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Abstract. Multi-modal approaches have increasingly shown promise in explor-
ing the human side of engineering via the assessment of authentic responses to
learning or working environments. This study explores the utility of non-invasive
physiological wrist sensors in measuring the reactive and regulatory responses of a
group of 161 engineering students taking an authentic engineering practice exam.
The practice exam was categorized into Conceptual problems (e.g., rote memo-
rization) and Analytical problems (e.g., requiring application of learned concepts
through equations and free-body diagrams). Responses were measured through
electrodermal activity and indicators of performance. Findings identified that the
type of practice exam problem, even if designed to be within the moderate range
of difficulty, influenced how students reacted to and regulated their performance to
the problem (as seen by stronger positive correlations in the Analytical problems)
and that these may occur via multi-componential processes.
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1 Introduction

In science, technology, engineering, and math (STEM), workforce development initia-
tives necessitate that trainees learn about and perform as intended by their leads in their
immediate learning environment. In turn, the actions and decisions of STEM trainees
will determine how these individuals will manage future societal and complex problems
post-graduation. In the classroom environment, learning and performance are tradition-
ally studied through various techniques such as self-report instruments, artifact retrieval
and analysis, sampling of experiences, interviews, or observational procedures [1-3].
These techniques, while valuable, are constrained to participant or observer subjectivity
and restricts its understanding of individuals’ authentic responses to a task in real-time.
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The latter limitation poses a challenge for many scholars seeking to objectively measure
such events in real-time.

The situational contexts individuals may find themselves in, for example in the
classroom, are important to consider when examining students’ performance. Educa-
tional psychology scholars posit that in the context of the classroom, learners experience
test-related, class-related, or learning-related multi-component input processes such as
affect, physiological responses, motivational changes, and cognitive fluctuations [2, 3].
Subsequently, these alter outcome processes such as decision-making and performance
[2, 3]. Yet, there is a scarcity of empirical investigations exploring the relationships of
these input and outcomes processes in real-time.

Recent and nascent literature has shown the promise of multi-modal approaches to
explore the authentic responses of students to their learning environments and tasks
[2-9]. For example, Pekrun and his colleagues examined stress responses during a final
oral exam [2] using salivary cortisol; we have used this same method during engineering
exams [5-7]. Azevedo and others have examined students’ metacognitive judgments
using physiological sensors when individuals interact with a meta-tutor environment
[8]. Villanueva and colleagues have begun to tie engineering content (i.e., engineer-
ing statics and design) to physiological responses during in-classroom activities (active
learning; [9]) and out-of-classroom exam-taking experiences (statics practice exams;
[7]). Recently, Strohmeier and colleagues [10] utilized electrodermal activity sensors
with self-reports to explore state (momentary) anxiety to mathematical tests. Together,
these studies are pointing to an increasing desire from scholars to develop studies and
methods that are more authentic to the situations and contexts that different learners are
tasked to perform in.

For this work, the utility of electrodermal activity as a non-invasive electrodermal
activity sensing tool to explore students’ input physiological processes (i.e., reactive
or regulatory emotions, motivations, etc.) related to its output processes (i.e., effort,
performance, etc.) was explored. In addition, this study also tabulated the instructors’
expected difficulty levels for the exam questions and students’ actual performances to
better contextualize the practice exam used for this study.

Electrodermal activity (EDA) is an umbrella term used to define changes in the elec-
trical properties of the skin. The most widely studied electrical property of the skin is
known as skin conductance. Skin conductance is quantified by applying an electrical
potential between two contact points in the skin and measuring its electrical current
flow. The resultant flow, stemming from sympathetic neuronal activity, is captured as
both a background tonic (skin conductance level or SCL) and fast-varying phasic (skin
conductance response or SCR) signal [11-13]. EDA is useful in identifying changes
in sympathetic arousal, either through emotional or cognitive states, and it is the only
autonomic psychophysiological variable that is not connected to parasympathetic activ-
ity [11-13]. In other words, when a person becomes nervous or anxious about a task,
their body stimulates metabolic outputs to deal with external challenges (e.g., their palms
become sweaty). Since emotional regulation and cognitive processes, among other brain
functions, can influence the control of sweating, a fluctuation in the electrical conduc-
tivity of the skin can be measured. Also, these measurements can be collected rather
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cheaply and non-invasively [14, 15] (e.g., EDA wrist sensors) making physiological
EDA sensing tools attractive for scholars.

2 Methods

Research Design. This study is composed of a subset of data derived from a larger
study exploring the motivational and performance experiences of engineering students
performing on an authentic practice exam in the topic of statics [7]. The study was quasi-
experimental and integrated EDA sensing with salivary biomarkers of stress along with
self-reports in the practice engineering exam for triangulation. Per Institutional Review
Board (IRB) guidelines and in alignment with human subjects’ research, a practice exam
equivalent in content to the actual exam was provided to prevent unnecessary harm to
students’ grades in the course.

The total number of participants reported in this study was 161 engineering students.
These students took an engineering statics course for the first time in a Mountain West
institution in the United States between Fall 2018, Spring 2019, and Fall 2019. The
instructor has been teaching engineering statics for several years and the exam used for
this study was designed by this faculty member. The 15-question exam (6 conceptual
and 9 analytical) used was the same throughout the semesters in this study. For this study,
students were given ample time to complete the questions, as approved by the instructor.

Data Collection and Measures. The setup of the experiment and its considerations is
described elsewhere [7] but in summary, involved a time-stamped research design that
measured the time students took to perform per practice exam question, their performance
to each item, the raw EDA data from each practice exam question and event (before and
after the exam), salivary data (not reported in this work) and self-reports (not reported
in this work). For this study, we wanted to explore how reactive input processes, in this
case, sympathetic emotional arousal (measured through skin conductance responses),
are related to output processes (measured through difficulty index scores of performance)
in authentic engineering examination settings.

There were several measurements collected in our study. The first measurement was
the event-specific skin conductance response (es.SCR), which allowed us to attribute a
specific eliciting stimulus [14] to its fast-varying reactive responses. The second mea-
surement was the difficulty index (DI), which is the measure of the number of questions
that students answered correctly on the practice exam divided by the total number of
responses. DI is also an indication of whether a problem created by the instructor was
difficult (DI < 0.3), moderate (0.3 < DI > 0.8) or easy (DI > 0.8) [16]. The third
measurement was the instructor’s self-reported difficulty level for the exam, attained
through a three-point Likert scale where ‘1’ was reported as ‘easy’, ‘2’ was reported
as ‘moderate’ and ‘3’ was reported as ‘difficult’. The fourth measure was the average
time spent in Conceptual and Analytical exam problems; this measured time is an indi-
cation of effort executed by the student. Finally, we tracked the percentage of students
who received fully correct responses to Conceptual and Analytical exam problems to
understand students’ effectiveness in their performance.
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Data Processing and Analysis. For the collected and continuous raw EDA data, we
first visually identified and removed any data tied to potential manufacturer sources
of outliers, such as sensor malfunctions, incomplete collection, or poor contact of the
electrodes in the skin. These were evidenced by negative values or constant near-zero
continual data segments [7]. Then, additional EDA outliers due to user-generated sources
such as erratic movements (e.g., hand hitting desk or nervous tapping), survey or salivary
biomarker collection periods, or large changes in body temperatures or blood volume
pressure readings [7] were removed. This required that the temperature and blood volume
pressure sensors found in the wrist sensor (E4, Empatica, Inc.) was used in parallel to the
collected EDA data. Next, the authors used a custom-developed process to remove any
potential contributions to the raw EDA signal via fine motor body movements from the
participant (e.g., typing) [7]. This process required that the 3-axis accelerometer found
in the EDA sensor was used in parallel to the collected galvanic skin response data.

To summarize, this processing method used an L2-norm accelerometer transforma-
tion of the 3-axis of movement (in the X, y, z directions) to calculate the Euclidean distance
of movement (total movement). From the collected signal, the standard deviation and
coefficient of variation (CV) of the accelerometer data were calculated, ranked-ordered
to identify its upper and lower limits, and a threshold equivalent to 95% of the stan-
dard deviation of the accelerometer data was established. The corresponding raw EDA
values to this transformed accelerometer data were further used for filtration. Filtration
of this signal was conducted through continuous deconvolution methods developed in
the open-source MATLAB software, Ledalab [17]. The resultant continuous data was
then separated into baseline tonic (skin conductance level-SCL) and fast-varying pha-
sic (skin conductance responses-SCR) EDA signals. For this study, we were interested
in the deconvoluted continuous phasic EDA signal, although we acknowledge that this
represents “a small proportion of the overall EDA complex” [17, p. 4]. The resultant
processed and filtered EDA phasic signal labeled as a non-specific skin conductance
response (ns.SCR;) was aligned to the timestamps of a particular event (i.e., duration of
time for a practice exam question) to extract the event-specific SCRs (es.SCR;), which
measures the specific eliciting stimulus [17] of a given event to its fast-varying reac-
tive responses. The number of peaks present in these es.SCRs (es.SCRpeak) was used to
measure the reactivity of the response while the mean of these es.SCRs (e5.SCRean)
was used to measure the regulatory potential of these responses.

For the processing the DI data, we calculated the number of exam questions answered
correctly on the exam divided by the total number of responses. This DI value was divided
by time for each event. For the instructor assessment, we calculated the average scores
from the Likert Scale responses for the three semesters. The practice exam questions
were categorized as Conceptual (those requiring rote memorization or interpretation of
terminology) or Analytical (those that required application of the concepts learned in
the form of equations, identification of parameters provided, and drawing of free body
diagrams to attain an answer). The conceptual and analytical questions were times-
tamped and aligned to its corresponding es.SCR; and DI data. Time and percentages of
performance for the exam problems were tabulated and a t-test analysis was conducted.

For analysis of the es.SCR; data, we followed recommended practices to trans-
form and standardize EDA data [7, 11, 14, 17]. For a normalized transformation, the
Log(es.SCR; + 1) was calculated to remove any problems with skewness, kurtosis, and
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heterogeneity of variance in the EDA data [17]. For standardization of the EDA data, the
Log(es.SCR; + 1) was divided by the time per practice exam question to make group
comparisons by event. Descriptive statistics (a t-test for equality of means) was deter-
mined for the transformed and standardized mean and peak es.SCRs, DI, the instructor
averaged estimated scores, time, and percentage of students who answered the practice
exam questions correctly; data are presented as mean =+ standard error of the mean.
Additionally, a Pearson correlation analysis was conducted for the transformed and
standardized mean and peak es.SCRs with DI scores per type of practice exam question
(Conceptual and Analytical).

3 Results and Discussion

T-test analysis was conducted for the Conceptual and Analytical problems and signif-
icance was determined by a p-value under 0.05. The time spent on the exam problems
was tabulated as a measure of effort from students for the Conceptual and Analyti-
cal questions. There was a 3.5x-fold increase in the Analytical problems compared to
the Conceptual problems (372.98 + 8.47 s versus 80.58 + 1.22 s; p < 0.001). Also,
65% of the students answered the Conceptual questions correctly while 58% of the stu-
dents answered the Analytical questions correctly; no statistical significance was found
between these groups (p = 0.69). The DI scores were 0.64 £ 0.01 for the Concep-
tual questions and 0.68 £ 0.00 for the Analytical questions and these differences were
significant (p < 0.001).

The instructor estimated the difficulty level of practice exam questions as being
twice as higher for the Analytical problems (2.04 £ 0.01; moderate) compared to the
Conceptual problems (1.21 &£ 0.02; easy). These estimates were significantly different
from each other (p < 0.001). A summary of these t-tests is provided in Table 1.

Table 1. Descriptive statistics for conceptual and analytical problems in an engineering statics
practice exam; N = 161; data presented as Mean =+ Standard Error of Mean; statistical significance
as calculated through T-test is * p < 0.05, ** p < 0.01, and *** p < 0.001 when comparing
analytical to conceptual problems.

Measurement Exam problem type Mean + SEM

Time spent Conceptual 80.58 s +1.22s
Analytical 372.98 s &= 8.47 s***

Students who answered correctly Conceptual 65% + 0.00%
Analytical 58% + 0.00%

Instructor guess Conceptual 1.21 £0.02
Analytical 2.04 £ 0.02%%*

Difficulty index Conceptual 0.64 £ 0.01
Analytical 0.68 £ 0.00%**
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Pearson correlation analysis (Table 2) was conducted for the transformed and standard-
ized es.SCRpean and €s.SCRpeak data and DI scores (both divided by time) for the Concep-
tual and Analytical problems. For reactive responses (through es.SCR e,k values), both
Conceptual and Analytical exam problems resulted in strongly positively correlated reac-
tive responses when compared to DI/time (r = 0.64, p < 0.01 and » = 0.85, p < 0.01). For
regulatory potential responses (through es.SCRpean values), a strong positive correlation
for the Conceptual problems (r = 0.59, p < 0.01) and a weak positive correlation for the
Analytical problems (r = 0.21, p < 0.01) compared to DI/time was found.

Table 2. Pearson correlation analysis betweenlog(es.SCRpeak + 1) orlog(es.SCRmean + 1) versus
DI/time to measure students’ reactive or regulatory responses, respectively; N = 161; data presented
as Mean =+ Standard Error of Mean; statistical significance is * p < 0.05, ** p < 0.01, and *** p <
0.001.

Response type | Exam problem type | Correlation

Reactive Conceptual 0.59
Analytical 0.21%%*

Regulatory Conceptual 0.64
Analytical 0.85%*

Collectively, the data suggest that: (1) instructors’ assessment of the difficulty level
of the practice exam problems does not necessarily match students’ performance to
the same practice exam problems; (2) more effort (as seen by increases in time) by
the student to practice exam problem types may slightly improve performance but not
sufficiently to cause an improvement in the number of students excelling; (3) the type of
practice exam problem, even if perceived to be within the moderate range of difficulty
(DI scores of 0.64 and 0.68, respectively) influences how students react to and regulate
their execution of the problem (stronger correlations in Analytical problems).

These findings suggest the need to better align exam difficulty levels with students’
zone of proximal development [18, 19], a learning theory suggesting that students best
perform and learn when instructors understand the zone by which students best learn and
can be ‘pushed’ to gain further motivation to learn. The zone of proximal development
states that when faculty pushes students through unattainable perceived boundaries,
a students’ motivation decreases, and their performance may be negatively impacted.
Thus, finding a right balance between perceived difficulty and actual performance of
students is important in examination contexts.

Furthermore, the findings in this study demonstrate that responses to an exam expe-
rience can be measured, quantified, and connected to its context (e.g., exam problem
types, instructor creation of ‘just-right’ levels of difficulty for students). This suggests the
presence of multi-componential processes tying motivational with cognitive constructs.
This parallels the educational psychology framework of the Control-Value Theory of
emotions [2, 20] that posits that emotions are inextricably linked to multi-componential
processes such as motivation, affect, cognition, and psychophysiology. Thus, it is impor-
tant to not disconnect individuals’ output processes (i.e., performance) from these input
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processes (e.g., emotions) in their learning or working environments. Collectively, the
data points to the need to guide students to cope with unexpected challenges and to
perform in ways originally anticipated by the instructor.

4 Implications to the Human-Technology Frontier

Taleb suggests [21] that 21% century skills (e.g., complex problem solving) are both
applicable and antifragile (involving individual growth when exposed to “volatility,
randomness, disorder, and stressors. .. risk, and uncertainty.” [21, p. 3]. Even the National
Academy of Engineering has recognized that 21t century skills for engineering can’t
function without equipping its workforce to manage emotional experiences such as social
distress, mental and emotional health, which influence decision-making and performance
[22]. As suggested by these publications and the Accreditation Board for Engineering
and Technology (criterion 7; [23]), there is and will be a need to holistically integrate
learning experiences to include appropriate teaching/training strategies that help students
gain an ability to multi-modally acquire and apply new knowledge effectively.

There seems to be a growing recognition of the importance of multi-componential
processes in learning and performance, not just in the classroom but also in the way
society views the future of engineering. Thomas Insights published an article delineating
the top 20-in demand skills for employees in unexpected environments and scenarios
such as those expected to be experienced in a post-COVID-19 world [24]. Some of
these skills include critical thinking, complex problem solving, and stress tolerance. In
a similar vein, Qadar and Al-Fuqaha [25] conducted an in-depth literature review of
the seven steps needed to succeed in engineering education post-COVID-19. Step one
of their model suggests the need for students to start with the end in mind by aligning
efforts with product outcomes and motivations with effective performance.

The findings demonstrated in this work demonstrate the utility that physiological
sensing can have in helping scholars/educators to cross the human-technology frontiers
in workforce training and development. Applying multi-modal approaches such as the
ones presented here provide a potential pathway to study more authentically the human
side of learning and performance in engineering.
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