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ARTICLE INFO ABSTRACT

Keywords: This paper introduces five new density and accuracy metrics for aerial point clouds that address the complexity
Remote sensing and objectives of modern, dense laser scans of urban scenes. The five metrics describe (1) vertical surface density
LiDAR

(points per area on vertical surfaces); (2) vertical density as a function of horizontal density; (3) vertical surface
accuracy; and a decomposition of error into (4) within-pass and (5) cross-pass components. Specifically
considered is vertical surface coverage and the practice of overlapping flight passes to reduce the occlusions and
achieve the vertical density needed for twenty-first-century use cases (e.g. curb and window detection). The
application of these metrics to a quartet of recent urban flyovers demonstrates their relevance by establishing (1)
the efficacy of considering sensor position and wall height when predicting point density on vertical surfaces; (2)
that cross-pass registration accounts for a disproportionate amount of the vertical surface error (but not hori-
zontal) and provides a meaningful parameter to compare high-density, urban point clouds; and (3) that
compared to horizontal density and accuracy, the vertical counterparts are disproportionately impacted (posi-

urban aerial laser scanning
LiDAR density

LiDAR accuracy
registration error

tively for density and negatively for accuracy) by modern, optimized flight missions.

1. Introduction

While aerial light detection and ranging (LiDAR) [also known as
aerial laser scanning] has been commercially available since the 1960s
(Petrie and Toth, 2018), its adoption, project scale, and range of appli-
cations have expanded rapidly in the past two decades. This is most
easily seen in national aerial LiDAR scan proliferation, which has been
driven by radical improvements in LiDAR output density. For example,
in 2003, The Netherlands undertook its first national scan at 0.1-2
pts/m?, followed by 3 successive surveys at increasingly higher point
densities (6-10 pts/m? in 2012 and in 2019, with 10-14 pts/m? — planned
for completion in 2022). At least 9 other countries have completed na-
tional surveys with point densities between 0.5-20 pts/m? (Table 1). In
2016, the United States Geological Survey (USGS) launched the 3D
Elevation Program (3DEP), with the goal of acquiring the first national
LiDAR survey in the United States (US) by 2023. Motivation for that
project was in part based on a predicted fivefold ($13 billion) return on
investment (USGS, 2020). In the USGS’s most recent annual report, 67%
of the US was surveyed or in the process of being surveyed, with a
minimum Aggregate Nominal Point Density of 2 pts/m? (USGS, 2020).

Much denser LiDAR scans in the range of 50-70 pts/m? have been

* Corresponding author.

commissioned at the municipal level (Table 1). These include Vienna,
Austria and portions of the cities of Duursche and Zeebrugges in The
Netherlands (Vo et al. 2016). Those densities were typically achieved by
helicopter at lower flight altitudes [300-400m above ground level
(“AGL™)] with a single flight pass or minimally overlapping flight passes,
as opposed to the fixed-wing aircraft used in the national scans. The
stated use cases for denser municipal scans vary but often include
disaster recovery and flood risk assessment (NYC DOITT, 2018), urban
planning and asset management (Hofle and Hollaus 2010), and building
modeling (Forlani et al. 2006).

Despite increased point densities, the vertical data capture for many
municipal efforts remains too sparse for a range of applications such as
street curb and utility pole detection (Laefer 2019) or vertical feature
classification (e.g. doors and window) for machine learning models
(Zolanvari et al. 2019). To that end, a handful of district-scale, urban
aerial LiDAR scans have achieved substantially higher point densities,
more comprehensive coverage, and improved vertical data density by
combining multiple, overlapping flight paths oriented diagonally to the
street grid and flown at slower speeds (e.g. 90km/h) [Hinks et al. 2009]
and lower heights (e.g. 300-400m AGL) [see Table 1]. One of the first
such scans was conducted in 2007 over a 1 km? area of Dublin, Ireland
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Table 1

Notable Aerial Scans (* indicates projected completion year)
Location Type YearCompleted  Point Density (pts/m?)  Spatialextent(km?)  FlightAGL (m)  Source
Denmark National 2015 8 43,000 - Flatman et al., 2016
Estonia National 2011 2-3 45,000 1300-2400 Estonia Land Board, 2019
Finland National 2010 0.5 338,000 - NLS Finland, 2020
Netherlands (AHN-1) National 2003 0.1-2 42,000 - AHN, 2020
Netherlands (AHN-2) National 2012 6-10 42,000 - AHN, 2020
Netherlands (AHN-3) National 2019 6-10 42,000 - AHN, 2020
Netherlands (AHN-4) National 2022* 10-14 42,000 - AHN, 2020
Poland National 2015 4-12 290,000 - GUGIK, 2020
Spain National 2015 0.5 506,000 - PNOA, 2020
Slovenia National 2015 5 20,000 - ARSO, 2015
Switzerland National 2023* 15-20 40,000 - Swisstopo, 2020
Sweden - Laserdata NH National 2009 0.5-1.0 450,000 1700-2300 Lantmateriet, 2020
Sweden - Laserdata Skog (forest) National 2018 1-2 337,500 3000 Lantmateriet, 2020
United States National 2023* >2 9,834,000 - USGS, 2020
Belgium - Flanders DHMV-I Regional 2004 0.05 14,000 - Flanders Information Agency, 2006
Belgium - Flanders DHMV-II Regional 2015 16 14,000 - Flanders Information Agency, 2015
Vienna, Austria Municipal 2007 50 400 - Vo et al., 2016
Duursche, Netherlands Municipal 2007 70 1 - Vo et al., 2016
Zeebrugges, Netherlands Municipal 2011 65 1 300 Vo et al., 2016
Dublin, Ireland (2007) Municipal 2007 225 1 400 Laefer et al., 2014
Dublin, Ireland (2015) Municipal 2015 348 <2 300 Laefer et al., 2017
Brooklyn, NY, USA Municipal 2019 570 1 300-400 Laefer and Vo, 2020

a) Brooklyn Army Terminal from 2017 scan
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b) Brooklyn Army Terminal from 2019

(NYC DOITT 2018)

scan (Laefer and Vo 220)
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Fig. 1. Comparison of Aerial LiDAR scans of the Brooklyn Army Terminal. Dark areas are locations without data. Images rendered using ambient occlusion.

and combined 44 flight paths for an aggregate point density of 225 pts/
m? (Vo et al. 2016). In 2015, the same team rescanned a slightly
expanded area using the same flight specifications but with improved
equipment. That scan reached an aggregate point density of 348 pts/m?
over 1.5 km? (Laefer et al. 2017). Most recently, a 2019 multi-pass scan
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of a 1 km? area of Brooklyn, New York achieved an average aggregate
point density of 570 pts/m? (Laefer and Vo 2020) using similar specifi-
cations to the Dublin, Ireland scans. Fig. 1 shows a traditional, low-
density scan (a) and a recent, high density scan of the same building (b).

To date, existing density and accuracy metrics for single and multi-
pass aerial LiDAR have only considered point density on horizontal
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surfaces and accuracy of the point cloud as a whole. Such metrics fail to
directly address two emerging hallmarks of contemporary urban scan-
ning: vertical surface capture characteristics and the impact of
combining numerous flight paths. Arguably, new metrics are needed
that explicitly consider vertical surface point density and the error
introduced from combining overlapping flight passes (not just strip ad-
justments). To address these gaps, this paper introduces the following
metrics: (1) vertical surface density; (2) vertical density as a function of
horizontal density; (3) vertical surface accuracy; and a decomposition of
error into (4) within-pass and (5) cross-pass components. These metrics
are intrinsic and do not require external ground truth measurements. As
part of this metrics development, the angle of capture analysis of Hinks
et al. (2009) is extended to include vertical density at various wall
heights for a popular commercial scanner type. This paper aims to
demonstrate the importance of these metrics by comparing equivalent
portions for three contemporary aerial scans.

As the topic of aerial point cloud data acquisition is a large one,
several related topics will be considered as outside the scope of this
study. These include completeness, absolute accuracy with respect to
ground control points, error attribution, and impact of flight path
planning on point cloud accuracy.

This paper proceeds with a historical background of aerial LiDAR
metrics, practices, and concerns (Section 2), followed by a description of
the proposed metrics, the methodology utilized to compare the point
clouds, and the datasets (Section 3). The results follow (Section 4), as
well as a discussion of the sensitivity and robustness of the new metrics
(Section 5). The paper closes with a discussion of potential use cases for
high-density LiDAR scanning and future work (Section 6).

2. Background

This section provides context around the traditional metrics for point
cloud characterization, the methods for performing aerial LiDAR scans,
and the impact of those methods on point cloud density and accuracy.

2.1. Aerial LiDAR scan metrics

Traditional aerial LiDAR scan metrics have focused on density and
accuracy. For multi-pass scan missions, the most common density met-
rics relate to aggregate counts. These include (1) the aggregate nominal
pulse density — the average number of pulses per area of a relatively flat,
horizontal surface within the surveyed swath, and (2) the aggregate
nominal pulse spacing — the square root of the inverse of the pulse
density. Spacing is more common for low-density scans, whereas density
is more typical for scans with densities exceeding 1 pts/m? (Heidemann
2018). Both metrics are dependent on sample surface selection: if the
sampled surface is not representative of the dataset overall, then the
corresponding metrics will not be representative either.

Density metrics must differentiate between pulses and points. In
reporting metrics, the term pulse refers to the first return obtained for
each emitted pulse. A single emitted pulse from a LiDAR unit may
generate multiple returning points, if the emitted encounters multiple
objects on its path groundward and a portion of the pulse reflects off of
each object. Because of this phenomenon, the point count is nearly al-
ways higher than the pulse count for a given dataset. For example, the
2019 Sunset Park scan listed in Table 1 has 1.06 billion points obtained
from 924 million pulses. As most applications use all available points,
point-based metrics are usually more useful when profiling existing
datasets, while pulse-based metrics are usually used during planning.
The remainder of this paper considers aggregate nominal point density
(ANPD) as the preferred reporting metric.

The second common metric for aerial LiDAR is accuracy. Quantifying
the accuracy of an aerial LiDAR scan is inherently problematic due to the
absence of ground truth for the entirety of the scan area. Thus, aerial
LiDAR scans typically rely on ground control points, but these are
expensive to implement and require access to the ground area being
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mapped (Habib 2018). Common practice estimates local accuracy,
typically described using root mean squared error (RMSE). This
approach involves identifying a relatively flat (or at least planar) area
and evaluating the point cloud’s vertical deviation from that surface
(ASPRS, 2004). RMSE can only capture error in the vertical direction.
Other evaluation methods focus on quantifying relative accuracy by
considering areas of overlap between different point clouds (Latypov
2002). Such a methodology considers a flat surface, G, and the points
that lie within the area Ag comprising that surface. The average height
for the points of each point cloud is calculated, and the height difference
between point clouds is an indicator of closeness. Height differences can
be calculated for multiple surfaces, and the statistics (e.g., mean, stan-
dard deviation) of those differences provide a measure of relative ac-
curacy between point clouds. This paper does not address error
attribution, (e.g., ranging error, angular error, inertial measurement
unit error) as the subject is well-studied elsewhere (e.g. Glennie 2007).

2.2. Aerial LiDAR scanning practice

Historically, aerial LIDAR scanning has employed flight planning and
equipment parameters reflecting rural applications. These include data
collection from fixed-wing aircraft flown at altitudes of 1km-3km AGL
and at relatively high speeds (150-300 km/h) with minimal coverage
overlap between adjacent flight strips. These choices tend to generate
low point densities (below 10pts/m?), despite the ability of modern
equipment to capture 35 —50pts/m? in a single pass (Riegl 2012).

Point clouds resulting from these data acquisition strategies are
sufficiently dense and accurate for large-scale elevation mapping and
forest density estimation but do not support many urban applications (e.
g. Zolanvari et al. 2019; Vo et al. 2019). For example, aerial LiDAR scans
with point densities below 10pts/m? are not viable for applications
involving sub-building scale objects (e.g. chimneys, steps). When tasked
with such applications, local communities have had to rely on terrestrial
or mobile LiDAR or ground-based imagery for dense, local point cloud
generation either as the sole data set or as a supplementary data set. As
an alternative, Hinks et al. (2009) proposed modifications in aerial
LiDAR flight paths, to increase aggregate point densities and minimize
vertical surface occlusions. Specifically, increasing strip overlap to
67%-+, flying at lower speeds and altitudes AGL, and combining multiple
flight passes has generated point densities over 500 pts/m? (Laefer and
Vo 2020). By combining the overlapping flight passes collected in this
manner, complete surface coverage (which occurs when beam footprints
sufficiently overlap to cover the entire surface) can be attained without
expanding beam footprints and sacrificing resolution, as described in
Mandlburger et al. (2015). Executing flight paths that are low and di-
agonal to the grid can be difficult when extremely tall buildings are
present sporadically or no grid exists, but this paper does not address
these more site-specific aspects of flight planning and, instead, addresses
the general and more commonly encountered scenario.

2.3. Point density as a function of flight parameters

Flight speed, altitude AGL, and angle of capture all influence aerial
LiDAR point density. To most clearly explain their impacts, the
following description assumes an even, horizontal surface and a single
return per emitted pulse.

LiDAR scanners with a parallel scan pattern emit pulses across their
operating range (up to 30" from nadir, for the scanners used to capture
the datasets considered herein) at a constant pulse repetition rate,

fscanner (‘?) If Ascanned (’"{) denotes the rectangular area of ground

m2

scanned in one second, then point density, p(pL‘), can be calculated:

fYL‘{lﬂH(‘I‘
) = 1
F A.u'armed ( )
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a) Schematic measurements of point
density for aerial LIDAR considering points
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b) Point density as a function of flight velocity and
scanner AGL based on Riegl Q680i specifications of
fscanner =400 kHz, max(6,)=30° .

Fig. 2. Impact of flight parameters on point density.

a) Horizontal
resolution at nadir.

b) Horizontal and vertical resolution at 6.

Fig. 3. Impact of angle of capture on point resolution.

whereA.gmea(m?) is the product of two orthogonal components:
daeross (M) (the end-to-end distance scanned orthogonal to the path of the

aircraft) and dalong@) (the distance scanned per second along the

aircraft path); ducros and daong are wholly determined by flight
parameters:

dacross = 2Htan(max (6y))

(2)

where H is the aircraft’s altitude AGL in meters, 6y is the scan angle

dalung = Vaircraft

relative to nadir, and Vajrcraft (%) is the velocity of the aircraft. Horizontal

point density can be calculated as a function of the aircraft’s altitude
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AGL and speed :

_ fscanner _ f.vcarmer

r= Ascanned B zvaircrafthan(max(eH))

3

Fig. 2 illustrates these factors.

The scan angle (the angle between the emitted pulse and nadir) also
impacts point density. Hinks et al. (2009) considered its impact on linear
resolution (or point spacing), defined as the distance between consec-
utive points. This is inversely related to the horizontal point density
based on Eq (1):

scanner 1
p = Lramer_ @

Ascanned RaL‘m:SRalong



M.H. Stanley and D.F. Laefer ISPRS Journal of Photogrammetry and Remote Sensing 175 (2021) 268-281

1.0 P = pycos’ () 9
0.8 py = pytan(0y) 10)
- 0.6 Horizontal density decreases as 6y increases, but vertical density
Q increases in the range 0° < 0y < 45 before decreasing from 45" < @y <
204 90" (Fig. 4). Nadir scanners typically operate in the range 0’ < 6y < 30°,
but oblique scanners, can operate across larger scan ranges.
0.2
. 3. Methodology
0017 ' ‘ , ‘ , ‘
0 15 30 45 60 75 90 This section introduces metrics related to general data yield and
64 (degrees) localized mission accuracy. As part of this, the angle of capture analysis
, of Hinks et al. (2009) is extended to include vertical density at various
Fig. 4. Point densities relative to py (0" < 0 + 01 < 90°). wall heights. The workflow used to apply these metrics is then
explained, followed by a detailed description of the datasets used to
where Rgcross (M) is the across-path point spacing, and Reong(m) is the demonstrate the value of the metrics.
along-path point spacing. Modern LiDAR scanners can be configured so
that Recross and Riong are roughly equal. Importantly, Recross is indepen- 3.1. Vertical point density
dent of Ryong (Which is assumed constant for this analysis) which means
that p is inversely proportional to Racross- To fully capture the impact of the aircraft location on vertical den-
Fig. 3 illustrates the impact of angle of capture on Rqcross at nadir sity, this section extends the angle of capture analysis by Hinks et al.
(Rn), at angle of capture 0y (Rp), and at the base of a vertical wall (Ry), (2009) of Section 2.3 to consider the vertical resolution at different wall
which can be quantified: heights. Fig. 5a extends Fig. 3 by introducing Ry, the vertical resolution
Ry = Htan(6,) (5) on the vertical wall at height h. Ry, can be expressed in terms of Ry, 0y,
and Oy
Ry = Rysec*(0y) (6) sin?(0y)
Ry =Ry————— (€ND)
Ry = Rycot(0) % sin” (6 + 6w)

Eq (11) can also be written in terms of point density:
Where H is the aircraft altitude AGL, and 6, is the angular step width a (b W P 4

of the LiDAR scanner (the angle the scanner sweeps between consecutive sin® (O + Ow) tan(Oy + 0, )sin* (O + Ow)

pulses). Modern scanners typically have 6, < 0.1°, so the approxima- Pw =Pv sin®(6y) = Pw tan*(Oy) 12)

tions sin(;,) ~ 0 and cos(f;) ~ 1 are used in Eqs (6-12). As the angle of

capture, 6y, increases from 0 at nadir, Ry worsens. If the beam en-

counters a wall, the vertical resolution at the base of the wall, Ry, is

worse still. Critically, if the horizontal offset from the flight path to a

wall is small and the aircraft altitude AGL is large, then 6y will be small,

and Ry will be large. In fact, Ry is infinite at nadir, as the scanner cannot

capture a vertical surface positioned directly below the scanner.
Equations (5-7) can be written in terms of point density:

As stated in Section 2, point density is lowest at the base of the wall,
which agrees with Eq (12): min(p,) =p, in the range 0" < 0y +
Ow <90, and p, corresponds to 0y = 0. Importantly, the density
gradient on the wall is larger for lower altitudes AGL, as both 6y and
Owincrease. This implies that angle of capture effects are more signifi-
cant for modern, high-density aerial LiDAR scans. Fig. 5b shows the
dependency of p,, on wall height and offset distance.

Aggregate nominal point density for vertical surfaces (ANPDy) is

1 _ 1 ®) defined identically to its horizontal counterpart, ANPDy, but applied to
ReacrossRaiong  Htan(01) Rutong vertical surfaces. While ANPDy is commonly reported for aerial LIDAR
datasets, ANPDy is not. ANPDy cannot be directly calculated from

Pn =

é E 75
E
= 50
5]
el
=
225
]
T
H—
0
0 50 100 150 200
Distance from aircraft (m)
10 20 30 40 50
N ow (23)
a) Vertical resolution at height h on a vertical b) Point density as a function of wall height
surface. and wall distance from aircraft; assumes flight

and scanner parameters from 2019 scan
detailed in Section 3.4 below.

Fig. 5. Vertical resolution as a function of height on wall and wall distance from a helicopter.
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o O
O Flight Pass k
@© Flight pass m

@

a) Plane S is fitted to the points collected from

two independent flight passes, k and m; z; is the
distance from each individual point to plane S
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b) The term r,fi)is the distance from plane k, which
was fitted to only data from flight pass k, while

h?)is the distance between planes k and S

Fig. 6. Decomposition of distance z; (left) into h(Sk) and r,f) (right) for point i from flight pass k. Two flight passes are shown but the approach is applicable to any

number of passes.

ANPDy, as the two metrics are not directly proportional due to the
impact of angle of capture, among other factors. To address this gap, this
paper introduces 1y, the ratio of horizontal to vertical density which is
defined as:

_ ANPDy,
"wv = ANPD,

(13)

The term #,, is greater than one for nadir scanners operated in the
0’ < 0y < 45’ range, as depicted in Fig. 4. Notably, ANPDy, and 7, do
not explicitly consider the wall height, as they are aggregated over the
entire vertical surface. The upper portions of the tallest building in the
study area could be used to predict the theoretical maximum density.
Thus, the overall vertical yield will be generally lower than the theo-
retical maximum due to surface roughness and the presence of windows,
among other things. In contrast, horizontal planes have significantly
fewer, highly reflective surfaces where returns fail to generate.

The equations in Sections 2.3 and here assume a nadir scanner.
Similar equations can be derived for other types of scanners, such as
oblique scanners (where the scanner does not face directly downward
from the aircraft) by adjusting 6y and 6, for the scanning angle and
pattern. Unmanned aerial vehicles (UAV) used in scanning can fly below
building height and utilize scan angles 8y > 90" measured from nadir.
The analysis demonstrated herein was devised as an extensible frame-
work that can be adjusted for the rapidly growing variety of scanner
types and platforms that are becoming increasingly available.

3.2. Accuracy

While knowing the overall accuracy of a point cloud is helpful for
single pass aerial LiDAR, the impact of overlapping flight passes must be
considered in high-density datasets. The value of increased point density
obtained from multiple flight passes must be weighed against the po-
tential of increased error due to misalignment of multiple flight passes.

The proposed metrics decompose local accuracy for point clouds
composed of multiple, overlapping flight strips by an extension of the
approach introduced in Latypov (2002). However, unlike Latypov
(2002), who defined similarity metrics for pairs of overlapping,
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disparate point clouds, the accuracy metrics introduced herein decom-
pose the error of a single point cloud into cross-pass and within-pass
components. The focus here is error attribution. Additionally, the met-
rics introduced herein generalize to any surface orientation (i.e., verti-
cal, horizontal, canted) and any number of flight passes, whereas
Latypov (2002) only considered pairs of flight passes on horizontal
surfaces. Fig. 6 illustrates the proposed approach.

Beginning with RMSE of a point cloud with respect to a flat surface,
the distance z; of point i from the surface can be written as:

z=h{ +r a4
where, h{¥ is the average distance of points in flight pass k from the

surface S. Here, the known surface G is replaced with S, a plane fit to the

points from all flight passes, and h(sk) is measured in the direction
orthogonal to S, rather than Latypov’s vertical direction. This general-
ization allows for the application to non-horizontal surfaces. The term

r,((i)is the deviation of z; from h(sk) for a point i in flight pass k.
Substituting Eq (14) into the equation for RMSE:

A=

>4
N
Within each flight pass k, the sum of the residuals is zero, so the

D oidick <h(sk) + rl(ci)
N-1

2
Zk (nkh(sk) + VlkMSEk>
N-1

RMSEs =

(15)

cross-term Zkzh(sk)r,(j) is zero. Here, RMSE; is the square root of the
weighted average over all flight passes of the average orthogonal offset,

h(sk), and the mean squared error of the points in the flight pass, MSE;.
Hence, RMSE can be decomposed via two new metrics, W and C:

[ 1
W= mik:nkMSEk
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| Input: ALS point clouds |
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Identify flat surfaces in the scanned environment |
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|<]> Sample a random point in one of the surfaces
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Draw a 4m? square around the sample point

v
Collect all the data points falling within the square

e

Discard if square is obstructed
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Repeat for each dataset

Repeat for 10,000 patches

‘I-
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a) Surface selection and sampling processes.

b)
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Sample surfaces around the Brooklyn Army Terminal in
Sunset Park, Brooklyn, NY. Yellow rectangles indicate
the horizontal surfaces. Pink rectangles indicate the
vertical surfaces (Map, Google Maps).

Fig. 7. Workflow and surface selection.

1 2
_ (k)
C= ,N— 1 Ek nihg

RMSEg = \/C? + W?

where W is the weighted average MSE over all flight passes and
represents the portion of error attributable to within-pass random error.
The term W corresponds to the precision of surface measurements and is
likely to be dependent on the quality of the scanning equipment

(16)

Table 2

(scanner, IMU) and the roughness of the selected “true surface”. In

contrast, C is the weighted average of h(sk) over all flight passes and
represents the error attributable to misalignment across flight passes.
The parameter C is mostly dependent on the quality of system calibra-
tion, which often can be reduced (albeit not entirely eliminated) by strip
adjustments after data collection. Notably, Eq (16) is an exact decom-

position of RMSE: because h(sk) and r,((i) are defined orthogonally to the
surface S, no approximation is introduced.

Flight parameters and AGL visualization for the three scans of Sunset Park, Brooklyn.

USGS 2014 (OCM Partners, NYC 2017 (NYC DOITT, Sunset Park 2019 (Laefer and Vo,
2015) 2018) 2020) 2290m w 2014
Scan date March/April 2014 May 2017 April 2019
LiDAR scanner Leica ALS70 Leica ALS80 Riegl LMS-Q680i
Pulse rate 239 kHz 314 kHz 400 kHz
ov o o a0 1800m — \Gg§~ 2017
Aircraft Cessna 404/ Cessna 402C Bell 206
Cessna 310 (fixed wing) (rotary)
(fixed wing)
Flight speed 278 kph 270 kph 93 kph
Flight AGL 2290 m 1800 m 300 m
Swath sidelap 30% 60% 77%
# of flight 4 7 82
passes
Total flight 25 min 2h 6 min 5h 0 min
time
300m — °‘E 2019
30m — oo~ Army Terminal

a) Flight parameters for the three scans

b) Flight altitude AGL relative to tallest building in scanned

area.
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“a) Army Terminal 2014 b).

d) Parking Lot Light 2014 e)

g) Parked Car 2014

Army Terminal 2017

11

Parking Lot Light 2017

h) Parked Car 2017
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c) Army Terminal 2019

{

f) Parlng t ngh 01

i) Parked Car 2019

Fig. 8. Similar objects shown for each of the three scans. Points are shaded by the intensity captured. The vehicles are not the same from scan to scan, but similar

models were selected from the same area of each scan.

3.3. Surface sampling workflow

The main components of the proposed workflow involve the surface
selection and patch sampling (Fig. 7a). The recommended process in-
volves choosing planar, smooth, unobstructed, and opaque surfaces
(Fig. 7b). Once a surface is chosen, the area to be sampled was bounded
precisely by selecting three points near the corners of the area, fitting a
plane to those points, and defining a rectangular boundary lying in the
plane, as shown in Fig. 7b. Identifying and bounding the sample surfaces
was performed manually, but the remainder of the workflow can be
automated.

Points were sampled randomly from within the rectangular surface,
and a square, sample patch was drawn around the point. Sample patch
dimensions were devised to be (1) sufficiently large to ensure that
patches include more than three points, (2) sufficiently small to fit the
smallest dimension of the sample surface, and (3) the same for vertical
and horizontal surfaces. Sample patches were discarded, if the patch
contained unwanted obstructions (e.g., car, bench, wall ornamentation).
Ten thousand patches were sampled for both horizontal and vertical
surfaces. No restriction was placed to prevent patches from overlapping;
while overlapping patches may introduce correlation across patches, the
analyses performed herein do not rely on uncorrelated patches. The
same patches were used for each dataset. Statistics were calculated over
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the random sampling.

3.4. Datasets

To demonstrate the usefulness of the proposed metrics, as well as the
specific gains generated from targeted, high-density, municipal scans, a
trio of recent scans (2014-2019) of a 1km? area of Brooklyn, New York
were compared. Buildings in the area are low- to medium-rise and do not
exceed a height of 30m. Each scan was conducted under different flight
parameters and with different equipment (Table 2). Each scan was
commercially provided. Strip adjustments were performed on the 2019
scan. No post-processing information on 2014 and 2017 scans was
available.

The 2014 scan was commissioned by the USGS and conducted by a
third party contractor to evaluate storm damage and erosion of the local
environment due to Hurricane Sandy. The 2017 scan was funded by New
York City after being awarded a Disaster Recovery Community Devel-
opment Block Grant related to Hurricane Sandy. These two scans
covered large land areas and were conducted by fixed-wing aircraft at
high speeds and large altitudes AGL. In contrast, the 2019 NYU-funded
scan was conducted by a helicopter at a lower speed and a lower altitude
AGL. Fig. 8 provides a selective visualization of objects in these scans
and demonstrates the difficulty of identifying sub-building scale objects
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Table 3

Density metrics for Brooklyn, NY LiDAR Scans. Horizontal theoretical point
density is calculated at nadir. Vertical theoretical point density is calculated as
the average density over wall heights from Om to 30m for a wall at 6y = 27.5
(max angle for which top of wall is fully within operating range).

USGS 2014 NYC 2017( Sunset Park
(OCM Partners NYC DOITT, 2019(Laefer and
2015) 2018) Vo 2020)
Horizontal
Theoretical point 2.58 4.46 33.27
density per flight pass
(pts/m?)
Av. point density per 2.26 3.64 25.78
flight pass
Actual aggregate point 6.50(SD: 2.19) 10.93(SD: 510.49(SD:
density(pts/m?) 2.45) 24.80)
Av. number of 2.88 3.00 19.80
overlapping flight
passes
Vertical
Theoretical point 1.15 1.98 14.83
density per flight pass
(pts/m?)
Av. point density per 0.24 1.02 5.24
flight pass
Av. point density - 1.81 14.48
parallel flight passes
Actual aggregate point 0.14(SD: 0.12) 0.66(SD: 1.39) 49.74(SD: 10.24)
density(pts/m?)
Av. number of 0.60 0.65 9.49
overlapping flight
passes
Ny 46.08 16.49 10.26

in low density scans.

For the datasets tested herein, portions of a largely empty parking lot
were used to sample the horizontal data and flat, unadorned portions of
building walls with no windows were used as vertical surfaces (Fig. 7b).
The goal of this paper was to document the built environment, so sur-
faces were chosen to be free of vegetation. The horizontal data came
from 4,460m? of asphalt from 2 parking lots. The vertical data were

a) USGS 2014 b) NYC 2017
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taken from 350m? from 4 vertical strips along a single building. Hori-
zontal samples were discarded if a car was present, resulting in the
resampling of roughly 30% of the initial points. Wall surfaces were
unadorned and free of windows, so no vertical points were discarded.

4. Results

The suite of five proposed metrics were applied to the three datasets
described in Section 3.4. Point density and accuracy on the horizontal
and vertical surfaces are reported for the three scans. Vertical point
density for the 2019 scan are compared to the theoretical predictions at
different heights along the tallest wall in the study area.

4.1. Point density generally

The horizontal densities of the 2014 and 2017 scans (7 pts/m? and 11
pts/m?2, respectively) are similar to each other, but the 2019 scan at 510
pts/m? is more than an order of magnitude denser. This was intention-
ally achieved through use of improved sensor hardware, lower flight
altitude AGL, slower flight velocity, and more overlapping flight passes
(6-7 times more).

While the horizontal density increases progressively for each sub-
sequent scan, vertical density increases much faster, which is evident
from the declining horizontal to vertical density ratio, 7,: 46.1 in 2014,
16.51in 2017, and 10.3 in 2019. The improvement in 1, in newer scans
is directly attributable to the specifics of the flight plan; specifically, the
lower altitudes AGL of the later flights, as shown by the theoretical
values (Table 3). Holding all else constant, a given wall height causes a
larger Oy for lower altitudes AGL. Larger 6y values increase the f,—:}” ratio
[see Eq (12)] and reduce .

Average densities are lower than theoretical densities because sam-
ple surfaces may only be partially visible to some flight passes. This is
particularly true of vertical surfaces, where a flight path may only
generate a few points on the surface because the angle between path and
the surface normal is highly acute. Average point density for parallel
flight paths is provided in Table 3 and is a more direct comparison to the
theoretical density, as Eq (12) assumes a parallel flight path.

c) Sunset Park 2019

Fig. 9. Point cloud of vertical wall of Army Terminal Building in each scan. Blue rectangle indicates a sample surface.
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0 2 4 6 8 10 12 14 16
Point density (pts/m?)
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a) Actual (A) and predicted (P) density for
2019 scan
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Fig. 10. Comparison of actual versus predicted vertical densities at different wall heights for a single flight path in each scan. Ground features obstruct density
estimates below 3m. The predicted densities are calculated from Eq (12) and flight parameters. 2019 path flown at 300m AGL and 97m horizontal offset from wall;
2017 path flown at 1800m AGL and 315m horizontal offset from wall. Flight path not available for 2014 scan, so density could not be predicted.

Table 4

Local accuracy comparison of LiDAR scans for Brooklyn, NY. The 2014 and the
2017 scans had vertical point densities below 1.5 pts/m? (fewer than 6 points per
4m? sample square) and rarely more than one flight pass per sample square. For
this reason, both were excluded from the vertical accuracy analysis.

USGS 2014 NYC 2017( Sunset Park
(OCM Partners NYC DOITT, 2019(Laefer and
2015) 2018) Vo 2020)
Horizontal
Av. number 2.880 3.000 19.800
ofoverlapping flight
passes
RMSEy(m) 0.043 0.017 0.010
Cy(m) 0.019 0.007 0.004
Wg(m) 0.038 0.015 0.009
C/W ratio 0.512 0.456 0.427
Vertical
Av. number - 9.490
ofoverlapping flight
passes
RMSEy(m) - 0.032
Cy(m) - 0.024
Wy(m) - 0.019
C/W ratio - 1.286

4.2. Point density by wall height

Fig. 9 shows the actual vertical data for each of the 3 datasets. The
density by height for each is quantified in Fig. 10. This compares the
2017 and 2019 results to the theoretical point density predictions of Eq
(12); the metadata for the 2014 lacked the explicit trajectory informa-
tion needed for this calculation. The 2017 and 2019 flight paths selected
ran parallel to the wall face at a constant offset, with the entire wall face
in the scanner’s operating range.

The 2019 results largely agree with the predictions, with a mean
absolute error (MAE) of only 0.53pts/m? and mean absolute percentage
error (MAPE) of 3.6%. In contrast, the 2017 density is quite erratic due
to random noise in the very small number of points. This is evident from
the MAE of 0.10pts/m? and MAPE of 49.2%. Eq (12) also correctly
predicted a much larger impact from the angle of capture for the 2019
scan than the 2017 scan due to the lower flight altitude AGL and, hence,
larger angles 0y and Oy .
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Table 5
Density and accuracy metrics for the 2019 scan using different sample patch
sizes.

1m? 2m? 4m?
Density
Horizontal
Point density (pts/m?) 513.23 512.59 510.49
(SD: (SD: (SD:
24.66) 23.20) 24.80)
Av. point density per flight pass 25.92 25.89 25.78
(pts/m?)
Vertical
Point density (pts/m?) 49.73 49.52 49.74
(SD: (SD: 9.88) (SD:
11.45) 10.24)
Av. point density per flight pass 6.16 5.69 5.24
(pts/m*)
Ny 10.32 10.35 10.26
Accuracy
Horizontal
RMSEy(m) 0.010 0.0096 0.0098
Cy(m) 0.005 0.0042 0.0038
Wy(m) 0.008 0.0085 0.0089
Vertical
RMSEy(m) 0.028 0.029 0.029
Cy(m) 0.024 0.025 0.025
Wy (m) 0.014 0.015 0.015

4.3. Accuracy

Table 4 reports the accuracy metrics for horizontal and vertical
surfaces for the three scans. Horizontal accuracy consistently improved
in the more recent scans. The error decomposition in Table 5 shows that
this improvement is due to both lower cross-pass error (Cy) and lower
within-pass error (Wy). For all three scans, the C/W ratio of 0.42-0.52
indicates that the majority of error for horizontal surfaces was attrib-
utable to within-pass error. Critically, Cy decreases in more recent scans
despite the inclusion of significantly more scan in the 2019 [i.e. 19.8
flight passes (on average) versus only 3.0 in 2017 and 2.9 in 2014]. The
decrease in cross-pass ratio indicates that the higher number of passes in
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Table 6
Density and accuracy metrics for the 2015 Dublin scan and 2019 Sunset Park
scan.

Dublin City 2015 Sunset Park 2019
(Laefer et al. 2017) (Laefer and Vo 2020)

Density
Horizontal
Point density (pts/m?) 290.96 510.49
(SD: 50.63) (SD: 24.80)
Av. number of overlapping flight passes 8.40 19.80
Av. point density per flight pass (pts/m?) 34.64 25.78
Vertical
Point density (pts/m?) 24.84 49.74
(SD: 5.99) (SD: 10.24)
Av. number of overlapping flight passes 4.17 9.49
Av. point density per flight pass (pts/m?) 5.96 5.24
Nav 11.71 10.26
Accuracy
Horizontal
Av. number of overlapping flight passes 8.40 19.80
RMSEy(m) 0.013 0.010
Cp(m) 0.009 0.004
Wy(m) 0.009 0.009
C/W ratio 1.002 0.427
Vertical
Av. number of overlapping flight passes 4.17 9.49
RMSEy(m) 0.022 0.029
Cy(m) 0.012 0.025
Wy (m) 0.017 0.015
C/W ratio 0.723 1.678

2019 is less impactful on cross-pass error than other factors (e.g., system
calibration, time between flights). The within-pass error steadily de-
creases over the years from a high of 0.019m in 2014 to 0.004m in 2019.
Notably, cross-pass error remains in the 2019 scan despite post-flight
strip adjustments.

Vertical RMSE is 218% higher than horizontal RMSE for the 2019
scan and nearly as high as the horizontal RMSE for the 2014 scan.
Interestingly, the vertical C/W ratio of 1.68 indicates that, unlike the
findings for horizontal surfaces, the majority of error for vertical sur-
faces is attributable to cross-pass error. Specifically, Cy is 539% higher
than Cy for the 2019 scan (with fewer than half as many flight passes),
while the average single flight pass RMSE is only 112% higher for ver-
tical surfaces.

5. Discussion

Two additional points are relevant to the discussion of new metrics
for high density aerial LiDAR scanning: metric sensitivity to sample
patch size and robustness in its applicability to other locations.

5.1. Patch size sensitivity analysis

The results reported in Section 4 were calculated using a 4m? patch
size. Patch selection size was restricted by the availability of vertical
surfaces uninterrupted by windows. To check if patch size selection
impacted the results, the analysis was rerun on the 2019 data consid-
ering patches of 1m? and 2m?2. Patch size was found to have no identi-
fiable impact on density and accuracy metrics across these scales
(Table 5).

5.2. Robustness: Application to 2015 Dublin scan

To test the applicability of the proposed metrics to other data sets,
they were applied to a 2015 high density scan of Dublin, Ireland (Laefer
etal., 2017). That scan utilized the same LiDAR scanner (Riegl Q680i) as
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the Sunset Park 2019 scan, and combined 44 flight paths flown at a
height of 300m AGL and a speed of 68 kph, but only at 67% overlap and
achieved an aggregate point density of 348 pts/m? over 1.5km? of central
Dublin. Strip adjustments were made to both datasets.

Five sample surfaces were used: (1) a parking lot behind Leinster
House (horizontal), (2) Barnardo Square next to City Hall (horizontal),
(3) a paved walking area in St. Stephen’s Green (horizontal), and (4) the
south and (5) west walls of La Touche House (vertical). Notably, the
surface materials are not necessarily identical to those of the Sunset Park
scans with respect to roughness and reflectivity.

Table 6 provides the density and accuracy metrics for the Dublin
scan. The similar horizontal-to-vertical density ratios (11.71 for Dublin
and 10.26 for Brooklyn) are reflective of the two scans having been
performed under similar flight parameters (altitude AGL and velocity)
and with the same LiDAR scanner. The lower density in the Dublin scan
for both horizontal (43%) and vertical (50%) surfaces reflects the
significantly fewer flight passes compared to the Sunset Park scan (41
versus 82).

The datasets exhibited very similar within-pass error on both hori-
zontal surfaces (0.009m) and vertical surfaces (0.017mand0.015m for
the Dublin and Sunset Park scans, respectively). Similar W values, likely
due to comparable equipment and flight parameters, indicate robustness
of the W metric to different datasets and surface materials. In contrast,
the cross-pass error levels differed more across the two datasets: Cy was
twice as high for Sunset Park (0.025m versus 0.012m). However, Cy is
higher for Dublin (0.009m versus 0.004m). Fig. 11 delves into the causes
of this discrepancy by plotting the mean orthogonal offset, or:

%zk:abs (;@)

for k flight passes. Mean absolute height is an indication of how far a
single flight pass tends to differ from the other flight passes with similar
coverage. For horizontal surfaces, the distribution of mean heights
across flight paths is similar for the two scans, and the larger Cy value for
the Dublin scan is simply due to consistently larger mean heights
(Fig. 11). For vertical surfaces, six flight passes for Sunset Park cause the
majority of Cy. Those six flight passes are all in the same direction
(northeast-southwest), and create very acute angles with the normal of
the sample surfaces. These flight passes are depicted by the dotted black
lines in Fig. 12. None of the flight passes in the Dublin scan are as acute,
which could be the reason that none of them have extreme orthogonal
offsets, unlike that which occurs in the Sunset Park data.

Fig. 13 compares actual and predicted point density at various wall
heights for a single flight pass from both the Dublin and Sunset Park
scans. The predicted densities are calculated from Eq (12) and the flight
parameters. The horizontal offset was 97m for the Sunset Park flight pass
and 110m for the Dublin flight pass, and both passes were flown at an
altitude of 300m AGL. Point density increased at higher points on the
wall for both datasets, as predicted. The Dublin scan, in fact, fits the
prediction more closely than the Brooklyn scan, with a MAE of 0.39pts/

a7

m? and MAPE of 3.8%, though the actual densities were systematically
lower than the predictions. This discrepancy is likely attributable to
local wind conditions.

The newly introduced metrics enabled a richer comparison of two,
modern, high-density urban scans flown for the same mission aims. The
similarities of flight parameters and equipment are apparent from the
similar ny, ratios and within-pass error, W. The cause of the difference
in vertical accuracy was apparent from the error decomposition: acute
angles between flight paths and vertical surface normals in the Sunset
Park dataset increased the cross-pass error.

6. Conclusions

This paper introduces five new metrics for high-density aerial LiDAR
datasets (for assessing existing datasets and future flight planning).
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Fig. 11. Mean orthogonal offset relative to fitted surface S for each flight pass over the samples of both datasets and both dimensions. Two outlier flight passes are
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Fig. 12. Flight paths indicated by overlaid lines and vertical sample surfaces indicated with pink boxes. Dotted black lines in Sunset Park figure indicate flight passes
at extreme acute angles relative to the sample surface normals.

These metrics describe density and accuracy for vertical surfaces and the coverage motivate the need for these metrics. This paper also quantifies
impact of combining numerous, overlapping flight passes on accuracy. the impact of angle of capture on vertical density. Accounting for this
The increased desire for better vertical data capture in urban environ- impact should enable better density prediction during flight planning.

ments and the reliance on multi-pass missions for more complete Beyond the introduced metrics, this paper makes three significant
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Fig. 13. Comparison of predicted (vertical lines) and actual (bars) vertical densities at different wall heights for a single flight path in the scans of Dublin and Sunset

Park (2019).

contributions. The first is the introduction of a vertical density estima-
tion equation that considers both sensor position and target wall height.
By explicitly including the angle of capture, the vertical density (which
cannot be directly estimated from the horizontal density) can now be
reliably predicted for specific buildings of interest. This enables a much
more tailored flight mission if a specific minimum density is required for
visualization or other downstream applications. The second contribu-
tion is the use of cross-pass error as a meaningful parameter to compare
high-density, urban point clouds. For point clouds generated under
similar flight parameters, the cross-pass error will fully identify any
differences in accuracy contributable to the execution of the flyover.
Lastly, the paper identifies and quantifies the disproportionate impact of
modern, optimized flight missions on vertical density (positive) and
accuracy (negative). The detrimental impact on accuracy can be reduced
by avoiding a reliance on highly acute flight paths for documenting
buildings of particular interest. Understanding these factors can improve
future mission planning and subsequent data processing. The verifica-
tion and applicability of the proposed metrics were demonstrated on
four recent, aerial LiDAR scans at two urban locations.

Several of the concepts presented in this paper warrant future
consideration. Foremost is the need to test these metrics on datasets
representing a broader range of flight parameters, equipment calibra-
tion, and surface compositions than what was compared herein. In order
to predict vertical densities more generally, the angle of capture analysis
should be extended to off-nadir scanners and various scan patterns.
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