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Abstract: Microbes and viruses are known to alter host transcriptomes by means of infection. In
light of recent challenges posed by the COVID-19 pandemic, a deeper understanding of the disease
at the transcriptome level is needed. However, research about transcriptome reprogramming by
post-transcriptional regulation is very limited. In this study, computational methods developed by
our lab were applied to RNA-seq data to detect transcript variants (i.e., alternative splicing (AS)
and alternative polyadenylation (APA) events). The RNA-seq data were obtained from a publicly
available source, and they consist of mock-treated and SARS-CoV-2 infected (COVID-19) lung alveolar
(A549) cells. Data analysis results show that more AS events are found in SARS-CoV-2 infected
cells than in mock-treated cells, whereas fewer APA events are detected in SARS-CoV-2 infected
cells. A combination of conventional differential gene expression analysis and transcript variants
analysis revealed that most of the genes with transcript variants are not differentially expressed. This
indicates that no strong correlation exists between differential gene expression and the AS/APA
events in the mock-treated or SARS-CoV-2 infected samples. These genes with transcript variants can
be applied as another layer of molecular signatures for COVID-19 studies. In addition, the transcript
variants are enriched in important biological pathways that were not detected in the studies that only
focused on differential gene expression analysis. Therefore, the pathways may lead to new molecular
mechanisms of SARS-CoV-2 pathogenesis.

Keywords: COVID-19; transcript variants; alternative splicing; alternative polyadenylation; RNA-
seq; 3′-UTR

1. Introduction

Recent research on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
has focused primarily on gene expression profiling in various human cell lines and patient
samples in an effort to understand the molecular basis of SARS-CoV-2 pathogenesis [1–3].
Unsurprisingly, many of the differentially expressed host genes identified are involved in
the antiviral response [1,4]. As the SARS-CoV-2 virus can trigger different levels of changes
in humans, a thorough understanding of molecular signatures beyond gene expression pro-
filing is needed to comprehensively dissect the pathogenesis of SARS-CoV-2 coronavirus.
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Immune activation to viral infection is regulated by changes in gene expression
and post-transcriptional regulation, such as AS and APA [5,6]. A classic example of AS
in immune cells is the generation of neoantigens, novel peptides of immune proteins
for antibody diversification in normal conditions [7]. However, during viral infection
by the influenza A virus, the virus can induce widespread AS in the host genes [5,7,8].
Mechanically, viral proteins can interact with splicing and polyadenylation factors and
cause misprocessing of the host mRNAs [8]. Some of these isoforms may encode unique
neoantigens or disrupt critical functional domains, thereby promoting viral replication and
production [7–9]. These studies stress the importance of the RNA-processing regulation
upon viral infection. A recent study suggests that the NSP16 viral protein of SARS-CoV-2
can interact with the human U1 and U2 snRNA, thereby changing the AS landscape
in humans [10]. This warranted our investigation of the host splicing alteration during
SARS-CoV-2 infection to further reveal the molecular basis of the COVID-19 disease.

Here, RNA-seq data of SARS-CoV-2 infected lung cancer (A549) cells are used to
investigate the SARS-CoV-2-inducted remodeling of the host transcriptome [1]. By utiliz-
ing computational methods and pipelines, including custom-developed tools, we have
identified global AS and APA (Figure 1) changes upon SARS-CoV-2 infection in human
lung epithelial cells. These widespread splicing signatures rarely overlap with findings
from differential gene expression studies and are enriched in many previously undetected
pathways critical for SARS-CoV-2 pathobiology.

Figure 1. Alternative splicing (AS) and alternative polyadenylation (APA). (A) Schematic represen-
tation of the five major types of alternative splicing in eukaryotes: Skipped Exon (SE), Retained
Intron (RI), Alternative 3′ Splice Site (A3SS), Alternative 5′ Splice Site (A5SS), and Mutually Exclu-
sive Exon (MXE). Light blue boxes represent the constitutive exons, whereas light yellow and pink
exons represent the spliced ones. (B) Two types of alternative polyadenylation, i.e., coding region
alternative polyadenylation (CR-APA) and 3′-UTR alternative polyadenylation (UTR-APA), and their
impact on the functional proteome. PAS: polyadenylation signal; TSS: transcription start site; RBP:
RNA-binding protein.

2. Results

In this study, multiple bioinformatics pipelines and statistical methods were used to
identify the molecular signatures of COVID-19 at the transcriptional and post-transcriptional
levels. The objective is to achieve a better understanding of the impact of transcriptomic
changes on the proteome in COVID-19. In this section, we first describe previously pub-
lished RNA-seq data of COVID-19 [1] that are used in this study (Section 2.1). Then in the
following subsections, we focus on reporting the results of our analyses on transcriptome
changes using these datasets: we will extensively discuss the alterations of splicing and
polyadenylation events as well as the differential expression of genes/transcripts upon
SARS-CoV-2 infection in A549 human lung cancer cells.
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2.1. Data

The RNA-seq data used in this study were downloaded from the NCBI Gene Ex-
pression Omnibus (GEO) database, under the accession number GSE147507 [1]. The
dataset contains independent biological triplicates that were mock-treated or infected with
SARS-CoV-2. Series 2, 5, and 7 in the dataset were analyzed in this study. Series 2 and
5 consist of transformed lung alveolar (A549) samples that are mock-treated or infected
with SARS-CoV-2. Series 7 includes samples from transformed lung-derived Calu-3 cells
that are mock-treated or infected with SARS-CoV-2.

We used TopHat2 [11] to conduct sequence alignment. These three pairs of cell line
data (Series 2, 5, and 7) with a high overall alignment rate were selected for downstream
analyses (Supplementary Table S1). Series 5 results are discussed in this manuscript,
whereas results for the other two series can be found in the Supplementary Materials
(Supplementary Tables S2–S8). The RNA-seq data were quantified with Kallisto [12] for
differential transcript and gene expression analyses. To generate the read coverage profile,
SAMtools [13] was used with the aligned bam files as an input.

2.2. Alternative Splicing

Five major AS events between groups of mock-treated and SARS-CoV-2 infected
A549 cells are reported in Table 1. The table displays information regarding the number of
AS events in each category. Overall, more AS events were detected in SARS-CoV-2 infected
cells than in mock-treated ones. Among the five types of AS events, the Skipped Exon
(SE) category was found to be the most common type; 51 AS events were identified in the
mock-treated cells, and 126 AS events were identified in the SARS-CoV-2 infected cells.
Notably, compared to other types of AS events, the AS event for alternative 5’ splice site
(A5SS) was more frequent in the SARS-CoV-2 infected cells. We further investigated the
top 10 significant events for the AS type SE among the two groups (Table 2). The AS events
are sorted in ascending order by the p-value, as defined in the Chi-squared hypothesis test.
The column ‘Ratio Difference’ denotes the differences in the ratio of average read coverage
between the SARS-CoV-2 infected and mock-treated cells. A positive value for the ratio
difference indicates that the mock-treated cells have more SE splicing events compared to
the SARS-CoV-2 infected cells, and a negative value means the other way around.

Table 1. Number of detected significant splicing events in each category between SARS-CoV-2
infected and mock-treated cells.

Sample SE RI MXE A3SS A5SS

Mock 51 16 7 13 6
SARS-CoV-2 126 30 19 59 100

Table 2. Top 10 significant splicing events between A549 mock-treated and SARS-CoV-2 infected cells.

Gene Name Chr Start End p-Value FDR Ratio Difference

TPT1 chr13 45,914,846 45,914,920 5.81 × 10−18 7.5 × 10−14 −0.074
C6ORF48 chr6 3,118,955 3,119,049 9.21 × 10−15 5.94 × 10−11 −0.113
FKBP1A chr20 1,373,477 1,373,525 2.25 × 10−14 9.67 × 10−11 −0.168

PPIA chr7 44,838,346 44,838,413 1.63 × 10−12 5.25 × 10−9 0.149
HNRNPA1 chr12 54,676,862 54,677,018 1.26 × 10−11 3.26 × 10−8 −0.248

RPS24 chr10 79,799,961 79,799,983 5.25 × 10−11 1.13 × 10−7 0.122
RPS9 chr19 54,710,420 54,710,592 4.59 × 10−10 8.46 × 10−7 0.117
SRSF2 chr17 74,731,853 74,731,957 1.24 × 10−7 1.78 × 10−4 0.172
CA12 chr15 63,638,728 63,638,908 1.66 × 10−7 1.99 × 10−4 −0.103

RPLP1 chr15 69,745,985 69,746,060 1.69 × 10−7 1.99 × 10−4 0.040

From the differential AS analysis performed in Table 1, we conducted a literature
survey of the genes with significant AS events. Three of them are implicated in SARS-CoV-2
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pathogenesis and prognosis as shown in Table 3. In addition, the genes with the splicing
events were analyzed with the DAVID functional annotation tool [14]. The enriched
KEGG pathways in mock-treated and SARS-CoV-2 infected cells are shown in Figure 2A.
Interestingly, genes with AS events are enriched in ribosome and spliceosome, suggesting
that SARS-CoV-2 infected cells undergo changes in their gene expression pathways.

Table 3. Literature review of identified genes with transcript variants and their implication on SARS-CoV-2 pathogenesis
and prognosis.

Category Gene Ref. Description

Alternative
Splicing

BTF3 [15] Interacts with the NSP10 CoV protein, which is involved in the pathological function of
SARS-CoV in cells.

FKBP1A [16] FKBP1A causes immunosuppression and is required by CoV for viral growth.

G3BP1 [17]
SARS-CoV-2 N protein undergoes liquid–liquid phase separation, which serves as a
scaffold for virus replication and assembly, through its N-terminal intrinsically
disordered region (IDR) with G3BP1.

UTR-APA
ANXA2 [18]

The upregulation of expression of annexin A2 (ANXA2) by SARS-associated cytokines and
the cross-reactivity of anti-SARS-CoV S2 antibodies to annexin A2 may have implications
in SARS disease pathogenesis.

CAV1 [19] Coronaviruses enter cells via the CAV1 dependent pathway.
TMEM97 [20] TMEM97 forms a complex with ACE2 and modulates its ability to internalize the SARS-CoV-2.

CR-APA
CTSC [21] CTSC activates the elastase-related neutrophil proteases mediated tissue degradation

in which it diffuses the alveolar inflammation in acute respiratory distress syndrome.

RHOA [22]

Activation of RhoA GTPase and its downstream effector, Rho kinase (ROCK), contributes to
a burst in inflammatory features, immune cell migration, apoptosis, coagulation, contraction,
and cell adhesion in pulmonary endothelial cells, leading to endothelium barrier dysfunction
and edema as hallmarks of lung injury.

CANX [23] Calnexin (CANX) strictly monitors the maturation of the CoV S protein by its direct binding.

Differential
Expression

BCL2A1 [24] Pro-survival gene mostly present in adult genes, if downregulated, promotes apoptosis in
lung tissue.

SKP2 [25] SKP2 attenuates autophagy through Beclin1-ubiquitination and allowing for the replication
of coronaviruses.

Figure 2B shows a high resolution read coverage plot generated by our AS-Quant
pipeline [26] for the gene SDCCAG3 with a significant AS event. The figure illustrates the
notable alternation of expression levels in the spliced exons between the mock-treated and
SARS-Cov-2 infected groups.

2.3. Alternative Polyadenylation

To further assess the predictions of alternative polyadenylation events between mock-
treated and the SARS-CoV-2 infected cells, both CR-APA and UTR-APA events (Figure 1B)
were identified by the computational pipelines introduced in Section 4.2.

2.3.1. UTR-APA

Our pipeline, APA-Scan [27], identified 144 unannotated UTR-APA events, which
were reported using the Chi-squared hypothesis test on A549 cells. A total of 137 UTR-
APA events were identified in mock-treated cells, while only 7 UTR-APA events were
found in SARS-CoV-2 infected cells, indicating that UTR-APA events were suppressed
in SARS-CoV-2 infected cells. Figure 3 shows a UTR-APA event for the gene HNRNPH3
generated by APA-Scan. In Table 4, the top 10 UTR-APA events are reported by the p-
value in the ascending order. The p-values indicate the significance of the UTR-APA event
between mock versus SARS-CoV-2 infected cells. The ratio difference in the last column is
calculated by taking the average read coverage ratios of the two groups. A positive ratio
difference indicates an increase in the UTR-APA event in mock-treated cells. Based on
the results reported in Table 4, all the top 10 events were identified from the mock-treated
cells, thereby reinforcing that SARS-CoV-2 infections suppress the usage of the proximal
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polyadenylation signal in the 3′-end processing of mRNAs. The literature survey shows
that three genes (ANXA2, CAV1, and TMEM97) with the UTR-APA events related to SARS-
CoV-2 pathogenesis and prognosis (Table 3). For example, TMEM97 has been recently
shown to interact with SARS-CoV-2 viral proteins [20].
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Figure 2. (A) KEGG pathways enriched by alternative splicing events. The blue and red bar charts
show the pathways enriched by the splicing events in mock-treated cells and SARS-CoV-2 infected
cells, respectively. (B) A plot for the SDCCAG3 AS event. The spliced exon is highlighted in orange.
The first two subplots show the read coverage of the gene in both groups, whereas the bottom
subplot denotes the gene annotation with exon information. The x-axis and y-axis of the plot
represent the position of the specific gene and read coverage of that sample, respectively. To show
the differential splicing event, the altered exon is highlighted in orange to provide a clear insight into
the phenomenon.
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Figure 3. One example of a gene (HNRNPH3) shows an alternative polyadenylation event in the
3′-UTR region. The black vertical line indicates the potential cleavage site. The x-axis and y-axis
represent the position of the gene in its chromosome and the read coverage, respectively. The top two
subplots show the changes in read coverage surrounding the event, and the cleavage site is indicated
by a black vertical line. The bottom part of the plot shows both the full length and truncated 3′-UTRs.
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Table 4. Top 10 significant alternative polyadenylation events in the 3′-UTR region (UTR-APA)
between A549 mock-treated and SARS-CoV-2 infected cells. The ‘Position’ column refers to the
potential cleavage site for the UTR-APA.

Gene Name Chr Position p-Value FDR Ratio Difference

ACTN4 chr19 38,730,184 6.07 × 10−14 5.71 × 10−10 0.144
ALDH1A1 chr9 72,900,986 1.34 × 10−12 6.30 × 10−9 0.054

S100A6 chr1 153,534,690 2.73 × 10−11 8.56 × 10−8 0.045
HNRNPA2B1 chr7 26,191,861 1.26 × 10−9 2.96 × 10−6 0.088

PMEPA1 chr20 57,651,579 2.10 × 10−9 3.95 × 10−6 0.153
ACAT2 chr6 159,779,033 3.11 × 10−9 4.88 × 10−6 0.273
ARL4C chr2 234,495,151 6.05 × 10−8 8.14 × 10−5 0.231
H3F3A chr1 226,071,775 8.70 × 10−8 1.02 × 10−4 0.189
RPL15 chr3 23,919,537 1.32 × 10−7 1.38 × 10−4 0.041
MYH9 chr22 36,281,660 3.29 × 10−7 2.91 × 10−4 0.177

2.3.2. CR-APA

In the CR-APA analysis, both the hg38 RefSeq annotation [28] and the UCSC an-
notation [29] were applied to report the list of CR-APA events between mock-treated
versus SARS-CoV-2 infected cells. We identified significant CR-APA events by measuring
the CR-truncation ratio (Equation (4)). We found an increase of 1206 CR-APA events in
mock-treated cells and an enrichment of 656 CR-APA events in SARS-CoV-2 infected cells,
indicating that CR-APA events are more frequent in mock-treated cells. The bipartite
expression patterns of CR-APA in Figure 4 revealed an enrichment of specific truncated
mRNAs in both mock and SARS-CoV-2 infected cells, indicating that reprogramming of
the transcriptome and consequent changes in the proteome diversity would occur upon
SARS-CoV-2 infection.

Among the significant CR-APA events, the top 10 significant events are listed in
Table 5. The ratio difference is calculated by taking the difference between the average
CR-truncation ratio of the SARS-CoV-2 infected cells and mock-treated cells. A CR-APA
event occurs in SARS-CoV-2 infected samples if the ratio difference is larger than zero. It
is considered significant in the mock-treated group if the ratio difference is smaller than
zero. A literature review shows that several genes with CR-APA events are connected to
SARS-CoV-2 pathogenesis and prognosis, as described in Table 3. The KEGG pathways in
mock-treated and the SARS-Cov-2 infected cells are shown in Figure 5A. Particularly, genes
involved in oxidative phosphorylation increased CR-APA, which may affect the expression
of full-length proteins that are critical for cellular energy production and mitochondrial
dysfunction in respiratory illnesses [30]. It was shown that one of the SARS-CoV-2 proteins,
NSP16, binds to the mRNA recognition domains of the spliceosome and suppresses global
mRNA splicing in SARS-CoV-2-infected human cells [10]. The KEGG pathways enriched in
Figures 2A and 5A show AS and CR-APA events in genes associated with the spliceosome
pathway, suggesting that alterations in the regulatory splicing pathway could happen.
This, in turn, would affect splicing and splicing-coupled CR-APA events upon SARS-CoV-2
infection, leading to further deleterious effects on gene function [31].

Figure 5B shows a CR-APA event for the gene LARP6. The top two subplots show
the read coverage of the gene in two conditions. The bottom panel represents the isoform
annotations. NM_197958 is an annotated CR-truncated isoform in the gene, and the
last highlighted exon indicates the end of the CR-APA transcript. Compared to SARS-
CoV-2 infected cells, the plot shows a significant increase of RNA-seq alignments in the
highlighted exon, indicating a higher CR-truncation ratio of LARP6 in mock-treated cells
compared to SARS-CoV-2 infected cells.
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Figure 4. RNA-seq data of mock-treated and SARS-CoV-2 infected A549 cells were analyzed for the
CR-APA. The x-axis and y-axis represent the CR-truncation ratios ((short mRNA)/(total mRNA)) of
a gene. Each dot represents a gene, where the blue dots and red dots show the significant ones in
mock and SARS-CoV-2 infected cells, respectively. Upon SARS-CoV-2 infection, 656 genes showed
up-regulated CR-APA while 1206 genes showed down-regulated CR-APA. A total of 8832 genes
remained unchanged in their CR-APA.

Table 5. Top 10 significant alternative polyadenylation events in the coding region (CR-APA) between
A549 mock-treated and SARS-CoV-2 infected cells.

Gene Chr Truncated Position p-Value FDR Ratio Difference

GLRX5 chr14 95,544,557 2.76 × 10−6 6.12 × 10−3 0.361
UBXN6 chr19 4,445,009 5.98 × 10−6 1.14 × 10−2 0.020
SLC3A2 chr11 62,881,290 1.31 × 10−5 2.16 × 10−2 0.256
ARIH2 chr3 48,928,674 1.37 × 10−5 1.18 × 10−2 0.071
DVL3 chr3 184,164,517 1.50 × 10−5 2.16 × 10−2 −0.269
DEF8 chr16 89,959,366 1.62 × 10−5 1.18 × 10−2 −0.232

SIAH2 chr3 150,742,487 1.62 × 10−5 2.16 × 10−2 −0.362
SNHG7 chr9 136,724,659 1.84 × 10−5 2.16 × 10−2 0.020
LTBP2 chr14 74,506,705 1.94 × 10−5 2.16 × 10−2 −0.248

S100A16 chr1 153,606,974 2.29 × 10−5 2.35 × 10−2 0.200

2.4. Differential Gene/Transcript Expression

In differential expression analysis, 991 genes and 1443 transcripts show higher expres-
sion in mock-treated cells, whereas 717 genes and 933 transcripts show higher expression
in SARS-CoV-2 infected cells. These differentially expressed genes and transcripts can be
served as molecular signatures for COVID-19 outcome prediction. The top 100 differen-
tially expressed transcripts and genes were selected for bi-clustering analysis. The z-score
transformation was applied to the expression value for each entry in the heatmap. From the
results, we can see that the six samples are precisely clustered into two groups (Figures 6
and S1 in the Supplementary Materials).
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Figure 5. (A) KEGG pathways enriched by CR-APA events. The blue and red bar charts show
the pathways enriched by the APA events in mock-treated cells and SARS-CoV-2 infected cells,
respectively. (B) One example of a gene (LARP6) shows an alternative polyadenylation event in the
coding region. The truncated coding exon is highlighted in orange.

Figure 6. COVID-19 A549 cell lines are clustered by the top 100 transcript markers detected by
differential transcript expression analysis.

Table 3 shows two differentially expressed genes that are related to SARS-CoV-2
pathogenesis and prognosis. Figures 7 and S2 in the Supplementary Materials show the
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enriched KEGG pathways by the differentially expressed transcripts and genes, respectively.
In each figure, the top bar plot represents the pathways enriched by the transcripts or genes
that are highly expressed in mock-treated cells, and the bottom bar plot represents the
transcripts or genes that are highly expressed in SARS-CoV-2 infected cells. The enriched
pathways by the gene expression and transcript expression analyses are similar. The KEGG
pathway enrichment of the differentially expressed transcripts in the SARS-CoV-2 in
Figure 7 shows an up-regulation in the pro-inflammatory pathways TNF-α and NF-kappa,
confirming the finding that patients with SARS-CoV-2 were reported to have elevated
levels of cytokines in blood and cytokine gene expression in peripheral blood mononuclear
cells (PBMC) [32–34].

Figure 7. Differentially expressed transcripts enriched KEGG pathways. The blue and red bar charts
show the pathways enriched by the up-regulated and down-regulated transcripts in mock-treated
samples over SARS-CoV-2 infected samples, respectively.

2.5. Comparison between Alternative Processing of Pre-mRNA and Differential Gene Expression

In addition to mRNA expression, post-transcriptional regulation of gene expression
(i.e., AS and APA) plays a critical role in the control of cellular processes and affects phe-
notypic changes in biological features [35]. They may serve as a new layer of biomarker
for drug development for COVID-19 therapeutics. Therefore, it is important to com-
pare the genes that are differentially expressed and the genes that undergo alternative
processing events.

The relationship between differential gene expression and the UTR-APA event was
tested based on the APA events identified in Section 2.3.1 and the differentially expressed
genes identified in Section 2.4. We combined the analyses of UTR-APA and differential gene
expression, and the results are shown in Figure 8A. Each gene was plotted by fold changes
in the differential gene expression (y-axis) and the significance of UTR-APA events (x-axis).
The left three sections and the right three sections in Figure 8A show the 3′-UTR-truncated
genes in mock-treated cells and SARS-CoV-2 infected cells, respectively. The top three
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sections and the bottom three sections represent the up-regulated and down-regulated
genes in SARS-CoV-2 infected cells over mock treated cells, respectively. From the plot,
we can see that a significant portion (>88%) of the genes showing UTR-APA events
are not differentially expressed, indicating no strong correlation between the differential
gene expression and the UTR-APA events in the SARS-CoV-2 infected cells. Similarly,
more than 90% of the genes showing CR-APA events are not differentially expressed
(Figure 8B). Therefore, the profiling of APA-based molecular signatures could provide
additional predictive power and potentially lead to the findings of new target pathways
for SARS-CoV-2 related translational research.

A

B

UTR-APA in Mock UTR-APA in SARS-CoV-2

CR-APA in Mock CR-APA in SARS-CoV-2

Figure 8. Scatter plot of APA and differential gene expression. Red dots represent the individual
gene in the analysis. Horizontal blue-dashed lines represent the cutoff values for two-fold changes
in differential gene expression. Vertical green-dashed lines represent the cutoff values for the
log10(p-value) of UTR-APA (A) determined by the Chi-squared test, and the log10(p-value) of CR-APA
(B) determined by the Student’s t-test.

To further investigate the relationship among all transcript variants identified in this
study, a four-set Venn diagram is generated to illustrate the intersections of differentially
expressed genes (DEG) and the genes with post-transcriptional regulation events (Figure 9).
Both RefSeq and UCSC annotations were applied in the data analysis to make the experi-
mental results comparable. The total number of events generated from alternative splicing,
UTR-APA, CR-APA, and differentially expressed genes are 320, 144, 1862, and 2256, re-
spectively. None of the genes were shown in all four categories. Though 2256 genes were
detected as differentially expressed genes, only 25 of them have alternative splicing events
and 17 of them have UTR-APA events. In the case of an alternative splicing event in a
gene showing CR-APA, it has a higher chance of being considered as a CR-APA gene.
Based on these observations, we found that 27.5% of genes with AS events show CR-APA.
Overall, the results further confirm that post-transcriptional regulation profiles and differ-
ential gene expressions profiles provide distinctive molecular signatures for COVID-19
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studies. In addition, the three different types of post-transcriptional regulation events
barely overlap.

AS: 320 DGE: 2256

CR-APA: 1862

DGE: 2256
CR-APA: 1862

AS: 320

2033

181

1590

3

0

0

0

25

99

17
0

12

13
75

195

UTR-APA: 144

UTR-APA: 144

Figure 9. Four-set Venn diagram shows the overlapped genes in three different types of post-
transcriptional regulations and differentially expressed genes (DEG).

3. Discussion and Conclusions

At present, the whole world is suffering from the COVID-19 pandemic, but the
molecular mechanisms of COVID-19 pathogenesis are not clear. To better understand
the molecular basis of the disease, here we compare the effects of transcriptional and
post-transcriptional events on SARS-CoV-2 infection in lung cancer cell lines. From these
analyses, we were able to identify distinct molecular signatures that were not otherwise
found by traditional differential gene expression analysis. These novel molecular signatures
may contribute to COVID-19 pathobiology. The results from the data analyses demonstrate
that several transcriptional and post-transcriptional signatures identified in this study are
highly correlated with SARS-CoV-2 pathogenesis and prognosis. These signatures are
enriched in diverse biological pathways that were not detected in the original study [1],
which only focused on differential gene expression analysis. These pathways may lead to
the discovery of new molecular mechanisms of SARS-CoV-2 pathogenesis. In addition,
post-transcriptional gene regulations provide additional molecular signatures for COVID-
19 therapeutic targets compared to the transcriptional signatures of COVID-19 patients.
The latest COVID-19 study [10] has shown that the SARS-CoV-2 NSP16 protein suppresses
mRNA splicing, leading to intron retention in host genes. In our data analyses, we only
identified 16 intron retention events in the SARS-CoV-2 infected samples. This might be
due to the fact that our custom-developed AS-Quant pipeline detects intron retention based
on the annotations [26]. Thus, more cases for intron retention could be discovered by future
pipelines, which will be important to identify non-canonical peptides produced from the
translation of intron retained transcripts.

While our findings are confined at the transcriptome level, further investigations
on the changes of proteome and post-translational modifications in the proteome are
warranted to comprehensively dissect the mechanistic aspect of COVID-19 pathobiology.
In our pathway enrichment analysis, genes in the ribosome pathway are up-regulated in
the SARS-CoV-2 infected cells, suggesting that there may be an up-regulation of protein
synthesis. Recent quantitative proteomics studies have suggested that time-dependent
proteome changes in the post-infection of SARS-Cov-2 [36,37]. Studies have reported that
in an early stage of infection (less than 24 h), a proteome change occurs bi-directionally
(some up-regulated and some down-regulated). However, at a later stage of infection
(greater than 24 h), there is an overall down-regulation of the global protein abundance.
However, proteins that displayed differential phosphorylation and ubiquitination did
not change the overall protein abundance. Nonetheless, 17.0%, 20.1%, and 16.4% of the
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genes that contain AS, UTR-APA, and CR-APA events are reported to be differentially
expressed in their protein levels [37]. In addition, both our post-transcriptional study and
the proteomics studies have consistently identified the activation of the MAPK signaling
pathway in SARS-CoV-2 infected cells. These findings suggest the importance of using a
multi-omics approach in resolving detailed molecular and cellular signatures of COVID-19.

4. Materials and Methods

In this section, we first introduce the pipelines and strategies to detect the alterna-
tive splicing and alternative polyadenylation events between two biological conditions in
Sections 4.1 and 4.2, respectively. Then, we explain the method to determine the differen-
tially expressed transcripts and genes in Section 4.3. Finally, we provide an overview of the
gene set enrichment analysis on the significant events in Section 4.4.

4.1. Detection of Alternative Splicing Events

To analyze the alternative splicing events between mock-treated and infected with
SARS-CoV-2 samples with RNA-seq data, we used the computational pipeline AS-Quant [26].
Based on the read coverage files generated by SAMtools, all the potential splicing events
were categorized into five major types of alternative splicing, as shown in Figure 1A. For each
spliced exon, the average read coverage (n) is calculated by the read count on that exon (re)
divided by the read length (le) in AS-Quant:

n =
re

le
(1)

The average read coverage for all other exons of that gene (N) is calculated in the
same way, by dividing the total reads (rg) by the gene length (lg). Next, the ratio difference
between two biological conditions is calculated based on the following equation:

n1

N1
− n2

N2
, (2)

where 1 and 2 represent the different conditions. The most significant events are reported
according to the p-value generated by a canonical 2 × 2 Chi-squared test. The topmost
events are then illustrated by read coverage plots to give a visual representation (e.g.,
Figure 2B).

4.2. Detection of APA Events
4.2.1. UTR-APA

To identify the 3′-UTR-APA events between mock-treated or SARS-CoV-2 infected
samples with RNA-seq data, we applied the computational tool APA-Scan [27]. APA-Scan
utilizes either predicted or experimentally validated polyadenylation signals as a reference
for 3′-UTR polyadenylation sites. It also calculates the amount of full-length and truncated
3′-UTR transcripts with the RNA-seq data.

The canonical polyadenylation signals (PAS) AATAAA and ATTAAA in the distal
3′-UTR region were considered as the tentative locations of cleavage sites. Then, the APA-
events were evaluated by comparing the RNA-seq reads coverage upstream and down-
stream of the candidate cleavage site between the samples in two different biological
conditions. Specifically, the average read coverage for upstream (M1 and M2 for two
biological conditions) and downstream (m1 and m2) of the candidate cleavage site were
calculated. Next, the ratio difference between two conditions was determined by the
following equation:

m1

M1
− m2

M2
. (3)

The 2 × 2 Chi-square test was then applied to assess the significance of the candidate
events. The read coverage plots of the significant events were reported according to the
user-defined p-value cutoff (e.g., Figure 3).
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4.2.2. CR-APA

To identify and quantify dynamic CR-APA events, the protein-coding transcripts
of a gene were categorized as either full-length or truncated transcripts based on the
NCBI human hg38 RefSeq [28] or UCSC annotations [38]. A transcript is categorized
as a truncated transcript if it satisfies the following conditions: (1) its coding end is not
the maximum coding end in the gene, and (2) its transcript end is not the maximum
transcript end in the gene; otherwise, the transcript is a full-length transcript in the gene.
The CR-truncation ratio RCR that quantifies the CR-APA event is defined as,

RCR = ECR/EALL (4)

where ECR is the summation of expressions of all truncated transcripts in the gene, EALL
denotes gene expression, and RCR ∈ [0, 1]. The Student’s t-test is then applied to the
CR-truncation ratios to determine the significant CR-APA events between the two groups
of samples.

4.3. Differential Gene/Transcript Expressions

Differential gene expression analysis has been widely used to identify transcriptomic
signatures that define phenotypic changes in biology. In this work, Kallisto [12] was applied
to perform the quantification of RNA-seq data for COVID-19 samples. After filtering out
lowly expressed genes (TPM < 1), the log2 fold change of transcript or gene expression
was calculated between two groups of samples. The transcripts or genes with a log2 fold
change larger than 1 or smaller than −1, and with a Student’s t-test p-value < 0.05 were
considered as significantly differentially expressed.

4.4. Enriched Pathway Analysis

After identifying the AS events, APA events, and differentially expressed
genes/transcripts in each biological condition, the events and genes which are over-
represented in GO (Gene Ontology) terms and KEGG (Kyoto Encyclopedia of Genes
and Genomes) pathways were determined by DAVID Bioinformatics Resources [39]. These
enriched functional profiles and molecular interactions could help us better understand
the underlying biological processes in COVID-19. The KEGG pathway is a collection of
pathway-maps representing molecular level information, including metabolism, genetic
information processing, environmental information processing, cellular processes, organ-
ismal systems, human diseases, and drug development. The Gene Ontology (GO) terms
define the biological domain with respect to three aspects: molecular function, cellular
component, and biological process.
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