PHYSICAL REVIEW APPLIED 15, 034001 (2021)

Collective Excitations and Optical Response of Ultrathin Carbon-Nanotube Films

Igor V. Bondarev®" and Chandra M. Adhikari
Department of Mathematics & Physics, North Carolina Central University, Durham, North Carolina 27707, USA

® (Received 25 November 2020; accepted 25 January 2021; published 1 March 2021)

We present a theoretical study of the collective quasiparticle excitations responsible for the electromag-
netic response of ultrathin plane-parallel homogeneous periodic single-wall carbon-nanotube arrays and
weakly inhomogeneous single-wall carbon-nanotube films. We show that in addition to varying film com-
position, the collective response can be controlled by varying the film thickness. For single-type nanotube
arrays, the real part of the dielectric response shows a broad negative refraction band near a quantum inter-
band transition of the constituent nanotube, whereby the system behaves as a hyperbolic metamaterial at
higher frequencies than those classical plasma oscillations have to offer. By decreasing nanotube diame-
ters it is possible to push this negative refraction into the visible region, and using weakly inhomogeneous

multitype nanotube films broadens its bandwidth.
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L. INTRODUCTION

In recent years, optical nanomaterials research has
uncovered the intriguing capabilities of carbon nanotubes
(CNs). These hollow graphene cylinders of one to a
few nanometers in diameter and up to one centime-
ter in length [1-3] have landed themselves to attractive
device applications [4—14]. CNs have been successfully
integrated into miniaturized electronic, electromechani-
cal, and chemical devices [15—19]. The strong potential
of CNs has been demonstrated in the fields of opti-
cal absorption and scattering spectroscopy [20-24], elec-
tron energy-loss spectroscopy [25,26], quantum electron
transport [5,14,27], and general collective electromagnetic
(EM) response phenomena [28—43]. Carbon-nanotube-
based reduced-dimensionality materials such as periodic
and quasiperiodic plane-parallel CN arrays and films, offer
extraordinary stability, flexibility, and precise tunability of
their physical properties by varying the density, diame-
ter, and chirality of constituent CNs. Thin and ultrathin
periodically aligned arrays of single-wall CNs (SWCNs)
and related systems are currently in the process of rapid
experimental development [44—54].

In this paper, we develop a theory for collective near-
field interactions and associated EM response of ultra-
thin, closely packed, periodically aligned SWCN arrays
(schematic shown in Fig. 1). The key features that
make this system interesting for theoretical study are
the periodic CN alignment and the spatially periodic
anisotropy associated with it. Additionally, the vertical
confinement in dense ultrathin planar systems of finite
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thickness leads to the effective dimensionality reduction
from three dimensional (3D) to two dimensional (2D)
while still retaining the thickness as a parameter to repre-
sent the vertical size [55-58]. This is the transdimensional
(TD) regime [59]—mneither 3D nor 2D but something in
between—turning into 2D as thickness tends to zero, chal-
lenging to study what the 3D-to-2D continuous transition
has to offer to improve material functionalities.

The spatial anisotropy, periodic in-plane transverse
inhomogeneity and vertical quantum confinement make
the ultrathin array near fields strong and anisotropically
nonlocal, adding both extra challenges in developing the
problem theoretically and extra flexibility in designing
CN films with desired EM properties experimentally. The
properties of the CN array can be controlled if one knows
how to control its collective excitations such as exci-
tons, plasmons, and their mutual interactions. For exam-
ple, plasmon generated near fields are known to affect
spontaneous emission [39,60], low-energy absorption [20],
and scattering [24] by atomic type species near the CN
surface. CN periodicity allows for the formation of plas-
monic bands [61-63], whereby periodic CN arrays and
films should behave as epsilon-near-zero plasmonic meta-
materials (MMs) in the near field, while still remain-
ing strong light absorbers and polarizers in the far field
[51,64]. Indeed, recent ellipsometry measurements on
finite-thickness films of horizontally aligned self-assembled
SWCNs have exhibited their tunable negative dielec-
tric response for a sufficiently wide range of the photon
excitation energies [51,52], thus paving the way for the
highly anisotropic hyperbolic MM (HMMs) film (meta-
surface) development. HMMs and metasurfaces (MSs)
can be used in a variety of applications [65—68] such
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FIG. 1. Schematic of a plane-parallel, closely packed, periodi-
cally aligned array of SWCNs of radius R and length L embedded
in a dielectric of thickness d. See text for details.

as optical sensing [69], absorption [70], cloaking [71],
and super-resolution imaging [72]. Being very stable and
highly sensitive to the thickness, CN density, diameter
and chirality variation, the finite-thickness parallel aligned
SWCN arrays and films can additionally serve as a flexible
multifunctional nanomaterial platform for single-molecule
detection and manipulation [73—75], including the near-
field control of photoluminescence rate and directionality
[39,60], chemical reactivity [76,77], and Casimir-Polder
interactions [78,79].

In this paper, we formulate the general Hamiltonian
for the collective quasiparticle excitations in the ultrathin
plane-parallel periodic SWCN array in the TD regime.
This Hamiltonian is used to derive the in-plane dynamical
dielectric response tensor of the system in the broad-
band low-energy spectral range of microwave to visible
(< 1 —2eV). This is the domain where the intrinsic exci-
tations, excitons and plasmons, are present in individual
constituent (metallic and semiconducting) CNs [24,29].
As opposed to the earlier 3D effective-medium response
theories (known to be of limited validity at short CN sep-
arations) with only one single-tube excitation taken into
account (the 6-eV bulk graphite plasmon) [61-63], our
approach starts with the single-tube dynamical surface-
conductivity calculation as prescribed by the k - p band-
structure simulation method for SWCNs within the Kubo
linear-response theory [28]. To obtain the dielectric tensor
of the TD array of SWCNs we use the low-energy plas-
mon response calculation technique proposed by one of
us for finite-thickness metallic films with periodic cylin-
drical anisotropy [56], combined with the many-particle
Green’s function formalism in the Matsubara formula-
tion [80]. With the single-tube conductivity in hand, we
evaluate the collective polarization and obtain the EM
response tensor for the periodic TD array of SWCNs. We
also study the inhomogeneity effects for TD films com-
posed of SWCN arrays with varied structural parameters,
using the Maxwell-Garnett (MG) method [81] to obtain

the EM response for weakly inhomogeneous quasiperiodic
SWCN films reported experimentally [51,52].

The paper is organized as follows. Section II presents
the model and formulates the Hamiltonian for the col-
lective quasiparticle excitations in the TD plane-parallel
periodic SWCN array. Section III uses this Hamiltonian
to obtain the array collective polarization in terms of the
surface conductivity of the individual constituent SWCN,
followed by the in-plane EM response tensor derivation
for the TD array, including the case of weakly inhomo-
geneous quasiperiodic SWCN films. Section IV discusses
our findings and numerical results. Conclusions are drawn
in Sec. V. Mathematical details are collected in the two
appendices. We use the Gaussian units throughout unless
otherwise stated.

II. THE MODEL OF COLLECTIVE EXCITATIONS

The model system we consider is presented in Fig. 1.
A horizontal array of parallel aligned (y direction) identi-
cal SWCNs of radius R and length L has the translational
unit A and width L, (x direction). The array is embedded
in a dielectric of thickness d to form a composite layer with
the effective permittivity €, which is sandwiched between
the substrate and superstrate with the dielectric permittiv-
ities €; and ¢;, respectively. The structural parameters of
the array obey the set of constraints as follows 2R < A <
d < L ~ L, with R and A being much less than the wave-
length of the light radiation. The SWCN of the (m, n) type
(n < m) has the radius R = (v/3 b/27)vm? + mn + n?,
where b = 1.42 A is the C-C interatomic distance, with
the electron charge density constrained by cylindrical sym-
metry to be uniformly distributed over its surface. The
positive background of nuclei keeps the entire system
electrically neutral.

We consider the most interesting case of € > €] + €.
In this case, with d decreasing and getting less than the in-
plane distance between a pair of electrons in the composite
layer, due to the strong vertical confinement their Coulomb
interaction is mostly contributed by the region outside of
the layer, whereby the Coulomb interaction potential loses
its z-coordinate dependence and turns into the Keldysh-
Rytova (KR) potential [82]. This brings our system, the
array, in the TD regime where the dimensionality of the
system is reduced from 3D to 2D and the only remnant
of the z direction is the layer thickness d to represent
the size of the vertical confinement. In our case here, it
is natural to take advantage of the homogeneous electron
charge distribution over the SWCN cylindrical surfaces,
whereby the pair electrostatic potential can be expressed
in terms of that of two uniformly charged rings of radius
R each [83]. For two such rings of the unit cells at points
p, and p; of tubules »n and / as shown in Fig. 1, the elec-
trostatic interaction potential can be written in terms of the
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symmetry-adapted KR potential as follows [56]:

Ve, =P = 37 ZLLZ[wpk(k)]zeik'(””_””- (1)

Here, k = q + k__is the in-plane electron quasimomentum
with q and k, representing its components in the y and x
direction—yparallel and perpendicular to the CN alignment

direction, respectively; k = |k| = ,/¢? + k>, where g =
2mn,/L,n, =0,£1,£2,...,£N/2,N = L/a,ais the CN
lattice translation period, and k; = 2mn, /L, , where n, =
0,+1,£2,...,£N, /2, N, is the total number of tubules
in the parallel array. The summation is primed to eliminate
the k = 0 term associated with the all-together electron
displacement, p, # p," for the n =/ case to exclude the
self-interaction, and the orthogonality condition
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is used for the Fourier expansion basis function set in the
first Brillouin zone of the array, with its reciprocal given

by
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stands for the intraband plasma oscillation frequency for
a general finite-thickness, cylindrically anisotropic, peri-
odically aligned (metallic or semiconducting) array [56].
Here, m* is the electron effective mass, Nop(= N3pd) is
the surface electron density, /, and K, are the zeroth-
order modified cylindrical Bessel functions responsible
for the correct normalization of the electron density dis-
tribution over cylindrical surfaces, to give for R — oo
[whereby gRIy(gR)Ky(gR) — 1/2] the isotropic TD film
plasma frequency studied previously [55].

A. The Hamiltonian

For an individual SWCN, absorption of a photon by a
valence-band electron excites it to the conduction band to

create an exciton. This makes a longitudinal polarization
effect with an induced dipole moment directed predom-
inantly along the nanotube axis due to a strongly sup-
pressed SWCN polarizability in the perpendicular direc-
tion [84,85], also known as the transverse depolariza-
tion [28,86]. For a densely packed periodically aligned
array of SWCNs, the induced intertubule dipole-dipole
coupling should then result in the anisotropic collective
polarization of the array (predominantly along the CN
alignment direction), leading to the anisotropic dielectric
response—the focus of our study here.

The second quantized Hamiltonian of the free exciton
(see, e.g., Refs. [80,87]) on the SWCN surface can be
written in the form

I:Iex = ZES(Q)B;qu,qa (5)

s.q

where the operators Biq and By, create and annihilate,
respectively, the exciton with the longitudinal quasimo-
mentum ¢ (y direction in Fig. 1) in the s subband, which
for the (m,n)-type SWCN is associated with the quan-
tized circumferential momentum component As/R, s =
1,2,...,m (> n) [34,37]. These operators satisfy the stan-
dard bosonic commutation relations

[Bog-BL /] = 8ubygs [BogiBog] =0

aq >

and can be converted into their coordinate counterparts
using Eq. (2), to obtain

E l‘IJ’n
B s ‘ Yn T

for the nth SWCN of the array. The exciton energy is

=) ©

hZ q2

%)
Ei(q) = Ege(s) + ()’

(7

where the first term is the excitation energy of the f -
= Eg(5) +E) (9)
with El(f (s) being its (negative) binding energy and E,
representing the band gap, and the second term is the trans-
lational kinetic energy of the exciton with the total effective
mass M.y (the sum of the subband-dependent electron and
hole effective masses). The exciton on the nth SWCN
of the array is produced by the absorption of a photon
of the external EM radiation. This initiates the interband
dipole electronic transitions (s, f |a(pn)|0> to create the
dipole polarization, an observable quantity proportional to
|Zf o (s,f |d(pn)|0)|2 mainly along the CN axis. Only
the ground -internal-state (longest-lived) excitons are con-
sidered in what follows and so the /" index is omitted for
brevity.

internal-state exciton, given by EéQc (s)
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The total Hamiltonian of our model system in Fig. 1 can
now be written as

I:I = I:Iex + I:Iinta (8)

where the second term is responsible for the collective
excitations of the SWCN array originally created by the
external EM radiation on an individual constituent SWCN.
To obtain this part, we perform the series expansion of the
electron interaction potential, Eq. (1), about the equilib-
rium positions of the electron density distribution. Intro-
ducing p,, + B, for the electron ring position displaced by
a vector 8, = B(p,) from the point p, of the nth SWCN
electron density distribution (and same for p}; see Fig. 1),
the exponential factor in Eq. (1) is expanded to the third
nonvanishing term assuming that |p,, — pj| > |8, — B}, to
give

—2(<8.)°)

Here, p,; = p, — p; and B,, = B, — B, with the primes
still to indicate that the self-interaction in the n = / case is
to be excluded. For achiral (m, 0) and (m, m) type SWCNs
(zigzag and armchair type, respectively) we choose to
focus on here, the second term in square brackets vanishes
due to the presence of the inversion symmetry. This is gen-
erally not true for chiral SWCNSs, where it is nonzero and
turns out to be the most relevant one. This case will be
addressed elsewhere separately.

The extra electron potential energy that comes out of
Eq. (1) due to the relative electron ring displacement 8,,, i
given by an’pl [V(p, + B.) — V(p,)], where the sum-
mation runs over all tubules of the array and over their
individual unit cells with the self-interaction excluded.
With the series expansion above and the self-interaction
terms dropped, this becomes

eik'pn[[l —+ ik - ﬂnl

*

4 )12 /
o X 2T )k B,

K,0,.0)

and can further be rewritten as follows:

*d /
Z &% Pn m w, (k) [/3,,“ T (K) By,

kPnﬁllLV

1 m*d P
> BB |\ | o @p () . 9
+ Zﬁ/"ﬂlv / NZDNJ_N wp( )e ( )

Here, vy = aAd is the elementary cell volume of the array
and the second-rank tensor

kyky S
K? 2’

represents the Fourier transform of the pair dipole-dipole
interaction between the SWCNs in the array [80]. The

Ty (k) = MoV =X,y (10)

second term in the square brackets equals zero. This can
be proven by first summing it up over p; using Eq. (3),
followed by summation over k, which leads to a)ﬁ (0) =0.

The dipole-dipole interaction energy in Eq. (9) can be
used to obtain the Hjy part of the total Hamiltonian (8).
Consider the real vector quantity

d _ m*d i _ m*d i
(p,) = P w,(K)B(p,) = mwp( )Be(p,),

(11)

with the unit vector e(p,) = B(p,)/B(p,) to define the
direction of the electron ring displacement f(p,) and

=\/|Zﬂ(pn)|2w S 1B = VN0,

Pn Pn

to represent the net electron density displacement (consis-
tent with the random phase approximation and equivalency
of rings) for the entire nth SWCN. Let Eq. (11) be a matrix
element (s, p,, |&(p,,) |0) of the (Hermitian) induced dipole-
moment operator defined in the second quantization form
as

m*d

TN (k) (1810 (Bop,+BF, ). (12)

s

(s1810)" = (01B1s)*=(0|Bls) = (s]B10),

d(p,) =

where [9 is the quantum displacement operator to repre-
sent the classical displacement Se(p,). Then the Fourier
transform

d(k) = Ye e d' (k) = d(—K),

obtained using Egs. (2) and (3), takes the form

N m*d ~
d(k) = */W W, <k)Z<s|ﬂ|0> (Box+ BL_y), (13)

B s _lk Pn
sk = m Z P €

Pn

with the creation and annihilation operators of the same
meaning as those in Egs. (5), and (9) suggests that

Hipy = —Zd (K) Ty, (K)d, (—K). (14)

kp.u
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More explicitly

A 1
Hine = E Z Vss (k) (Bs,k +BI,—k) (Bs’,—k +B:/,k)’ (1 5)

K,s,s’
2m*w? (k)d N A
Vi) = = D {0181 T (K) s'1 8 10).
n,v

Here, different spatial component matrix elements of the
displacement operator ﬁ in Vg are different, in general.

In the case where the (dominant) longitudinal induced
SWCN polarization is only taken into consideration and
the transverse one is neglected, one has 8,,, = B,,8,, and
B, = ,B;ySyv in Eq. (9). This, after summing up over x, and
x; with Eq. (3), projects it on the y direction to give

i E ei‘LVn
Vo ,

q:Ynmy;

/ m*d 7iqv'
X Tyy(‘]) ﬂly mwp(Q)e -1,

where 7,,(q) = T,,(q, k. = 0) = 1/2 according to Eq. (10)
and w, (q) = w, (g, k1 = 0), thus yielding

md @) P
NopN Ot Pry

A 2 N A 2 N N
Hiy = U—OZ dy(q)d\(—q) = U—OZ dy(@)d, (q),
q q

N m*d ~
dy(q) = ,/m Wy (q)? (s15,10)(B,y+ B_,)

(16)
for Eq. (14) and

N 1
Hiy = E Z Vs\(q) (Bx,q+ BI’,,{) (Bb-,,q-l— Biq), (17)

5.4
m*a)lz) (@d

_ r " 3 10}/
NaoN v [{s1By10)]

Vs ((/I) =
for Eq. (15), respectively. In this latter case, Vs takes
the diagonal form Vs to include only the collinear-
anticollinear dipole-moment coupling between the nan-
otubes of the array. This is the case of practical relevance
we focus on in what follows.

B. The dispersion of collective excitations

With the interaction term of Eq. (17), the total Hamilto-
nian (8) of the SWCN array is of the form

i =Y [E@B] B (18)
5.4

1
+ E VS\(Q) (Bs,q + BI,*II) (B‘Y’fq + BI,‘I)]’

which can be diagonalized exactly by means of the canon-
ical transformation technique [88]. More specifically, the
Hamiltonian such as this can be brought to the form

H =Y @k (@5 + E

S,q

(19)

by redefining the original exciton operators as follows:

By, = us(q) &(q) + vs(q) & (—q),
lug(q) 1> — |vs(@)|* = 1,

(20)
21

in terms of the linear superposition of the collective boson

excitation operators &(q) representing the eigen states of

the entire system, the array. The reciprocal of this is
Ss(q) = I/l: (q)Bs,q - vs(q)B:,—q
[6:(@),£1(q)] = 8584g-

(22)
(23)

The unknown transformation coefficients u;(g) and vy(q),
and the eigen-state energies hw;(g) can be found from the
operator identity

hoy(@§(@) = [&(@), A, (24)
followed by finding the vacuum (no excitations present)
energy E, from the comparison of Egs. (18) and (19) after
the eigen-state energies and the transformation coefficients
have been obtained.

Putting Eqgs. (22) and (18) into Eq. (24) and equating the
coefficients in front of the exciton creation and annihilation
operators on the left and right side, one obtains the set of
two simultaneous algebraic equations as follows:

[ha)s(q) - Es(q) - Vss(Q)]Us(q) - Vss(q)vs(q} = 0»

Vs (@us(q) + [hos(@) + Es(q) + Vs (@) Jus(g) = 0.
(25)

Being supplemented by the extra constraint, Eq. (21), these
simultaneous equations define the transformation coef-
ficients u,(q) and v,(g) uniquely. The condition of the
nontrivial solution existence requires that the determinant
of Eq. (25) be equal to zero. This gives the collective
excitation eigen energies in the form

hot@) = JE2@ +2E@Vul@.  (26)
with E(gq) given by Eq. (7), Vss(g) defined in Eq. (17), and
s=1,2,...,m (>n) representing the excitation subbands
for the periodic array composed of the (m, n) type SWCNSs.
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Using Eq. (26), the transformation coefficients come out of
Eq. (25) in the compact form as follows:

=— (9 = .
2 E;(q)haos(q) 2\ Es(q) hws(q)

@7

us(q) (@)

Finally, substituting Eq. (22) in Eq. (19), using Egs. (26)
and (27) for simplifications, and comparing the end result
with Eq. (18), one obtains the vacuum state energy of the
array in the form

1
Eo=> Zq [hoy(9) — Es(@)]-
Equations (19), (22), (23), and (26)<28) solve the disper-
sion relation problem for the intrinsic collective excitations
in the ultrathin periodic SWCN array. One can now see that
the excited eigen states of the SWCN array involve not
only the single-tube excitons of energy E;(g) as one might
expect naturally, but also the array collective plasma oscil-
lations of energy hw),(q) given by Eq. (4) are involved,
which in the TD regime can be effectively controlled by
varying the array thickness [56].

(28)

III. THE ARRAY DIELECTRIC RESPONSE

Knowing the dispersion of the excited collective quasi-
particle eigen states of the planar SWCN array, allows
one to calculate its in-plane dielectric response tensor.
A relatively easy way to do this is to use the complex-
frequency finite-temperature Matsubara Green’s function
formalism (see, e.g., Refs. [80,89]). All measurable col-
lective quantities, such as conductivities and susceptibil-
ities, are represented by correlation functions expressed
for causality in terms of the retarded Green’s functions,
which can be obtained from their equivalent complex-
frequency Matsubara counterparts with iow = 2ns/hg for
bosons and iw = (2n + 1)7r/hp for fermions (n is an inte-
ger and 8 = 1/kgT) by simply changing iw to w + i§ with
8 representing an infinitesimal energy relaxation rate [80].

A. The collective polarization

We proceed with the polarizability tensor calculation
for the SWCN array within the Matsubara formalism.
This is given by the correlator of the SWCN induced
dipole-moment operator in Eq. (16) with itself, and this
includes only one CN-related component, P, (g, iw), since
the minor polarization perpendicular to the CN axis is
agreed to be neglected. Specifically,

hp

1 , N A
Pyy(% l(,l)) = _ﬁ/ dt elwr<Ttdy(an)dy(_q9 0)): (29)

0

where the bracket (. ..) notates the thermodynamical aver-
aging, t (=if) is the complex time, and 77 is the ordering

operator to place the (Heisenberg picture) dipole-moment
operators with the earliest 7 to the right.

A straightforward way to calculate Eq. (29) is by using
Eq. (20) to write the single-tube induced dipole operators
in terms of their collective excitation counterparts, fol-
lowed by the thermodynamical averaging with the total
Hamiltonian, Eq. (19), in the collective excitation Hilbert
space. However, for practical use purposes it is instructive
to find the connection between the single-tube excitations
and the collective excitations of the entire SWCN array.
To this end, we first do the averaging in Eq. (29) with the
unperturbed Hamiltonian, Eq. (5), to obtain the noninter-
acting SWCN array polarizability (see Appendix A)

m*?(q)d 5 2E;|(s14,10) |2

PO (q,iw) = . (30
w (410) = e N — (ihw)* — E2 (30)
Introducing the CN dynamical polarizability function
. & N 251518, 10)1°
a,,(q, iv) = _ZZ 2 (31

. (ihw)? — E?
links Eq. (30) to the optical response of an isolated CN
(longitudinal polarizability per unit length) to give

o’ (¢)vo

PO (q,iw) = ——————
(@) = N A

(32)

oy (g, iw).

Alternatively, this can be expressed in an equivalent form
in terms of the isolated CN longitudinal conductivity [28]

he? 3 —2ha|(s]9,]0)|?

27 RL “~~ E,[(ihw)* — E2]’ 33)

Oyy (q’ iw) =
s

Using the relations between the velocity and coordinate
displacement matrix elements

; dp, Loa o E .
(svy|0) = (SIEIO> = _ﬁ<s|[ﬁyaHex]|0) =7 (s18,10)
(34)
and the fact that [78,79]
) 2R )
ayy (q’ la)) = T Uyy (q’ la))’ (35)
one then obtains
m*@? (q)vo 27t R
0) Y — 14 .
Py (g, i) = —WT oy (g, ). (36)

Next, being performed with the total Hamiltonian, Eq. (8),
the thermodynamical averaging in Eq. (29) gives the col-
lective polarizability of the dipole-dipole coupled SWCN
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array. This can be evaluated by a diagrammatic expan-
sion in which the first term, given by Eq. (5), is treated
as unperturbed and the second, given by Eqgs. (14)~(17), is
the perturbation. For the former, the noninteracting SWCN
array polarizability is already known and given by Egs.
(32) and (36). A useful feature of the latter is its separa-
bility, as can be seen from Egs. (14) and (16), so that the
perturbation factors into components summed up individu-
ally. The self-energy term for the perturbation occurs in the
first order with the self-energy merely equal to 27 /vy, as
per Eq. (16). The higher-order terms of the diagrammatic
expansion just produce multiples of this term. The overall
result takes the form of the Dyson equation as follows (see
Appendix B):

2

which can be easily solved to give

P(g, iw)
1 —27PY (g, i) /vy

Py (gq,iw) = (37)

This is the collective array polarization associated with
the interband electronic transitions to create excitons on
individual SWCNs embedded in a finite-thickness dielec-
tric layer. There is also the low-energy polarization part
contributed by the intraband transitions of harmonically
bound charges on the CN surface [39,56]. The total col-
lective polarization of the CN array is to include both
intra- and interband term on an equal footing since both
of them are associated with an induced oscillating dipole
moment—in the lower- and higher-frequency spectral
range, respectively—initially created by external EM radi-
ation on an individual CN and spread out over the array
thereafter. This can be formally done by redefining

0y (g, i) —> o™ (g, iw) + 00 (g i) (38)

in Eq. (36), where

€2N2D w
m* w? + (vpq)?

o (g, i) =

(39)

generally represents the single-tube intraband conductivity
term with v being the Fermi velocity [90], and oyi;“e‘ is the
interband term still given by Eq. (33). The SWCN polar-
izability in Eq. (32) has to be redefined per Egs. (35) and
(38) as well.

B. The dielectric response

Using Eq. (37) with P} of Eq. (36) in the general EM
response expression (Gaussian units)

(g, iw)

47
1+ — P,(q,iw), (40)
€ Vo

after simplifications one obtains the SWCN array dynami-
cal dielectric response in the form

Eyy (q’ la)) —1_ 2fCN Oyy (q’ lw)
€ fCN Oyy (q’ la)) + wezNZDR/m*w‘g ((I)d’

where fox = N, Ven/V = nR?/Ad is the CN volumetric
fraction in the planar dielectric film as sketched in Fig. 1.
The analytic continuation into the real frequency domain
of our interest here can now be obtained by changing iw to
 + i8 in the above, to finally result in

Eyy(qaw) —1_ 2fen Uyy(qaw)
€ Jon 0y,(q, @) + iwe*NopR/m* 0?2 (q)d
(41)
with the longitudinal conductivity of an isolated SWCN to

include both intra- and interband contributions, taking per
Egs. (38), (39), and (33) the form

2 :

__ - intra inter __ € Nop w+ i

Oyy (g, ) = Oyy + Oy =1 m* (o +i8)% — (qu)z
L e 3 —2ihw|(s]d,10)

27RL < E([E? — (hw)? — 2il?ws]’

N

(42)

Here, § takes the meaning of a (phenomenological) inverse
energy relaxation time, § = 1/t7,, associated with the
inelastic (phonon, defect) scattering [30,91] and can gen-
erally be different for intra- and interband processes.

Under continuous low-intensity light illumination, the
dielectric film with the SWCN array embedded in it can
still be treated as being at the thermal equilibrium. At
not too low temperatures the distribution of the s-subband
quasiparticle excitations over the g-momentum space is
then given by the normalized Boltzmann distribution func-
tion

£ = é o PO @), 43)

with hw,(q) representing the energy of the excited quasi-
particle eigen states of the SWCN array given by Eq. (26)
and the normalization factor is

o e L T [~
= e S - — [ — -
s JTh 2 FEexc E — Eexc(s)

q

with ¢ = /2M; [E — Ex.(s)]/h to be used in the integral.
The thermal averaging of Eq. (41) with this distribution
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function gives the temperature dependence of the EM
response of the SWCN array in the form

%@@=Zf@n%@m

/_/ dE £(¢,T) &,y(q, )
Eexc \Y E - Eexc (S) .

Equations (41)+(44) and (26) provide the complete
description of the spatially anisotropic linear EM response
of the periodically aligned SWCN array in the TD regime.
This is generally a two-component spatially dispersive
(nonlocal) tensor of the form

(44)

g O

N : € 0
8(‘1"’)):[ 0 &, ]:[ 0 £,(q0) ] 45)

which should be averaged per Eq. (44) to represent the
thickness-dependent anisotropic dynamical response to
continuous low-intensity light illumination. In practice,
the CN-array-embedding dielectric layer may still have
inclusions of nonidentical parallel aligned CNs. Assuming
their (quasi)periodic in-plane distribution, these inhomo-
geneities in an otherwise homogeneous SWCN array can
be accounted for by means of the MG mixing method [81],
whereby under continuous illumination the yy component
of Eq. (45) takes the form

(e (T, )= Z woe' (T, w). (46)

Here, e;;)(T ,w) refers to a thermally averaged homoge-
neous component of weight

@ n 2 -1
= JN__ [Z<&> ﬁ}
n 0 )
Zi:l CIiI i=1 Re A

in the generally n-component inhomogeneous mixture of
periodic (or quasiperiodic) SWCN arrays with radii R,
and intertube separation distances A,, which is embed-
ded in the finite-thickness dielectric layer. The weights are
defined to give Y " _, w, = 1, accordingly.

(47)

IV. DISCUSSION

One can see from Eq. (26) that the intertube dipole-
dipole interaction, Eq. (17), makes the CN array collec-
tive spatial dispersion hws(q) greatly different from the
isolated-CN spatial dispersion Es(q) in Eq. (7) due to the
nonzero ratio V(q)/Es(q). This is a g-dependent function
inversely proportional to A € (2R, +00), which only tends
to zero to give hwy(q) = Es(g) in the limit of A — +o00.
For small momenta ¢ controlling the most of the g-space

quasiparticle state population, the major ¢ dependence
comes from the linear dependence of w127 (q) ~ g in V(q)
[see Eq. (4)] rather than from the quadratic dependence of
E,(q) ~ ¢*, which is why [as well as in view of the fact
that 7i2q? /2M.y < E.y. in Eq. (7)] the second-order ¢° dis-
persion can be ignored for the qualitative analysis. With
this in mind, comparing Eqgs. (17) and (42) with Eq. (34)
taken into account, one obtains an estimate

m'Ww;(q) 2R
~ §4 inter
V(@) = PNt E A (Ey), (48)

where E, = E.,. and oyl;“er(E ) is the o;;‘ter(o w=E/h)

single-subband approximation given by the greatest reso-
nance term of the sum in Eq. (42). Substituting w, (q) of

Eq. (4) in Eq. (48), one gets the ratio

Vi 2(gR)2Iy(gR)Ky(gR) 27 R
(q) 2(E,.1,) (gR)“Ih(gR)Ko(qR) 27 . (49)
E, eqd+ e+ € A

with g(E,, 1,) = 4 hzayi;“er(Es) /7-E*R being a constant.

Plugging Eq. (49) in Eq. (26) gives the graph in Fig. 2
to show the general behavior of hw,(q)/Es as a function
of gd and A /2R for R/d = 0.5 and 0.25, the two cases
where the array is enclosed in and buried inside of the
dielectric layer, respectively. We use E; = Exe & 1 eV
and o1 (E) ~ 100 (¢?/27 ) typical of the first-subband
exciton in semiconducting SWCNs of R ~ 1 nm [28,36],
with 7, = 100 fs typical of exciton-phonon scattering [91],
to obtain g(E,,t,) ~ 2. The dielectric constants are set
to € =10 and €;, = 1. One can see a rapidly increas-
ing spatial dispersion as the intertube distance shrinks. As
expected, the thinner the dielectric layer (d = 2R com-
pared to d = 4R), the stronger the dispersion due to the
dielectric screening effect reduction.

To better understand the dielectric response behavior as
a function of the intrinsic parameters of the SWCN array,
we rewrite Eq. (41) as follows:

en(g®) 2[1 4 A(w)]
e 1+ A(@) + 0@+ i8) A j ()R’
(50)

Here, the array parameters are grouped in the denominator
second term, the ratio

@) = (@)~ OB 2hw(hw + ihs)
T G (w) o (0) (hw)?— E2+ 2ilws’
(51)
where in view of Eq. (48) one has
O';;lter(Es) ~ Ex VSS(Q) A (52)

oma(0)  W2w?(q) 21k’
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FIG. 2. Dispersion of collective excitations in the ultrathin
SWCN arrays with R/d = 0.5 (green) and 0.25 (gray) relative
to the isolated SWCN exciton dispersion as a function of array
parameters gd and A /2R.

representing the SWCN alone, and the ¢>-dispersion terms
are dropped. The function A(w) can be seen to rapidly
diminish for w < FE;/h, whereby in the low-frequency
range w, /T R/A <w < E¢/h far from resonances Eq. (50)
takes a spatially dispersive (nonlocal) Drude-like response
form

ep(q.0) | 2TR_ %@ 53)
€ A w(w+1id)

thickness, substrate, and superstrate-dependent as per
Eq. (4), which (except for a geometry-specific constant
prefactor) was previously reported to consistently describe
the optical properties of both in-plane isotropic and cylin-
drically anisotropic TD plasmonic films [55-58,92].

For hw~ E, the function A(w) can be seen to increase
dramatically, whereby Eq. (50) after straightforward sim-
plifications using Eq. (52) takes the form

Eyy (g, ) ~1_ 2EV(q)
€ (hw)? — [1=V(q)/Es|E24-2iR2w8’

which can further be compacted to give

tw(q,0) [(hew)* —E7, ][ (hew)* —E_]
€ [(hw)?—E2 '+ (2h2ws)’
; 4E Vs ()P w8
[(hoy?—E2 '+ (2h2wb)*

(54)

where E. = Es /1 £ Vi (q)/Es;. Here, both absorption
resonance position and intensity of the EM response can
be seen being adjustable by varying the array thickness,
density, and dielectric parameters according to Eq. (49),
whereby the ratio Vi (q)/Es = {[hws(q)/Es]* — 1}/2 can

be adjusted that controls the difference between the col-
lective eigen-state and single-tube exciton-state energies.
The real part Re ¢,, /e of Eq. (54) reveals the negative
refraction (NR) band centered around E; in the domain

E2 —EVy(q) =E,_ < hw < Egy =/ E? + EV(q)

(35)

of width Ey — E;_ ~ V(q). The imaginary part Im ¢, /€
of Eq. (54) and the imaginary part of its negative inverse

€
—Im— 56
msyy(q, ) (56)

4EV (@l [[(he)? ~E2 T+ 22wb)’)

~

{[(hw)2 —E2, ][ (hw)? —Ef_]} T [4E, V(@) 208 ]’

are representative of the transversely polarized EM wave
absorption by excitons and of the Coulomb-energy losses
for longitudinally polarized plasmon excitations, respec-
tively [93]. From Egs. (54) and (56) E,_ and E,, can be
seen being their respective resonance peak energies. The
latter is an analog of the inferband plasmon resonance,
the one situated in between the two neighboring exciton
subbands [30,34]).

The range of the NR band can be found straightfor-
wardly from the analysis of extrema for the real-valued
function Re ¢,, /e of Eq. (54). This gives

(hwmin)’ ~ E> 4+ 2E.hs |1+ [ V?fq) ]2 (57)

to the first infinitesimal order in the smallness parameter
h8/E; < 1 and

Re SyY(q’Ewmin) ~ %{1 _ +[Vs;igq)]2} (58)

to the first nonvanishing (zeroth) order in the same param-
eter. In these equations the ratio under the square root is
independent of § since V,(g) ~ h/t, = hé as can be seen
from Eq. (49). This ratio can be controlled by means of
A /2R to rarefy (or densify) the CN array as well as through
d and €/(€; + €;) to adjust the array thickness and material
composition, respectively. From Egs. (55), (57), and (58) it
can be seen that hwp,;, shifts to the blue and the NR band-
width shrinks down to zero along with its range as Vi (q)
decreases. Clearly, originating from the intertube dipole-
dipole interaction, the NR band of the homogeneous TD
arrays of identical SWCNs can be controlled on demand,
both to expand and to shrink, by means of adjusting these
interactions as per Eq. (49).

034001-9



IGOR V. BONDAREYV and CHANDRA M. ADHIKARI

PHYS. REV. APPLIED 15, 034001 (2021)

Figure 3 shows Re ¢, /e, Im ¢, /€, and —Im(e/¢),)
in dimensionless variables as given by Egs. (54), (56),
and (49), to demonstrate the NR band behavior, the exci-
ton absorption and interband plasmon response in the
neighborhood of a single-tube exciton resonance as func-
tions of the intrinsic parameters of the SWCN array. The
graphs are obtained for the same material parameters as
in Fig. 2. In (a) and (b), the decrease of the thickness
can be seen to push the exciton and plasmon resonances
closer together, quenching their intensities to reduce the
NR bandwidth and range. Comparing (a) and (b), both
exciton and plasmon resonance intensities can be seen
being lower for the thicker dielectric layer in (b), appar-
ently due to the greater dielectric screening effect. In (c),
the overlap of the exciton and plasmon resonances can
be seen to increase with the intertube distance, whereby a
controllable exciton-plasmon Aybridization is possible by
varying the intrinsic parameters of the array. All these are
the universal features of the EM response that originate
from the eigen-state dispersion relations of the TD arrays
of SWCNs in the domain of their interband transitions as
described by Egs. (54)«58). Far from this domain their
low-energy EM response features a thickness, substrate,
and superstrate-dependent Drude-like metallic behavior
given by Eq. (53).

Figures 4 and 5 present our numerical simulations to
show how the thermal broadening and a slight diame-
ter dispersion affect the EM response of a finite-thickness
SWCN film in the TD regime. We start with the longitu-
dinal (along the CN symmetry axis) dielectric functions
g (w) for the five individual zigzag SWCNs in vacuum,
shown in Fig. 4(a). The SWCNs chosen are the semi-
conducting (16,0), (17,0), (19,0), and (20,0) CNs and
the metallic (18,0) CN—all of about the same diameter
centered at 2R(;30) = 1.41 nm. Focusing on the domain
around the first exciton resonance, we obtain their dielec-
tric functions & from 01" of Eq. (42), calculated using the
k-p method of the SWCN band-structure calculations [28]
with 7, = 100 fs, followed by the Drude relation ¢ (w) =
1 4 8mio(w)/Rw [30] with o = o,, of Eq. (42).

Marked in Fig. 4(a) are peaks of Ime; and —Im(1/g))
to indicate the dipole inferband electronic transitions Ej;
(Ey) and P;; from the CN first (second) valence band to
the CN first (second) conduction band [28], to produce
the first (second) exciton and the first interband plasmon,
respectively. The latter one, though not that intensive,
shows up in the domains where Reg; = 0 and Img; — 0
(or Imoy = 0 and Reoy — 0, accordingly [30,34]) due to
the Kramers-Kronig relation that links Reg and Ime. The
plasmon peak P89 of the metallic (18,0) SWCN is due to
the intraband transition that comes from ayi;tra of Eq. (42).
As a classical plasmon resonance it is highly pronounced,
while the interband (quantum) transitions occur for the
(18,0) SWCN at much higher energies outside of the
domain presented. For each of the nanotubes in Fig. 4(a),

FIG. 3. Re ¢, /e (gray), Im ¢, /e (orange), and —Im(e/ey,)
(green) plotted per Eq. (54) in the exciton resonance range
hw/E; ~ 1 as functions of hw/E, and ¢d for dense (A /2R = 1)
ultrathin SWCN arrays with R/d = 0.5 (a) and 0.25 (b), and as
functions of hw/E; and A /2R with R/d = 0.5, gd = 0.1 (c).
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FIG. 4. (a) Individual dielectric responses along the CN axis
(longitudinal) for the zigzag (16,0), (17,0), (18,0), (19,0), and
(20,0) SWCNs in vacuum, obtained using the k - p method of the
SWCN band-structure calculations [28]. All graphs are scaled
down vertically by a factor of 10 for better visibility. (b) Respec-
tive room-temperature dielectric response functions along the
CN alignment direction, calculated as given by Eqgs. (41)—(44) for
the ultrathin periodic arrays of the (16,0), (17,0), (18,0), (19,0),
and (20,0) SWCNs. See text for details.

their respective dielectric response functions exhibit sharp
resonance structures typical of vacuum and known to
get quenched by a dielectric background [31]. To obtain
the dielectric responses for the respective homogeneous
SWCN arrays, presented in Fig. 4(b) in the same energy
domain for comparison, we use our derived Eqs. (41)+44)
with d = A = 2R yielding fcn = 7/4 for their respective
R, and T =300 K for each of the arrays. Other array
parameters are taken to be the same for all five of them:
€ =10, €; = ¢, = 1, the first exciton translational effec-
tive mass M| = 0.4 mq (my is the free electron rest mass)
and the relaxation time 7, = 100 fs [30,91]. The inten-
sity decrease and large broadening can be seen along
with the red shifts of the exciton and plasmon resonances,
overall just in the way prescribed universally by the single-
resonance approximation as per Egs. (54)~58), including
the presence of the NR band.

[
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FIG. 5. The room-temperature (300 K) in-plane dielectric
response functions along the CN alignment direction calculated
for an ultrathin (approximately 10 nm) weakly inhomogeneous
TD film of the MG-mixed (16,0), (17,0), (18,0), (19,0), and
(20,0) SWCN arrays whose individual responses are presented
in Fig. 4(b). See text for details.

Figure 5 presents an example of the in-plane dielectric
responses along the CN alignment direction for a weakly
inhomogeneous TD film made out of a quasiperiodic mix-
ture of the (16,0), (17,0), (18,0), (19,0), and (20,0) homo-
geneous SWCN arrays. To obtain these graphs, we use the
MG method as prescribed in Egs. (46) and (47). For each
array component in the mixture the thickness is taken to be
d = 3R and the intertube distances A, (@ = 1, ..., 5) are set
to A(16’0) = 6R, A(17’0) = 2R, A(lg’o) = 2R, A(lg’o) = SR,
and A 0,0y = 6R with R being the radius of the constituent
SWCN of the respective homogeneous array. The result-
ing weakly inhomogeneous TD film comes out to consist
of the (16,0), (17,0), (18,0), (19,0), and (20,0) homo-
geneous SWCN arrays with the relative weights of 0.1,
0.31, 0.33, 0.14, and 0.12, respectively, to give the sum
of weights equal to unity as required and to make the
film be composed of about 1/3 metallic and 2/3 semicon-
ducting SWCNSs, which is normally the case experimen-
tally [51,52,54]. The dielectric responses of the individual
array components are calculated beforehand as described
for Fig. 4(b) above. The overall thickness of this film is
estimated to be approximately 10 nm. We also take into
account that in a real sample there may be other CNs of
different chiralities but of about the same diameter, some of
them may be bent, tilted and so may not be equally spaced
or precisely periodic. Therefore, the curves in Fig. 5 are
smoothed out to a regular shape.

Comparing Figs. 5 and 4(b), one can see a much
stronger broadening for both exciton and interband plas-
mon resonances of the (just weakly) inhomogeneous film.
In contrast to its homogeneous SWCN array constituents,
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the broaden interband plasmon resonance of the MG-
mixed film is almost as intensive as the exciton res-
onance. Both resonances can now be seen to overlap
a great deal, thus making possible the exciton-plasmon
coupling and the respective exciton-plasmon hybridiza-
tion. We believe this sheds more light on the nature of
the ultrastrong exciton-plasmon coupling effect recently
reported for self-assembled crystallized CN films exper-
imentally [48]. The NR band of the weakly inhomoge-
neous TD film in Fig. 5 can be seen to expand and its
range to shrink accordingly, breaking the limits set up
for homogeneous periodic SWCN arrays by Egs. (55)
and (58). The classical intraband plasmon resonance, a
low-energy feature of the metallic (18,0) array compo-
nent described by Eq. (53) and not shown in Fig. 4(b), is
presented in Fig. 5 as well. Since we have only a single
metallic CN component in our model MG mixture here,
this resonance comes out very narrow in the graphs pre-
sented. However, for instance, having the metallic (16,1)
and (19,1) SWCNs included, with diameters of just 8 %
less and greater than that of the (18,0) SWCN, respec-
tively, would broaden this resonance inhomogeneously as
well. Furthermore, in addition to the phonon scattering,
intraband plasma oscillations can be strongly quenched
by the Coulomb electron scattering, a scattering process
that is suppressed for interband transitions forming neutral
excitons, thus to result in a much stronger homogeneous
broadening of the intraband plasmon resonance. In real
self-assembled CN films one therefore should expect this
resonance to be largely broaden, both homogeneously and
inhomogeneously.

V. CONCLUSIONS

In this paper, we study the intrinsic collective quasiparti-
cle excitations responsible for the in-plane EM response of
the ultrathin plane-parallel homogeneous periodic SWCN
arrays and weakly inhomogeneous SWCN films in the
TD regime. We use the low-energy plasmon response cal-
culation technique [56] combined with the many-particle
Green’s function formalism in the Matsubara formula-
tion [80] to derive the dynamical dielectric tensor of
the system in the broad spectral domain of microwave
to visible (< 1-2 eV). This is where intrinsic excita-
tions, excitons and plasmons, are present in individual
constituent SWCNs [24,29]. We use an approach that
works well as applied to molecular solids where individ-
ual molecules, represented by individual nanotubes in our
case, are weakly bound together by the van der Waals
interaction, and the EM response of the solid (a dense
periodic array or film of aligned nanotubes in our case)
comes about due to a locally induced single-molecule
dipole polarization propagating through the periodic lat-
tice of molecules to create the collective polarization of

the entire molecular solid. Our theory links the dynam-
ical dielectric response tensor of the SWCN periodic
array to the complex longitudinal conductivity of the con-
stituent SWCN, a building block the array is composed
of. The SWCN conductivity can be calculated by a num-
ber of numerical and analytical methods [28,29,90], of
which to demonstrate the way our theory works we use
the k- p method of the SWCN band-structure calcula-
tions based on the Kubo linear-response theory [28]. Our
model and the results we present encompass the peri-
odic arrays and films formed by achiral SWCNs. Arrays
of chiral SWCNSs require an extra analysis for collec-
tive gyrotropic effects, which we will present separately
elsewhere.

We show that the collective dielectric response can be
controlled by the volume fraction of constituent SWCNSs,
the active component of the ultrathin TD film, and that
this can be done not only by varying the parameters of
the SWCN content, such as the CN diameter and inter-
tube distance, but also by merely varying the thickness
of the CN embedding dielectric layer. For homogeneous
single-type SWCN periodic arrays, the real part of the
dielectric response function is negative for a sufficiently
wide domain in the neighborhood of a quantum interband
transition of the constituent SWCN, to form a relatively
broad NR band that makes the system behave as a hyper-
bolic metamaterial at much higher frequencies than those
typically in the IR domain that the classical intraband
plasma oscillations have to offer [94]. By decreasing the
CN diameter it is quite possible to push this NR band in the
visible region, while using weakly inhomogeneous multi-
type SWCN films can make it even broader than that of the
single-type SWCN array.

The overall behavior we obtain theoretically for the real
and imaginary part of the in-plane dielectric response of
the weakly inhomogeneous SWCN film is very similar
to that reported experimentally for self-assembled SWCN
metamaterial films in Ref. [51], which is why we believe
that the NR band observed there for undoped samples is
most likely due to the inhomogeneous broadening as pre-
sented in Fig. 5. Electron doping would primarily affect
the intraband plasmon of a metallic CN component to
largely broaden and shift it to the blue, as evidenced by
our Eq. (53), due to the Coulomb scattering and elec-
tron density increase, respectively, which is precisely what
was observed in Ref. [51] as well. Our theory thereby
indicates that the periodically aligned, homogeneous and
weakly inhomogeneous ultrathin TD films of SWCNs
are excellent candidates for the development of multi-
functional optical hyperbolic metasurfaces, to push the
NR band and the respective hyperbolic response (typ-
ically pertinent to the IR [94]) into the optical spec-
tral region, with characteristics adjustable on demand by
means of the SWCN diameter, chirality, and periodicity
variation.
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APPENDIX A: PROOF OF EQ. (30)

Under constant illumination by low-intensity external
monochromatic radiation polarized along the nanotube
alignment direction, by virtue of the linear response the-
ory in the exciton-radiation interaction and associated
fluctuation-dissipation theorem [95], the averaging over
all possible SWCN array quasiparticle configurations can
be done in the form of a general equilibrium statistical
ensemble averaging as follows:

) with e = Tr(e ##),
(AD)

(...>:eﬂQTr(e*f‘f{..

where A = IEIO + ﬁim is the total Hamiltonian, Eq. (18), of
the system. For the reasons explained in the main text we
choose not to use the diagonalized form, Eq. (19), of the
total Hamiltonian here. Instead, we proceed in the standard
way [80,89], working in the noninteracting exciton Hilbert
space

(A2)

with the noninteracting particle number operator defined
by equations Nv,q|Ns‘,q> = B;r,qu,q|Nv,q) = Ns‘,q'Ns‘,q>a
whereby the equilibrium statistical ensemble averaging
procedure, Eq. (A1), takes the following explicit form:

(-o0) = ef? Tr[e—ﬂ(ﬁﬁﬁim) .. ]

o0
Q _B(H 7.
=] D (Nogl et N ).

S,q Ns,q=0

(A3)

In particular, in the absence of the intertube interaction I:Iim
this takes the form

(<)o = el Tr[e*ﬂﬁo ]

= P 1_[ i (Ns,q| e—ﬁﬁo . |Ns,q),

8,4 Nsq=0

(A4)

with

e P = Tr(e"gﬁo)

00
_ VN
— l_[ Z (Ns,q| e ﬂZS;q/ES/(q Wy |Ns,q>

5,4 Ng,g=0

1
=11 1 — e PE@" (A3)
S,q

This consistently gives the mean exciton occupation num-
ber of a noninteracting boson form

Nyg = (Nygo = (B! Bsg)o (A6)

T @ _ 1’

with no chemical potential in it since only one exciton can
be thought of being present in the system at a time, which
is typically the case for not too high irradiation intensity.

For the noninteracting SWCN array the averaging in
Eq. (29) takes the form

(Tvd,(q,7)d, (—q,0))0 = O(2)(d, (g, T)d,(—¢,0))o
+O(=1)(d,(—¢,0)d), (g, 7))o, (A7)

where © (1) is the theta-function, to give

. | RN N
P (i) = =5 | dr & (dy (0.0 (=g 000, (AS)

with

dy(q,7) = efﬁ(’@ly (q)e o (A9)

and the (Schrodinger picture) induced dipole-moment
operator gly (g) defined in terms of the exciton creation
and annihilation operators as per Eq. (16). Using the
Baker-Hausdorff lemma (see, e.g., Ref. [96])

e’aé’egzé—i-[A,é]-i-%[le,[A,é]]
1 on non s
+§[A,[ ,[4,C11 + -
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it is easy to show that

eTHOBS,qef‘[HO — e*‘[EsBS’q’

Inserting Egs. (A9) and (A10) in Eq. (A8) leads to

W2(q)d [

PO (g i) = — 2 DL
w (@:10) == N ),

This can be easily integrated to give

m*w, (9)d

(0) ; _ 2
Pyy(q,lw)— AnhN, NZ|S|,3y |<

due to the constraint iw = 2nw/hS (n is an integer) on
the Matsubara frequency for bosons [80,89], yielding
e®" = 1. From Eq. (A12), using Eq. (A6), the boson
commutation relations, and the fact that £s(g) is an even
function of ¢, one finally arrives at Eq. (30).

APPENDIX B: PROOF OF EQ. (37)

For the interacting SWCN array, as per Eq. (A3),
the positive-t statistical averaging in Eq. (29) with the
Heisenberg-picture dipole operators explicitly written is of
the form

o2 Tr[e—ﬁ(ﬁo+ﬁ1m) T, et(l?o+1§’im)ggy (q)e—f(ﬁo+ﬁim)21y (—q)] ,
e P = Tr[e # o],
This can be equivalently recast (see Ref. [80] for details)

by writing all the operators in the interaction representation
defined by Eq. (A9), to take the form

% Te[e P T S(B)d, (¢, 7)dy(—¢,0)],  (BI)
with
e P2 = Tr[e PHos(p)], (B2)

where S(f) stands for the S matrix defined as follows:

1 [
O e )
Z( AUy / dt, Tobl().  (B3)
ij=1
|
a N 2, (=1/h)"
(TS (4,01 (g, 000 = 32 00
n=0 .

hp hp R R R R
/ dry - / s (Todly (¢ ) () - - i (507l (=, 0))o.
0 0

0Bl et — BB (A10)
dr ¢ " |(s|f,0) |2<e_E“‘T/ "(ByyBl o + "7 h(Bj-,qus,—q)o) (A11)
_1( B+ =L gt op )) (A12)

B aBsalo F i g PeeaBomalo

The S-matrix series expansion, Eq. (B3), produces a
series of summands in Eq. (B1), which after the t-ordered
operator pairings are done per Wick’s theorem, can be clas-
sified in terms of the two types of Feynman diagrams.
They are disconnected and connected diagrams (with and
without “bubbles,” respectively). More specifically [80],
the n > 1 terms of Eq. (B3) generate in the exponential
factor of Eq. (B2) the (vacuum polarization) disconnected
diagrams of increasing order in flint(q ), which cancel out
exactly the disconnected diagrams of the trace expression
in Eq. (B1). As a result, Eq. (B1) takes the form

! Ti[e P TS (B)d, (g, 7)dy (—q. 0)]

= (T, S(B)d, (g, 7)d,(—q,0))o,
(B4)

with ( - - - )¢ defined by Eqgs. (A4) and (AS) where only the
connected diagrams are to be retained and summed up. The
interacting SWCN array polarization of Eq. (29) takes the
form

1 [
Poquio) = = [ dr & (15913 (0.0 (0.0,
0
(B5)
accordingly. Here, all the operators are written in the inter-
action representation defined by Eq. (A9) and the averag-

ing with the S matrix of Eq. (B3) expands explicitly as
follows:

(B6)
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Putting in here the perturbation Hipy in its explicit form, Eq. (16), brings the right-hand side of Eq. (B6) to the form

n!
n=0 q1

00 -1 hn hp hp
s b /)/0 drl---/o dr,,(Td(q,r)—Zd(ql»ﬁ)d( q1.m)

or more explicitly,

Zd (Gn> Ty (=g, T)dy (=g, 0o,

qn

(T, (q, 01y (— q,0>o——2/ Aty (T, (. D), 1, )y (—g1 1)y (—q, 0

IU()

/ dTl/ dty Td (q:f)d (Q1,T1)d( Q1>T1)d (612,T2)d( Q2,T2)d( q,0))0 —

This, after the pairing of the induced dipole operators per Wick’s theorem with only the connected Feynman diagram

terms retained, gives

R n R R hp 2
(T:S(B)d,(q,7)d,(—q,0))0 = (T:d,(q,7)d,(—q,0))o —/0 dri(T; d (q,f)d (—q, f1)>

KB B
/ de, f dey(Tod, (g, )y (— q,m)

In here, it is reflected that only the summands with ¢, =
q» = --- = q produced by the pairing as shown can con-
tribute nonzero trace values for the trace taken over the
complete set of states, Eq. (A2), of the noninteracting
exciton Hilbert space. Substituting Eq. (B7) in Eq. (BS)
and using the Matsubara (complex-time) function Fourier
transform properties for bosons (see Ref. [80]), summa-
rized in our case as follows:

KB '

P, (q,iw) = / dr ¢“"P)(q, 1),
0

27n

hﬁ

PGr =) = s TP o

(2]

,n=0,£1,£2,...,

w=w,=

1 " i( )
dt '@ o)t — g .
hp ./0

1 . /
B wze—m,,(r_,) =8(r — 1),

one obtains an infinite series

Py (g, iw) = P{) (g, iw) + P (g, zw) P“” (g, i)

+ P (g, zw) P“”(q, zw)

27
<Td (q,fl)d( q,fz))

P(O) (q,iw) + - -,

(Td (g 1), (—4,0))o

<T dy(q. 12)dy(—q, 0))o — (B7)

which can be rewritten in the closed form

. o 2n )
Pyy(q.iw) = PY) (q,iw) + PY) (g, iw) oo D@ i)

that results in Eq. (37).

[1] M. Dresselhaus, G. Dresselhaus, and Ph. Avouris, eds.
Carbon Nanotubes: Synthesis, Structure, Properties, and
Applications (Springer-Verlag, Berlin, 2001).

[2] S. M. Huang, B. Maynor, X. Y. Cai, and J. Liu, Ultra-long,
well-aligned single-walled carbon nanotube architectures
on surfaces, Adv. Mater. 15, 1651 (2003).

[3] L. X. Zheng, M. J. O’Connell, S. K. Doorn, X. Z. Liao,
Y. H. Zhao, E. A. Akhadov, M. A. Hoffbauer, B. J. Roop,
Q. X. Jia, R. C. Dye, D. E. Peterson, S. M. Huang, J. Liu,
and Y. T. Zhu, Ultralong single-wall carbon nanotubes, Nat.
Mater. 3, 673 (2004).

[4] M. F. L. De Volder, S. H. Tawfick, R. H. Baughman, and A.
J. Hart, Carbon nanotubes: Present and future commercial
applications, Science 339, 535 (2013).

[5] K. Tsukagoshi, B. W. Alphenaar, and H. Ago, Coherent
transport of electron spin in a ferromagnetically contacted
carbon nanotube, Nature 401, 572 (1999).

[6] C. W. Chang, D. Okawa, A. Majumdar, and A. Zettl, Solid-
state thermal rectifier, Science 314, 1121 (2006).

[7] Ph. Avouris, M. Freitag, and V. Perebeinos, Carbon-
nanotube photonics and optoelectronics, Nat. Photon. 2,
341 (2008).

034001-15



IGOR V. BONDAREYV and CHANDRA M. ADHIKARI

PHYS. REV. APPLIED 15, 034001 (2021)

[8] T. Hertel, Carbon nanotubes: A brighter future, Nat. Pho-
ton. 4, 77 (2010).

[9] L. V. Bondarev, Surface electromagnetic phenomena in pris-
tine and atomically doped carbon nanotubes, J. Comp.
Theor. Nanosci. 7, 1673 (2010).

[10] I. V. Bondarev, M. F. Gelin, and A. V. Meliksetyan, in
Dekker Encyclopedia of Nanoscience and Nanotechnology
(CRC Press: New York, 2014), 3rd ed., p. 4989.

[11] S. Cambré, J. Campo, C. Beirnaert, C. Verlackt, P. Cool,
and W. Wenseleers, Asymmetric dyes align inside carbon
nanotubes to yield a large nonlinear optical response, Nat.
Nanotechn. 10, 248 (2015).

[12] X. Ma, N. F. Hartmann, J. K. S. Baldwin, S. K. Doorn,
and H. Htoon, Room-temperature single-photon generation
from solitary dopants of carbon nanotubes, Nat. Nanotechn.
10, 671 (2015).

[13] F. Pyatkov, V. Fiitterling, S. Khasminskaya, B. S. Flavel,
F. Hennrich, M. M. Kappes, R. Krupke, and W. H.
P. Pernice, Cavity-enhanced light emission from elec-
trically driven carbon nanotubes, Nat. Photon. 10, 420
(2016).

[14] M.-Y. Wu, J. Zhao, N. J. Curley, T.-H. Chang, Z. Ma,
and M. S. Arnold, Biaxially stretchable carbon nanotube
transistors, J. Appl. Phys. 122, 124901 (2017).

[15] J.-H. Han, G. L. Paulus, R. Maruyama, D. A. Heller, W.-J.
Kim, P. W. Barone, C. Y. Lee, J. H. Choi, M.-H. Ham, C.
Song, C. Fantini, and M. S. Strano, Exciton antennas and
concentrators from core-shell and corrugated carbon nan-
otube filaments of homogeneous composition, Nat. Mater.
9, 833 (2010).

[16] I. Robel, B. A. Bunker, and P. V. Kamat, SWCNT-
CdS nanocomposite as light harvesting assembly. Photoin-
duced charge transfer interactions, Adv. Mater. 17, 2458
(2005).

[17] F. Vietmeyer, B. Seger, and P. V. Kamat, Anchoring
ZnO particles on functionalized single wall carbon nan-
otubes. Excited state interactions and charge collection,
Adv. Mater. 19, 2935 (2007).

[18] S. D. Stranks, C. Weisspfennig, P. Parkinson, M. B. John-
ston, L. M. Herz, and R. J. Nicholas, Ultrafast charge
separation at a polymer-single-walled carbon nanotube
molecular junction, Nano Lett. 11, 66 (2011).

[19] X. Dang, H. Yi, M.-H. Ham, J. Qi, D. S. Yun, R. Ladewski,
M. S. Strano, P. T. Hammond, and A. M. Belcher, Virus-
templated self-assembled single-walled carbon nanotubes
for highly efficient electron collection in photovoltaic
devices, Nat. Nanotechn. 6, 377 (2011).

[20] 1. V. Bondarev and B. Vlahovic, Optical absorption by
atomically doped carbon nanotubes, Phys. Rev. B 74,
073401 (20006).

[21] S. Berciaud, L. Cognet, P. Poulin, R. B. Weisman,
and B. Lounis, Absorption spectroscopy of individual
single-walled carbon nanotubes, Nano Lett. 7, 1203
(2007).

[22] J.-C. Blancon, M. Paillet, H. N. Tran, X. T. Than, S.
A. Guebrou, A. Ayari, A. S. Miguel, N.-M. Phan, A.-A.
Zahab, J.-L. Sauvajol, N. D. Fatti, and F. Vallée, Direct
measurement of the absolute absorption spectrum of indi-
vidual semiconducting single-wall carbon nanotubes, Nat.
Commun. 4, 2542 (2013).

[23] A. Roch, L. Stepien, T. Roch, I. Dani, C. Leyens, O. Jost,
and A. Leson, Optical absorption spectroscopy and proper-
ties of single walled carbon nanotubes at high temperature,
Synth. Met. 197, 182 (2014).

[24] 1. V. Bondarev, Plasmon enhanced raman scattering effect
for an atom near a carbon nanotube, Opt. Express 23, 3971
(2015).

[25] A. G. Marinopoulos, L. Reining, A. Rubio, and N. Vast,
Optical and Loss Spectra of Carbon Nanotubes: Depolar-
ization Effects and Intertube Interactions, Phys. Rev. Lett.
91, 046402 (2003).

[26] F. S. Hage, T. P. Hardcastle, A. J. Scott, R. Brydson,
and Q. M. Ramasse, Momentum- and space-resolved high-
resolution electron energy loss spectroscopy of individual
single-wall carbon nanotubes, Phys. Rev. B 95, 195411
(2017).

[27] M. F. Gelin and I. V. Bondarev, One-dimensional transport
in hybrid metal-semiconductor nanotube systems, Phys.
Rev. B 93, 115422 (2016).

[28] T. Ando, Theory of electronic states and transport in carbon
nanotubes, J. Phys. Soc. Jpn. 74, 777 (2005).

[29] M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio,
Exciton photophysics of carbon nanotubes, Annu. Rev.
Phys. Chem. 58, 719 (2007).

[30] I. V. Bondarev, L. M. Woods, and K. Tatur, Strong exciton-
plasmon coupling in semiconducting carbon nanotubes,
Phys. Rev. B 80, 085407 (2009).

[31] T. Ando, Environment effects on excitons in semicon-
ducting carbon nanotubes, J. Phys. Soc. Jpn. 79, 024706
(2010).

[32] I. V. Bondarev, Asymptotic exchange coupling of quasi-
one-dimensional excitons in carbon nanotubes, Phys. Rev.
B 83, 153409 (2011).

[33] I. V. Bondarev and T. Antonijevic, Surface plasmon ampli-
fication under controlled exciton-plasmon coupling in indi-
vidual carbon nanotubes, Phys. Status Solidi C 9, 1259
(2012).

[34] 1. V. Bondarev, Single-wall carbon nanotubes as coherent
plasmon generators, Phys. Rev. B 85, 035448 (2012).

[35] Q. Zhang, E. H. Haroz, Z. Jin, L. Ren, X. Wang, R.
S. Arvidson, A. Liittge, and J. Kono, Plasmonic nature
of the terahertz conductivity peak in single-wall carbon
nanotubes, Nano Lett. 13, 5991 (2013).

[36] I. V. Bondarev and A. V. Meliksetyan, Possibility for exci-
ton bose-einstein condensation in carbon nanotubes, Phys.
Rev. B 89, 045414 (2014).

[37] 1. V. Bondarev, Relative stability of excitonic complexes
in quasi-one-dimensional semiconductors, Phys. Rev. B 90,
245430 (2014).

[38] T. Morimoto, S.-K. Joung, T. Saito, D. N. Futaba, K. Hata,
and T. Okazaki, Length-dependent plasmon resonance in
single-walled carbon nanotubes, ACS Nano 8, 9897 (2014).

[39] L. Martin-Moreno, F. J. Garcia de Abajo, and F. J. Garcia-
Vidal, Ultraefficient coupling of a quantum emitter to the
tunable guided plasmons of a carbon nanotube, Phys. Rev.
Lett 115, 173601 (2015).

[40] A. Graf, L. Tropf, Y. Zakharko, J. Zaumseil, and M. C.
Gather, Near-infrared exciton-polaritons in strongly cou-
pled single-walled carbon nanotube microcavities, Nat.
Commun. 7, 13078 (2016).

034001-16



COLLECTIVE EXCITATIONS AND OPTICAL...

PHYS. REV. APPLIED 15, 034001 (2021)

[41] 1. V. Bondarev and A. Popescu, Exciton bose-einstein con-
densation in double walled carbon nanotubes, MRS Adv. 2,
2401 (2017).

[42] A. S. Kadochkin, S. G. Moiseev, Y. S. Dadoenkova, V. V.
Svetukhin, and I. O. Zolotovskii, Surface plasmon polari-
ton amplification in a single-walled carbon nanotube, Opt.
Express 25, 27165 (2017).

[43] W. Gao, X. Li, M. Bamba, and J. Kono, Continuous
transition between weak and ultrastrong coupling through
exceptional points in carbon nanotube microcavity exciton-
polaritons, Nat. Phot. 12, 362 (2018).

[44] T. Hertel and I. V. Bondarev, Photophysics of car-
bon nanotubes and nanotube composites, Chem. Phys.
413, 1 (2013), (Special Issue, T. Hertel, [.V. Bondarev,
Eds.)

[45] X. He, W. Gao, L. Xie, B. Li, Q. Zhang, S. Lei, J. M.
Robinson, E. H. Héroz, S. K. Doorn, W. Wang, R Vajtai,
P. M. Ajayan, W. W. Adams, R. H. Hauge, and J. Kono,
Wafer-scale monodomain films of spontaneously aligned
single-walled carbon nanotubes, Nat. Nanotechn. 11, 633
(2016).

[46] A.L.Falk, K.-C. Chiu, D. B. Farmer, Q. Cao, J. Tersoff, and
Y.-H. Lee, Coherent Plasmon and Phonon-Plasmon Reso-
nances in Carbon Nanotubes, Phys. Rev. Lett. 118, 257401
(2017).

[47] K.-C. Chiu, A. L. Falk, P.-H. Ho, D. B. Farmer, G. Tulevski,
Y.-H. Lee, P. Avouris, and S.-J. Han, Strong and broadly
tunable plasmon resonances in thick films of aligned carbon
nanotubes, Nano Lett. 17, 5641 (2017).

[48] P.-H. Ho, D. B. Farmer, G. S. Tulevski, S.-J. Han, D. M.
Bishop, L. M. Gignac, J. Bucchignano, Ph. Avouris, and A.
L. Falk, Intrinsically ultrastrong plasmon-exciton interac-
tions in crystallized films of carbon nanotubes, PNAS 115,
12662 (2018).

[49] M.E. Green, D. A. Bas, H.-Y. Yao, J. J. Gengler, R. J. Head-
rick, T. C. Back, A. M. Urbas, M. Pasquali, J. Kono, and
T.-H. Her, Bright and ultrafast photoelectron emission from
aligned single-wall carbon nanotubes through multiphoton
exciton resonance, Nano Lett. 19, 158 (2019).

[50] W. Gao, C. F. Doiron, X. Li, J. Kono, and G. V. Naik,
Macroscopically aligned carbon nanotubes as a refractory
platform for hyperbolic thermal emitters, ACS Photonics 6,
1602 (2019).

[51] J. A. Roberts, S.-J. Yu, P.-H. Ho, S. Schoeche, A. L. Falk,
and J. A. Fan, Tunable hyperbolic metamaterials based
on self-assembled carbon nanotubes, Nano Lett. 19, 3131
(2019).

[52] S. Schoche, P.-H. Ho, J. A. Roberts, S. J. Yu, J. A. Fan,
and A. L. Falk, Mid-IR and UV-Vis-NIR mueller matrix
ellipsometry characterization of tunable hyperbolic meta-
materials based on self-assembled carbon nanotubes, J.
Vac. Sci. Technol. B 38, 014015 (2020).

[53] N. Komatsu, M. Nakamura, S. Ghosh, D. Kim, H. Chen, A.
Katagiri, Y. Yomogida, W. Gao, K. Yanagi, and J. Kono,
Groove-assisted global spontaneous alignment of carbon
nanotubes in vacuum filtration, Nano Lett. 20, 2332 (2020).

[54] J. A. Roberts, P.-H. Ho, S.-J. Yu, X. Wu, Y. Luo, W.
L. Wilson, A. L. Falk, and J. A. Fan, Multiple Tunable

Hyperbolic Resonances in Broadband Infrared Carbon-
Nanotube Metamaterials, Phys. Rev. Appl. 14, 044006
(2020).

[55] 1. V. Bondarev, H. Mousavi, and V. M. Shalaev, Trans-
dimensional epsilon-near-zero modes in planar plasmonic
nanostructures, Phys. Rev. Res. 2, 013070 (2020).

[56] I. V. Bondarev, Finite-thickness effects in plasmonic films
with periodic cylindrical anisotropy [Invited], Opt. Mater.
Express 9, 285 (2019).

[57] 1. V. Bondarev, H. Mousavi, and V. M. Shalaev, Optical
response of finite-thickness ultrathin plasmonic films, MRS
Commun. 8, 1092 (2018).

[58] I. V. Bondarev and V. M. Shalaev, Universal features of the
optical properties of ultrathin plasmonic films, Opt. Mater.
Express 7, 3731 (2017).

[59] A. Boltasseva and V. M. Shalaev, Transdimensional pho-
tonics, ACS Photon. 6, 1 (2019).

[60] I.V.Bondarev and Ph. Lambin, Spontaneous-decay dynam-
ics in atomically doped carbon nanotubes, Phys. Rev. B 70,
035407 (2004).

[61] F. J. Garsia-Vidal, J. M. Pitarke, and J. B. Pendry, Effec-
tive Medium Theory of the Optical Properties of Aligned
Carbon Nanotubes, Phys. Rev. Lett. 78, 4289 (1997).

[62] J. M. Pitarke, F. J. Garsia-Vidal, and J. B. Pendry, Effective
electronic response of a system of metallic cylinders, Phys.
Rev. B 57, 15261 (1998).

[63] F. J. Garsia-Vidal, J. M. Pitarke, and J. B. Pendry, Silver-
filled nanotubes used as spectroscopic enhancers, Phys.
Rev. B 58, 6783 (1998).

[64] Z. M. Li, Z. K. Tang, H. J. Liu, N. Wang, C. T. Chan,
R. Saito, S. Okada, G. D. Li, J. S. Chen, N. Nagasawa,
and S. Tsuda, Polarized Absorption Spectra of Single-
Walled 4A Carbon Nanotubes Aligned in Channels of an
AIPO4 — 5 Single Crystal, Phys. Rev. Lett. 87, 127401
(2001).

[65] D. R. Smith and D. Schurig, Electromagnetic Wave
Propagation in Media with Indefinite Permittivity and
Permeability Tensors, Phys. Rev. Lett. 90, 077405
(2003).

[66] W. Cai and V. Shalaev, Optical Metamaterials: Fundamen-
tals & Applications (Springer-Verlag, New York, 2010).

[67] N. I. Zheludev and Y. S. Kivshar, From metamaterials to
metadevices, Nat. Mater. 11, 917 (2012).

[68] A. V. Kildishev, A. Boltasseva, and V. M. Shalaev,
Planar photonics with metasurfaces, Science 339, 1289
(2013).

[69] K. V. Sreekanth, Y. Alapan, M. E. Kabbash, E. Ilker, M.
Hinczewski, U. A. Gurkan, A. D. Luca, and G. Strangi,
Extreme sensitivity biosensing platform based on hyper-
bolic metamaterials, Nat. Mater. 15, 621 (2016).

[70] N. 1. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W.
J. Padilla, Perfect Metamaterial Absorber, Phys. Rev. Lett.
100, 207402 (2008).

[71] J. B. Pendry, D. Schurig, and D. R. Smith, Controlling
electromagnetic fields, Science 312, 1780 (2006).

[72] Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, Far-
field optical hyperlens magnifying sub-diffraction-limited
objects, Science 315, 1686 (2007).

034001-17



IGOR V. BONDAREYV and CHANDRA M. ADHIKARI

PHYS. REV. APPLIED 15, 034001 (2021)

[73] 1. V. Bondarev and A. V. Gulyuk, Electromagnetic SERS
effect in carbon nanotube systems, Superlatt. Microstr. 87,
103 (2015).

[74] M. F. Gelin, I. V. Bondarev, and A. V. Meliksetyan, Opti-
cally promoted bipartite atomic entanglement in hybrid
metallic carbon nanotube systems, J. Chem. Phys. 140,
064301 (2014).

[75] M. F. Gelin, I. V. Bondarev, and A. V. Meliksetyan, Mon-
itoring bipartite entanglement in hybrid carbon nanotube
systems via optical 2D photon-echo spectroscopy, Chem.
Phys. 413, 123 (2013).

[76] J. Galego, F. J. Garcia-Vidal, and J. Feist, Cavity-Induced
Modifications of Molecular Structure in the Strong-
Coupling Regime, Phys. Rev. X 5, 041022 (2015).

[77] J. Galego, F. J. Garcia-Vidal, and J. Feist, Suppressing
photochemical reactions with quantized light fields, Nat.
Commun. 7, 13841 (2016).

[78] 1. V. Bondarev and Ph. Lambin, van der waals coupling
in atomically doped carbon nanotubes, Phys. Rev. B 72,
035451 (2005).

[79] L. V. Bondarev and Ph. Lambin, in Trends in Nanotubes
Research (Nova Publishers, New York, 2006), Ch. 6,
p. 139.

[80] G. D. Mahan, Many-Particle Physics (Kluwer Academic,
New York, 2000), 3rd ed.

[81] V. A. Markel, Introduction to the Maxwell garnett approxi-
mation: Tutorial, J. Opt. Soc. Am. A 33, 1244 (2016).

[82] L. V. Keldysh, Coulomb interaction in thin semiconduc-
tor and semimetal films, Pis’ma Zh. Eksp. Teor. Fiz.
29, 716 (1979), [Engl. translation: JETP. Lett. 29, 658
(1980)].

[83] J. Deslippe, M. Dipoppa, D. Prendergast, M. V. O.
Moutinho, R. B. Capaz, and S. G. Louie, Electron-hole
interaction in carbon nanotubes: Novel screening and exci-
ton excitation spectra, Nano Lett. 9, 1330 (2009).

[84] L. X. Benedict, S. G. Louie, and M. L. Cohen, Static polar-
izabilities of single-wall carbon nanotubes, Phys. Rev. B
52, 8541 (1995).

[85] B. Kozinsky and N. Marzari, Static Dielectric Properties of
Carbon Nanotubes from First Principles, Phys. Rev. Lett.
96, 166801 (20006).

[86] S. Tasaki, K. Maekawa, and T. Yamabe, 7-band contribu-
tion to the optical properties of carbon nanotubes: Effects of
chirality, Phys. Rev. B 57, 9301 (1998).

[87]1 H.Haken, Quantum Field Theory of Solids (North-Holland,
Amsterdam, 1976).

[88] N. N. Bogolubov and N. N. Bogolubov Jr., Introduc-
tion to Quantum Statistical Mechanics (World Scientific,
Singapore, 2010), 2nd ed.

[89] A. Abrikosov, L. Gor’kov, and I. Dzyaloshinski, Methods
of Quantum Field Theory in Statistical Physicsl (Dover
Publication, New York, 1975).

[90] T. Nakanishi and T. Ando, Optical response of finite-length
carbon nanotubes, J. Phys. Soc. Jpn. 78, 114708 (2009).

[91] V. Perebeinos and Ph. Avouris, Exciton ionization, Franz-
Keldysh, and Stark Effects in carbon nanotubes, Nano Lett.
7, 609 (2007).

[92] L. Vertchenko, L. Leandro, E. Shkondin, O. Takayama, I.
V. Bondarev, N. Akopian, and A. V. Lavrinenko, Cryogenic
characterization of titanium nitride thin films, Opt. Mater.
Express 9, 2117 (2019).

[93] P. Y. Yu and M. Cardona, Fundamentals of Semiconduc-
tors. Physics and Material Properties (Springer, Heidel-
berg, 2010).

[94] Z. Guo, H. Jiang, and H. Chena, Hyperbolic metamateri-
als: From dispersion manipulation to applications, J. Appl.
Phys. 127, 071101 (2020).

[95] L. D. Landau and E. M. Lifshitz, Statistical Physics (Perg-
amon, Oxford, 1980).

[96] E.S. Abers, Quantum Mechanics (Pearson, NJ, 2004).

034001-18



