC (low pH) samples and a pH dependent incoherence in the pKs mostly affecting calculated pH at low pH (Figure 2D,E), we suspect that the lack of internal consistency in the original Group 1 pH, TA, and DIC data points to some sort of incoherence in the pH measurements. More details will be given in section 3.2.

The more recent, automated spectrophotometric UNPUR and PUR pH measurements in Group 2 (Figure 4A) clearly present different ΔpH results for pH > 7.6 waters, with 76% ΔpH values within 0.01 and 47% within 0.005, compared to

Figure 5. North Pacific Ocean crossover analysis for Group 1 (upper row, cruises 306 and 502) and Group 2 (lower row, cruises P16N.2 and P01) comparing samples for (A, G) TA, (C, I) DIC, and (E, K) original pH; and the corresponding mean difference profiles between cruises for (B, H) TA, (D, J) DIC, and (F, L) pH. The pH is on the total scale, at 25 °C and atmospheric pressure; DIC and TA are in μ mol·kg⁻¹.

waters with pH < 7.6, where 56% of the Δ pH values are within 0.01 and 29% within 0.005. Most of the U.S. cruises in Group 2, either using PUR or UNPUR mCP present a clear Δ pH versus pH dependence, with negative Δ pH values at low pH (Figure S4).

Assuming that DIC and TA are precise, metrologically referenced and accurate to less than 2 μ mol·kg⁻¹, the significant Δ pH inconsistencies at pH < 7.6 and the marked Δ pH versus pH trend in both groups of CLIVAR and GO-SHIP cruises could be attributed to

- uncertainties in the CO_2 system constants affecting calculated pH: uncertainty in p K_1 would have the largest, but relatively low, impacts on pH in low pH waters, while uncertainty in p K_2 would have effects across the pH range with a higher magnitude (Figure 2D,E). Section 3.3 further explores proposed corrections on the constants.
- uncertainties in measured pH: these could be derived from (1) sampling biases; for example, degassing of very low pH waters could explain positive ΔpH values as measured pH would be overestimated; (2) underestimation of measured pH because of indicator impurities affecting the whole pH range, but causing a larger impact on higher pH values; (3) instrumental problems related to the wavelength, bandpass, absorbance accuracy, and precision, 53 affecting the whole pH range; and (4) the lack of certified reference material covering the whole pH range.

With regard to points 1 and 2, in the CO_2 intercomparison exercise performed in 2013,⁷⁶ only 38% of the participating laboratories reached an agreement for pH within 0.005 from the

reference value in the high (pH > 7.6) and low (pH < 7.6) pH ranges tested. The low pH range showed more scattered results, with 50% within 0.01, compared to 69% in the high pH range. Several reasons were hypothesized for those scattered pH results: the lack of an available pH reference material for all pH ranges, lack of automation of the method, loss of CO2 from the sample, particularly in the low pH range (i.e., sample handling), and the unavailability of PUR mCP for many laboratories. Only 26 pH values were reported in that exercise. A more recent CO₂ intercomparison exercise performed in 2017 (unpublished) compiles about 60 pH results, and again in the low pH range only 52% reached 0.01 agreement compared with 73% in the high pH range; separating by PUR and UNPUR mCP does not improve the results (E. Bockmon and A. Dickson, personal communication). Section 3.2 further comments on the pH direct comparison between groups.

With regard to point 3, except for the spectrophotometer model, no information about equipment calibration or maintenance is provided in the cruise reports, making it impossible to evaluate further. With regard to point 4, cruise reports rarely include pH measurements of Tris buffer solutions or pH measurements on CO_2 CRMs; both are usually used to evaluate long-term reproducibility, not accuracy. In terms of accuracy, pH is not yet certified for CO_2 CRMs, and measuring pH at 20 or 25 °C in Tris buffers can only constrain high pH values if the Tris solution is properly prepared and calibrated.³⁴

3.2. Direct Original Group 1 and 2 pH Comparison at Crossover Points. Discrepancies in pH measurements seem to be the main reason behind the Δ pH inconsistencies. However, the exact mechanism is unknown, and the bias could be in the

sampling, preservation, reagents (UNPUR or PUR mCP), equipment specifications, or a combination of some or all of them. Identifying and quantifying those biases could be attained by (1) directly comparing all available spectrophotometric pH measurements from hydrographic sections in CCHDO in overlapping areas less affected by OA, along with a careful examination of the pH method metadata information; and/or (2) designing a specific intercomparison exercise focused on spectrophotometric pH. Option 1 is a massive task on top of the list for the future 2020 GLODAP release. Option 2 is one of the main objectives of the recently accepted Ocean Carbonate System Intercomparison Forum (OCSIF) working group started in summer 2019.

By means of our database, we attempt to give insights using option 1: we identified five crossover locations (black points in Figure 1) and explored differences for TA, DIC, and original pH data in deep waters with low temporal variability. For that purpose, we used the scripts in Lauvset and Tanhua⁷⁷ to interpolate measured ${\rm CO}_2$ variables into standard density (sigma₄) levels for each cruise and area using a Piecewise Cubic Hermite Interpolation scheme. After the mean profile per cruise and area was obtained, the mean difference profile between cruises and the corresponding mean difference for each variable within a given sigma₄ interval were calculated.

The results in the North Pacific Ocean are illustrative and discussed here, while the other crossover areas are supplementary and therefore detailed in the Supporting Information (Figures S5, S6, and S7). Two Group 1 (cruise 306, US P16N 2006, and cruise 502, Japanese P01 2007) using UNPUR mCP and two Group 2 (US P16N.2 2015 and Japanese P01 2014) using PUR mCP cruises overlap in the North Pacific Ocean (Figure 1). This region is characterized by very low pH values (pH < 7.6 for sigma₄ > 44.3, Figure 5E). Bottom waters below 4000 dbars and sigma₄ > 45.86 present a difference between cruises (306–502) for TA, DIC and pH of 1.7 \pm 2.1 μ mol·kg $^{-1}$, -2.0 \pm 0.6 μ mol·kg $^{-1}$ and -0.018 \pm 0.001, respectively in Group 1 (Figure 5A–F, Table S4), and -0.8 \pm 1.2 μ mol·kg $^{-1}$, -2.4 \pm 0.2 μ mol·kg $^{-1}$, -0.008 \pm 0.0005, respectively in Group 2 (P16N.2-P01) (Figure 5G–L, Table S4).

Clearly, DIC and TA for the two sets of cruises agree within 2 μ mol·kg⁻¹, despite using different equipment and approaches, according to the cruise reports: DIC methods were both based on coulometry, but each research group used different extraction units and coulometer models; US TA was determined by open cell potentiometry, and Japanese TA using a spectrophotometric procedure. In the case of pH, a clear discrepancy is evident, \sim 0.02 pH units, in Group 1 (Figure 5E,F), accentuated in the layer with pH < 7.4. In Group 2, the pH difference reduces to 0.01 pH units and is nearly constant with pH (Figure 5K,L).

Group 1 cruises used both UNPUR mCP (no information about manufacturer is given in the cruise reports, but the same C&B93¹² equation is used) with manual (US P16N) and custom-made automated (Japanese P01) techniques. Degassing of very low pH samples during the pH analysis during 2007 P01 could explain the Δ pH positive values (Figure S3) and the negative correction applied by GLODAPv2 (-0.015, cruise 502 in Table S1). The opposite is found for the 2006 P16N cruise: Δ pH negative values (Figure S3) and the positive correction applied by GLODAPv2 (0.013, cruise 306 in Table S1) indicating a pH underestimation, which is difficult to associate with sampling issues but could be the result of calibration issues in the spectrophotometer equipment. ⁵³ Differences in measured pH in Group 1 are difficult to ascribe to indicator impurities, as

those are expected to be largest at high pH, ⁵⁰ opposite to what was found here (Figure 5F). In Group 2, both cruises used automated independent custom-made spectrophotometric systems with PUR mCP (provided by Dr. Byrne in P16 and homemade in P01, both used the same Liu et al. ⁵¹ pH equation), the pH difference between cruises is nearly constant and ~0.01 pH units. The pH, DIC, and TA data from 2014 P01 are consistent with Δ pH within 0.01 pH units and no GLODAPv2 recommended corrections, 2015 P16N presents Δ pH \approx -0.04 pH units (Figure S4), and pH is corrected upward (0.016, cruises 1043 and 1044 in Table S2). Instrumental issues such as accuracy in the wavelength and absorbance of the spectrophotometer could be the cause, ⁵³ but are impossible to evaluate postcruise.

Overall, except for TA in the South Western Pacific Ocean, DIC and TA agree within 2 μ mol·kg⁻¹ for all crossovers locations (see Supporting Information), so they both appear to be measured by well established, precise, and accurate methodologies. Spectrophotometric pH measurements present a problematic situation specially for pH < 7.6, with very high discrepancies (~0.02 pH units) between CLIVAR research groups using UNPUR mCP, and lower, but still significant discrepancies (~0.01 pH units) when using PUR mCP in the GO-SHIP era. At higher pH values, >7.7, the discrepancies decrease to ~0.008 pH units when comparing UNPUR to UNPUR (CLIVAR era) or UNPUR to PUR mCP pH (CLIVAR to GO-SHIP) cruises.

Given that OA observational studies associated with climate change 61 require an observational uncertainty better than 0.003 consistent over time, the ocean $\rm CO_2$ research community needs to revisit the pH method procedure, sampling, preservation, reagents, equipment, equations, calibration, robustness and traceability to consensually accepted standards. 35,49,53 Rephrasing the pH SOP and reporting procedure is one of the main objectives of the OCSIF working group.

3.3. Accounting for the Δ pH vs pH Inconsistency. Fong & Dickson ⁵⁷ proposed systematic adjustments for p K_1 , p K_2 , and TB, along with a non-negligible contribution of organic alkalinity (4–6 μ mol·kg⁻¹) homogeneously distributed in the water column of the Indian and Pacific oceans (cruises P16N, P16S, I09N, and I08S in Group 2). Those adjustments would minimize and flatten the Δ pH versus pH discrepancy. This section explores if those corrections are conceivable globally.

Organic TA refers to any organic molecule that accept protons under the conditions set in the definition of TA. Organic TA can be considered an excess of measured TA compared to calculated TA, or Δ TA (organic TA = Δ TA = TA measured – TA = f(pH,DIC)), when assuming no systematic errors in measured pH or DIC and that other thermodynamic inconsistencies are negligible.

Using original (i.e., without any of the adjustments proposed by Fong & Dickson⁵⁷) pK constants and TB for Group 2 data, Δ TA values present a clear pH dependence with positive (negative) values at low (high) pH (Figure 4C), directly correlated with AOU (Figure 4E), which suggests that highly remineralized waters would present higher concentrations of organic TA (\sim Δ TA). Surprisingly, this organic TA (\sim Δ TA) would be inversely correlated with DOC and pressure, presenting negative values in the upper ocean which has high DOC values (Figure S8A,C). When adjusting the pK constants and TB (p K_1 –0.0074, p K_2 + 0.014 and TB –2.47%) according to Fong and Dickson, ⁵⁷ Δ TA vs pH would flatten (Figure 4D) at a mean value of 5.9 μ mol·kg⁻¹, without showing any relation to

AOU (Figure 4F), DOC, or pressure (Figure S8B,D). Adding this organic TA of 5.9 μ mol·kg⁻¹, the resulting Group 2 Δ pH distribution would flatten and center Δ pH distribution around zero (Figure 4B).

Adjustments on the constants are plausible considering corresponding standard uncertainties, but ignore the pH dependent impact of changing pK's and TB on pH = f(DIC,TA) (Figure 2). Those adjustments would flatten and minimize Δ pH with the existence of a constant and relative high organic TA in open ocean waters (Figure 4D,F), which in turn would also cancel out the correlation of Δ TA with DOC or pressure (Figure S8B,D). This picture is surprising as organic TA is usually associated with shallow coastal waters with high DOC, where the input of fresh organic matter contains a high fraction of humic and fulvic substances, which are proton acceptors. ^{79–81}

In the open deep ocean some DOC components able to accept protons, the so-called carboxyl-rich alicyclic molecules (CRAMS)⁸² are associated with recalcitrant DOC⁸³ and with specific humic-like fluorescence peaks, 84,85 that are correlated with AOU. 86 Original ΔTA versus AOU distribution for Group 2 data shows a linear positive relationship (Figure 4E), while if applying the corrections to pKs and TB, there is no such relation (Figure 4F). A nearly constant value of organic TA, $4-6 \mu \text{mol}$ · kg⁻¹, with no relationship with pressure, DOC, or AOU is difficult to explain. CRAMS constitute about 8-10% of DOC^{82,87} with about six carboxylic acid functional groups for every 30 carbon atoms. Consequently, organic TA from CRAMS can be approximated as $0.10 \times 6/30 \times DOC$, which is about 1 μ mol·kg⁻¹ below 500 dbars and up to a maximum of $2-3 \mu \text{mol} \cdot \text{kg}^{-1}$ in upper waters. Without modifying pK's but including this small contribution from organic TA, ΔpH centers to zero for pH < 7.6, but at higher pH values Δ pH would be mainly positive (results not shown).

This discussion is intended as a reminder that the proposed pK's and TB corrections, with constant organic TA throughout the water column $^{\rm S7}$ are simply one combination of plausible uncertainties that could account for the majority of the pH dependent pH discrepancy for these cruises, and that these adjustments are not derived from first principles. The true coastal and deep ocean magnitude, distribution, and biogeochemical relationships of organic TA, and its impact on $\rm CO_2$ chemistry are still open questions.

3.4. Concerns about CO₂ Calculations in the Ocean. Rates of OA can be calculated from sustained, accurate, and precise DIC and TA measurements. The pH experienced by ecosystems can be calculated from these measurements to within 0.01 pH units of directly measured spectrophotometric pH, except for waters with pH < 7.6 (Figures 3A and 4A); here either calculated pH is overestimated on many cruises, or measured pH is erroneously low.

Considering that waters with pH < 7.6 constitute 34% of the samples in the upper 1500 dbars in Group 2, and are more sensitive to anthropogenic carbon accumulation,²⁴ urgent consensus both on pH measurements and calculations is needed, particularly in light of the revolutionary new era of biogeochemical observations, particularly for CO₂ variables,⁸⁸ by means of various autonomous platforms.^{89–91} During the last 10 years, rapid progress has been made in developing biogeochemical sensors that are sufficiently lower power, smaller, more precise, more accurate, more stable, and more pressure tolerant. These new sensors have been installed on ships of opportunity, profiling floats, and gliders. Commercially

available sensors are ready for dissolved oxygen, particles, chlorophyll, and nitrate ^{92,93} and more recently pH. ^{94,95} Key questions for oceanography and global change will be addressed with this new global ocean observing capability ^{93,96} only if data among platforms are consistent and comparable.

Biogeochemical sensors placed on Argo profilers usually require postdeployment calibration when compared to direct discrete measurements at the deployment site and often require adjustments to account for temporal drift. 97 In the case of dissolved oxygen, some sensors can measure the atmospheric oxygen content, which is nearly constant and used as a reference. Deep nitrate, pH, and oxygen sensor measurements can be adjusted to predicted values from linear ^{62,98–100} or neural networks ^{101,102} algorithms predictions but are reliant on high quality discrete measurements such as those from the CLIVAR and GO-SHIP programs. Critically, there are insufficient consistently measured pH data to train these algorithms globally, so pH values calculated from TA and DIC are currently used alongside pH measurements. CO2 system measurement intercomparability is therefore important for the calibration of pH sensors operating on the Argo array. In this regard, compared to GLODAPv2.2016,²² the GLODAPv2.2019⁶⁴ update kept the same DIC consistency in 4 μ mol·kg⁻¹, improved the consistency of TA from 6 to 4 μ mol·kg⁻¹, but widened the uncertainty for pH from 0.005 to 0.01 pH units.

Some examples below using Argo pH measurements illustrate our concerns when using adjusted pH as an input for estimating other ${\rm CO_2}$ variables:

- (1) Juranek et al. 103 obtained algorithms for pH as a function of discrete oxygen or nitrate plus temperature data; however, this discrete pH actually was pH = f(DIC,TA)and not directly measured spectrophotometric pH. The reason behind this choice may have been that original pH measurements (cruise 306 in the North Pacific Ocean, Table S1) should be corrected upward by 0.013 pH units according to an internal consistency analysis. In addition, ΔpH shows a clear dependence with measured pH (Figure S3, cruise 325020060213), as also remarked in Williams et al. 104 Algorithms for pH by Juranek et al. 103 predicted calculated pH in the North Pacific, while Williams et al. used directly measured spectrophotometric pH data in the Pacific sector of the Southern ocean. Given the results presented here, clear differences between measured spectrophotometric pH and pH = f(DIC,TA) indicate an important issue that the scientific community needs to address.
- (2) Williams et al. 104 proposed using adjusted Argo pH data along with estimated TA to calculate surface pCO_2 , which is a reasonable option for surface waters where the error from direct pH measurements on calculated pCO₂ is low, as it is the impact from TA or pK_1 . Biases in Argo pH are adjusted with an algorithm obtained from discrete temperature, salinity, oxygen, and spectrophotometric pH measurements from 2011 S04P and 2014 P16S (both included in our analysis, cruise 295 in Table S1 and 1036 in Table S2, respectively), and A12/PS89 cruise data. Most of the cumulative offsets between cruise and Argo pH at 1500 dbar are negative (their Table 1), so Argo pH is increased. As far as we understand, a further offset (+0.0054 pH units) is added to the Argo adjusted pH based on comparing spectrophotometric pH and pH = f(DIC,TA) from the cruises P16S & S04P at 1500 dbar.

However, if using surface instead of deep pH = f(DIC,TA), the pH offset would instead be negative and even an order of magnitude higher (about -0.015 pH units) because the ΔpH is pH dependent (Figure S3, cruise 320620110219 and Figure S4, cruise P16S). We therefore contend such adjustments should be applied in a pH-dependent fashion rather than as a fixed offset.

(3) Recent work by Takeshita et al.⁹⁵ gives a more detailed assessment of surface underway pCO₂ along the A13.5 cruise (Table S2) as a function of Argo pH and estimated TA. Different discrete pH values (spectrophotometric pH measurements, pH = f(DIC,TA), pH = $f(pCO_2,TA)$, pH = $f(pCO_2, DIC)$) are used to adjust the surface Argo pH. The authors note the better agreement between pCO_2 = f(Argo pH,TA) when Argo pH is calibrated with pH = $f(pCO_2,DIC \text{ or }TA)$, instead of surface discrete spectrophotometric pH. They claim this is due to the use of UNPUR mCP that underestimates pH at high pHs, even when reported spectrophotometric pH is supposed to be corrected to PUR mCP.

The CO₂ community is on the cusp of a new era with the implementation of BioGeoChemical Argo and other autonomous CO₂ measurements that require calibration with high quality discrete measurements. Long-term monitoring of OA requires a very high level of precision and accuracy for all carbon system parameters; yet, despite decades of research small but important inconsistencies remain. Consensus is clearly required on how to calibrate and adjust float pH data to ensure the highest accuracy of data and comparability among different studies and data sets from diverse platforms. Different methods can lead to different biases and uncertainties, which may hide trends or lead to misinterpretation of data. Although improvements in spectrophotometric pH measurements have been made since the CLIVAR era, there are still discrepancies that will require further research to resolve. A clearly detailed spectrophotometric pH SOP including accuracy control is urgently needed.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.est.9b06932.

> Tables with metadata information about the cruises in Group 1 (Table S1), Group 2 (Table S2), CO2 thermodynamic constants used (Table S3), and crossover analysis (Table S4). Figures with more information about Group 1 and 2 measured minus calculated DIC (Figure S1) and pH (Figures S2, S3, and S4). Figures showing the results for crossovers in the South Pacific (Figure S5), South Atlantic (Figure S6), and North Indian (Figure S7) oceans. Figure with more information about Group 2 measured minus calculated TA with different constants (Figure S8) (PDF)

AUTHOR INFORMATION

Corresponding Author

Marta Álvarez – Instituto Español de Oceanografía, A Coruña 15001, Spain; orcid.org/0000-0002-5075-9344; Phone: +34-986-213-116; Email: marta.alvarez@ieo.es;

Fax: +34-986-498-626

Authors

Noelia M. Fajar – Instituto Español de Oceanografía, A Coruña 15001, Spain

Brendan R. Carter – Joint Institute for the Study of the Atmosphere and Ocean, Seattle, Washington 98105, United States; Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration, Seattle, Washington 98115, United States

Elisa F. Guallart - Instituto Español de Oceanografia, A Coruña 15001, Spain

Fiz F. Pérez – Instituto de Investigaciones Marinas - CSIC, Vigo 36208, Spain

Ryan J. Woosley - Center for Global Change Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States

Akihiko Murata - Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, Kanagawa, Japan

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.est.9b06932

Author Contributions

*M.A. and N.M.F. contributed equally to this work. All authors contributed to the interpretation of the data and the discussion of the results presented in the manuscript. All authors have given approval to the final version of the manuscript.

M.A. was supported by IEO RADIALES and RADPROF program. N.M.F was supported by a Juan de la Cierva postdoctoral contract (FJCI2015-24394) and E.F.G. by a Personal Técnico de Apoyo contract (PTA2016-12441-I) both from the Spanish Ministry of Science, Innovation and Universities. F.F.P. was supported by the project ARIOS (CTM2016-76146-C3-1-R) from the Spanish Ministry of Science, Innovation and Universities, cofunded by the FEDER 2014-2020. A.K. was supported by the JAMSTEC Global Ocean Observation Research. B.R.C. is grateful to the USA National Oceanic and Atmospheric Administration for financial support through the Ocean Observation and Monitoring Division's Carbon Data Management and Synthesis Project (N8R3CEA-PDM). R.J.W. was supported by NSF Division of Ocean Sciences (Award No. 1923312) and the MIT mTerra Catalyst fund. Useful and related discussions were held at the Ocean Carbonate System Intercomparison Forum working group funded by the Ocean Carbon Biogeochemistry program. **Notes**

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was possible thanks to the commitment of agencies, principal investigators, scientists, technicians, and crew to acquire high quality hydrographic and biogeochemical data on transoceanic cruises and make them publicly available in friendly formats. We thank Dr. M. I. Garcia-Ibáñez for editorial comments and Prof. X. A. Alvarez-Salgado for insights about marine organic matter composition. The JISAO and PMEL contribution numbers are 2020-1071 and 5109, respectively.

ABBREVIATIONS

CCHDO, CLIVAR and Carbon Hydrographic Data Office, https://cchdo.ucsd.edu/; CLIVAR, Climate and Ocean Variability, Predictability and Change; OCSIF, Ocean Carbonate System Intercomparison Forum, https://www.us-ocb.org/ocean-carbonate-system-intercomparison-forum/; GOA-ON, Global Ocean Acidification Observing Network, http://goa-on.org/home.php; GO-SHIP, Global Ocean Ship-Based Hydrographic Investigations Program; OA-ICC, Ocean Acidification International Coordination Centre, www.iaea.org/services/oaicc; IOC-UNESCO, Intergovernmental Oceanographic Commission of the United Nations Educational, Scientific and Cultural Organization, http://www.unesco.org/new/en/natural-sciences/ioc-oceans/; IOCCP, International Ocean Carbon Coordination Project, www.ioccp.org

REFERENCES

- (1) Stocker, T. F.; Qin, D.; Plattner, G. K.; Tignor, M. M. B.; Allen, S. K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P. M. Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; 2013. DOI: 10.1017/CBO9781107415324.
- (2) Doney, S. C.; Fabry, V. J.; Feely, R. A.; Kleypas, J. A. Ocean Acidification: The Other CO₂ Problem. *Annu. Rev. Mar. Sci.* **2009**, *1*, 169–192.
- (3) IPCC. Summary for Policymakers. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2013. DOI: 10.1017/CBO9781107415324.
- (4) Millero, F. J.; Graham, T. B.; Huang, F.; Bustos-Serrano, H.; Pierrot, D. Dissociation Constants of Carbonic Acid in Seawater as a Function of Salinity and Temperature. *Mar. Chem.* **2006**, *100*, 80.
- (5) Schnoor, J. L. Ocean Acidification: The Other Problem with CO₂. *Environ. Sci. Technol.* **2014**, 48 (18), 10529–10530.
- (6) Pfister, C. A.; Esbaugh, A. J.; Frieder, C. A.; Baumann, H.; Bockmon, E. E.; White, M. M.; Carter, B. R.; Benway, H. M.; Blanchette, C. A.; Carrington, E.; McClintock, J. B.; McCorkle, D. C.; McGillis, W. R.; Mooney, T. A.; Ziveri, P. Detecting the Unexpected: A Research Framework for Ocean Acidification. *Environ. Sci. Technol.* 2014, 48 (17), 9982–9994.
- (7) Sørensen, S. P. L. Über Die Messung Und Bedeutung Der Wasserstoffionenkonzentration Bei Enzymatischen Prozessen. *Biochem.* 7, 1909
- (8) Brewer, P. G. A Short History of Ocean Acidification Science in the 20th Century: A Chemist's View. *Biogeosciences* **2013**, *10*, 7411.
- (9) Bates, N.; Astor, Y.; Church, M.; Currie, K.; Dore, J.; Gonaález-Dávila, M.; Lorenzoni, L.; Muller-Karger, F.; Olafsson, J.; Santa-Casiano, M. A Time-Series View of Changing Ocean Chemistry Due to Ocean Uptake of Anthropogenic CO₂ and Ocean Acidification. *Oceanography* **2014**, *27*, 126.
- (10) Carstensen, J.; Duarte, C. M. Drivers of pH Variability in Coastal Ecosystems. *Environ. Sci. Technol.* **2019**, 53 (8), 4020–4029.
- (11) Ríos, A. F.; Pérez, F. F.; Fraga, F. Long-Term (1977–1997) Measurements of Carbon Dioxide in the Eastern North Atlantic: Evaluation of Anthropogenic Input. *Deep Sea Res., Part II* **2001**, 48, 2227.
- (12) Clayton, T. D.; Byrne, R. H. Spectrophotometric Seawater pH Measurements: Total Hydrogen Ion Concentration Scale Calibration of m-Cresol Purple and at-Sea Results. *Deep Sea Res., Part I* **1993**, 40, 2115–2129.
- (13) Byrne, R. H.; Mecking, S.; Feely, R. A.; Liu, X. Direct Observations of Basin-Wide Acidification of the North Pacific Ocean. *Geophys. Res. Lett.* **2010**, 37 DOI: 10.1029/2009GL040999.
- (14) Ishii, M.; Kosugi, N.; Sasano, D.; Saito, S.; Midorikawa, T.; Inoue, H. Y. Ocean Acidification off the South Coast of Japan: A Result from Time Series Observations of CO₂ parameters from 1994 to 2008. *J. Geophys. Res.* **2011**, DOI: 10.1029/2010JC006831.
- (15) Vázquez-Rodríguez, M.; Pérez, F. F.; Velo, A.; Ríos, A. F.; Mercier, H. Observed Acidification Trends in North Atlantic Water Masses. *Biogeosciences* **2012**, *9*, 5217.

- (16) García-Ibáñez, M. I.; Zunino, P.; Fröb, F.; Carracedo, L. I.; Ríos, A. F.; Mercier, H.; Olsen, A.; Pérez, F. F. Ocean Acidification in the Subpolar North Atlantic: Rates and Mechanisms Controlling pH Changes. *Biogeosciences* **2016**, *13*, 3701.
- (17) Guallart, E. F.; Fajar, N. M.; Padín, X. A.; Vázquez-Rodríguez, M.; Calvo, E.; Ríos, A. F.; Hernández-Guerra, A.; Pelejero, C.; Pérez, F. F. Ocean Acidification along the 24.5°N Section in the Subtropical North Atlantic. *Geophys. Res. Lett.* **2015**, *42*, 450.
- (18) Key, R. M.; Kozyr, A.; Sabine, C. L.; Lee, K.; Wanninkhof, R.; Bullister, J. L.; Feely, R. A.; Millero, F. J.; Mordy, C.; Peng, T. H. A Global Ocean Carbon Climatology: Results from Global Data Analysis Project (GLODAP). *Global Biogeochem. Cycles* **2004**, *18*, GB4031.
- (19) Sabine, C.; Key, R.; Kozyr, A.; Feely, R.; Wanninkhof, R.; Millero, F.; Peng, T.; Bullister, J.; Lee, K. Global Ocean Data Analysis Project (GLODAP): Results and Data, NDP-083, 110 Pp. Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., Oak Ridge, Tenn 2005.
- (20) Key, R. M.; Tanhua, T.; Olsen, A.; Hoppema, M.; Jutterström, S.; Schirnick, C.; van Heuven, S.; Kozyr, A.; Lin, X.; Velo, A.; Wallace, D. W. R.; Mintrop, L. The CARINA Data Synthesis Project: Introduction and Overview. *Earth Syst. Sci. Data* **2010**, 2 (1), 105–121.
- (21) Key, R. M.; Olsen, A.; van Heuven, S.; Lauvset, S. K.; Velo, A.; Lin, X.; Schirnick, C.; Kozyr, A.; Tanhua, T.; Hoppema, M.; Jutterstrom, S.; Steinfeldt, R.; Jeansson, E.; Ishi, M.; Perez, F. F.; Suzuki, T. Global Ocean Data Analysis Project, Version 2 (GLODAPv2), ORNL/CDIAC-162, ND-P093. Carbon Dioxide Information Analysis Center (CDIAC), 2015.
- (22) Olsen, A.; Key, R. M.; van Heuven, S.; Lauvset, S. K.; Velo, A.; Lin, X.; Schirnick, C.; Kozyr, A.; Tanhua, T.; Hoppema, M.; Jutterstrom, S.; Steinfeldt, R.; Jeansson, E.; Ishii, M.; Perez, F. F.; Suzuki, T. The Global Ocean Data Analysis Project Version 2 (GLODAPv2) an Internally Consistent Data Product for the World Ocean. *Earth Syst. Sci. Data* **2016**, 8 (2), 297—323.
- (23) Sabine, C. L.; Tanhua, T. Estimation of Anthropogenic CO₂ Inventories in the Ocean. *Annu. Rev. Mar. Sci.* **2010**. 2175.
- (24) Lauvset, S. K.; Carter, B. R.; Pèrez, F. F.; Jiang, L.-Q.; Feely, R. A.; Velo, A.; Olsen, A. Processes Driving Global Interior Ocean pH Distribution. *Global Biogeochem*. *Cycles* **2020**, 34 (1), No. e2019GB006229.
- (25) Martz, T. R.; Connery, J. G.; Johnson, K. S. Testing the Honeywell Durafet® for Seawater pH Applications. *Limnol. Oceanogr.: Methods* **2010**, *8* (5), 172–184.
- (26) Bresnahan, P. J.; Martz, T. R.; Takeshita, Y.; Johnson, K. S.; LaShomb, M. Best Practices for Autonomous Measurement of Seawater pH with the Honeywell Durafet. *Methods Oceanogr.* **2014**, *9*, 44–60.
- (27) Dickson, A. G.; Camões, M. F.; Spitzer, P.; Fisicaro, P.; Stoica, D.; Pawlowicz, R.; Feistel, R. Metrological Challenges for Measurements of Key Climatological Observables. Part 3: Seawater pH. *Metrologia* **2016**, 53 (1), R26.
- (28) Marion, G. M.; Millero, F. J.; Camões, M. F.; Spitzer, P.; Feistel, R.; Chen, C.-T. A. pH of Seawater. *Mar. Chem.* **2011**, *126* (1–4), 89–96.
- (29) Millero, F. J.; Zhang, J. Z.; Fiol, S.; Sotolongo, S.; Roy, R. N.; Lee, K.; Mane, S. The Use of Buffers to Measure the pH of Seawater. *Mar. Chem.* **1993**, *44*, 143.
- (30) Dickson, A. G. The Measurement of Sea Water pH. *Mar. Chem.* **1993**, *44*, 131.
- (31) Millero, F. J. The Marine Inorganic Carbon Cycle. *Chem. Rev.* **2007**, *107* (2), 308–341.
- (32) Zeebe, R.; Wolf-Gladrow, D. CO_2 in Seawater: Equilibrium, Kinetics, Isotopes; Elsevier Science, 2001.
- (33) Byrne, R. H.; Breland, J. A. High Precision Multiwavelength pH Determinations in Seawater Using Cresol Red. *Deep-Sea Res., Part A* **1989**, 36 (5), 803–810.
- (34) DelValls, T.; Dickson, A. The pH of Buffers Based on 2-Amino-2-Hydroxymethyl-1, 3-Propanediol ('Tris') in Synthetic Sea Water. *Deep Sea Res., Part I* **1998**, *45* (9), 1541–1554.

- (35) Pratt, K. W. Measurement of PHT Values of Tris Buffers in Artificial Seawater at Varying Mole Ratios of Tris: Tris·HCl. *Mar. Chem.* **2014**, *162*, 89–95.
- (36) Müller, J. D.; Bastkowski, F.; Sander, B.; Seitz, S.; Turner, D. R.; Dickson, A. G.; Rehder, G. Metrology for pH Measurements in Brackish Waters—Part 1: Extending Electrochemical PHT Measurements of TRIS Buffers to Salinities 5–20. Front. Mar. Sci. 2018, 5, 176.
- (37) Waters, J. F.; Easley, R. A.; Pratt, K. W. Traceable Reference Standards for Seawater pH. Am. Geophys. Union, Ocean Sci. Meet. 2016, Abstr. No. AH24A-0045 2016.
- (38) Dickson, A. G.; Sabine, C. L.; Christian, J. R. Guide to Best Practices for Ocean CO₂ Measurements; North Pacific Marine Science Organization Sidney: British Columbia, 2007; Vol. 3.
- (39) Ramette, R. W.; Culberson, C. H.; Bates, R. G. Acid-Base Properties of Tris(Hydroxymethyl)Aminomethane (Tris) Buffers in Sea Water from 5 to 40 °C. *Anal. Chem.* **1977**, 49 (6), 867–870.
- (40) Clayton, T. D.; Byrne, R. H.; Breland, J. A.; Feely, R. A.; Millero, F. J.; Campbell, D. M.; Murphy, P. P.; Lamb, M. F. The Role of pH Measurements in Modern Oceanic CO₂-System Characterizations: Precision and Thermodynamic Consistency. *Deep Sea Res., Part II* 1995, 42 (2–3), 411–429.
- (41) Byrne, R.; McElligott, S.; Feely, R.; Millero, F. The Role of PHT Measurements in Marine CO_2 -System Characterizations. *Deep Sea Res.*, Part I 1999, 46 (11), 1985–1997.
- (42) Lamb, M.; Sabine, C.; Feely, R.; Wanninkhof, R.; Key, R.; Johnson, G.; Millero, F.; Lee, K.; Peng, T. H.; Kozyr, A.; Bullister, J. L.; Greeley, D.; Byrne, R. H.; Chipman, D. W.; Dickson, A. G.; Goyet, C.; Guenther, P. R.; Ishii, M.; Johnson, K. M.; Keeling, C. D.; Ono, T.; Shitashima, K.; Tilbrook, B.; Takahashi, T.; Wallace, D. W. R.; Watanabe, Y. W.; Winn, C.; Wong, C. S. Consistency and Synthesis of Pacific Ocean CO₂ Survey Data. *Deep Sea Res., Part II* **2001**, 49 (1–3), 2.1–58.
- (43) Lee, K.; Millero, F. J.; Byrne, R. H.; Feely, R. A.; Wanninkhof, R. The Recommended Dissociation Constants for Carbonic Acid in Seawater. *Geophys. Res. Lett.* **2000**, *27* (2), 229–232.
- (44) Lueker, T. J.; Dickson, A. G.; Keeling, C. D. Ocean pCO $_2$ Calculated from Dissolved Inorganic Carbon, Alkalinity, and Equations for K1 and K2: Validation Based on Laboratory Measurements of CO $_2$ in Gas and Seawater at Equilibrium. *Mar. Chem.* **2000**, 70 (1–3), 105–119.
- (45) Millero, F. J.; Graham, T. B.; Huang, F.; Bustos-Serrano, H.; Pierrot, D. Dissociation Constants of Carbonic Acid in Seawater as a Function of Salinity and Temperature. *Mar. Chem.* **2006**, *100* (1–2), 80–94.
- (46) Millero, F. J.; Pierrot, D.; Lee, K.; Wanninkhof, R.; Feely, R.; Sabine, C. L.; Key, R. M.; Takahashi, T. Dissociation Constants for Carbonic Acid Determined from Field Measurements. *Deep Sea Res., Part I* 2002, 49 (10), 1705–1723.
- (47) Mojica Prieto, F. J.; Millero, F. J. The Values of $PK_1 + PK_2$ for the Dissociation of Carbonic Acid in Seawater. *Geochim. Cosmochim. Acta* **2002**, *66* (14), 2529–2540.
- (48) Orr, J. C.; Epitalon, J.-M.; Dickson, A. G.; Gattuso, J.-P. Routine Uncertainty Propagation for the Marine Carbon Dioxide System. *Mar. Chem.* **2018**, 207, 84–107.
- (49) Carter, B. R.; Radich, J. A.; Doyle, H. L.; Dickson, A. G. An Automated System for Spectrophotometric Seawater pH Measurements. *Limnol. Oceanogr.: Methods* **2013**, *11* (1), 16–27.
- (50) Yao, W.; Liu, X.; Byrne, R. H. Impurities in Indicators Used for Spectrophotometric Seawater pH Measurements: Assessment and Remedies. *Mar. Chem.* **2007**, *107* (2), 167–172.
- (51) Liu, X.; Patsavas, M. C.; Byrne, R. H. Purification and Characterization of Meta-Cresol Purple for Spectrophotometric Seawater pH Measurements. *Environ. Sci. Technol.* **2011**, *45*, 4862.
- (52) Patsavas, M. C.; Byrne, R. H.; Liu, X. Purification of Meta-Cresol Purple and Cresol Red by Flash Chromatography: Procedures for Ensuring Accurate Spectrophotometric Seawater pH Measurements. *Mar. Chem.* **2013**, *150*, 19–24.
- (53) DeGrandpre, M. D.; Spaulding, R. S.; Newton, J. O.; Jaqueth, E. J.; Hamblock, S. E.; Umansky, A. A.; Harris, K. E. Considerations for the

- Measurement of Spectrophotometric pH for Ocean Acidification and Other Studies. *Limnol. Oceanogr.: Methods* **2014**, *12* (12), 830–839.
- (54) Loucaides, S.; Rèrolle, V. M.; Papadimitriou, S.; Kennedy, H.; Mowlem, M. C.; Dickson, A. G.; Gledhill, M.; Achterberg, E. P. Characterization of Meta-Cresol Purple for Spectrophotometric pH Measurements in Saline and Hypersaline Media at Sub-Zero Temperatures. *Sci. Rep.* **2017**, 7, DOI: 10.1038/s41598-017-02624-0
- (55) Douglas, N. K.; Byrne, R. H. Spectrophotometric pH Measurements from River to Sea: Calibration of MCP for $0 \le S \le 40$ and $278.15 \le T \le 308.15$ K. Mar. Chem. **2017**, 197, 64–69.
- (56) Douglas, N. K.; Byrne, R. H. Achieving Accurate Spectrophotometric pH Measurements Using Unpurified Meta-Cresol Purple. *Mar. Chem.* **2017**, *190*, 66–72.
- (57) Fong, M. B.; Dickson, A. G. Insights from GO-SHIP Hydrography Data into the Thermodynamic Consistency of CO₂ System Measurements in Seawater. *Mar. Chem.* **2019**, *211*, 52.
- (58) Dickson, A. G. The Carbon Dioxide System in Seawater: Equilibrium Chemistry and Measurements. In *Guide to Best Practices for Ocean Acidification Research and Data Reporting*; Riebesell, U., Fabry, V. J., Hansson, L., Gattuso, J. P., Eds.; Publications Office of the European Union: Luxembourg, 2010; pp 17–40.
- (59) Lee, K.; Millero, F. J. Thermodynamic Studies of the Carbonate System in Seawater. *Deep Sea Res., Part I* **1995**, *42*, 2035.
- (60) Lee, K.; Millero, F. J.; Wanninkhof, R. The Carbon Dioxide System in the Atlantic Ocean. *J. Geophys. Res. C Ocean.* 1997, 102, 15693
- (61) Newton, J. A.; Feely, R. A.; Jewett, E. B.; Williamson, P.; Mathis, J. Global Ocean Acidification Observing Network: Requirements and Governance Plan. 2nd *ed.*; GOA-ON, 2015.
- (62) Carter, B. R.; Feely, R. A.; Williams, N. L.; Dickson, A. G.; Fong, M. B.; Takeshita, Y. Updated Methods for Global Locally Interpolated Estimation of Alkalinity, pH, and Nitrate. *Limnol. Oceanogr.: Methods* **2018**, *16* (2), 119–131.
- (63) Velo, A.; Pérez, F. F.; Lin, X.; Key, R. M.; Tanhua, T.; de la Paz, M.; Olsen, A.; van Heuven, S.; Jutterström, S.; Ríos, A. F. CARINA Data Synthesis Project: pH Data Scale Unification and Cruise Adjustments. *Earth Syst. Sci. Data* **2010**, 2 (1), 133–155.
- (64) Olsen, A.; Lange, N.; Key, R. M.; Tanhua, T.; Álvarez, M.; Becker, S.; Bittig, H. C.; Carter, B. R.; Cotrim da Cunha, L.; Feely, R. A.; van Heuven, S.; Hoppema, M.; Ishii, M.; Jeansson, E.; Jones, S. D.; Jutterström, S.; Karlsen, M. K.; Kozyr, A.; Lauvset, S. K.; Lo Monaco, C.; Murata, A.; Pérez, F. F.; Pfeil, B.; Schirnick, C.; Steinfeldt, R.; Suzuki, T.; Telszewski, M.; Tilbrook, B.; Velo, A.; Wanninkhof, R. GLODAPv2.2019 an Update of GLODAPv2. *Earth Syst. Sci. Data* 2019, 11 (3), 1437—1461.
- (65) van Heuven, S.; Pierrot, D.; Rae, J. W. B.; Lewis, E.; Wallace, D. W. R. CO2SYS v 1.1. MATLAB Program Developed for CO2 System Calculations. ORNL/CDIAC-105b; Oak Ridge National Laboratory: Oak Ridge, Tennesee, 2011. DOI: 10.3334/CDIAC/otg.CO2SYS_MATLAB_v1.1.
- (66) Uppström, L. R. The Boron/Chlorinity Ratio of Deep-Sea Water from the Pacific Ocean. *Deep-Sea Res. Oceanogr. Abstr.* **1974**, 21 (2), 161–162.
- (67) Dickson, A. G. Standard Potential of the Reaction: AgCl(s) + 12H2(g) = Ag(s) + HCl(Aq), and and the Standard Acidity Constant of the Ion HSO4– in Synthetic Sea Water from 273.15 to 318.15 K. *J. Chem. Thermodyn.* **1990**, 22 (2), 113–127.
- (68) Park, P. K. Oceanic CO₂ System: an Evaluation of Ten Methods of Investigation. *Limnol. Oceanogr.* **1969**, *14* (2), 179–186.
- (69) Egleston, E. S.; Sabine, C. L.; Morel, F. M. M. Revelle Revisited: Buffer Factors That Quantify the Response of Ocean Chemistry to Changes in DIC and Alkalinity *Global Biogeochem*. Cycles **2010**, 24 (1), DOI: 10.1029/2008GB003407.
- (70) Lee, K.; Millero, F. J.; Campbell, D. M. The Reliability of the Thermodynamic Constants for the Dissociation of Carbonic Acid in Seawater. *Mar. Chem.* **1996**, *55*, 233.
- (71) Lee, K.; Millero, F. J. Thermodynamic Studies of the Carbonate System in Seawater. *Deep Sea Res., Part I* **1995**, 42 (11–12), 2035–2061.

- (72) Culberson, C.; Pytkowicz, R. M. Oxygen-Total Carbon Dioxide Correlation in the Eastern Pacific Ocean. *J. Oceanogr. Soc. Jpn.* **1970**, 26 (2), 95–100.
- (73) Feely, R. A.; Sabine, C. L.; Schlitzer, R.; Bullister, J. L.; Mecking, S.; Greeley, D. Oxygen Utilization and Organic Carbon Remineralization in the Upper Water Column of the Pacific Ocean. *J. Oceanogr.* **2004**, *60* (1), 45–52.
- (74) Keeling, R. F.; Körtzinger, A.; Gruber, N. Ocean Deoxygenation in a Warming World. *Annu. Rev. Mar. Sci.* **2010**, *2*, 199–229.
- (75) Dickson, A. G.; Afghan, J. D.; Anderson, G. C. Reference Materials for Oceanic CO₂ Analysis: A Method for the Certification of Total Alkalinity. *Mar. Chem.* **2003**, *80* (2–3), 185–197.
- (76) Bockmon, E. E.; Dickson, A. G. An Inter-Laboratory Comparison Assessing the Quality of Seawater Carbon Dioxide Measurements. *Mar. Chem.* **2015**, *171*, 36–43.
- (77) Lauvset, S. K.; Tanhua, T. A Toolbox for Secondary Quality Control on Ocean Chemistry and Hydrographic Data. *Limnol. Oceanogr.: Methods* **2015**, *13* (11), 601–608.
- (78) Dickson, A. G. An Exact Definition of Total Alkalinity and a Procedure for the Estimation of Alkalinity and Total Inorganic Carbon from Titration Data. *Deep-Sea Res., Part A* **1981**, 28 (6), 609–623.
- (79) Cai, W.-J.; Wang, Y.; Hodson, R. E. Acid-Base Properties of Dissolved Organic Matter in the Estuarine Waters of Georgia, USA. *Geochim. Cosmochim. Acta* 1998, 62 (3), 473–483.
- (80) Martín Hernández-Ayon, J.; Zirino, A.; Dickson, A. G.; Camiro-Vargas, T.; Valenzuela-Espinoza, E. Estimating the Contribution of Organic Bases from Microalgae to the Titration Alkalinity in Coastal Seawaters. *Limnol. Oceanogr.: Methods* **2007**, *5* (7), 225–232.
- (81) Kuliński, K.; Schneider, B.; Hammer, K.; Machulik, U.; Schulz-Bull, D. The Influence of Dissolved Organic Matter on the Acid—Base System of the Baltic Sea. *J. Mar. Syst.* **2014**, *132*, 106–115.
- (82) Hertkorn, N.; Benner, R.; Frommberger, M.; Schmitt-Kopplin, P.; Witt, M.; Kaiser, K.; Kettrup, A.; Hedges, J. I. Characterization of a Major Refractory Component of Marine Dissolved Organic Matter. *Geochim. Cosmochim. Acta* **2006**, *70* (12), 2990–3010.
- (83) Hansell, D. A. Recalcitrant Dissolved Organic Carbon Fractions. *Annu. Rev. Mar. Sci.* **2013**, *5* (1), 421–445.
- (84) Coble, P. G. Characterization of Marine and Terrestrial DOM in Seawater Using Excitation-Emission Matrix Spectroscopy. *Mar. Chem.* **1996**, *51* (4), 325–346.
- (85) Jørgensen, L.; Stedmon, C. A.; Kragh, T.; Markager, S.; Middelboe, M.; Søndergaard, M. Global Trends in the Fluorescence Characteristics and Distribution of Marine Dissolved Organic Matter. *Mar. Chem.* **2011**, *126* (1–4), 139–148.
- (86) Catala, T. S.; Reche, İ.; Fuentes-Lema, A.; Romera-Castillo, C.; Nieto-Cid, M.; Ortega-Retuerta, E.; Calvo, E.; Alvarez, M.; Marrase, C.; Stedmon, C. A.; Alvarez-Salgado, X. A. Turnover Time of Fluorescent Dissolved Organic Matter in the Dark Global Ocean. *Nat. Commun.* **2015**, *6*, 5986.
- (87) Hertkorn, N.; Harir, M.; Koch, B. P.; Michalke, B.; Schmitt-Kopplin, P. High-Field NMR Spectroscopy and FTICR Mass Spectrometry: Powerful Discovery Tools for the Molecular Level Characterization of Marine Dissolved Organic Matter. *Biogeosciences* **2013**, *10* (3), 1583–1624.
- (88) Byrne, R. H. Measuring Ocean Acidification: New Technology for a New Era of Ocean Chemistry. *Environ. Sci. Technol.* **2014**, 48 (10), 5352–5360.
- (89) Johnson, K. S.; Needoba, J. A.; Riser, S. C.; Showers, W. J. Chemical Sensor Networks for the Aquatic Environment. *Chem. Rev.* **2007**, *107* (2), *623*–*640*.
- (90) Johnson, K.; Berelson, W.; Boss, E.; Chase, Z.; Claustre, H.; Emerson, S.; Gruber, N.; Körtzinger, A.; Perry, M. J.; Riser, S. Observing Biogeochemical Cycles at Global Scales with Profiling Floats and Gliders: Prospects for a Global Array. *Oceanography* **2009**, 22 (3), 216–225.
- (91) Dickey, T. D.; Itsweire, E. C.; Moline, M. A.; Perry, M. J. Introduction to the *Limnology and Oceanography* Special Issue on Autonomous and Lagrangian Platforms and Sensors (ALPS). *Limnol. Oceanogr.* **2008**, *53*, 2057–2061.

- (92) Johnson, K.; Claustre, H. Bringing Biogeochemistry into the Argo Age. Eos (Washington, DC), 2016. DOI: 10.1029/2016EO062427.
- (93) Biogeochemical-Argo Planning Group. The Scientific Rationale, Design and Implementation Plan for a Biogeochemical-Argo Float Array; 2016. DOI: 10.13155/46601.
- (94) Johnson, K. S.; Jannasch, H. W.; Coletti, L. J.; Elrod, V. A.; Martz, T. R.; Takeshita, Y.; Carlson, R. J.; Connery, J. G. Deep-Sea DuraFET: A Pressure Tolerant pH Sensor Designed for Global Sensor Networks. *Anal. Chem.* **2016**, 88 (6), 3249–3256.
- (95) Takeshita, Y.; Johnson, K. S.; Martz, T. R.; Plant, J. N.; Sarmiento, J. L. Assessment of Autonomous pH Measurements for Determining Surface Seawater Partial Pressure of CO₂. *J. Geophys. Res.: Oceans* **2018**, *123* (6), 4003–4013.
- (96) Riser, S. C.; Swift, D.; Drucker, R. Profiling Floats in SOCCOM: Technical Capabilities for Studying the Southern Ocean. *J. Geophys. Res. Ocean.* **2018**, *123* (6), 4055–4073.
- (97) Johnson, K. S.; Plant, J. N.; Coletti, L. J.; Jannasch, H. W.; Sakamoto, C. M.; Riser, S. C.; Swift, D. D.; Williams, N. L.; Boss, E.; Haëntjens, N.; Talley, L. D.; Sarmiento, J. L. Biogeochemical Sensor Performance in the SOCCOM Profiling Float Array. *J. Geophys. Res.: Oceans* 2017, 122 (8), 6416–6436.
- (98) Juranek, L. W.; Feely, R. A.; Peterson, W. T.; Alin, S. R.; Hales, B.; Lee, K.; Sabine, C. L.; Peterson, J. A Novel Method for Determination of Aragonite Saturation State on the Continental Shelf of Central Oregon Using Multi-Parameter Relationships with Hydrographic Data. *Geophys. Res. Lett.* **2009**, *36* (24), L24601.
- (99) Alin, S. R.; Feely, R. A.; Dickson, A. G.; Hernández-Ayón, J. M.; Juranek, L. W.; Ohman, M. D.; Goericke, R. Robust Empirical Relationships for Estimating the Carbonate System in the Southern California Current System and Application to CalCOFI Hydrographic Cruise Data (2005–2011). *J. Geophys. Res. Ocean.* **2012**, *117*, CS, DOI: 10.1029/2011JC007511.
- (100) Williams, N. L.; Juranek, L. W.; Johnson, K. S.; Feely, R. A.; Riser, S. C.; Talley, L. D.; Russell, J. L.; Sarmiento, J. L.; Wanninkhof, R. Empirical Algorithms to Estimate Water Column pH in the Southern Ocean. *Geophys. Res. Lett.* **2016**, 43 (7), 3415–3422.
- (101) Sauzède, R.; Bittig, H. C.; Claustre, H.; Pasqueron de Fommervault, O.; Gattuso, J.-P.; Legendre, L.; Johnson, K. S. Estimates of Water-Column Nutrient Concentrations and Carbonate System Parameters in the Global Ocean: A Novel Approach Based on Neural Networks. *Front. Mar. Sci.* 2017, 4. DOI: 10.3389/fmars.2017.00128.
- (102) Bittig, H. C.; Steinhoff, T.; Claustre, H.; Fiedler, B.; Williams, N. L.; Sauzède, R.; Körtzinger, A.; Gattuso, J.-P. An Alternative to Static Climatologies: Robust Estimation of Open Ocean CO₂ Variables and Nutrient Concentrations From T, S, and O₂ Data Using Bayesian Neural Networks. *Front. Mar. Sci.* **2018**, *5*, 328.
- (103) Juranek, L. W.; Feely, R. A.; Gilbert, D.; Freeland, H.; Miller, L. A. Real-Time Estimation of pH and Aragonite Saturation State from Argo Profiling Floats: Prospects for an Autonomous Carbon Observing Strategy. *Geophys. Res. Lett.* **2011**, 38(17), DOI: 10.1029/2011GL048580.
- (104) Williams, N. L.; Juranek, L. W.; Feely, R. A.; Johnson, K. S.; Sarmiento, J. L.; Talley, L. D.; Dickson, A. G.; Gray, A. R.; Wanninkhof, R.; Russell, J. L.; Riser, S. C.; Takeshita, Y. Calculating Surface Ocean pCO₂ from Biogeochemical Argo Floats Equipped with pH: An Uncertainty Analysis. *Global Biogeochem. Cycles* **2017**, *31* (3), 591–604.