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Abstract. Multi-modal approaches have increasingly shown promise in explor-

ing the human side of engineering via the assessment of authentic responses to

learning or working environments. This study explores the utility of non-invasive

physiological wrist sensors in measuring the reactive and regulatory responses of a

group of 161 engineering students taking an authentic engineering practice exam.

The practice exam was categorized into Conceptual problems (e.g., rote memo-

rization) and Analytical problems (e.g., requiring application of learned concepts

through equations and free-body diagrams). Responses were measured through

electrodermal activity and indicators of performance. Findings identified that the

type of practice exam problem, even if designed to be within the moderate range

of difficulty, influenced how students reacted to and regulated their performance to

the problem (as seen by stronger positive correlations in the Analytical problems)

and that these may occur via multi-componential processes.
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Engineering education · Physiological sensing · Student performance

1 Introduction

In science, technology, engineering, and math (STEM), workforce development initia-

tives necessitate that trainees learn about and perform as intended by their leads in their

immediate learning environment. In turn, the actions and decisions of STEM trainees

will determine how these individuals will manage future societal and complex problems

post-graduation. In the classroom environment, learning and performance are tradition-

ally studied through various techniques such as self-report instruments, artifact retrieval

and analysis, sampling of experiences, interviews, or observational procedures [1–3].

These techniques, while valuable, are constrained to participant or observer subjectivity

and restricts its understanding of individuals’ authentic responses to a task in real-time.
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The latter limitation poses a challenge for many scholars seeking to objectively measure

such events in real-time.

The situational contexts individuals may find themselves in, for example in the

classroom, are important to consider when examining students’ performance. Educa-

tional psychology scholars posit that in the context of the classroom, learners experience

test-related, class-related, or learning-related multi-component input processes such as

affect, physiological responses, motivational changes, and cognitive fluctuations [2, 3].

Subsequently, these alter outcome processes such as decision-making and performance

[2, 3]. Yet, there is a scarcity of empirical investigations exploring the relationships of

these input and outcomes processes in real-time.

Recent and nascent literature has shown the promise of multi-modal approaches to

explore the authentic responses of students to their learning environments and tasks

[2–9]. For example, Pekrun and his colleagues examined stress responses during a final

oral exam [2] using salivary cortisol; we have used this same method during engineering

exams [5–7]. Azevedo and others have examined students’ metacognitive judgments

using physiological sensors when individuals interact with a meta-tutor environment

[8]. Villanueva and colleagues have begun to tie engineering content (i.e., engineer-

ing statics and design) to physiological responses during in-classroom activities (active

learning; [9]) and out-of-classroom exam-taking experiences (statics practice exams;

[7]). Recently, Strohmeier and colleagues [10] utilized electrodermal activity sensors

with self-reports to explore state (momentary) anxiety to mathematical tests. Together,

these studies are pointing to an increasing desire from scholars to develop studies and

methods that are more authentic to the situations and contexts that different learners are

tasked to perform in.

For this work, the utility of electrodermal activity as a non-invasive electrodermal

activity sensing tool to explore students’ input physiological processes (i.e., reactive

or regulatory emotions, motivations, etc.) related to its output processes (i.e., effort,

performance, etc.) was explored. In addition, this study also tabulated the instructors’

expected difficulty levels for the exam questions and students’ actual performances to

better contextualize the practice exam used for this study.

Electrodermal activity (EDA) is an umbrella term used to define changes in the elec-

trical properties of the skin. The most widely studied electrical property of the skin is

known as skin conductance. Skin conductance is quantified by applying an electrical

potential between two contact points in the skin and measuring its electrical current

flow. The resultant flow, stemming from sympathetic neuronal activity, is captured as

both a background tonic (skin conductance level or SCL) and fast-varying phasic (skin

conductance response or SCR) signal [11–13]. EDA is useful in identifying changes

in sympathetic arousal, either through emotional or cognitive states, and it is the only

autonomic psychophysiological variable that is not connected to parasympathetic activ-

ity [11–13]. In other words, when a person becomes nervous or anxious about a task,

their body stimulates metabolic outputs to deal with external challenges (e.g., their palms

become sweaty). Since emotional regulation and cognitive processes, among other brain

functions, can influence the control of sweating, a fluctuation in the electrical conduc-

tivity of the skin can be measured. Also, these measurements can be collected rather
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cheaply and non-invasively [14, 15] (e.g., EDA wrist sensors) making physiological

EDA sensing tools attractive for scholars.

2 Methods

Research Design. This study is composed of a subset of data derived from a larger

study exploring the motivational and performance experiences of engineering students

performing on an authentic practice exam in the topic of statics [7]. The study was quasi-

experimental and integrated EDA sensing with salivary biomarkers of stress along with

self-reports in the practice engineering exam for triangulation. Per Institutional Review

Board (IRB) guidelines and in alignment with human subjects’ research, a practice exam

equivalent in content to the actual exam was provided to prevent unnecessary harm to

students’ grades in the course.

The total number of participants reported in this study was 161 engineering students.

These students took an engineering statics course for the first time in a Mountain West

institution in the United States between Fall 2018, Spring 2019, and Fall 2019. The

instructor has been teaching engineering statics for several years and the exam used for

this study was designed by this faculty member. The 15-question exam (6 conceptual

and 9 analytical) used was the same throughout the semesters in this study. For this study,

students were given ample time to complete the questions, as approved by the instructor.

Data Collection and Measures. The setup of the experiment and its considerations is

described elsewhere [7] but in summary, involved a time-stamped research design that

measured the time students took to perform per practice exam question, their performance

to each item, the raw EDA data from each practice exam question and event (before and

after the exam), salivary data (not reported in this work) and self-reports (not reported

in this work). For this study, we wanted to explore how reactive input processes, in this

case, sympathetic emotional arousal (measured through skin conductance responses),

are related to output processes (measured through difficulty index scores of performance)

in authentic engineering examination settings.

There were several measurements collected in our study. The first measurement was

the event-specific skin conductance response (es.SCR), which allowed us to attribute a

specific eliciting stimulus [14] to its fast-varying reactive responses. The second mea-

surement was the difficulty index (DI), which is the measure of the number of questions

that students answered correctly on the practice exam divided by the total number of

responses. DI is also an indication of whether a problem created by the instructor was

difficult (DI < 0.3), moderate (0.3 < DI > 0.8) or easy (DI ≥ 0.8) [16]. The third

measurement was the instructor’s self-reported difficulty level for the exam, attained

through a three-point Likert scale where ‘1’ was reported as ‘easy’, ‘2’ was reported

as ‘moderate’ and ‘3’ was reported as ‘difficult’. The fourth measure was the average

time spent in Conceptual and Analytical exam problems; this measured time is an indi-

cation of effort executed by the student. Finally, we tracked the percentage of students

who received fully correct responses to Conceptual and Analytical exam problems to

understand students’ effectiveness in their performance.
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Data Processing and Analysis. For the collected and continuous raw EDA data, we

first visually identified and removed any data tied to potential manufacturer sources

of outliers, such as sensor malfunctions, incomplete collection, or poor contact of the

electrodes in the skin. These were evidenced by negative values or constant near-zero

continual data segments [7]. Then, additional EDA outliers due to user-generated sources

such as erratic movements (e.g., hand hitting desk or nervous tapping), survey or salivary

biomarker collection periods, or large changes in body temperatures or blood volume

pressure readings [7] were removed. This required that the temperature and blood volume

pressure sensors found in the wrist sensor (E4, Empatica, Inc.) was used in parallel to the

collected EDA data. Next, the authors used a custom-developed process to remove any

potential contributions to the raw EDA signal via fine motor body movements from the

participant (e.g., typing) [7]. This process required that the 3-axis accelerometer found

in the EDA sensor was used in parallel to the collected galvanic skin response data.

To summarize, this processing method used an L2-norm accelerometer transforma-

tion of the 3-axis of movement (in the x, y, z directions) to calculate the Euclidean distance

of movement (total movement). From the collected signal, the standard deviation and

coefficient of variation (CV) of the accelerometer data were calculated, ranked-ordered

to identify its upper and lower limits, and a threshold equivalent to 95% of the stan-

dard deviation of the accelerometer data was established. The corresponding raw EDA

values to this transformed accelerometer data were further used for filtration. Filtration

of this signal was conducted through continuous deconvolution methods developed in

the open-source MATLAB software, Ledalab [17]. The resultant continuous data was

then separated into baseline tonic (skin conductance level-SCL) and fast-varying pha-

sic (skin conductance responses-SCR) EDA signals. For this study, we were interested

in the deconvoluted continuous phasic EDA signal, although we acknowledge that this

represents “a small proportion of the overall EDA complex” [17, p. 4]. The resultant

processed and filtered EDA phasic signal labeled as a non-specific skin conductance

response (ns.SCRi) was aligned to the timestamps of a particular event (i.e., duration of

time for a practice exam question) to extract the event-specific SCRs (es.SCRi), which

measures the specific eliciting stimulus [17] of a given event to its fast-varying reac-

tive responses. The number of peaks present in these es.SCRs (es.SCRpeak) was used to

measure the reactivity of the response while the mean of these es.SCRs (es.SCRmean)

was used to measure the regulatory potential of these responses.
For the processing the DI data, we calculated the number of exam questions answered

correctly on the exam divided by the total number of responses. This DI value was divided

by time for each event. For the instructor assessment, we calculated the average scores

from the Likert Scale responses for the three semesters. The practice exam questions

were categorized as Conceptual (those requiring rote memorization or interpretation of

terminology) or Analytical (those that required application of the concepts learned in

the form of equations, identification of parameters provided, and drawing of free body

diagrams to attain an answer). The conceptual and analytical questions were times-

tamped and aligned to its corresponding es.SCRi and DI data. Time and percentages of

performance for the exam problems were tabulated and a t-test analysis was conducted.

For analysis of the es.SCRi data, we followed recommended practices to trans-

form and standardize EDA data [7, 11, 14, 17]. For a normalized transformation, the

Log(es.SCRi + 1) was calculated to remove any problems with skewness, kurtosis, and
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heterogeneity of variance in the EDA data [17]. For standardization of the EDA data, the

Log(es.SCRi + 1) was divided by the time per practice exam question to make group

comparisons by event. Descriptive statistics (a t-test for equality of means) was deter-

mined for the transformed and standardized mean and peak es.SCRs, DI, the instructor

averaged estimated scores, time, and percentage of students who answered the practice

exam questions correctly; data are presented as mean ± standard error of the mean.

Additionally, a Pearson correlation analysis was conducted for the transformed and

standardized mean and peak es.SCRs with DI scores per type of practice exam question

(Conceptual and Analytical).

3 Results and Discussion

T-test analysis was conducted for the Conceptual and Analytical problems and signif-

icance was determined by a p-value under 0.05. The time spent on the exam problems

was tabulated as a measure of effort from students for the Conceptual and Analyti-

cal questions. There was a 3.5x-fold increase in the Analytical problems compared to

the Conceptual problems (372.98 ± 8.47 s versus 80.58 ± 1.22 s; p < 0.001). Also,

65% of the students answered the Conceptual questions correctly while 58% of the stu-

dents answered the Analytical questions correctly; no statistical significance was found

between these groups (p = 0.69). The DI scores were 0.64 ± 0.01 for the Concep-

tual questions and 0.68 ± 0.00 for the Analytical questions and these differences were

significant (p < 0.001).

The instructor estimated the difficulty level of practice exam questions as being

twice as higher for the Analytical problems (2.04 ± 0.01; moderate) compared to the

Conceptual problems (1.21 ± 0.02; easy). These estimates were significantly different

from each other (p < 0.001). A summary of these t-tests is provided in Table 1.

Table 1. Descriptive statistics for conceptual and analytical problems in an engineering statics

practice exam; N = 161; data presented as Mean ± Standard Error of Mean; statistical significance

as calculated through T-test is * p < 0.05, ** p < 0.01, and *** p < 0.001 when comparing

analytical to conceptual problems.

Measurement Exam problem type Mean ± SEM

Time spent Conceptual 80.58 s ± 1.22 s

Analytical 372.98 s ± 8.47 s***

Students who answered correctly Conceptual 65% ± 0.00%

Analytical 58% ± 0.00%

Instructor guess Conceptual 1.21 ± 0.02

Analytical 2.04 ± 0.02**

Difficulty index Conceptual 0.64 ± 0.01

Analytical 0.68 ± 0.00***
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Pearsoncorrelationanalysis(Table2)wasconductedforthetransformedandstandard-

ized es.SCRmean and es.SCRpeak data and DI scores (both divided by time) for the Concep-

tual and Analytical problems. For reactive responses (through es.SCRpeak values), both

Conceptual and Analytical exam problems resulted in strongly positively correlated reac-

tive responses when compared to DI/time (r = 0.64, p < 0.01 and r = 0.85, p < 0.01). For

regulatory potential responses (through es.SCRmean values), a strong positive correlation

for the Conceptual problems (r = 0.59, p < 0.01) and a weak positive correlation for the

Analytical problems (r = 0.21, p < 0.01) compared to DI/time was found.

Table 2. Pearsoncorrelationanalysisbetween log(es.SCRpeak +1)or log(es.SCRmean +1)versus

DI/time to measure students’ reactive or regulatory responses, respectively; N=161; data presented

as Mean ± Standard Error of Mean; statistical significance is * p < 0.05, ** p < 0.01, and *** p <

0.001.

Response type Exam problem type Correlation

Reactive Conceptual 0.59

Analytical 0.21**

Regulatory Conceptual 0.64

Analytical 0.85**

Collectively, the data suggest that: (1) instructors’ assessment of the difficulty level

of the practice exam problems does not necessarily match students’ performance to

the same practice exam problems; (2) more effort (as seen by increases in time) by

the student to practice exam problem types may slightly improve performance but not

sufficiently to cause an improvement in the number of students excelling; (3) the type of

practice exam problem, even if perceived to be within the moderate range of difficulty

(DI scores of 0.64 and 0.68, respectively) influences how students react to and regulate

their execution of the problem (stronger correlations in Analytical problems).

These findings suggest the need to better align exam difficulty levels with students’

zone of proximal development [18, 19], a learning theory suggesting that students best

perform and learn when instructors understand the zone by which students best learn and

can be ‘pushed’ to gain further motivation to learn. The zone of proximal development

states that when faculty pushes students through unattainable perceived boundaries,

a students’ motivation decreases, and their performance may be negatively impacted.

Thus, finding a right balance between perceived difficulty and actual performance of

students is important in examination contexts.

Furthermore, the findings in this study demonstrate that responses to an exam expe-

rience can be measured, quantified, and connected to its context (e.g., exam problem

types, instructor creation of ‘just-right’ levels of difficulty for students). This suggests the

presence of multi-componential processes tying motivational with cognitive constructs.

This parallels the educational psychology framework of the Control-Value Theory of

emotions [2, 20] that posits that emotions are inextricably linked to multi-componential

processes such as motivation, affect, cognition, and psychophysiology. Thus, it is impor-

tant to not disconnect individuals’ output processes (i.e., performance) from these input
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processes (e.g., emotions) in their learning or working environments. Collectively, the

data points to the need to guide students to cope with unexpected challenges and to

perform in ways originally anticipated by the instructor.

4 Implications to the Human-Technology Frontier

Taleb suggests [21] that 21st century skills (e.g., complex problem solving) are both

applicable and antifragile (involving individual growth when exposed to “volatility,

randomness, disorder, and stressors… risk, and uncertainty.” [21, p. 3]. Even the National

Academy of Engineering has recognized that 21st century skills for engineering can’t

function without equipping its workforce to manage emotional experiences such as social

distress, mental and emotional health, which influence decision-making and performance

[22]. As suggested by these publications and the Accreditation Board for Engineering

and Technology (criterion 7; [23]), there is and will be a need to holistically integrate

learning experiences to include appropriate teaching/training strategies that help students

gain an ability to multi-modally acquire and apply new knowledge effectively.

There seems to be a growing recognition of the importance of multi-componential

processes in learning and performance, not just in the classroom but also in the way

society views the future of engineering. Thomas Insights published an article delineating

the top 20-in demand skills for employees in unexpected environments and scenarios

such as those expected to be experienced in a post-COVID-19 world [24]. Some of

these skills include critical thinking, complex problem solving, and stress tolerance. In

a similar vein, Qadar and Al-Fuqaha [25] conducted an in-depth literature review of

the seven steps needed to succeed in engineering education post-COVID-19. Step one

of their model suggests the need for students to start with the end in mind by aligning

efforts with product outcomes and motivations with effective performance.

The findings demonstrated in this work demonstrate the utility that physiological

sensing can have in helping scholars/educators to cross the human-technology frontiers

in workforce training and development. Applying multi-modal approaches such as the

ones presented here provide a potential pathway to study more authentically the human

side of learning and performance in engineering.
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