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1. Introduction

In many circumstances, charged particles drifting in the plasma with super-Alfvénic speed

trigger plasma instabilities that create electromagnetic fluctuations. One such mechanism produces

modes that are non-resonant with the driving particles and leads to X�/�0 ≫ 1, where �0 is the

initial magnetic field. This non-resonant streaming instability (hereafter NRSI) was proposed in

[1, 2] to explain the observations of synchrotron X-ray emissions in astrophysics shocks [e.g., 3].

Later several studies have investigated the NRSI per se [e.g., 4–7], or in the context of cosmic ray

(CR) acceleration at shocks [e.g., 8] and propagation in galactic and extra-galactic environments

[e.g., 9, 10]. Finally, there is an ongoing effort to study NRSI in laboratory [e.g., 11].

Kinetic studies of the NRSI have included the effects of the background plasma temperature

[e.g., 12–14] and the shape of the CR distribution function [e.g., 15], always considering a current

of energetic protons. Although protons are more abundant than electrons in CRs, there are envi-

ronments where leptonic currents can be expected; they include: 1) quasi-perpendicular shocks,

where reflected electrons can support a current in the shock upstream [16, 17], which may apply,

e.g., to the termination shocks from the winds of stellar clusters [18]; 2) around pulsar wind nebulae

(PWNe), where both electrons and positrons are accelerated [e.g., 19, 20, references therein]; 3)

the electron strahl population in the solar wind [e.g., 21].

Here we study the lepton driven NRSI and compare its characteristics with the ion-driven case,

including the linear growth, the spectrum, the structure and the saturation of the magnetic field.

We used a semi-classical analytic theory to examine the lepton driven NRSI and verified these

predictions with kinetic simulations, presented in [22].

The wavenumber and the growth rate of the fastest growing mode read [2, 7]:

:fast =
1

2

=cr

=

Ed

EA0

1

3i

and Wfast =
1

2

=cr

=

Ed

EA0

lci , (1)

where EA0 is the Alfvén speed and Ed is the drift velocity of the driving particles in the beam

(hereafter, CRs); =cr and = are the particle density in the CR beam and background plasma. For

typical astrophysical shock parameters, the wavelength and corresponding growth timescale are

_fast ≈ 10−4pc

(
=cr/=

10−7

)−1 (
Ed/EA0

10

)−1 ( =
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)1/2

and gfast ≈ 1 yr

(
=cr/=
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107cm s−1

)−1 ( =
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(2)

which suggest that the NRSI can be relevant in many environments and that it often needs to be

treated with sub-grid prescriptions that account for small length/time scales.

The main conditions to drive the instability are found as

Ed ≫ EA0 (3)

Wfast ≪ lci (4)

b ≡
=cr

=

?cr

<i

Ed

E2
A0

≡
1

2

%cr

%B0

≫ 1 . (5)

The first condition demands the super-Alfvénic drift of CRs in the plasma frame, analog to the

resonant streaming instability [23]. The second one imposes the growth rate to be smaller than the

ion cyclotron frequency (magnetization condition), which can be interpreted as the current density
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in the driving beam, �cr ∝ =crEd, to be smaller than the equivalent Alfvénic current, �A0 ∝ = EA0 in

the background plasma. The third condition is equivalent to _fast ≪ 'L,cr, i.e., the most unstable

mode are much smaller than the CR gyroradius; this is achieved when the net CR momentum flux,

%cr, is much larger than the magnetic pressure, %B0. For an arbitrary charge/mass of particles in the

CR beam, the dependence of b on ?cr/<i suggests that for lepton driven NRSI, leptons must have

large Lorentz factor to get a similar result of ion-driven case. For leptons, in principle one has also

to require the growth rate of the instability to be larger than the synchrotron loss rate [see §2 of 22].

Below we briefly discuss our main results.

2. Simulation setup and Results

We have used a particle-in-cell code, Tristan-MP [24] to simulate the NRSI. We use quasi-1D

boxes, but retain all three components of vectors. The number of cell along the G-direction is set

in way that the domain length & 6_fast. For all runs, the grid spacing Δx = 0.2 3e and the time

step Δt = 0.04l−1
pe . The magnetization is chosen such that the Alfvén speed covers a range from

3.2 × 10−32 to 4 × 10−22 for different runs. The velocity distribution of background plasma is set

to Maxwellian where )i = )e and the ion thermal speed 0i0 ≡ (:B)i/<i)
1/2 ≈ 8 × 10−32, i.e., the

initial plasma-V ≡ %g0/%B0 ∼ 1. The CR distribution is isotropic in its rest frame, where particles

have a Lorentz factor Wcr. The number of particles per cell is set to 25 per species and their weights

are modified to ensure charge neutrality and to set the different values of =cr/=. For more details,

see section 3 in [22].

2.1 Characteristics of the growing B-fields

The left panels of Figure 1 show the profiles of magnetic fields from four selected simulations.

All panels except the third show cases where the CR beams contain a single species, i.e., either

ion or electrons or positron. The second panel shows the electron-driven case. In the third panel,

the CR beam is made of pair plasma but positron number density is larger than that of electrons,

making the beam positively charged with 50% positron excess. 10% and 20% positron excess cases

lead to similar results [22]. In all panels, the wavelength of the dominant modes is consistent with

the linear theory, i.e., it depends on the effective current density in the CR beam.

To better characterize the unstable modes, we analyze the phase difference between �y and �z

by taking the Fourier transform of �y and �z along the G-axis and introducing

Δq(:) ≡ qy,k − qz,k = − tan−1
©­­«

+k√
*2

k
+&2

k

ª®®¬
. (6)

Here &k,*k and +k are the Stokes parameters at a given mode : . The right panels of Figure 1

show the time evolution of Δq as a function of : for the same runs discussed above. Note that for

: < 2:fast, the value of Δq(:) is definite: growing modes are left-handed (right-handed) when the

CR beam is negatively(positively)-charged. After C ≈ 10 W−1
fast

non-linear effects cannot be ignored.
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When the beam encompasses both species, the growth rate is defined by the net current and

magnetic fields saturate below equipartition (e.g., green triangle in Figure 4). Yet, non-negligible

magnetic fluctuations are found also for beams with null current, which may be sufficient, e.g., for

the increased scattering rate of CR leptons inferred around PWNe [20].
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