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Abstract

Real-time execution of machine learning (ML) pipelines on radiology images is difficult due to limited computing resources in
clinical environments, whereas running them in research clusters requires efficient data transfer capabilities. We developed Nif-
fler, an open-source Digital Imaging and Communications in Medicine (DICOM) framework that enables ML and processing
pipelines in research clusters by efficiently retrieving images from the hospitals’ PACS and extracting the metadata from the
images. We deployed Niffler at our institution (Emory Healthcare, the largest healthcare network in the state of Georgia) and
retrieved data from 715 scanners spanning 12 sites, up to 350 GB/day continuously in real-time as a DICOM data stream over
the past 2 years. We also used Niffler to retrieve images bulk on-demand based on user-provided filters to facilitate several
research projects. This paper presents the architecture and three such use cases of Niffler. First, we executed an IVC filter
detection and segmentation pipeline on abdominal radiographs in real-time, which was able to classify 989 test images with
an accuracy of 96.0%. Second, we applied the Niffler Metadata Extractor to understand the operational efficiency of individual
MRI systems based on calculated metrics. We benchmarked the accuracy of the calculated exam time windows by compar-
ing Niffler against the Clinical Data Warehouse (CDW). Niffler accurately identified the scanners’ examination timeframes
and idling times, whereas CDW falsely depicted several exam overlaps due to human errors. Third, with metadata extracted
from the images by Niffler, we identified scanners with misconfigured time and reconfigured five scanners. Our evaluations
highlight how Niffler enables real-time ML and processing pipelines in a research cluster.

Keywords Machine learning (ML) - Picture archiving and communication system (PACS) - Digital Imaging and
Communications in Medicine (DICOM) - Clinical data warehouse (CDW)

Introduction

There has been recent tremendous success in building
machine learning (ML) models for radiology image pro-
cessing tasks, including abnormality detection, segmenta-
tion, and automatic classification of pathology [1]. Radi-
ology departments consist of several clinical systems such
as picture archiving and communication system (PACS) [2]
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and vendor-neutral archives (VNAs) [3] that receive images
in real-time from various scanners. By intercepting these
images and running ML and processing pipelines on them,
we can provide additional usable data to the radiologist or
triage cases based on severity before they arrive on the radi-
ologist’s worklist. However, the real-time execution of ML
pipelines on radiology images is difficult as clinical systems
have limited processing and memory resources to execute
ML pipelines on radiology images efficiently [4, 5]. The
resource scarcity hinders real-time processing of radiology
images and translating advanced ML algorithms in clinical
care. Therefore, we propose to shift this burden of computa-
tion away from the clinical environment and into a research
platform that contains adequate computing resources and
then feed these results back into the clinical environment.
The need for ML pipelines in radiology is becoming
more evident in light of increased work volume and exam
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complexity with concurrent pressure on maintaining turna-
round times for interpretations [6]. Rapid progress in the last
decade in computer vision and natural language processing
has ignited hope that artificial intelligence (AI) will lead to
lower costs, fewer errors, more efficiency, and better health
care [7]. ML pipelines have been proposed to aid in diagno-
sis and help with scanner optimization and effective sched-
uling of patients to reduce wait times [8]. Digital Imaging
and Communications in Medicine (DICOM) metadata has
been leveraged in identifying imaging device productivity
[9]. These implementations require real-time processing of
images and their metadata, which can be obtained by run-
ning computations and analytics on system performance
metrics. Vendor neutral AI (VNAI) deployment infrastruc-
ture proposes fetching data from PACS and hospital infor-
mation systems (HIS) to execute Al algorithms in a vendor-
agnostic manner [10]. DICOM Data Warehouse (DDW) uses
Mirth to parse DICOM metadata and store them in a Post-
gresql database [11]. Such previous works focus on enabling
a research environment for ML and processing pipelines.
Several factors should be satisfied to run ML pipelines in
real-time on radiology images. First, there should be a fast
and secure data transfer from the PACS to research clusters
where ML algorithm inference will be performed. Second,
an efficient processing framework must be built to process
and sort the received DICOM images and facilitate the exe-
cution of ML pipelines. Data transfer can be accomplished
by leveraging the standardized DICOM format for healthcare
imaging and its associated network protocol to enable a reli-
able transfer of imaging data and structured reports (SR)
between the PACS and computing servers from data cent-
ers, clouds, and research clusters [12—14]. Although some
of this work could be achieved by transferring the data and
models to a cloud environment, hospital security protocols
may dictate that research clusters that reside within an insti-
tutional firewall are the only permissible, secure option for
healthcare images with protected health information (PHI).
This paper presents Niffler, a real-time DICOM frame-
work that retrieves images from the PACS and extracts and
processes metadata from the acquired images in the research
clusters. Niffler has supported several radiology research
works at our institution with its real-time and retrospective
DICOM retrievals during the past 2 years. We describe three
such use cases of Niffler in this paper. The first use case is an
IVC (inferior vena cava) filter detection on radiology images
using RetinaNet [15], on radiographs (XR, DX, CR, and
DR) of the chest, spine, and abdomen (7 total exam types).
We demonstrated the ability to quickly execute ML pipe-
lines on real-time DICOM imaging data with Niffler. The
second use case calculates scanner utilization by perform-
ing computations on metadata extracted from the DICOM
images received in real-time. We could calculate the scanner
utilization more accurately with Niffler than a clinical data
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warehouse (CDW) reference standard [16]. The third use
case was to find the scanner clock miscalibrations by com-
paring the timestamps from image-receipt in the research
cluster against the image acquisition time in the scanner,
as indicated in the metadata. The analysis of timestamps by
Niffler revealed a systematic problem in clock calibration for
our scanners, which was subsequently corrected.

Methods

We designed Niffler as a framework that retrieves DICOM
images in real-time and on-demand from PACS to a research
cluster. By extracting and analyzing the metadata at the
research clusters, Niffler facilitates creating image subsets
that can be further processed, used as data for ML and pro-
cessing workflows to find valuable insights or shared with
other researchers.

Figure 1 depicts the Niffler architecture and prototype
deployment. Niffler consists of DICOM listeners for receiv-
ing images in real-time and retrospective DICOM extractors
to query and retrieve images on-demand. It also includes a
Metadata Extractor that extracts the textual metadata from
the retrieved DICOM images. Niffler stores the images in
its storage and the metadata in a Metadata Store. Its Appli-
cation Layer provides unified access to data and metadata
in the storage and the metadata store, with several utility
functions. Thus, ML and processing pipelines run efficiently
on the images and metadata stored by Niffler in a research
environment.

In the standard healthcare system, the radiology depart-
ment may consist of several PACS, each receiving radiol-
ogy images from scanners of various modalities. Our current
deployment environment consists of 2 PACS from our insti-
tutional radiology department, configured to accept DICOM
retrieval queries from Niffler. Niffler can receive DICOM
data from more PACS systems at once, with minor con-
figuration changes to the PACS and Niffler. In this sample
deployment, the primary PACS receives data in real-time
from the scanners. At our institution, the radiology depart-
ment has configured an archival process that periodically
copies the images from the primary PACS to a shadow PACS
and then cleans up the primary PACS every week. Hence,
the shadow PACS stores imaging data for several years,
supporting retrospective queries. We deployed Niffler in a
standard server with 12 GB memory, AMD Opteron 63xx
class CPU, and 1 TB of local hard disk in the research clus-
ter. As we started to extract more data on-demand, we later
attached a 32 TB network drive as additional storage. We
also expanded to leverage our research cluster for a distrib-
uted execution of the pipelines.

Niffler enables the execution of ML pipelines as Docker
[17] containers on DICOM images retrieved from both
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Fig. 1 Deployment architecture.
Niffler consists of DICOM
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PACS and the textual metadata of the images. The pipe-
lines are run either through WDL specifications with a
workflow manager that we developed extending Cromwell
[18] or by simple shell scripts. The Real-Time DICOM
Listener receives images from the primary PACS contin-
uously as a DICOM imaging stream. The Retrospective
DICOM Extractor parses a user-provided CSV file consist-
ing of data that needs to be extracted from the PACS, as
specified in a JSON [19] configuration file. The CSV file
may have a list of EMPI, {EMPI, Accession}, Accession,
or {EMPI, StudyDate}. Niffler parses the CSV file to make
a series of C-FIND and C-MOVE queries on the shadow
PACS. Niffler avoids the need to manually execute several
C-MOVE or C-FIND and C-MOVE queries to extract the
images. Niffler consists of multiple DICOM StoreSCP pro-
cesses configured at the research cluster, one process for
each PACS. It stores the images from the PACS separately
in encrypted storage, in a hierarchical folder structure.
By default, this structure is patient-folder/study-folder/
series-folder/instance.dcm. However, this storage structure
(together with several other Niffler system and configura-
tion properties) can be configured through JSON configu-
ration files. For example, images can also be stored in vari-
ous levels of hierarchy (such as patient-folder/instance.
dcm or patient-folder/study-folder/instance.dcm).

The Metadata Extractor traverses and queries all the
images in the storage, extracts the relevant metadata from
the DICOM headers, and stores the PHI-free metadata in a
NoSQL [20] database, which we call the Metadata Store.

The NoSQL database is chosen due to its scalability and
support for data storage as JSON [19, 21] documents, which
natively suits the hierarchical format of DICOM metadata.
The database consists of several collections (i.e., database
tables), each representing a profile. Each profile defines
the DICOM attributes that must be extracted for one or
more experiments. The Metadata Extractor reads the folder
consisting of the profiles stored as text files. It parses the
DICOM headers from the images received in the storage
and stores the relevant attributes defined in the profiles into
their respective collections. An experiment can use existing
profiles or create a new profile at run time without halting
the execution. As each profile generates a collection, the
access to the metadata store can be limited to the respec-
tive researcher at the collection level, using the access con-
trols offered by the database. The metadata is used to filter
cohorts and subcohorts that allow dataset creation for model
inference. For example, to test whether an IVC filter model
performance drops with the change of equipment, cohorts of
data filtered by modality and manufacturer are easily created
at the metadata level.

The Application Layer facilitates access to the DICOM
images from the storage and the respective metadata from
the metadata store. It provides unified data access to both
data and metadata. It also offers utility functions such as
de-identification and image conversion and scripts such as
scanner utilization computation and scanner clock calibra-
tion. The ML pipelines run their algorithms, either directly
or via the application layer, on the images and the metadata.
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The services such as de-identification and image conversion
are optimized to run using multiple processes as well as on
a cluster by using Slurm.

Niffler deletes the images from the storage periodically
once the metadata extraction and the execution of the ML
pipelines on the images are complete. Subsets of images
relevant for a study can be shared with the other research-
ers, typically after processing them, including de-identifying
images, converting DICOM images into PNG, or the image
output with associated ML inference results. Niffler facili-
tates the users to determine the cohort components required
for model inference. Since the pipeline is a prospectively
populated system with an option for a query to extract
images meeting a specific criterion, this limits the duplicated
information stored in the research clusters.

Currently, with existing open-source and enterprise
frameworks, a researcher would have to submit multiple que-
ries to the PACS and CDW manually, work on anonymizing
the data collected, merge the data, and then run the model
inference. Niffler automates this entire process and thus min-
imizes the human-in-the-loop. Niffler supports prospective
dynamic cohort and subcohort creation, eliminating the need
for duplicate data storage and aggregation with anonymized
model output. Through its native support for the ML and
processing pipeline execution as containers, Niffler provides
an infrastructure-agnostic execution with seamless scaling
and migration. Thus, Niffler minimizes the repetitive and
complicated configuration steps while automating the end-
to-end process of an ML pipeline.

Niffler Execution

Niffler is configured as a system process with its storage and
metadata extraction functionality. At the core of the Meta-
data Extractor is an extract_metadata process that runs con-
tinuously in a loop. The extract_metadata runs every 10 min
by default but can be configured to run as soon as the Niffler
real-time DICOM listener receives an image. Niffler stores
the DICOM images in the file system by default. Hence, the
Metadata Extractor uses the find operating system command
as a sub-process to traverse all the DICOM series in the stor-
age. In each iteration, the Metadata Extractor extracts meta-
data from the first image of each series that is not extracted
yet. For performance reasons, Niffler extracts metadata from
only one image per series. However, we can configure it
to extract more than one (such as first, last, and a middle
instance in any given series) or all the images of each series.

Niffler has a clear_storage process that runs nightly
(by default, at 23:59). It deletes the images whose meta-
data are already extracted, making sure no ML or process-
ing workflow is still processing them. Niffler periodically
stores the progress of extract_metadata and clear_storage
processes to the filesystem as sets of series identifiers. By
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writing the sets to the filesystem and reading them upon
startup ensures that the Metadata Extractor processes resume
where they stopped. As Niffler is written in Python, the pro-
gress of operations such as metadata extraction, on-demand
extraction, and image conversion are stored in pickle files,
allowing halt-and-resume of the progress from a long list
of DICOM instances. This approach aims to support seam-
less updates and improve fault tolerance, ensuring that the
progress made by the extraction and deletion processes is
not lost upon failures and restarts. Hence, when Niffler is
restarted manually or due to external measures (such as a
system restart), it resumes where it left off during the previ-
ous iteration.

Implementation

We developed the Niffler prototype as an open-source
platform,! with its core and utility functions developed in
Python3. The prototype uses the Pydicom library to extract
metadata and process the DICOM images (including con-
verting the DICOM images to PNG format and converting
DICOM images into anonymized DICOM images with only
a subset of metadata attributes stored as headers) and Mon-
goDB [22] as its NoSQL Metadata Store. The application
layer consists of several toolkits. Among these, the scanner
utilization is in Java. Scanner clock calibration is in Javas-
cript. The image converter and anonymizer are in Python.
Niffler supports the ML and processing pipelines in dif-
ferent coding languages, provided that the pipeline can be
wrapped as a container. Two instances of the DCM4CHE
[23] StoreSCP tool are configured to receive all images in
2 different ports. The first one listens to all the images sent
in real-time from the primary PACS and accepts them. The
second one retrieves specific images retrospectively on-
demand from the shadow PACS via a series of DCM4CHE
MoveSCU queries, which are optionally first filtered based
on FindSCU queries — all internally through Niffler, as
such the user can retrieve thousands of images belonging to
various patients and accessions (stored in a CSV file) with
a single Python command of Niffler. We deployed Niffler
in a server secured by strict firewall rules and configured
the MongoDB metadata store with authentication. For data
transfer efficiency, Niffler supports receiving data in a secure
compressed DICOM data stream. In our sample deployment,
the images received from the PACS are in JPEG lossless
compressed form. Niffler uses GDCM [24] to export the
compressed DICOM images to a PNG format for the ML
pipelines to consume the images in a de-identified manner.

! https://github.com/Emory-HITI/Niffler.
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Results

We demonstrated the capability and stability of Niffler
by running it continuously over 2 years, receiving images
from the two PACS, including up to 350 GB/day of real-
time data from 715 scanners spanning 12 institutions. Our
research lab, composed of 57 members (radiologists, fac-
ulty, postdocs, and research students), extensively used
Niffler to query and retrieve retrospective data on-demand
for more than a year, in addition to this ongoing real-time
data retrieval. The on-demand DICOM retrieval time
depends on the total volume (influenced by the network
latency between the research environment and the radiol-
ogy network) and the number of files (DICOM retrieval
queries for each accession, thus leading to more time for
each C-FIND and C-MOVE requests). The volume of a
DICOM image and how many image instances in a series
both heavily depend on the modality. The performance
also heavily depends on the load of the PACS. Our on-
demand extractions are not mission-critical and are of
lower priority than the clinical extractions from the PACS.
Therefore, the PACS is configured to lower our on-demand
extraction speed when there is a higher load/demand on
the PACS. We retrieved images of various modalities ret-
rospectively, including CT, MR, DX, and several others.

We retrieved more than 50 TB in a month of mammog-
raphy images, consisting of around 3.3 million images.
Each cohort of DICOM retrieval was around 1.4 TB. Nif-
fler retrieved approximately 1.5 TB of mammography
per day consistently, often extracting a bunch of 4.5 TB
in 3 days. Furthermore, 4 months (Jan—April 2020) of
CXR data from PACS took 30 h to retrieve. This extrac-
tion consisted of 58,298 accessions with 1 TB volume
(226,348 directories, 158,445 files). On another occasion,
we retrieved CXR images at a pace of 160,000 images in
5.4h.

We measured the performance of Niffler with three
practical use cases. First, we built an IVC filter (IVCF)
detection pipeline as a container to execute on the images
retrieved in real-time with Niffler. The pipeline uses the
Keras RetinaNet object detection pre-trained model to
determine whether an IVCF is detected in the subcate-
gories of the images. The backbone encoder CNN was
based on the Resnet-50 architecture [25] pre-trained on
the COCO object detection dataset [26]. The model was
trained on 503 abdominal, thoracoabdominal, and lumbar
radiographs from various projection views and validated
on 127 images.

Niffler yielded real-time detection of IVC filters on
these radiographs with an average end-to-end latency
(measured as the time difference between when a scanner
acquires an image and when the ML pipeline processes it)

of 20 min and high model accuracy. During the real-time
inference, the Niffler Metadata Extractor applied the filters
on modality and body parts to create a DICOM subset con-
sisting of 989 DICOM images. The IVCF detection con-
tainer ran its inference on the identified images, including
chest X-ray, abdomen radiographs, and Spine X-rays. The
pipeline drew a bounding box around the identified IVCF
in the images and output a PNG image with the detection
box, as shown in Fig. 2. Two interventional radiologists
reviewed all the outputs and determined that the IVCF
detection algorithm classified the test images with high
accuracy of 96.0% on the test images.

For the second use case, we applied the Niffler Meta-
data Extractor to understand the operational efficiency of
individual MRI systems based on calculated metrics from
exam timestamps. These data allow measurement of exam
duration and system idle time. Figure 3 indicates the calcu-
lated exam time windows from one scanner on a particular
day, according to Niffler and CDW.

Identifying scanner utilization from CDW is more prone
to human errors, leading to a false depiction of exam over-
lap. The overlapping timelines for the exams indicated
by CDW are not even possible as a scanner can perform
only one exam at any given time frame. Niffler is free from
such human errors as it identifies the image acquisition
times directly from the tags in the metadata of the images’
DICOM headers. As such, Niffler consistently and accu-
rately identified exam timeframes and idling times of the
scanners. Our evaluations on Niffler highlight the feasibility
and efficiency in running the ML and processing pipelines
from a research cluster on the images and metadata received
in real-time and retrospectively from hospital PACS.

Finally, as a third use case, we used Niffler to identify the
scanners with misconfigured time, using the metadata of the
images received in real-time. When metadata attributes such
as AcquisitionTime and SeriesTime have a wrong timestamp
due to the scanner time misconfiguration (typically, due to a
wrong timezone setting), extracting useful information from
the metadata becomes harder. Niffler contains a script that
compares the time the images are received at the metadata
store against the acquisition time from the metadata. The
difference should not exceed 20 min, considering the time
the image to be received over the network and the metadata
to be extracted and saved. Niffler correctly identified five
scanners with misconfigured time, which were subsequently
reconfigured. IHE Consistent Time [27] profile ensures com-
puters in a healthcare network have their times synchronized.
However, in practice, a vast healthcare network spanning
multiple sites (such as our healthcare network that spans 12
sites and 715 scanners) can have misconfigured time and
time zones, as we observed. Hence, we note that Niffler can
detect such anomalies by processing the metadata.

@ Springer
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Fig.2 IVCEF detection and
localization on various views.
The pipeline draws a bounding
box around the identified IVCF
in the images and outputs a
PNG image with the detection
box

Discussion

We develop and maintain Niffler, an open-source DICOM
framework that retrieves images from the radiology PACS
using DICOM network listeners and supports the execution
of ML pipelines formatted as containers on radiology data.
Niffler uses the DICOM standard to receive images in real-
time and on-demand based on user-specified queries from

Fig.3 Visualizing scanner
utilization measurements. We
observe calculated exam time
windows from one scanner on a
particular day, with Niffler and
CDW
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practice. Furthermore, Niffler can be configured to perform
the metadata extraction more frequently (instead of 10 min
intervals), thus shortening this time interval further down.
All PACS environments support DICOM networking. As
such, Niffler is compatible across all PACS environments
with no additional vendor-specific configurations.

Our evaluations highlight that Niffler provides fast pro-
cessing of ML models in real-time. Niffler achieves high
efficiency by running the filtering at the metadata level and
the ML pipelines using CPU only on the identified images.
We also highlight the potential in using Niffler to operate
the scanners better, with information not otherwise readily
available in the clinical systems such as PACS and CDW.
The prototype and the evaluations highlight the potential and
performance of Niffler in executing ML and processing pipe-
lines in real-time and retrospectively. With minimal tuning
of infrastructure, Niffler will facilitate the execution of ML
models from any standard radiology environment. Niffler
further enables the development of models against real-time
data streams and helps gather large-scale prospective data in
a centralized store to facilitate imaging research.

Niffler enables a research sandbox, connecting clinical
data flows in real-time and historical data from the PACS in
a research cluster. As a pilot center for the ACR Al lab, we
integrate this pipeline for Al annotation, training, and infer-
ence. We aim to deploy clinically validated algorithms on
DICOM data and metadata retrieved from the PACS using
Niffler while also enabling sending the results from run-
ning the algorithms back into the clinical systems. In future
work, we aim to extend Niffler to facilitate feedback into the
clinical systems from the algorithms validated in the Niffler
research cluster environment.

Our Niffler deployment’s real-time DICOM listener con-
tinues to receive around 350 GB/day of data for more than
2 years, all the images that the primary PACS receives with-
out a filter. Niffler also efficiently extracted the metadata
from the acquired images. Besides, it also efficiently handled
retrospective queries from the shadow PACS on the histori-
cal data. However, we note that if we configure Niffler to
receive real-time images from several PACS (rather than just
2) on the same scale, a stand-alone deployment of Niffler
will face bottlenecks in data transfer or metadata extraction.
This prediction prompted us to invest time in investigating
such executions based on a cluster. Niffler can be deployed
in a distributed manner in a cluster to support the process-
ing of data acquired from several PACS. In addition to the
deployment presented in this paper, we have also currently
deployed Niffler in three other environments: another light-
weight VM similar to the one presented in this paper and two
larger servers. They are all running various ML and process-
ing pipelines of our research team. We believe the proposed
approach and the Niffler open-source framework will help
the radiology research community at large.

Conclusion

In this paper, we presented Niffler, an open-source DICOM
framework that supports the seamless transfer of data from
the PACS to the research clusters and enables efficient
execution of ML and processing pipelines on the images,
reports, and the extracted textual metadata. Niffler facili-
tates the execution of ML models with a minimal tuning of
infrastructure. It further enables the development of models
against real-time data streams and helps gather large-scale
prospective data in a centralized store to facilitate imag-
ing research. We demonstrated the potential for seamless
execution of ML and processing pipelines in real-time
with three use cases of Niffler — one on ML workflows
on the DICOM images and the other two by processing the
extracted metadata.

Niffler requires extension and further development for
clinical validation. In the IVCF detection, we currently do
not know if the patient is anticoagulated and can have this
filter removed, they have contraindication of filter removal,
or already have an upcoming scheduled appointment for
filter retrieval. As future work, we propose to support end-
to-end clinical validation of the ML pipelines with the
consumption of electronic medical record (EMR) from the
real-time analytics (RTA) on the laboratory information
(INR, anticoagulation profile), medications (whether the
patient is on any anticoagulant), problem list (for example,
if a patient has a history of GI bleed and hence cannot be
anticoagulated), and the upcoming clinical appointments
where a patient can be seen in the clinic. Linkage to an
HL7 [28] ADT (admission, discharge, and transfer) mes-
sage would allow just-in-time clinical review of the patients
in same-day appointments. In the IVCF detection pipeline,
such a linkage will provide education to providers on the
benefits of the IVCF removal when no longer required.
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