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We report a recessed-gate enhancement-mode Al2O3-ZrO2/Al0.6Ga0.4N/Al0.4Ga0.6N metal-oxide-semiconductor heterostructure field-effect
transistor (MOSHFET) with drain current as high as 0.48 A mm−1 at a gate-source voltage of +12 V. This was enabled by a pseudomorphic
HFET structure with graded back barrier for strain management and to screen the growth interface from the channel. The device exhibited a
threshold-voltage (VTH) of 2.75 ± 0.57 V with absolute maximum VTH = 3.6 V, a +12.2 V shift from that for a depletion-mode MOSHFET fabricated
on the same wafer. A 3-terminal breakdown voltage of 700 V was measured in the off-state, showing the viability of E-mode UWBG AlGaN for
power electronics. © 2021 The Japan Society of Applied Physics
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S
ince the first demonstration of depletion and enhance-
ment-mode AlGaN/GaN high electron mobility tran-
sistors (HEMTs), significant progress has been made

in increasing their performance.1–3) These advances have
resulted from improving the material quality in the lattice
mismatched growth of AlxGa1−xN over sapphire/SiC/Si,
the adoption of new device designs and the ability to form
insulating gates on the AlxGa1−xN barrier layers.4–6) The
depletion-mode (D-mode) HEMTs a.k.a heterostructure field-
effect transistors (HFETs) and metal-oxide semiconductor
HEMTs (MOS-HEMTs), a.k.a. MOSHFETs are now estab-
lished commercial products with applications in RF/micro-
wave power amplifiers. In a number of applications, en-
hancement-mode (E-mode) HFETs are preferable as they
provide short-circuit protection power switches,7) eliminate
the need of negative bias,8) and are useful in direct-coupled
field-effect-transistor logic9) etc.
Achieving E-mode operation in AlGaN-GaN HFETs has

been accomplished by: (i) decreasing the barrier
thickness,2,10,11) (ii) adding cap layers,12,13) and (iii) using
fluoride-based treatment.14,15) Kanamura et al. reported GaN
MOSHFET with the highest peak drain current of
0.8 A mm−1 (at VG = +10 V) and OFF-state breakdown
voltage of 320 V at VG= 0 V.10) Using linear extrapolation
for threshold-voltage (VTHLE) they obtained VTHLE = +3 V.
Asubar et al. demonstrated GaN MOSHFETs with VTHLE ∼
+5 V and a peak current of 425 mAmm−1.16)

Several research groups are developing ultrawide bandgap
(UWBG) AlxGa1−xN channel HFETs for high-temperature,
high-voltage, and high-power applications. UWBG AlxGa1−xN
layers have higher breakdown field17–19) which leads to a higher
Baliga figure of merit.20,21) Devices with channel alloy composi-
tions of 40% or higher have been reported,22–26) with currents as
high as 1.3 Amm−1.27) Recently using fluorine treatment, Klein
et al. reported E-mode UWBG Al0.7Ga0.3N channel HFET with
VTH = +0.5 V (at IDS= 0.1 mAmm−1) with a peak current of
only 35 mAmm−1 (at VG = +6.6V).28)

Here, we report a novel pseudomorphic
Al0.6Ga0.4N/Al0.4Ga0.6N HEMT structure with graded back
barrier to manage strain arising from lattice mismatch between
AlN and Al0.4Ga0.6N without releasing strain through disloca-
tions and cracks. This is in contrast with traditional AlGaN/GaN

HEMTs which are metamorphic in nature, with the GaN channel
ideally being fully relaxed.
This structure was grown over a 3μm thick, high-quality

AlN/sapphire template [Fig. 1(a)]. To achieve pseudomorphic
registry, the total thickness beginning from the AlN template to
the top surface was reduced to approximately half of our past
design to reduce the total built-in strain.24) The back interface is
now closer to the channel, potentially causing more traps. To
solve this problem, the graded back barrier AlxGa1−xN (x from
1 to 0.4) layer was introduced to screen the growth interface
from the channel while serving as a strain management layer by
gradually varying the alloy composition as opposed to an abrupt
junction. It was followed by an 1850 Å thick undoped
Al0.4Ga0.6N channel and a silicon doped n-Al0.6Ga0.4N barrier
layer. A 20 nm thick reverse composition graded Si-doped
AlxGa1−xN (x from 0.6 to 0.3) layer was also deposited on top of
the barrier to assist with ohmic contact formation, by presenting
an effective Schottky barrier of 0.62 eV for Al0.3Ga0.7N
compared to 2.7 eV29) for Al0.6Ga0.4N. The epilayer growth
was carried out using low pressure metalorganic chemical vapor
deposition (LP-MOCVD) as described elsewhere.30) The back-
barrier design enables a reduction in leakage currents by
screening the substrate-epilayer growth interface, which im-
proves the ON–OFF ratios, drain-currents, and the sub-threshold
swing (SS).31,32) Figure 1(b) shows the simulated energy band
diagram of structure epilayer structure of Fig. 1(a) in the cases of
barrier recess (bottom) and without barrier recess (top). For
recessed barrier structure, the bottom of the conduction band is
above Ef, indicating absence of 2DEG at VG= 0 V which means
normally-off operation, while for structure without barrier
recessing there is clear dip of Ec below Ef.
The processing consisted of inductively coupled plasma

reactive ion etching (ICP-RIE) for mesa-isolation followed by
the formation of source drain ohmic-contacts. Zr/Al/Mo/Au
(150/1000/400/300 Å) was deposited with E-beam evaporation
and annealed for 30 s at 950 °C under N2 ambient using rapid
thermal annealing.33)

For this study, perforated channel (PC) layout,34,35) was
used to reduce access resistances. In the PC design, the gate
area consists of the alternating regions of conducting straits
separated by non-conducting islands where the channel
material is completely removed (only under the gate but
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not in the G–S and G–D regions). The current flowing out of
the gate straits therefore spreads out into larger area G–S and
G–D regions which leads to smaller gap and contact access
resistances (see supplementary information for more details
available online at stacks.iop.org/APEX/14/014003/mmedia).
The maximum reduction of the access resistances, by a factor
of 2–3, occurs when the gap between the straits is around twice
the width of the straits and the gate-drain distance is larger or
comparable to the strait width.34) Accordingly, for the PC
design we selected the width of the straits WS≈ 3.75 μm, with
blocking gaps between them WB≈ 8.25 μm (see supplemen-
tary information). These dimensions were confirmed using
scanning electron micrographs. This geometry corresponds to
an optimal island/gap ratio of 2–2.5 as was determined
following the procedure outlined in Refs. 27, 34, 35. In
addition, in the PC layout, the reduction in average power
density reduces the device temperature and also enables higher
channel currents. The 250 nm deep current blocking islands
were formed using a Cl2 based RIE process with an etch rate
of ∼10 nm s−1 after the formation of the source-drain ohmic
contacts. Measurement on test structure shows that islands are
completely insulating. The threshold voltage of PC device was
found to be same as that of non-perforated control device.
Next the barrier was recessed to ∼10 nm thickness using a

slow ICP-RIE etching process with BCl3/Cl2 gas mixture

followed by chemical treatment of etched surface with
tetramethylammonium hydroxide (TMAH) solution to
smooth out the surface as has been done with III-nitrides
previously27) The etch rate of 1 nm s−1 was calibrated using
atomic force microscopy. Then a 25 nm thick ZrO2–Al2O3

insulator (ZrO2 followed by Al2O3) stack was deposited in
the recess region using atomic layer deposition technique
before the formation of the Ni/Au gates. The gate-length,
gate-source and gate-drain spacings were respectively
LG≈ 2.0 μm, LSG≈ 1.5 μm and LGD≈ 2.5 μm. The tran-
sistor surface was protected with PECVD deposited 400
nm thick SiO2 film for high-voltage breakdown measure-
ments.
TLM was used to estimate the sheet-resistance (RS) and the

contact resistance to be ∼1700 Ω/□ and ∼1.7 Ω-mm respec-
tively. The RS value was within 10% of that measured using rf-
eddy current approach. Then PC devices were measured and the
drain currents were normalized to the conducting portion of the
channel width which is 15.6 μm (WS) for a 50 μm (WS+WB)
width unperforated device.27,34,35) Figure 2(a) inset shows the
source-drain characteristic curves for the recessed-gate
Al2O3–ZrO2/PC-MOSHFET with LG≈ 2.0μm, LSG≈ 1.5μm
and LGD≈ 2.5μm. A peak current of 0.48 Amm−1 was
measured at a gate bias of +12 V while it is 0.15 Amm−1

when normalized to the full channel width (WS+WB). Even

(a) (b)

Fig. 1. (Color online) (a) Schematic layout of recessed gate MOSHFET and (b) band diagram for epilayer structure of Fig. 1(a): without recessed barrier
(top) and recessed barrier (bottom).

(a) (b)

Fig. 2. (Color online) (a) Transfer characteristics of a recessed-gate E-mode Al2O3–ZrO2/PC-MOSHFET with LG = 2 μm, LSD = 6 μm and gate-width
WG = 50 μm. Inset shows the source-drain I–V characteristics and (b) Ns and μ-VG dependencies for the device of Fig. 2(a).
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with normalized to full channel width, the current density is the
highest reported value till date for UWBG AlGaN channel E-
mode devices. Pulsed I–V measurement was done using DIVA
D-265 dynamic IV analyzer with a pulse duration of 500 ns and
low duty cycle of 0.1% to avoid self-heating. At VG=+10 V,
the pulsed current was found to be 0.38 Amm−1 (see
supplementary information), a slight increase from
0.36 Amm−1 DC current. We estimated an ON-resistance
(RON) of 18 Ω mm. In Fig. 2(a) we find VTH=+3.6 V, from
linear extrapolation, with a transconductance of 70 mSmm−1

(LG≈ 2.0μm). To estimate the VTH variation, ten random
devices were measured, spread over 1.5 cm to be representative
of the whole quarter of a 2″ wafer. The mean VTH= 2.75 V with
a standard deviation of 0.57 V (Fig. 4). The VTH variation across
the wafer could be due to following two reasons: (i) recess depth
variation (ii) variation of sheet resistance across the wafer. The
most likely cause is recess depth variation ∼2 nm, which would
cause ∼0.6 V VTH shift,36) potentially accounting for the
observed variation. The sheet resistance variation is most likely
caused by variations in carrier mobility across the wafer, as C–V
measurements on the as-grown wafers showed similar Ns across
the sample.
To determine the factors leading to the high drain current we

extracted the gate voltage dependencies of NS and μ as
described in.33,37) Figure 2(b) shows NS reaching 1.6× 1013

cm−2 at VG=+12 V. μ is as high as 1050 cm2 V−1 . s−1 near
threshold VG= 4 V and decreases to 200 cm2 V−1. s−1 at VG
+12 V, consistent with past reports.38) Figure 3(a) compares the
semi-log transfer characteristics for the device of Fig. 2(a)
measured at VDS=+20 V with that for an identical geometry
D-mode device (no gate-recess) fabricated on the same wafer,
showing a VTH shift of +12.2 V due to the gate recess. The E-
mode device shows a hysteresis of 0.8 V between forward and
reverse sweep of gate voltage, higher than that of D-mode
(0.2 V) indicating higher trap charges at semiconductor/oxide
interface or bulk.39) We speculate this higher trap density might
be from barrier recessing. This is supported by the slight
increase in SS) increase after barrier recess from 105 ± 8 mV/
decade for the non-recessed control devices to 138 ± 19 mV
mV/decade. The best E-mode device showed SS= 128 mV/
decade and an ON/OFF ratio> 1.5× 108, while IGS< 10
μAmm−1 over the entire VG range [Fig. 3(a)]. Three terminal

breakdown voltage at VG= 0 V for a device with LGD= 4.1
μm, was found to be +700 V [Fig. 3(b)] which is above +600
V, required for power devices in automotive applications, and
has not been reported for UWBG AlGaN E-mode devices.28,40)

We benchmark the Al2O3–ZrO2/Al0.4Ga0.6N channel E-
mode devices against other wide (GaN) and UWBG
(β-Ga2O3 and AlGaN) channel E-mode devices in Fig. 4,
where for GaN channel we only included devices with IDS
> 400 mAmm−1.41–46) Our results show highest current
density among UWBG materials while compare favorably to
some of the best values for GaN despite the greater maturity
of GaN-channel HFET technology.
In summary, using recessed gate technology in combina-

tion with a new pseudomorphic back barrier structure with
reverse graded top contacts and PC design, we have reported
an Al2O3–ZrO2/Al0.6Ga0.4N/Al0.4Ga0.6N E-mode MOSHFET
with drain currents as high as 0.48 Amm−1. This demon-
strates that UWBG AlGaN channel E-mode devices are
promising for power electronics.
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