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Fair Classification Under Strict Unawareness

Haoyu Wang *

Abstract

Despite the wide adoption of classification algorithms in many
fields, their predictions may hurt the benefit of some people
due to the ubiquitous bias over sensitive features, such as
race, gender and age. To avoid biased predictions, extensive
research efforts have been devoted to training fair classifica-
tion models under a variety of fairness definitions. However,
we observe that recent fair classification methods may still
make their predictions based on sensitive features implicitly
under existing fairness definitions because the non-sensitive
features these models rely on still have the capabilities of
predicting the values of sensitive features. To overcome this
limitation, we introduce a new fairness definition named
“Fairness Through Strict Unawareness” for deep neural net-
works (DNN), which emphasizes the unpredictability of the
sensitive features by the fair classification model. Accord-
ingly, we proposed a bi-level optimization-based approach
that prevents the encoded features of a DNN classifier to
rely on any sensitive information (explicitly or implicitly).
We show that the proposed framework satisfies the fairness
under strict unawareness condition while still maintains its
prediction accuracy. Experimental results on two benchmark
datasets also support this claim. Results show that the pro-
posed framework can significantly degrade the models’ ability
of inferring sensitive features without sacrificing its general
predictive capability.

Keywords: Fairness, Classification

1 Introduction

Deep neural networks have demonstrated their success in
classification tasks, but when applying these models to
applications that involve people, such as criminal justice,
talent recruiting and revenue forecast, biased decisions
may be made as the model predictions are usually
based on sensitive features, such as race, gender, and
age. The machine learning community has recognized
this issue and devoted their efforts towards developing
fairness-aware classification algorithms. To evaluate
the fairness degree of different models, various fairness
definitions have been proposed, including Fairness
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Through Unawareness 13, 17, 21|, Statistical Parity [9,
17] and Equal Opportunity [14]. Classification algorithms
that satisfy these definitions have been proposed towards
the goal of making fair predictions.

Despite these efforts, existing fair classification
approaches still cannot ensure that the classifier output
does not rely on any sensitive features. Roughly, existing
work falls into the following two categories: 1) The
sensitive features are removed from the training set,
and this type of algorithms satisfy Fairness Through
Unawareness. For example, in [11], sensitive features like
“gender” are removed during the training process. Even
though they are not explicitly involved in training the
model, one may still infer the gender of a user via other
features such as a user’s height, weight and shoe size, and
thus the gender information is still encoded implicitly in
the model. 2) Other work incorporated regularizers
of conditional probability or covariance [25, 12, 24]
to enforce Statistical Parity and Equal Opportunity of
the learnt deep learning models. However, there is no
guarantee that the classification model does not encode
any sensitive information. It is still very likely that one
may predict sensitive features via its final layer of the
deep neural networks.

Motivated by these limitations, we proposed a
new fairness definition, referred to as Fairness under
Strict Unawareness, which emphasizes on the model’s
unawareness of any sensitive information either explicitly
or implicitly. For a deep neural network model, the
classification output is dependent on the last hidden layer
of the network, which can be regarded as the encoded
representation of original data for classification. The
deep neural network models that satisfy this definition
should not involve any sensitive information in the
encoded representations that are used to make output
predictions. In other words, based on the encoded
representations, the values of sensitive features should
be unpredictable under this definition.

Based on this fairness definition, we designed a new
classification framework that guarantees the inaccessi-
bility of sensitive information without sacrificing the
prediction accuracy of original classification task. The
framework involves two classification tasks: 1) the origi-
nal classification task, which is implemented by a deep
neural network and denoted as D, and 2) the task of
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predicting sensitive information based on encoded repre-
sentations (denoted as F'). The objective is to derive a
classifier F' with high accuracy, and at the same time its
encoded representation leads to a sensitive information
predictor G with low accuracy. We formulate this ob-
jective as a bi-level optimization task. The upper-level
solves for D and F' that optimize the two aforementioned
objectives simultaneously, and the lower-level derives the
optimal classifier F' based on the encoded representa-
tions of D. We proposed an effective solution to this
bi-level optimization problem and theoretically analyzed
the guaranteed performance of D on original classifica-
tion task and the limited capability of F' on sensitive
information prediction.

To evaluate the effectiveness of the proposed ap-
proach, we conduct experiments on two benchmark
datasets, i.e., Adult and German Credit datasets. Com-
pared with state-of-the-art baselines, the proposed ap-
proach can effectively filter out sensitive information
while maintain the performance of original classifica-
tion task. Results show that the proposed approach
is also able to achieve better fairness with respect to
other fairness metrics, such as statistical parity and equal
opportunity.

2 Related work

Fairness in machine learning has become a hot topic,
and recently extensive efforts have been devoted to the
development of fairness aware approaches. In this section,
we review related work that are most relevant to our
work, which fall into the following two categories, fair
classification and fair representation.

As classification is one of the fundamental tasks
in machine learning, how to integrate fairness into
classification models has attracted much attention.
Existing work can be grouped based on the adopted
fairness definitions: 1) Most of the work [12, 15, 16,
22| aims to satisfy Statistical Parity when training
the classification models. Specifically, [4] proposed
three kinds of regularizers to enforce that instances
with different sensitive feature values from the same
class receive similar predictions. In [25], the authors
aimed to optimize the classification accuracy under
fairness constraint to comply with disparate treatment
criterion. 1] proposed general frameworks for fair
classification which are applicable to arbitrary Lipschitz
continuous losses. 2) Recent work [14] proposed new
fairness measures, including equality of opportunity and
equalized odds fairness, based on which an optimal
equalized odds threshold predictor was derived to meet
these criteria in classification task. The work in the
aforementioned two categories focus on single-model
classification, and recently people also investigated
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fairness in multi-task classification. In [28], a popular
rank-based non-parametric independence test is designed
to achieve fair multi-task classification. Despite these
efforts, existing fairness-aware classification methods still
cannot guarantee that sensitive information is excluded
from the classification process. Besides, these algorithms
are often based on the trade off between accuracy and
fairness, and to satisfy the fairness condition, they have
to sacrifice the accuracy of the classification models.
In this paper, we proposed new fairness definition and
classification framework to address these limitations.

The objective of fair representation work is to trans-
form original data into a new representation (usually
low-dimensional) such that the representation is inde-
pendent of sensitive features. Most of the work focuses
on the derivation of fair representation from unlabeled
data [18, 7, 27, 10, 20]. Some work deals with labeled
data and incorporates the penalty on incorrect classi-
fication based on the representation into the objective
[23, 26, 19, 2, 6, 5]. However, as the main objective is to
ensure fair representation, the performance of classifica-
tion based on this representation is typically degraded.
Our work differs from this category of studies because
we aim to derive an accurate classifier whose model does
not encode sensitive information. In addition, the fair
representation work requires the knowledge of actual
sensitive feature value for each instance. In contrast, our
proposed approach only needs some high-level statistical
information of sensitive feature, such as the gender ratio.
Therefore, our work can be applied to privacy-preserving
scenarios when sensitive features are withheld from the
datasets.

3 Methodology

In this section, we first review preliminaries for deep
neural networks and existing fairness definitions. We
then introduce the proposed fairness definition and the
classification framework, followed by theoretical analysis
of the framework.

3.1 Notations and Fairness Definitions Through-
out the paper, we use X with d rows and n columns
to denote the input features without sensitive informa-
tion, where d is the feature dimensionality and n is the
number of training instances. We use y € {—1,1}" to
represent class labels, and use z € {0,1}" to represent
a binary sensitive feature.

Based on these notations, we present existing
definitions of fairness for classification as follows:

DEFINITION 3.1. (Statistical Parity). A binary predic-
tor § satisfies statistical parity if P(y|z =0) = P(glz =
1). It means that the likelihood of the predictor outcome
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should be the same regardless of the sensitive feature
value.

DEFINITION 3.2. (Equal Opportunity). A binary predic-
tor § satisfies equal opportunity if P(g = 1|z = 0,y =
1) =P(g=1|z =1,y =1). It means that the probability
of a person belonging to a positive class having a positive
outcome should be the same regardless of the sensitive
feature value.

DEFINITION 3.3. (Fairness Through Unawareness). An
algorithm is fair if none of the sensitive features z
is explicitly used in the model training and prediction
process.

3.2 Preliminaries Before delving into the details of
the proposed fairness framework, we first introduce the
deep neural network we adopt for classification, which is
denoted by D(-). The architecture of the neural network
is defined as:

(3.1)  H;., =tanh(WIH,;),i=01,--- ,n—1
(3.2) o =sigmoid(w”’ H ),

where H ; is the output of the i-th layer with Hy = X.
Among them, H, is the last hidden layer. As this
layer is directly connected to the output layer, it is
regarded as the encoded representation of the original
data for classification. { W;} and w are the weights of
the intermediate and the final layer, respectively. o is
the final output. We use binary Cross-Entropy loss to
predict the label, without loss of generality:

‘CC(X7 Y; { Wi}’ w)
—_ Z(yilog(oi) + (1 — yi)log(1 — 0;))

A n—1

(33)  + SO IWillE + [lw][3)
=0

This classification model takes a training set (X, y;);_,
as input and finds parameters { W,} and w that
minimizes £.. Then the model outputs the predicted
label y for an instance X based on model parameter.
Note that the training and prediction of this classification
model do not involve any sensitive feature z.

3.3 A DNN-based Fair Classification Frame-
work Although existing definitions discussed in Section
3.1 strive to capture the fairness degree of classification
models, they are unable to judge whether a model relies
on sensitive features in the prediction even if sensitive
features are not explicitly involved in the training pro-
cess. Motivated by this important aspect of fairness,
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we propose a new fairness definition for classification as
follows:

DEFINITION 3.4. (Fairness Through Strict Unaware-
ness). A DNN satisfies Fairness Through Unawareness
if its derived encoded representations can not be used
to predict sensitive features accurately. Formally, given
the encoded representation of a DNN H, and another
trained classifier F(-) for predicting sensitive feature z, if
F(H,) = P(z), then the DNN satisfies Fairness Through
Strict Unawareness.

The essence of this definition is to guarantee that
a classifier trained on the encoded representations of
a DNN classifier can only make random prediction of
sensitive feature value, i.e., its predicted probability
always equals to the prior distribution of that feature.

Based on this definition, we propose an effective
DNN classification framework that not only excludes
the implicit usage of sensitive information but also
maintains high accuracy on the original classification
task. We introduce a bi-level optimization problem
which combines the two objectives, i.e., classification
and fairness.

Ideally, the encoded representations of a “perfect”
fair DNN under the definition of Fairness Through Strict
Unawareness do not encode any sensitive information
and a predictor based on such representations can only
lead to a random guessing of sensitive feature value
z'. In other words, for a predictor, the probability of
predicting z (the sensitive feature) is independent of H,,
(the encoded representations, which are usually the last
hidden layer of DNN):

(3.4) P(z|H,) = P(2),

In particular, when the sensitive feature is binary,
the prior distribution of the sensitive feature can be

captured as follows: P(z; = 1) = ™ and P(z =
0) = 1 — 22, where ng is the number of instances

whose sensitive feature value is 0. Ideally, the posterior
distribution based on H,, should not deviate from the
prior. Namely,

(3.5)
no no
P(z; =1|(Hy)i) = —,P(z = 0[(Hp)i) =1- —,
n n
where (H ,,); is the i-th column of H,,.
To achieve this goal, we proposed a bi-level optimiza-
tion framework that involves a DNN classification model
D for original task (i.e., the prediction of class label y)

TAs mentioned, we merely discuss the case of a binary sensitive

feature in this paper.
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Figure 1: The framework of our proposed method. In the figure, the light blue rectangle represents the weight of
the additional classifier to predict sensitive feature using final layer of DNN as input. The light green rectangle
represents the weight of the random classifier to predict sensitive feature.

and a classifier F' on top of DNN’s encoded representa-
tions for sensitive feature prediction (i.e., the prediction
of z). With this framework, we can ensure that the DNN
model satisfies the Fairness under Strict Unawareness
definition in Eqn. 3.5. We name the framework as Bilevel
optimization-based Fair DNIN (BFDNN for short). The
lower level of the BFDNN trains a classifier F' to predict
z with the encoded representations of D as the input. At
the upper level, D is trained for the original classification
task whose encoded representations serve as the input
to F, at the same time F' is enforced to be as close to a
random classifier as possible. Intuitively, this optimiza-
tion framework guarantees the good performance of the
original classification task and also ensures that the en-
coded representations of the trained deep neural network
model cannot be used to make meaningful predictions
on sensitive features. Formally, the bi-level optimization
framework can be formulated as:

. X . ) D(6* rand
0*,{1,%‘1’?},111‘60( K.%{Wz}’w)"'ﬁ (0 ’0 )

(3.6) 5.t.0" = argmin L,(H ,; 0).
0

In this objective function, L.(X,y;{W,;},w) is the
classification loss of the DNN model on the original task.
D(6*,07"?) measures the difference between 6* and
07" and is set to be ||@* — 07%4||; in this paper. £,
is defined as:

L,=— % Z(zilog(F((Hn)i; 0))

(3.7) + (1= z)log(1 — F((Hn)i; 0))),
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and
grond =arg emin Lrand
1, no
:arggmln—g ;(glog(G((Hn)ﬁ@))
(3.8) +(1— %)log(l - G((Hy)i;9))).

Here, 87%"? is the parameter of a random classifier
G(-), which makes prediction only based on prior
distribution P(z). This parameter can be inferred
by minimizing he Kullback-Leibler Divergence (D)
between P(z) and G(H ,;0). Specifically, as a random
classifier, its output G(H ,;0) should be close to the
distribution P(z). Therefore, we need to minimize the
KL distance between P(z) and G(H ,,;0), which can be
calculated as follows.

n
P(zi)
Dics(P()|G(H,:0)) = Y P(ei)log
WO =2 G((H,)::0)
== P(z)logG((Hn);; 0)
i=1
(3.9) +) " P(zi)logP(z;).

i=1

constant

By removing the constant term, we derive the objective
function (i.e., Eqn 3.8) to obtain the random classifier
G(-). The parameter inferred by minimizing this
objective function is 7%"¢. Note that 67%"? is pre-
trained and fixed during the optimization process of
the overall framework.
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As one can see, D(0*,07*"%) measures the distance
between 6* and 67", Hence, the parameter 8* will
be trained to be close to 879" after the optimization.
Thus, the last hidden layer H,, of the trained DNN will
be adjusted to fit the random classifier. As a result,
sensitive information cannot be predicted based on H,,
of the DNN classifier F(-), and thus F'(-) satisfies the
Fairness Through Strict Unawareness definition (i.e.,
Definition-4).

Figure 1 shows the overall framework. As can be
seen, the training of the DNN classifier D(-) will be
influenced by the additional classifier F'(-) that predicts
on the sensitive feature. By enforcing F'(-) to be close
to a random classifier, we adjust D(-) to satisfy the
Fairness Under Strict Unawareness condition. Though
the choice of classifier F(-) could be flexible, in this
paper, we choose logistic regression for F'(Q;0) because
it has the following advantages: (1) logistic regression is
stable and robust, which helps to properly evaluate the
accuracy of sensitive feature prediction, and (2) logistic
regression’s convex property enables subsequent analysis
and derivation.

Eqn 3.6 is a standard bi-level optimization problem,
which is NP hard in general. As we adopt logistic
regression for F'(-) (a convex model), the problem can
be reduced to the following single-level constrained
optimization problem according to the Karush-Kuhn-
Tucker (KKT) conditions of the lower level problem [3]:

in L.(X,y{ Wi}, 60
oimin  Lo(Xy{ Wik w) + 5] h

(3.10) s.t.06Ly(H,;0) =0

To optimize the single-level constrained problem, we set
the constraint as a regularizer in the loss function, which
can be formulated as

. . X . Wz oierand
o  Lo(X,yi { Wi} w) + 6] 1

(3.11) 106 Ly(H 13 0)[ 1

This objective function can be optimized by any gradient-
based optimizer directly.

3.3.1 Theoretical Considerations In this section,
we demonstrate the theoretical guarantee of the proposed
framework from the following two perspectives:

1. The output of classifier F'(-) should be close to that of
random guessing G(-) under the proposed framework.
Specifically, we show that the distance between the
corresponding parameters of the two classifiers (i.e.,
0* and 67%"%) is bounded, and in turn, the distance
between prediction of F'(-) and random classifier G(-)
can also be bounded.
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2. The performance of classifier D(-) (i.e., the DNN
classification model for original task) does not change
much. Specifically, we show that the distance between
the last hidden layer of the original DNN model and
that of the proposed BFDNN framework is bounded.

Theorem 3.1 demonstrates the first perspective, i.e., the
bound between the output of F'(-) and the random classi-
fier G(-) on the task of sensitive feature prediction. The
proof to this theorem is provided in the supplementary.

THEOREM 3.1. Suppose ||(Hyp)illh < e and ||0* —
07|, < e3.Then the difference between the prediction
output by classifier F(-) and random classifier G(-) is

bounded by %61 €.

Proof. The predict score of F(-) is o((H,)!6*), and
the predict score of random model is o((H )T rond).
Because ||o (z)|| < 1, the sigmoid function is §-Lipschitz
continuous: ||o(x1) —o(22)|[1 < ||z1—22||1. Therefore,
we have

lo((H,)T0") — o((H,)T0m )|,
! 1
<7 I(HL)ilL]16" = 07y < Seres

d

Then Lemma 3.1 and Theorem 3.2 below demon-
strate the second perspective, i.e., the difference in H,
between the original DNN and the proposed BFDNN
is bounded. To simplify the proof, we assume that the
DNN only has one hidden layer and uses linear activation
in the hidden layer. Both proofs are provided in the
supplementary.

LEMMA 3.1. Suppose ||X|li < eo, [|[W|i < e,

and ||0]]1 < e3. Then H@WgHagﬁngHl is bound by
2

46"-28#, where Wg is the parameter of BFDNN.

Proof. Because

1 .
Oy 190l 1y = —(tosien((t1 — y)" X W)

+ X (101 —t) o (XT(WH sign((W)H1)Tt)))67)

where to = X (t; —y), t1 = o(X 7T W(J;B). Thus, we have

1 1
10w 19algllxllx < — (1 X[l + Z I X2 W[ [16]])

deg + ederea

<
- 4n
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THEOREM 3.2. In the condition of Lemma 3.1, after

k times iterations, the gap between the original DNN
L.’s representation (H.)* and model BFDNN L; =

n

L.+ 810 — 0%||1 + v]|06 Ly (Hy; 0)|]1 s repgresentation
(HE)* is bounded by €21 (1 — (1 — L)F)2e0te0s1e2 " ypere

4n

L is the Lipschitz coefficient of the model and (-)*
represents the parameter after k times iterations.

Proof. Suppose we use a one hidden layer deep neural
network. And to simplify the analysis, suppose we use
linear layer as hidden layers and use sigmoid on the
output layer. Consider the gap between (W§5)* and
(Wi
(W) = (WHE[[ = [[(W§) " — ndwrgy— Le)
- (Wg)kfl - nﬁ(Wg)k,lﬁle
Rewrite it and we have
(W5 = (WHk[l = I(W§) " = ndwe)x—Le)
- (( W(J)c)kil - na(W(J;)kflﬁc)
= MO wiys-1Lglly
< (W ! —ndiweye-1Le
—(( Wg)k_l - na(Wg)k—lﬁz:)Hl
+ Hn'}/a(wg)k—lHaOEg”lHl

Because we use linear and sigmoid function as activation

function, 8(Wf)k,1£c is L-Lipschitz continuous with
0

L < 1. Therefore, we have

(WP — (WL < (21— L)Wt — (W),
+ 1m0 g1y 1100 Lol [1 ]2
<A - L)W — (WHF L

deg + 26169
+ 77770

4an
L o 4€0+6361€2
et p = yn———7;2=—, and we have
¢ P
(W5 = (W)l - 7
eyk— - P
<(1= )W) = (W)l - 2)
¢ P
<= DMIWE — (WPl — )

If we use the same initialization, then it can be simplified
as:

c P
I(WEF = (Wil < £ - (1= 1)")
Therefore, we have

(B = (H) < £ = (1= L))eg
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4 Experiment

In this section, we evaluate the proposed BFDNN
framework with the aim of answering the following
questions:

Q1 Does the proposed framework filter the sensitive
information from the original deep neural network
model?

Q2 Does the proposed framework maintain the perfor-
mance on the original classification task?

Q3 Does the proposed framework improve fairness with
respect to traditional definitions of fairness, such as
Statistical Parity and Equal Opportunity?

Q4 TIs the proposed framework able to converge quickly?

We compare the proposed framework with the following
baseline methods including state-of-the-art fair classifica-
tion and fair representation methods. We also include a
variant of the proposed BFDNN framework for ablation
studies.

e DNN, a simple one hidden layer DNN for classification
without any fairness contraints;

e IRAT [23], a state-of-the-art fair representation
method, which realizes the independence between rep-
resentation and sensitive features in a VAE framework;

e FLR [4], a fair classification approach which outputs
similar predictions for instances in the same class with
different sensitive feature values;

e MFC [25], another popular fairness classification
approach which optimizes the classification accuracy
under fairness constraint to comply with disparate
treatment criterion;

e MFDNN, a variant of the proposed BFDNN frame-
work. Its objective is to optimize the following mul-
titask loss function: Lppue = ale + (1 — @) Lyrands
where L. is the loss of original DNN classification and
Lqnq measures the KL-divergence between a classifier
defined on the last hidden layer of DNN and a random
classifier. MFDNN just trades off L. and L,4,q4, but
BFDNN can get the optimal solution via its bi-level
optimization framework.

4.1 Datasets and Experiment Settings We inves-
tigate the effectiveness of the proposed framework on
two public benchmark datasets: Adult [8] and German
Credit data [8], which are widely used in fairness re-
search. The statistic information of the two datasets is
summarized in the supplementary.

To evaluate the proposed framework and baselines,
we adopt the following metrics:
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Table 1: The performance of all the methods on original classification task shown by F1 and AUC measures (the
higher the better), and the performance on sensitive feature prediction shown by F1(s) and AUC(s) (the lower the
better). We use the bold and underline to denote the best and second best performance, respectively.

Adult German
F11 AUC1T Fl(s) 4 AUC(s) | F11 AUC1T Fl(s) 4 AUC(s) {
DNN 0.6658  0.9030  0.6459 0.8572 0.8189  0.7284  0.7960 0.6524
IRAT 0.5514  0.8523 0.4668 0.7492 0.8423 0.7597 0.8316 0.6730

CFFR 0.6418  0.8864  0.6694 0.8766 0.8017  0.6812  0.8084 0.6456
MFC 0.6151  0.8748  0.6605 0.8651 0.7850  0.6025  0.8120 0.6225
MFEFDNN | 0.6699 0.9059 0.5976 0.8283 0.8116  0.7409  0.8000 0.6344

0.7304  0.6140

BFDNN ‘ 0.6679  0.9025  0.4933 0.7600 0.8042  0.7367

e To evaluate the classification performance, we use
F1 score and AUC. We evaluate the classification
performance on both the original task and the sensitive
feature prediction task. For the former, the higher
F1 score and AUC the better, and for the latter, the
lower scores indicate better fairness.

e The statistical parity score (SP) is defined as
max(% 2 z=0 ?}ivﬁ 22— 8i)
ML > i >, 9
0}, n1 = card{i|z; = 1}, and card defines the cardi-
nality of a set.

where ng = card{i|z; =

e For Equal Opportunity, we define metrics conditioned
on positive class and negative class respectively, named
Positive Equal Opportunity Score (PEO) and Neg-
ative Equal Opportunity Score (NEO). Specifically,

. max(= 3 o G Y. 11 Ti)
PEO is defined as mm(% ZZ:;’j:jy% Zzzlljzlly) )
where ng = card{ilz;, = 0,y = 1}, n; =
card{ilz; = 1,y; = 1}, and NEO is defined as
max(% Ezi=0,yi=0 1_2’7'i7ﬁ Ezl:l,yq,:o 1-9:)
min(n—l0 221‘:01%:0 1—7)71,7711 Zzizl,yizo 1—9;)
card{i|z; = 0,y; = 0}, ny = card{i|z; = 1,y; = 0}.

, where ng =

SP, PEO and NEO are in the range of [1,+00). The
lower, the better fairness.

4.1.1 Implementation Details We show the detail
of data pre-processing and implementation infromation
in the supplementary?.

4.1.2 Sensitive Feature Prediction In this section,
we will answer Q1. Table 1 shows BFDNN on the two
datasets. Because this is an imbalanced classification
problem, we use F1 score and AUC to evaluate its
performance. According to Table 1, we have the following
findings:

Zhttps://drive.google.com /file/d /1qTJAPz6nhynb3-
QyduJ2pv4tWvf6um9i/view?usp=sharing
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First, The proposed BFDNN can filter sensitive in-
formation from DNN effectively. According to Table 1,
BFDNN can remarkably degrade the performance on sen-
sitive feature prediction compared with DNN. BFDNN
has 23.6% and 11.3% reduction with respect to F1 and
AUC measures respectively on Adult dataset, and has
8.2% and 6.9% reduction with respect to F1 and AUC
measures respectively on German dataset. Compared
with MFDNN, BFDNN also has superior performance,
particularly on Adult dataset. We also show the visual-
ization of the final hidden layer of DNN and BFDNN
in Figure 4. It is clear that the instances with different
sensitive feature values are interwoven in Figure 4(b),
which demonstrates the proposed BFDNN’s capability
of maintaining fairness.

Second, the baseline methods including IRAT, CFFR,
MFC and MFDNN cannot guarantee the filtering of
sensitive information. This can be observed from
Table 1. In particular, CFFR and MFC cannot lower
the prediction accuracy on sensitive feature prediction,
which indicates that they still implicitly adopt sensitive
information in their classification model. As for IRAT
and MFDNN, their performance is not stable—each
performs well on one of the two datasets (Adult or
German) but not on the other. Especially, as a variant
of the proposed approach, MFDNN cannot guarantee
the exclusion of sensitive information from the model,
and this confirms the necessity of the proposed bi-level
optimization framework.

4.1.3 Original Classification Task In this section,
we will answer Q2. F1 score and AUC in Table 1
demonstrate the performance of all the methods with
respect to the prediction of the class label y. We have
the following findings:

First, the proposed BEDNN can still make accurate
predictions on the original classification task. As can
be seen in Tablel, BEDNN can achieve similar or even
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Figure 2: The performance of all methods with respect

to fairness metrics on two datasets.
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Figure 3: The convergence curve of BEDNN on two
datasets.

higher F1 and AUC values compared with DNN, which
shows that the proposed framework can preserve most
of the discriminative information without relying on
sensitive information. Thus, the proposed framework
can effectively maintain original model’s accuracy and
exclude sensitive information.

Second, IRAT, CFFR, and MFC degrade the clas-
sification performance significantly. For example, the
classification measures of IRAT on the original classi-
fication task drop significantly. On Adult dataset, the
F1 score is only 0.5514 (17.2% reduction compared with
DNN). As for CFFR, its AUC is only 0.6812 (6.5% re-
duction compared with DNN) on German Credit dataset.
Similarly, the gap in the classification measures between
MFC and original DNN is quite large. Such results
show that even though some fairness-aware classification
approaches improve fairness measures, but the improve-
ment is at the cost of degrading original classification
performance.

4.2 Existing Fairness Metrics In this section, we
will answer Q3. Fig 2 shows the performance of all the
methods with respect to existing fairness metrics SP,
PEO and NEO on the two datasets. We can observe the
following that the proposed framework can also improve
upon traditional fairness metrics, including Statistical
Parity and Equal Opportunity. This can be observed
based on the superiority of BEFDNN over DNN and
MFDNN. According to Fig 2, on two datasets, BFDNN
significantly outperforms DNN with respect to fairness
metrics including NEO, PEO and SP. Although MFDNN

206

(a) DNN for classification (b) Proposed BFDNN

Figure 4: The visualization of final hidden layer of
models for classification on Adult dataset via t-SNE.
Sub-figure 4(a) is the visualization of original DNN
and sub-figure 4(b) is the visualization of the proposed
BFDNN.

improves fairness in some cases (e.g. NEO on Adult
dataset, SP on two datasets), it still cannot achieve
satisfactory fairness results based on the other metrics.

4.3 Convergence In this section, we will answer Q4.
To test the convergence of BFDNN, we conduct the
experiment on Adult and German Credit datasets by
recording the values of the loss function at different
epochs. Fig 3 shows the convergence of BFDNN on the
two datasets. As can be seen, the proposed BFDNN
converged quickly on both datasets.

5 Conclusions

Motivated by the limitations of existing fair classification
algorithms, we proposed a new fairness definition that
measures the capability of an algorithm in filtering out
sensitive information from the classification model. We
then proposed an effective bi-level optimization frame-
work that not only satisfies the defined Fairness Under
Strict Unawareness condition but also maintains the
performance on the original classification task. This is
achieved by optimizing original classification and enforc-
ing sensitive feature predictor to be close to a random
classifier. By this framework, sensitive information is
excluded from the model but only highly discriminative
and insensitive information is kept. Theoretically, we
proved that gap between sensitive feature predictor and
random classifier is bounded. In addition, the differ-
ence between the last hidden layer of original DNN and
that of the proposed BFDNN is also bounded. Exper-
imental results on Adult and German credit datasets
demonstrate that the proposed framework significantly
improves fairness in terms of the proposed definition as
well as existing fairness metrics while maintains high
classification accuracy on the original task.
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