
Project-Level Encoding for Neural Source Code

Summarization of Subroutines

Aakash Bansal, Sakib Haque, and Collin McMillan

Dept. of Computer Science and Engineering

University of Notre Dame

Notre Dame, IN, USA

{abansal1, shaque, cmc}@nd.edu

Abstract—Source code summarization of a subroutine is the
task of writing a short, natural language description of that sub-
routine. The description usually serves in documentation aimed at
programmers, where even brief phrase (e.g. “compresses data to a
zip file”) can help readers rapidly comprehend what a subroutine
does without resorting to reading the code itself. Techniques
based on neural networks (and encoder-decoder model designs
in particular) have established themselves as the state-of-the-art.
Yet a problem widely recognized with these models is that they
assume the information needed to create a summary is present
within the code being summarized itself – an assumption which is
at odds with program comprehension literature. Thus a current
research frontier lies in the question of encoding source code
context into neural models of summarization. In this paper, we
present a project-level encoder to improve models of code sum-
marization. By project-level, we mean that we create a vectorized
representation of selected code files in a software project, and
use that representation to augment the encoder of state-of-the-art
neural code summarization techniques. We demonstrate how our
encoder improves several existing models, and provide guidelines
for maximizing improvement while controlling time and resource
costs in model size.

Index Terms—source code summarization, automatic docu-
mentation generation, neural networks

I. INTRODUCTION

Source code summarization is the task of writing short,

natural language descriptions of that code [1], [2]. Typical

targets of summarization are the subroutines of a software

project. The purpose of the descriptions is to provide human

readers with a big picture view of what each subroutine does.

Even a single phrase e.g. “compresses data to a zip file”

can help a person understand code without having to read

every detail of that code [3]. Summaries of subroutines form

the foundation of much documentation aimed at program-

mers such as JavaDocs [4], and the literature is replete with

studies demonstrating how programmers often rely on these

summaries, only turning to reading the code itself as a last

resort [5]. And while a majority of documentation is still

written manually, recent research has made inroads towards

automatic code summarization [6].

The backbone of almost all state-of-the-art approaches to

automatic source code summarization is the neural encoder-

decoder model architecture [7]–[9]. This architecture has its

This work is supported in part by NSF CCF-1452959 and CCF-1717607
grants.

roots in machine translation [10], in which the encoder creates

a vectorized representation of a sentence in one language

(e.g. English), while the decoder creates a representation of

that same sentence in a different language (e.g. French).

When trained with enough data (on the order of millions

of examples [11]), these models can learn to associate pat-

terns in the encoder representation to patterns in the decoder

representation. After training, the encoder can be given an

input example, and the model can generate a likely decoder

representation and therefore a likely output example – and

translate French sentences to English. For source code, the

encoder’s job is to represent the source code, while the decoder

represents the source code summary – give the encoder source

code, and the decoder generates a summary.

The obvious problem with these approaches is that they

can only generate a summary based on whatever source

code is passed to the encoder. Thus these approaches make

a tacit assumption that all of the information necessary to

generate that summary is present in that source code. This

assumption is at odds with decades of program comprehension

literature [12]–[14]. This literature is quite clear that high-level

descriptions such as summaries very often contain concepts

that can only be understood in the context of the other code

in the same software project. To paraphrase a classic example,

a subroutine called book() can only be fully understood if it

is also known that it exists in a class called Seats in a project

called AircraftTravel [15].

In this paper, we present a project-level encoder to augment

existing encoder-decoder neural models of source code sum-

marization. Our approach is “project level” in that it creates a

vectorized representation of a subset of code files in a software

project. Our approach augments existing models in that the

output of our approach may be combined with encoder portion

of most existing code summarization models: most models

contain an encoder for the source code itself that produces

some vectorized representation of that code, and our encoder

extends that representation. The advantage to our encoder is

that it provides context to the model about the software project

in which a subroutine exists, so that the model does not rely

only on the information in that subroutine.

We evaluate our project encoder in three ways. First, we

implement our project encoder as an addition to four existing

neural source code summarization techniques. We demonstrate

a
rX

iv
:2

1
0
3
.1

1
5
9
9
v
1

[c

s.
S

E
]

 2
2
 M

a
r

2
0
2
1

that our encoder boosts the performance of these techniques

by between 4 and 8% in terms of BLEU scores in a large Java

dataset, and between 9% and 17.5% in ensemble models in

that dataset. Second, we compare our whole-project encoder

with a competitive approach that attempts to summarize the

context surrounding code, and found between 1.5% and 7%

improvement in terms of BLEU score in the Java dataset.

Third, we study the time and resource costs of our project

encoder, to determine the costs associated with the increased

performance of our approach.

We provide all data and implementations via our online

appendix (see Section VII).

II. BACKGROUND & RELATED WORK

This section describes related work and supporting tech-

nologies, namely the neural encoder-decoder architecture.

A. Source Code Summarization

Figure 1 shows key papers related to source code sum-

marization in the last four years. The list is not exhaustive

and only includes peer-reviewed work. Papers are broadly

categorized as based on the encoder-decoder architecture (col-

umn E), and whether their novelty (and primary means of

improvement over baselines) is based on structural informa-

tion about the source code itself (column S), or contextual

information about surrounding source code (column C). Two

observations are apparent. First, recent approaches are based

on some variant of an encoder-decoder architecture. Prior to

2017, code summarization research focused on templates or

information retrieval, but these have recently given way to

neural encoder-decoder designs [2], [6], [32], [33].

A second observation is that the strong trend has been to

squeeze ever more information out of the source code being

E S C
*Loyola et al. (2017) [16] x
*Lu et al. (2017) [17] x
*Jiang et al. (2017) [18] x
*Hu et al. (2018) [19] x
*Hu et al. (2018) [9] x x
*Allamanis et al. (2018) [20] x x
*Wan et al. (2018) [21] x x
*Liang et al. (2018) [22] x x
*Alon et al. (2019) [23], [24] x x
*Gao et al. (2019) [25] x
*LeClair et al. (2019) [7] x x
*Mesbah et al. (2019) [26] x x
*Nie et al. (2019) [27] x x
*Haldar et al. (2020) [28] x x
*Ahmad et al. (2020) [29] x
*Haque et al. (2020) [30] x x
*Zügner et al. (2021) [8] x x
*Liu et al. (2021) [31] x x
*<this paper> x x

Fig. 1. Key peer-reviewed related work from the last four years.
Column E means the approach is an encoder-decoder architecture.
S means that the improvement of the model relies primarily on
structural information about the source code being summarized, such
as a subroutine’s AST. C means the improvement is primarily due
to contextual information.

summarized itself, in the form of structural information. The

trend began around the time Hu et al. [9] used the abstract

syntax tree to mark up the source code tokens in the encoder’s

input sequence, and was followed up by Allamanis et al. [20],

LeClair et al. [7], among others noted in the table, with differ-

ent AST-based code representations. Advancement continued

as AST path-based encoders [24], [34] were followed by

AST graph neural network-based encoders [35]. While some

research has been dedicated to novel representations of the

text in code (e.g. via Transformer models [29]), the tendency

has been towards more and more complex representations of

the code structure. Very recently, multi-edge and hybrid GNN

structures have been devised [8], [31].

Much more rare is work that attempts to improve per-

formance by integrating contextual information. Code con-

text may be broadly defined as the source code in the

methods, files, and packages surrounding a particular snip-

pet of code [36]. Program comprehension literature is quite

clear that the context surrounding source code is critical to

understanding that code, with work ranging from psycho-

logical/physiological studies [12]–[14] to empirical/technical

solutions [37]–[40] verifying this conclusion. The use of

code context for summarization was mainstream among older

template- and IR-based techniques [2], [32], [41], though it is

currently overlooked among neural network-based solutions.

Haque et al. [30] are a notable exception. They use text from

each function in the same file as part of the encoder portion of

their model, and show improvement over different baselines.

This paper focuses on contextual information. Specifically,

we focus on project context, which is the context provided by

every source code file in the same project as the subroutine

we are summarizing. This context is more broad than the file-

level context proposed by Haque et al. [30], but like that

work, our approach is complementary to most encoder-decoder

approaches rather than competitive. Our approach augments

the solutions based on the structure of the code itself, it does

not replace them.

B. Neural Encoder-Decoder Architecture

The neural encoder-decoder architecture revolves around

two independent vectorized representations of parallel data.

The parallel data may be a sentence in one language and its

translation in another language, an image and a caption of

that image, or a subroutine and a natural language summary

of that subroutine. Since each “side” of the parallel data may

be quite different, the means of generating the vectorized

representation will also be different. Usually the purpose of

an encoder-decoder model is to create one “side” of the data

out of the other (e.g. create a summary out of a subroutine).

The input side is referred to as the encoder, and the output

side is referred to as the decoder. Thus to train a model to

e.g. translate from French to English, the encoder receives

French sentences and the decoder receives the parallel English

sentences. The encoder-decoder architecture has its roots in

work by Sutskever et al. [42] published 2014. Since then

the architecture has blossomed and found an extremely wide

variety of uses, as several survey papers testify [43]–[45].

The vast majority of encoder-decoder architectures work

because of a similarity calculation that links the encoder

and decoder representation, called an attention mechanism.

Essentially what the attention mechanism does is compute the

similarity between the encoder and decoder representations,

which helps the model learn to associate features in those

representations. For example, a single word in a French sen-

tence would be associated with its counterpart in the English

sentence. Attention was proposed by Bahdanau et al. [10] and

has become an integral part of most encoder-decoder models.

This paper follows in the tradition of most encoder-decoder

models, though with a small twist to the attention mechanism.

As the next section will show, we maintain an independent

attention mechanism for our whole-project encoder, so the

model can learn to attend to both the encoder for that subrou-

tine and our whole-project encoder. In effect, the model will

learn from both a local context of the subroutine itself and a

global context of the whole software project. When defined in

these terms, our work is related to “cascade attention” from

image processing [46]–[49]. For example, work by Wang et

al. [50] detects human emotion with a closeup of a person’s

face and also a zoomed out image of the entire room. The

“cascade” is that the model attends to both the closeup and

the zoomed out image. The idea is that it may detect crying

in a face, but then understand it as either sadness or happiness

depending on the context. Likewise, our approach is to learn

from the subroutine’s source code (via any number of existing

encoders), then form a better understanding of it with our

whole-project encoder.

III. OUR APPROACH

Our approach, in a nutshell, is to create an encoder of a

selection of the files in the same project as a subroutine,

then combine this encoder with an arbitrary encoder of the

subroutine itself. This section starts with our definition of

project context. We then provide an overview of the encoder

and guidelines for combining with existing models.

A. Project Context

We define “project context” as all source code files of

the same language in the whole software project in which a

subroutine resides. For example, for a Java method, the project

context would be all other Java files in the same project. The

advantage of this broad definition of project context is that

it allows the model to learn from the high level concepts

that are described in many areas of the project (we illustrate

this advantage with examples in Section VI). A potential

disadvantage is that the project context will often be very

large. A risk is that the model size could become so large

that it is not feasible due to time or resource constraints – at

the time of writing, not every user may be expected to have

a GPU with 16gb VRAM, for instance. While we study this

risk in RQ4, controlling these potential costs is a key factor

in our model design. Therefore, even though project context

is defined as all source code files, not all information from all

files will be included in the model.

B. Model Overview

Our model centers around four vector spaces: the word,

subroutine, file, and project embeddings. The input to these is

regulated by five hyperparameters, noted in the figures below:

Word Embedding The word embedding is identical to that

presented in many papers on neural NLP topics, including code

summarization. Essentially, each word is represented as an e-

length vector. To control model size, a maximum of the first

v most-common words is included in the embedding space,

others are marked with a default out-of-vocab token, also in

the embedding space. A “word” in source code is defined

by the preprocessing procedure. We use the preprocessor

recommended for code summarization by LeClair et al. [11].

Subroutine Embedding The subroutine embedding results in

a vectorized representation of each subroutine. The input to the

subroutine embedding is the word embedding vector for the

first w words in the subroutine. Then we pass these words as

a sequence through a recurrent neural network. The final state

of that RNN is the vectorized representation of the subroutine.

We chose to use the first w words (as opposed to w random

words, words ranked via tf/idf, etc.) because these words will

include the signature of the method, which has been shown to

be the most important component for summarization [51].

File Embedding The file embedding results in a vectorized

representation of each file. The input is the embedding for

the first s subroutines in a file – an s x e matrix because

each subroutine is represented with an e-length vector. We

then use each row in the matrix as a position in a sequence,

which we send to an RNN. The final state of the RNN is

the file embedding vector. An RNN is a reasonable choice

to combine subroutine vectors because the subroutines occur

in the file in an order defined by the author of that file. The

meaning of this order may be disputed, however, so future

work may consider aggregating these vectors by some other

means such as averaging.

Project Embedding The project embedding output is the

final output of the project encoder, prior to applying attention.

The input is the file embedding for f files in the project. We

chose these files from the project with an operation SELECT. In

our implementation, the SELECT operation randomly chooses

f files from the project for each subroutine – each subroutine

has a new f random selections. The output of the project

embedding is an f x e matrix in which each row is a

file embedding and each column is an index in the vector

representation of those files. Note that we do not aggregate

this matrix into a single vector. The reason is that we use

an attention mechanism (not shown in the figure above) to

attend each position in the decoder to each position in this

project embedding. The design of our attention mechanism is

identical to Luong et al. [52], though in principle another may

be used. The result is that the model will learn to attend to

the most important files in the project embedding. We present

an example of how attention to the project embedding helps

the model in Section VI.

C. Implementation Guidelines

Our implementation guidelines fall into two categories:

hyperparameter/setup recommendations, and suggestions for

integration with other encoder-decoder models.

1) Hyperparameters: While a grid search for every param-

eter is not feasible due to high computation costs, we chose

the following based on both related literature and pilot tests:

e 100 vector length
v 10000 vocab size
w 25 words per subroutine
s 10 subroutines per file
f 10 files per project
RNN GRU type of RNN

The values of 100 for e and 10,000 for v are based on suc-

cessful results and recommendations by LeClair et al. [11] for

neural source code summarization. The value for w is based on

findings that the signature of a subroutine typically contains

the most valuable textual information about that subroutine

(since it neatly condenses the return type, name, and parameter

types in a few words) – we chose 25 because that value covers

the entire signature in a majority of subroutines and because

several RNN designs have been shown to lose the ability to

preserve dependencies when the sequence becomes too long.

We chose a GRU as the RNN as a balance between ability to

preserve dependencies and time cost of computation.

The values for s and f are more subjective. On the one hand,

maximizing these numbers means the model can consider

much more of the project context. But on the other hand,

computation and memory cost will rapidly become prohibitive.

Consider that one file is 100kb of memory in the model (s x

w x e x 4 bytes = 10 x 25 x 100 x 4 bytes). Each project

context matrix is then 1mb (f = 10 files). The costs add up

because the datasets may involve millions of subroutines.

2) Integration: Recall that our intent for our whole-project

encoder is to be integrated with the encoder portion of an

existing encoder-decoder model. The simplest means of inte-

gration is to treat the whole-project encoder as independent

of all other parts of the model, and connect its output to the

existing encoder’s output after attention is applied. Consider a

“vanilla” seq2seq-like model like those used in the first neural

code summarization papers [9], [33], that has a single RNN

as an encoder of the words in the subroutines and a single

RNN as the decoder for the words in the summary. This

model would typically have an attention mechanism between

the encoder and decoder which would adjust the emphasis of

the information in the encoder based on the decoder. Then the

attended encoder output would be combined to the decoder

output and connected to a fully-connected output, as below:

Integrating this model with our whole-project encoder

would involve rewiring the output of the decoder to an

attention mechanism for the whole-project encoder (in addition

to the pre-existing encoder), as mentioned under the Project

Embedding heading in the previous section. Then the output

of the existing encoder, the whole-project encoder, and the

decoder would be combined and connected to the fully-

connected output layer:

Three key details stand out as questions for this implementa-

tion (for maximum clarity, readers may elect to follow along in

our implementation in file models/attendgru_pc.py in our

online appendix (Section VII)). First, we combine the output

of the encoders and the decoder by concatenating the matrices,

which triples the vector length. We then use a fully-connected

layer to squash these long vectors back to the specified vector

size e (lines 80-85 in the implementation). The effect is that

the model learns how to combine the vectors during training.

Second, we share the word embedding space between the

code/text encoder and the whole-project encoder (around line

64 in the implementation). This is possible because both

models use the same vocabulary, and saves both memory space

and computation time. Separate word embeddings would be

necessary for different vocabularies, or if it is desirable to use

a pretrained embedding, etc.

Third, the project context input is separate from the other

encoder/decoder input, and must be extracted from the dataset

prior to training. This requirement is not likely to be a problem

for models that already use the source code of the subroutines

to generate summaries, but there may exist application do-

mains where this data is not available.

IV. EVALUATION

In this section, we describe our evaluation, including re-

search questions, methodology, datasets, and baselines.

A. Research Questions

Our research objective is to determine the degree of differ-

ence in performance that our whole-project encoder imbues

on other recent neural code summarization techniques. We

explore this difference from several angles by asking the

following Research Questions (RQs):

RQ1 What is the difference in performance of recent base-

lines when augmented with our encoder, according

to standard quality metrics over a large dataset?

RQ2 What is the difference in performance when measur-

ing only the action word prediction quality?

RQ3 What is the difference in performance compared to

a baseline code context encoder?

RQ4 What is the cost of the performance increase in terms

of model time to train?

The rationale behind RQ1 is that the vast majority of neural

code summarization research uses a set of established metrics

(namely, BLEU) to evaluate the quality of the predicted

summaries to a gold set. We follow this practice to compare

the baselines to our augmented versions of those baselines.

Evaluations in many papers stop here. Yet, complaints are

rising that the accepted evaluation practice may not capture

quality to the extent desired [53], so we ask several more

RQs to give a more complete picture.

We ask RQ2 in light of new recommendations by Haque et

al. [54] on evaluating code summarization techniques. They

observe that an overwhelming majority of code summaries

start with an action word, in keeping with style guide recom-

mendations (e.g. “connects to game server” or “adds row to

sql table”). They find that this action word is a critical piece of

the prediction quality, and recommend that the quality of the

prediction of these words should be assessed independently

from the assessment of the entire summary output.

The purpose of RQ3 is to evaluate our approach against

a baseline for contextual information. Recall that most code

summarization techniques focus on the code within a sub-

routine (or other code snippet) itself. Our approach augments

these techniques. However, at least one other code context

encoder has been proposed, so we evaluate against it.

The rationale behind RQ4 is that adding our whole-project

encoder will impose some time cost over the baselines, and

recent work from industry reports that training time due to

added model complexity creates engineering difficulties in

practice [55]. We study this cost to guide cost-benefit analysis

to using our approach.

B. Methodology

Our methodology for answering RQ1 closely follows the

procedures of almost all neural source code summarization

papers to date. We obtain two datasets of subroutines and

summaries of those subroutines, and divide them into train-

ing/validation/test subsets (our dataset preparation procedures

described in the next section). Then we train each of our

baselines (also described below) with these datasets to a

maximum of 10 epochs. We use the teacher forcing training

procedure, as do most recent code summarization papers [34],

[35]. We chose the trained model from the epoch that achieved

the highest validation accuracy, so each baseline has the

opportunity to find an optimum within a reasonable training

time ceiling (each epoch for most models takes 2-3 hours,

so ten epochs is approximately 24 hours). Then we use each

baseline’s trained model to predict a code summary for the

subroutines in the test set. Finally, we report the BLEU [56]

and ROUGE-LCS [57] scores for each baseline. We repeat

the entire procedure for our versions of the baselines that

we augment with the whole-project encoder. Note that this

procedure for RQ1 is not novel – our intent is to adhere to

community standards.

We elected to focus on an in-depth metrics-driven evaluation

rather than a human study. While human studies are often

considered a gold standard for evaluation, Chatzikoumi et

al. [58] point out that reality is more nuanced. Human studies

are very valuable, but have two key problems. First, they are

not reproducible because people are subject to biases, fatigue,

mistakes, and other factors, so people may give very different

results. Second, humans can only be expected to evaluate a few

dozen or hundred samples. In this paper, we have 24 model

configurations to test, and a test set with tens of thousands

of samples. Therefore, we decided to focus on an in-depth

analysis of metrics-driven evaluation.

To answer RQ2, we follow the recommendations of

Haque et al. [54]. The training process is almost identical

to RQ1. The difference is that a filter based on the Stanford

NLP package [59] is used to extract the action word from

the gold set summary (in practice, this is usually the first

word), and the model is trained to predict just that word. Then

during testing, the model is asked to predict the action word

for the subroutines in the test set. Precision and Recall [60] are

used to assess the quality of the predictions for each action

word: precision is the percent of predictions of that action

word which were correct, recall is the percent of instances of

that action word in the gold set that are predicted. The macro

average of these precision and recall values across all action

words is reported. For clarity, we also produce confusion

matrices to the extent possible within page limits.

For brevity, we select only a subset of the best-performing

approaches from RQ1 and RQ2 as representative examples for

the remaining RQs. However, we provide further results and

details in our online appendix.

Our methodology for RQ3 is to follow the same procedures

as in RQ1 and RQ2, except to compare models augmented

with our whole-project encoder to models augmented with a

file context encoder proposed by Haque et al. [30].

For RQ4, we measure the size and training time for each of

the models during training for RQ1. We report these resource

costs alongside performance improvements for those models.

C. Datasets

We use a Java dataset of 2.1m Java methods from 28k

projects created by LeClair et al. [11] under strict quality

guidelines. These guidelines were tested for their effect on

code summarization results, namely that the training and test

sets are split by project, so that data from the test set does not

leak into the test set by virtue of being in the same project.

We do not use datasets from other papers because they tend

to be drawn from the same set of projects on online, open-

source repositories (namely, Github), they tend to be smaller,

and they are not vetted to the degree as this Java dataset.

We made one key change to the dataset in this paper when

compared to previous papers: we improved the filter for code

clones among the subroutines. The original configuration in

the datasets filtered code clones only by exact duplicates.

Since then, a study by Microsoft Research determined that

this filter was insufficient for some ML tasks related to code,

and recommended a new filtration procedure [61]. We applied

that filter to the dataset in this study. The results we report

for baselines in our experiments may have different values

(usually lower values) than reported in the original papers for

those baselines even for the same datasets. The reason for

this difference is our stricter removal of code clones. It was

necessary to rerun all experiments rather than rely on results

reported in earlier papers, though the only difference in data

or configuration was the code clone filtration procedure.

D. Baselines

We use four baseline neural code summarization techniques.

We then augment each with our whole-project encoder. At a

technical level, we build our implementations in a framework

provided by Haque et al. [30] in their reproducibility package

for their paper on file context encoding.

attendgru is a typical seq2seq-like design like those used

in early neural code summarization papers (and mentioned in

Section III-C2). The only input to the encoder is the text from

the source code of the subroutine itself.

ast-attendgru was proposed by LeClair et al. [7] and

built on attendgru as well as work by Hu et al. [9]. It uses

a flattened AST to represent subroutines.

graph2seq is a representative example in a recent class of

graph neural network (GNN)-based techniques. These tech-

niques use information extracted from the AST and other

relationships in code [8], [31], [35].

code2seq is a representative of AST path-based represen-

tations of code. This baseline is a faithful reimplementation

of a model proposed by Alon et al. [34], though with several

hyperparameter changed to match those in other baselines.

We denote the versions of these baselines augmented with

our whole-project encoder with the suffix -pc for “project

context.” For example, attendgru-pc and code2seq-pc.

For RQ3, we use the file context encoder from Haque et

al. [30] as a baseline. Models augmented with the file context

encoder are denoted with the suffix -fc.

E. Software / Hardware Details

Our hardware platform consisted of an HP Z-640 worksta-

tion with a Xeon E-1650v4 CPU, 128GB system memory, and

two Nvidia Quadro P5000 GPUs with 16GB VRAM each. Key

software included CUDA 10.0 and Tensorflow 2.4.

F. Threats to Validity

The key threats to validity to this study include the datasets

and the implementation details. We chose a vetted dataset with

millions of examples, but it is possible that results may not

generalize to all datasets or other languages. Likewise, results

may vary given the plethora of implementation decisions, such

as the means of combining the whole-project encoder output

with other encoder output. Caution is advised in drawing

conclusions from these results beyond the scope of large open-

source dataset in Java, or when implementation details differ

significantly from those presented.

V. EVALUATION RESULTS

In this section, we discuss our evaluation results, including

answers to our research questions and supporting analysis.

A. RQ1: Effect of Augmenting Baselines

We found improved levels of BLEU and ROUGE scores

across several baselines and configurations, when comparing

default versions of the baselines to versions augmented with

our project encoder. Figure 2 summarizes these results. We

report results under two key conditions: solo and ensemble. A

solo model is a single trained model – it includes the model

weights of the epoch which achieved the highest validation ac-

curacy, under the training procedure described in Section IV-B.

An ensemble model combines two trained models. For exam-

ple, the models for attendgru and attendgru-pc would

be combined to form an ensemble model denoted “nc+fc” (no

context plus file context, see first column of Ensemble Models

table in Figure 2). The combination procedure is to calculate

the element-wise mean of the output predictions from each

model, as recommended by Garmash et al. [62]. We use this

procedure in light of experimental findings for ensemble neural

code summarization models by LeClair et al. [7].

Two observations stand out for the solo models. First,

for the three baselines attendgru, ast-attendgru, and

graph2seq, aggregate BLEU score improves between 4 and

8% when our project encoder is added to the model. The

greatest improvement occurred for attendgru, which rose

from 15.87 to 17.19 BLEU. Note that this version is the

one described in our Integration example in Section III-C2. It

shows that even a relatively simple baseline can achieve com-

petitive BLEU scores by adding project context (attendgru

is just a vanilla seq2seq-like model with a single unidirectional

GRU in the encoder and decoder).

Higher performance is observed for ast-attendgru and

graph2seq, which is expected based on previous studies [30].

The higher performance is because both model designs use

information from the AST of the subroutine. The graph2seq

model uses a GNN, while ast-attendgru flattens the tree

BLEU ROUGE-LCS
A 1 2 3 4 P R F

S
o

lo
M

o
d

el
s

attendgru 15.87 36.22 18.89 11.55 08.03 55.22 46.98 48.94
attendgru-fc 16.67 36.53 19.59 12.31 08.76 56.54 47.44 49.78
attendgru-pc 17.19 37.34 20.20 12.71 09.10 56.12 47.81 49.88
ast-attendgru 16.72 37.18 19.84 12.30 08.62 56.16 47.83 49.84
ast-attendgru-fc 17.18 37.64 20.21 12.69 09.03 55.86 48.11 49.94
ast-attendgru-pc 17.45 37.34 20.47 13.02 09.32 57.08 48.05 50.37
graph2seq 16.44 36.14 19.54 12.18 08.49 57.43 47.32 50.01
graph2seq-fc 16.26 35.95 19.19 11.95 08.48 56.56 46.95 49.50
graph2seq-pc 17.37 37.61 20.37 12.89 09.21 55.70 47.87 49.74
code2seq 16.78 37.88 20.14 12.30 08.45 55.45 48.32 49.80
code2seq-fc 16.45 36.34 19.43 12.09 08.58 56.66 47.29 49.79
code2seq-pc 16.7 35.92 19.53 12.44 08.91 57.75 47.08 50.01

BLEU ROUGE-LCS
mix A 1 2 3 4 P R F

E
n

se
m

b
le

M
o

d
el

s

attendgru nc+fc 17.96 37.83 20.92 13.49 09.74 58.26 48.79 51.29
attendgru nc+pc 18.18 38.26 21.14 13.64 09.91 57.80 48.98 51.18
attendgru fc+pc 18.67 38.63 21.62 14.10 10.32 58.49 49.29 51.71
ast-attendgru nc+fc 18.47 38.68 21.53 13.88 10.07 58.15 49.33 51.57
ast-attendgru nc+pc 18.84 38.80 21.88 14.26 10.41 58.71 49.50 51.91
ast-attendgru fc+pc 19.06 39.09 22.07 14.43 10.60 58.50 49.63 51.93
graph2seq nc+fc 17.77 37.32 20.79 13.37 09.62 59.16 48.58 51.50
graph2seq nc+pc 18.59 38.85 21.56 14.06 10.28 58.54 49.07 51.58
graph2seq fc+pc 18.80 38.62 21.72 14.23 10.48 58.56 49.20 51.70
code2seq nc+fc 18.16 38.35 21.24 13.60 09.81 58.14 49.14 51.47
code2seq nc+pc 18.56 38.50 21.55 13.99 10.21 58.49 49.23 51.63
code2seq fc+pc 18.29 37.67 21.12 13.82 10.18 59.15 48.72 51.64

Fig. 2. Results summary for RQ1 and RQ3. The table shows the BLEU and ROUGE-LCS scores for baselines and our augmented versions of those baselines.
Chart depicts relative improvement of our augmented version according to aggregated BLEU score. Column “mix” indicates which models were ensembled:
nc for default/no-context, fc for file context, and pc for project context.

and uses it as input to an RNN. Note that while both models

see an improvement with project context, it is lower in relative

terms than for attendgru. We attribute this lower relative

improvement to the increased amount of information that the

model must learn in the same size vector space close to

the output layer of the model. Recall from Section III-C2

paragraph 3 that two vectors of size e are generated: one for

the original encoder and one for the project context encoder.

Concatenating them results in a vector of length 2xe. To

control model complexity, it is necessary to squash these

vectors back to size e with a dense network. It is likely

that information is lost. This effect probably also explains the

drop in performance for code2seq. That baseline is extremely

complex, and the vector size of e may be too confining.

The ensemble results are, in general, much higher. The

chart at the lower-right of Figure 2 shows the default solo

configuration to the “fc+pc” ensemble test condition. All

models demonstrate considerable improvement, between 9

and 17.5% The reason for this improvement proffered by

Garmash et al. [62] is that different models contribute more to

some predictions than others. Mathematically, it means that the

value of the argmax in the output vector of some models will

be higher than others, because that model recognized a pattern

closely-associated with that prediction. Haque et al. [30]

pointed out that file context-based models contribute more to

some subroutines than others. Project context helps overall,

but there are still subroutines for which other models are more

useful. The best performance is achieved by combining them.

Consider Figure 3. The improvement of different models is

not necessarily distributed equally over all subroutines. The

chart on the left shows that of 73k subroutines in the test

set, attendgru earned the highest score for about 27.5k,

compared to about 30k for attendgru-pc. This means that

the reason attendgru-pc improved is because it created

better predictions for only a portion of the results. In that

light, consider the chart on the right. That chart compares

solo attendgru to the “nc+pc” ensemble. It shows that there

is a substantial subset of subroutines for which attendgru

earns a higher BLEU score, even compared to the “nc+pc”

ensemble of attendgru and attendgru-pc. What changes

is that there is a much higher number of ties. The ensemble

sometimes creates predictions more like attendgru, and

likewise more like attendgru-pc for other subroutines. What

is happening is that the output vector from attendgru has

higher values for the predictions where it finds patterns closely

associated with those predictions – when it does not find those

patterns, the values are lower and attendgru-pc is often

higher. The result is a better overall BLEU score.

Fig. 3. (left) Number of subroutines in the test set for which attendgru

and attendgru-pc each had a higher BLEU score, and the number of ties.
(right) Comparison of solo attendgru to ensemble attendgru nc+pc.

Java

top-10 re
tu

rn

se
t

g
et

ad
d

cr
ea

te

in
it

ia
li

ze

te
st

re
m

o
v
e

ch
ec

k

is o
th

er

return 6160 32 2365 10 72 14 6 6 262 1 2093

set 11 10388 13 40 9 15 2 2 1 0 558

get 4491 22 3210 7 13 14 2 2 30 0 907

add 4 46 1 2950 14 1 10 3 1 0 293

create 62 21 25 43 980 16 16 0 2 0 538

initialize 23 14 3 2 22 1632 0 0 0 0 201

test 35 2 2 1 2 1 1232 0 61 0 170

remove 6 1 0 1 0 1 3 1186 0 0 303

check 244 9 3 2 3 0 66 3 526 3 607

is 95 39 10 15 13 7 4 7 49 29 366

other 2715 2147 1023 517 605 256 727 190 378 3 22266

Java
top-40 top-10 top-10n get/set

p r f p r f p r f p r f

attendgru .53 .44 .45 .69 .61 .60 .70 .54 .54 .99 .99 .99

attendgru-fc .52 .46 .47 .68 .63 .62 .72 .51 .53 .99 .99 .99

attendgru-pc .53 .47 .47 .65 .62 .61 .71 .53 .54 .99 .99 .99

ast-attendgru .54 .46 .47 .69 .61 .61 .72 .52 .53 .99 .99 .99

ast-attendgru-fc .55 .47 .47 .61 .61 .60 .72 .51 .53 .99 .99 .99

ast-attendgru-pc .55 .44 .46 .67 .63 .62 .68 .52 .53 .99 .99 .99

graph2seq .56 .45 .46 .68 .61 .61 .69 .54 .55 .99 .99 .99

graph2seq-fc .55 .45 .46 .70 .60 .61 .68 .52 .54 .99 .99 .99

graph2seq-pc .56 .45 .46 .70 .59 .60 .71 .51 .54 .99 .99 .99

code2seq .54 .47 .46 .70 .59 .59 .71 .49 .52 .99 .99 .99

code2seq-fc .53 .47 .47 .71 .59 .60 .71 .53 .54 .99 .99 .99

code2seq-pc .54 .46 .47 .68 .62 .62 .69 .53 .54 .99 .99 .99

Fig. 4. (top) Confusion matrix showing results for top-10 action words for
ast-attendgru-pc, the best performer in terms of f-measure. (bottom) Overall
results under standard conditions in the Java dataset.

B. RQ2: Action Word Prediction

We found broadly similar performance in terms of precision

and recall for action word prediction. Recall that Haque et

al. [54] recently recommended focusing on the prediction of

the action word in source code summaries, given that word’s

importance in the summary. Following these recommenda-

tions, we report the top-40, top-10, top-10n (which is the top

2-12, skipping get/set), and get/set. The model should be able

to distinguish get from set with very high accuracy, the top-

10 and top-10n results being a more difficult problem, and the

top-40 with even more difficulty. The idea is that if the model

cannot even predict the correct action word, then it may have

little hope of predicting the rest of the summary.

We do not observe a large difference attributable to file

or project context. Our interpretation of this result is that

the subroutine itself tends to provide most of the information

needed to predict the action word – many times the correct

action word is in the name of the function e.g. “book” for

book() in the class Seat in project AircraftTravel. The

higher BLEU and ROUGE scores for project context must

therefore be due to improvements in the prediction of other

parts of the code summary. For example, if the summary is

“book seat on airplane”, the subroutine name will provide the

action word “book”, but code context will help find “seat” and

“airplane.” We explore an example like this in Section VI.

C. RQ3: Comparison to File Context

We observe improvement over the baselines that are en-

hanced with file context. Figure 5 depicts the change in aggre-

gate BLEU score across key model configurations. Figure 5a

shows the default baseline model, followed by the file context

and project context versions of those models. Figure 5b shows

the default baseline model, followed by the nc+fc and nc+pc

ensembles. Recall that the “file context” versions are those

provided by Haque et al. [30] and form the nearest competition

for models that include code context (see Section II-A).

Overall, the project context versions of the baselines achieve

higher aggregate BLEU scores than the file context versions.

However, the gains are not uniform. For example, note in

Figure 5a that graph2seq-fc is the lowest performing file

context model, while graph2seq-pc is nearly tied for the top

position of solo models. This finding seems to be at odds with

scores reported by Haque et al. [30] for graph2seq-fc. We

attribute the difference to the enhanced removal of code clones

we performed for experiments in this paper (see Section IV-C).

The file context contains many subroutines that are considered

clones by the recommend clone removal technique [61], be-

cause these subroutines may be overloaded or only slightly

modified. Future researchers using file context may consider

leaving clones in the file context, and only remove them from

the list of subroutines in the test set to ensure fairness.

The ensemble models also show that project context helps

achieve higher BLEU scores than file context. Figure 5b shows

marked improvement from nc+fc ensembles (no context com-

bined with file context) to nc+pc ensembles, then again from

nc+pc to fc+pc ensembles. The exception is code2seq, which

we believe is due to the same vector size restriction described

in Section V-A. The gain of fc+pc over other ensembles

implies that file context and project context contributes to

model predictions in orthogonal ways, in the same vein as

the ensemble results for RQ1, above.

(a) Solo

(b) Ensemble

Fig. 5. Comparison of aggregate BLEU scores for -fc and -pc models.
This figure is a depiction of values in Figure 2.

D. RQ4: Effects on Model Size

Adding project context to a baseline increases the com-

plexity of the model, and this complexity comes at a cost

in terms of time to train. While it may be tempting to write

off training time as a “one time sunk cost”, in fact this added

time imposes engineering challenges that affect cost-benefit

decisions [55]. We report training time per epoch as a proxy

for this complexity cost. All data points were collected on the

hardware platform described in Section IV-E.

Fig. 6. Training time in minutes per epoch.

We observe about a 3x time cost for attendgru and

ast-attendgru, and about a 2x cost for graph2seq and

code2seq, when comapring default configurations to the

versions with project context. While the number of min-

utes is subject to hardware and software settings, we report

these numbers to assist practitioners in deciding how to

deploy these technologies. For instance, time required for

ast-attendgru-pc is roughly equal to code2seq-fc even

though ast-attendgru-pc achieves a higher BLEU score.

At that time limit ast-attendgru-pc may be the best choice

even if code2seq is a better baseline than ast-attendgru.

An implication of this finding is that the costs of including

project context can be very high. We find improvement in

terms of overall BLEU score, especially for ensemble models,

the training difficulty is 2x to 3x even for a modest setting of

f=10. Future researchers may note the potential of even a por-

tion of project context for improving prediction performance,

and may consider guiding effort into reducing the costs so that

more context may be considered.

VI. DISCUSSION & CONCLUSION

This paper advances the state of the art in two ways:

1) We propose an encoder that creates a vectorized repre-

sentation of project context for use in neural models of

software source code.

2) We demonstrate the benefit of this encoder for the

specific problem of source code summarization.

The first advancement is important because of its potential

impact on many areas of software engineering research. Alla-

manis et al. [63] present a survey of neural models for various

software engineering tasks, and separate these tasks into two

categories: code generational and code representational. A

code generational task is like code completion or automatic

repair, in which the model is expected to create new source

code. A code representation task is like code summarization or

bug localization, in which the model must create some internal

representation of the program, and use it to predict something

about the software, such as a code summary or if a subroutine

contains a particular kind of bug.

The project context encoder we propose has potential in

many code representational tasks. Essentially what the encoder

does is create a vectorized representation of the files surround-

ing a particular area of code in a project. This representation

could be used in many ways. For example, a neural model for

predicting bugs based on the code in a subroutine could append

our project context encoder. It may help the model learn that a

particular pattern in the code may be associated with bugs for

some types of projects, but not others. This benefit is only a

hypothetical discussion – the point is that this paper may have

benefits beyond the specific problem of code summarization.

The implementation and experiment in this paper focus

on code summarization, and demonstrate how project context

improves predictions in terms of BLEU and ROUGE scores

for several baselines (RQ1). We show that our model seems to

be providing orthogonal information by improving predictions

for a subset of subroutines, and that by using an ensemble

procedure, the benefits of project context can be combined

with file context and default models. We also show that

these improvements seem to be focused on areas outside the

action word (RQ2), and that project context tends to result

in overall better scores that file context alone (RQ3), even

if an ensemble has the highest observed performance (fc+pc

ensemble models, RQ1). Our project context encoder leads to

an advancement of the state of the art for code summarization.

The reason that project context helps is that many methods

are very difficult to understand from only the source code

of a single subroutine. Code summarization techniques that

consider only the subroutine itself make the tacit assumption

that that subroutine contains all the information necessary to

summarize it. Consider Example 1 (method #29987000 in the

dataset [11], we list ID numbers for reproducibility). This

method is from a GUI program for managing config files. Its

purpose is to stop and cleanup a plugin. However, this purpose

is hard to ascertain without seeing the project context.

Compare the predicted summary for Example 1 by

attendgru versus attendgru-pc. The model attendgru

predicts “stops the bundle”, which seems a reasonable guess

considering that it has access only to the source code of that

subroutine. The method is called stop(), which begs the

question “stops what?” The word “plugin” is in the source

code, but so is the word “translator”, “messages”, “bundle”,

etc. Many methods in the training set have a pattern in which

the action word is followed by a word from the parameter

list [54], and a simple seq2seq-like model such as attendgru

can learn this pattern effectively [7], [9]. So attendgru

guesses “stops the bundle.”

The project context helps the model learn what the method

really means. The method in Example 1 appears in the file

ConfexPlugin.java, which is in the project with five other

files. While there is far too much data in these files to reprint

Method #29987000: (from test set)

reference this method is called when the plug in is stopped

attendgru stops the bundle
attendgru-pc this method is called when the plug in is stopped

public void stop(BundleContext context)

throws Exception {

super.stop(context);

plugin = null;

Translator.removeAllMessages();

Translator.removeAllTranslatables();

}

files in net.confex.application:
ApplicationWorkbenchAdvisor.java
ApplicationWorkbenchWindowAdvisor.java
ConfexApplication.java

→ ConfexPlugin.java
Perspective.java
ToolbarLayout.java

Example 1. A method from the test set for which attendgru-pc wrote
the correct summary, while attendgru did not. Method is in the project
net.confex.application, which contains the six listed files.

Method #805539: (from training set)

reference this method is called when the plug in is stopped

public void stop(BundleContext context)

throws Exception {

super.stop(context);

if (this.logManager != null) {

this.logManager.shutdown();

this.logManager = null;

}

if (searchProviderManager != null) {

searchProviderManager.dispose();

searchProviderManager = null;

}

plugin = null;

}

files in net.bioclipse:
ApplicationWorkbenchAdvisor.java
ApplicationWorkbenchWindowAdvisor.java
ApplicationWorkbenchActionBarAdvisor.java
BioclipsePerspective.java

→ BioclipsePlugin.java
PerspectiveOpenPreferencePage.java

Example 2. Method in the training set seen by both approaches. Note list
of files is similar to Example 1 because both are built with the same GUI
platform. Project context helps attendgru-pc detect this similarity.

here, one may note the similarity between these files and the

files in Example 2 (method ID numbers may be used to recover

these files in the dataset). Example 2 is from the training

set. The content of the method itself is quite different from

Example 1 (aside from the method signature), so attendgru

has difficulty seeing the two methods as similar – there are

many methods named stop() that have nothing to do with

plugins. But attendgru-pc has access to the project context

and can identify the similarity of the files in this context.

As a result, attendgru-pc predicts the summary that it has

learned during training, which is correct.

We caution that we selected these examples as a demon-

stration of what project context can offer, and may not be

representative of how the model always behaves. The model

can make incorrect predictions – recall from Section V-A

that there is a subset of methods for which project context

outperforms the baseline, and a subset where it does not.

However, when the project context models go astray, it tends

to be because they are recognizing patterns in the context, and

we found that ensemble models can generate better summaries.

Our intent in this paper is to propose a technique for

encoding the project context of source code. While project

context is quite expansive, our technique can capture enough

of this context to be useful for the task of source code

summarization. Essentially what have shown is that even a

small amount of this project context – just f=10 in this

paper – can lead to significant improvements in the aggregate

BLEU scores of several baselines. In ensemble models, the

benefit increases further. However, as we observe in RQ5,

the costs of including even limited project context mushroom

rapidly. Future work aims to capture more of this context and

interactions among the code components such as dependency

relationships, and to demonstrate the benefit of context to other

areas using neural models of source code.

VII. REPRODUCIBILITY

We strongly encourage reproducibility. We provide the fol-

lowing online appendix to facilitate reuse of this technology by

practitioners and other researchers. Our code, dataset scripts,

and operating instructions may be found at:

https://github.com/aakashba/projcon

ACKNOWLEDGMENT

This work is supported in part by the NSF CCF-1452959

and CCF-1717607 grants. Any opinions, findings, and conclu-

sions expressed herein are the authors’ and do not necessarily

reflect those of the sponsors.

REFERENCES

[1] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On the use of
automated text summarization techniques for summarizing source code,”
in 2010 17th Working Conference on Reverse Engineering. IEEE, 2010,
pp. 35–44.

[2] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker,
“Towards automatically generating summary comments for java meth-
ods,” in Proceedings of the IEEE/ACM international conference on

Automated software engineering. ACM, 2010, pp. 43–52.

[3] A. Forward and T. C. Lethbridge, “The relevance of software documen-
tation, tools and technologies: a survey,” in Proceedings of the 2002

ACM symposium on Document engineering. ACM, 2002, pp. 26–33.

[4] D. Kramer, “Api documentation from source code comments: a case
study of javadoc,” in Proceedings of the 17th annual international

conference on Computer documentation. ACM, 1999, pp. 147–153.

[5] X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, and S. Li, “Measuring
program comprehension: A large-scale field study with professionals,”
IEEE Transactions on Software Engineering, vol. 44, no. 10, pp. 951–
976, 2017.

[6] F. Zhao, J. Zhao, and Y. Bai, “A survey of automatic generation of code
comments,” in Proceedings of the 2020 4th International Conference on

Management Engineering, Software Engineering and Service Sciences,
2020, pp. 21–25.

[7] A. LeClair, S. Jiang, and C. McMillan, “A neural model for generating
natural language summaries of program subroutines,” in Proceedings

of the 41st International Conference on Software Engineering. IEEE
Press, 2019, pp. 795–806.

[8] D. Zügner, T. Kirschstein, M. Catasta, J. Leskovec, and S. Günnemann,
“Language-agnostic representation learning of source code from
structure and context,” in International Conference on Learning

Representations, 2021. [Online]. Available: https://openreview.net/
forum?id=Xh5eMZVONGF

[9] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment
generation,” in Proceedings of the 26th Conference on Program Com-

prehension. ACM, 2018, pp. 200–210.

[10] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[11] A. LeClair and C. McMillan, “Recommendations for datasets for source
code summarization,” in Proceedings of the 2019 Conference of the

North American Chapter of the Association for Computational Linguis-

tics: Human Language Technologies, Volume 1 (Long and Short Papers),
2019, pp. 3931–3937.

[12] J. Siegmund, C. Kästner, S. Apel, C. Parnin, A. Bethmann, T. Leich,
G. Saake, and A. Brechmann, “Understanding understanding source
code with functional magnetic resonance imaging,” in Proceedings of

the 36th International Conference on Software Engineering, ser. ICSE
2014. New York, NY, USA: ACM, 2014, pp. 378–389. [Online].
Available: http://doi.acm.org/10.1145/2568225.2568252

[13] S. Letovsky, “Cognitive processes in program comprehension,” Journal

of Systems and software, vol. 7, no. 4, pp. 325–339, 1987.

[14] A. Von Mayrhauser and A. M. Vans, “Program comprehension during
software maintenance and evolution,” Computer, vol. 28, no. 8, pp. 44–
55, 1995.

[15] T. J. Biggerstaff, B. G. Mitbander, and D. Webster, “The concept assign-
ment problem in program understanding,” in Proceedings of the 15th

international conference on Software Engineering. IEEE Computer
Society Press, 1993, pp. 482–498.

[16] P. Loyola, E. Marrese-Taylor, and Y. Matsuo, “A neural architecture for
generating natural language descriptions from source code changes,”
in Proceedings of the 55th Annual Meeting of the Association for

Computational Linguistics (Volume 2: Short Papers), 2017, pp. 287–
292.

[17] Y. Lu, Z. Zhao, G. Li, and Z. Jin, “Learning to generate comments for
api-based code snippets,” in Software Engineering and Methodology for

Emerging Domains. Springer, 2017, pp. 3–14.

[18] S. Jiang, A. Armaly, and C. McMillan, “Automatically generating
commit messages from diffs using neural machine translation,” in Pro-

ceedings of the 32nd IEEE/ACM International Conference on Automated

Software Engineering. IEEE Press, 2017, pp. 135–146.

[19] X. Hu, G. Li, X. Xia, D. Lo, S. Lu, and Z. Jin, “Summarizing source
code with transferred api knowledge,” in Proceedings of the 27th

International Joint Conference on Artificial Intelligence. AAAI Press,
2018, pp. 2269–2275.

[20] M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to rep-
resent programs with graphs,” International Conference on Learning

Representations, 2018.

[21] Y. Wan, Z. Zhao, M. Yang, G. Xu, H. Ying, J. Wu, and P. S. Yu,
“Improving automatic source code summarization via deep reinforce-
ment learning,” in Proceedings of the 33rd ACM/IEEE International

Conference on Automated Software Engineering. ACM, 2018, pp. 397–
407.

[22] Y. Liang and K. Q. Zhu, “Automatic generation of text descriptive
comments for code blocks,” in Thirty-Second AAAI Conference on

Artificial Intelligence, 2018.

[23] U. Alon, S. Brody, O. Levy, and E. Yahav, “code2seq: Generating
sequences from structured representations of code,” International Con-

ference on Learning Representations, 2019.

[24] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning
distributed representations of code,” Proceedings of the ACM on Pro-

gramming Languages, vol. 3, no. POPL, pp. 1–29, 2019.

[25] S. Gao, C. Chen, Z. Xing, Y. Ma, W. Song, and S.-W. Lin, “A neural
model for method name generation from functional description,” in 2019

IEEE 26th International Conference on Software Analysis, Evolution and

Reengineering (SANER). IEEE, 2019, pp. 414–421.

[26] A. Mesbah, A. Rice, E. Johnston, N. Glorioso, and E. Aftandilian,
“Deepdelta: learning to repair compilation errors,” in Proceedings of

the 2019 27th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering.
ACM, 2019, pp. 925–936.

[27] P. Nie, R. Rai, J. J. Li, S. Khurshid, R. J. Mooney, and M. Gligoric,
“A framework for writing trigger-action todo comments in executable
format,” in Proceedings of the 2019 27th ACM Joint Meeting on

European Software Engineering Conference and Symposium on the

Foundations of Software Engineering. ACM, 2019, pp. 385–396.

[28] R. Haldar, L. Wu, J. Xiong, and J. Hockenmaier, “A multi-perspective
architecture for semantic code search,” arXiv preprint arXiv:2005.06980,
2020.

[29] W. U. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “A
transformer-based approach for source code summarization,” arXiv

preprint arXiv:2005.00653, 2020.

[30] S. Haque, A. LeClair, L. Wu, and C. McMillan, “Improved automatic
summarization of subroutines via attention to file context,” International

Conference on Mining Software Repositories, 2020.

[31] S. Liu, Y. Chen, X. Xie, J. K. Siow, and Y. Liu, “Retrieval-augmented
generation for code summarization via hybrid {gnn},” in International

Conference on Learning Representations, 2021. [Online]. Available:
https://openreview.net/forum?id=zv-typ1gPxA

[32] P. W. McBurney and C. McMillan, “Automatic documentation genera-
tion via source code summarization of method context,” in Proceedings

of the 22nd International Conference on Program Comprehension.
ACM, 2014, pp. 279–290.

[33] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing source
code using a neural attention model,” in Proceedings of the 54th Annual

Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers), 2016, pp. 2073–2083.

[34] U. Alon, S. Brody, O. Levy, and E. Yahav, “code2seq: Generating
sequences from structured representations of code,” International Con-

ference on Learning Representations, 2019.

[35] A. LeClair, S. Haque, L. Wu, and C. McMillan, “Improved code summa-
rization via a graph neural network,” in 28th ACM/IEEE International

Conference on Program Comprehension (ICPC’20), 2020.

[36] J. Krinke, “Effects of context on program slicing,” Journal of Systems

and Software, vol. 79, no. 9, pp. 1249–1260, 2006.

[37] W. Maalej, R. Tiarks, T. Roehm, and R. Koschke, “On the compre-
hension of program comprehension,” ACM Transactions on Software

Engineering and Methodology (TOSEM), vol. 23, no. 4, pp. 1–37, 2014.

[38] V. Rajlich and N. Wilde, “The role of concepts in program com-
prehension,” in Proceedings 10th International Workshop on Program

Comprehension. IEEE, 2002, pp. 271–278.

[39] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How do professional
developers comprehend software?” in Proceedings of the 34th Interna-

tional Conference on Software Engineering. IEEE Press, 2012, pp.
255–265.

[40] J. I. Maletic and A. Marcus, “Supporting program comprehension
using semantic and structural information,” in Proceedings of the 23rd

International Conference on Software Engineering. ICSE 2001. IEEE,
2001, pp. 103–112.

[41] G. Neubig, “Survey of methods to generate natural language from source
code.”

[42] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” Advances in neural information processing

systems, vol. 27, pp. 3104–3112, 2014.

[43] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in
deep learning based natural language processing,” ieee Computational

intelligenCe magazine, vol. 13, no. 3, pp. 55–75, 2018.

[44] S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian, Y. Tao, M. P. Reyes, M.-L. Shyu,
S.-C. Chen, and S. Iyengar, “A survey on deep learning: Algorithms,
techniques, and applications,” ACM Computing Surveys (CSUR), vol. 51,
no. 5, p. 92, 2018.

[45] A. Shrestha and A. Mahmood, “Review of deep learning algorithms and
architectures,” IEEE Access, vol. 7, pp. 53 040–53 065, 2019.

[46] Y. Zhu, R. Li, Y. Yang, and N. Ye, “Learning cascade attention for fine-
grained image classification,” Neural Networks, vol. 122, pp. 174–182,
2020.

[47] Y. Wang, H. Shen, S. Liu, J. Gao, and X. Cheng, “Cascade dynamics
modeling with attention-based recurrent neural network.” in IJCAI, 2017,
pp. 2985–2991.

[48] M.-C. Sun, S.-H. Hsu, M.-C. Yang, and J.-H. Chien, “Context-aware
cascade attention-based rnn for video emotion recognition,” in 2018 First

Asian Conference on Affective Computing and Intelligent Interaction

(ACII Asia). IEEE, 2018, pp. 1–6.

[49] F. Li, R. Feng, W. Han, and L. Wang, “Ensemble model with cascade
attention mechanism for high-resolution remote sensing image scene
classification,” Optics Express, vol. 28, no. 15, pp. 22 358–22 387, 2020.

[50] K. Wang, X. Zeng, J. Yang, D. Meng, K. Zhang, X. Peng, and Y. Qiao,
“Cascade attention networks for group emotion recognition with face,
body and image cues,” in Proceedings of the 20th ACM International

Conference on Multimodal Interaction, 2018, pp. 640–645.
[51] P. Rodeghero, C. McMillan, P. W. McBurney, N. Bosch, and S. D’Mello,

“Improving automated source code summarization via an eye-tracking
study of programmers,” in Proceedings of the 36th international con-

ference on Software engineering. ACM, 2014, pp. 390–401.
[52] M.-T. Luong, H. Pham, and C. D. Manning, “Effective ap-

proaches to attention-based neural machine translation,” arXiv preprint

arXiv:1508.04025, 2015.
[53] S. Stapleton, Y. Gambhir, A. LeClair, Z. Eberhart, W. Weimer, K. Leach,

and Y. Huang, “A human study of comprehension and code summariza-
tion,” in Proceedings of the 28th International Conference on Program

Comprehension, 2020, pp. 2–13.
[54] S. Haque, A. Bansal, L. Wu, and C. McMillan, “Action word predic-

tion for neural source code summarization,” 28th IEEE International

Conference on Software Analysis, Evolution and Reengineering, 2021.
[55] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov,

M. Fawzy, B. Jia, Y. Jia, A. Kalro et al., “Applied machine learning
at facebook: A datacenter infrastructure perspective,” in 2018 IEEE

International Symposium on High Performance Computer Architecture

(HPCA). IEEE, 2018, pp. 620–629.
[56] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: A method

for automatic evaluation of machine translation,” in Proceedings

of the 40th Annual Meeting on Association for Computational

Linguistics, ser. ACL ’02. Stroudsburg, PA, USA: Association for
Computational Linguistics, 2002, pp. 311–318. [Online]. Available:
http://dx.doi.org/10.3115/1073083.1073135

[57] C.-Y. Lin, “Rouge: A package for automatic evaluation of summaries,”
Text Summarization Branches Out, 2004.

[58] E. Chatzikoumi, “How to evaluate machine translation: A review of
automated and human metrics,” Natural Language Engineering, vol. 26,
no. 2, pp. 137–161, 2020.

[59] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard,
and D. McClosky, “The stanford corenlp natural language processing
toolkit.” in ACL (System Demonstrations), 2014, pp. 55–60.

[60] A. Tharwat, “Classification assessment methods,” Applied Computing

and Informatics, 2020.
[61] M. Allamanis, “The adverse effects of code duplication in machine

learning models of code,” in Proceedings of the 2019 ACM SIGPLAN

International Symposium on New Ideas, New Paradigms, and Reflections

on Programming and Software, 2019, pp. 143–153.
[62] E. Garmash and C. Monz, “Ensemble learning for multi-source neural

machine translation,” in Proceedings of COLING 2016, the 26th Inter-

national Conference on Computational Linguistics: Technical Papers,
2016, pp. 1409–1418.

[63] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A survey
of machine learning for big code and naturalness,” ACM Computing

Surveys (CSUR), vol. 51, no. 4, pp. 1–37, 2018.

