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A B S T R A C T   

This paper introduces five new density and accuracy metrics for aerial point clouds that address the complexity 
and objectives of modern, dense laser scans of urban scenes. The five metrics describe (1) vertical surface density 
(points per area on vertical surfaces); (2) vertical density as a function of horizontal density; (3) vertical surface 
accuracy; and a decomposition of error into (4) within-pass and (5) cross-pass components. Specifically 
considered is vertical surface coverage and the practice of overlapping flight passes to reduce the occlusions and 
achieve the vertical density needed for twenty-first-century use cases (e.g. curb and window detection). The 
application of these metrics to a quartet of recent urban flyovers demonstrates their relevance by establishing (1) 
the efficacy of considering sensor position and wall height when predicting point density on vertical surfaces; (2) 
that cross-pass registration accounts for a disproportionate amount of the vertical surface error (but not hori
zontal) and provides a meaningful parameter to compare high-density, urban point clouds; and (3) that 
compared to horizontal density and accuracy, the vertical counterparts are disproportionately impacted (posi
tively for density and negatively for accuracy) by modern, optimized flight missions.   

1. Introduction 

While aerial light detection and ranging (LiDAR) [also known as 
aerial laser scanning] has been commercially available since the 1960s 
(Petrie and Toth, 2018), its adoption, project scale, and range of appli
cations have expanded rapidly in the past two decades. This is most 
easily seen in national aerial LiDAR scan proliferation, which has been 
driven by radical improvements in LiDAR output density. For example, 
in 2003, The Netherlands undertook its first national scan at 0.1-2 
pts/m2, followed by 3 successive surveys at increasingly higher point 
densities (6-10 pts/m2 in 2012 and in 2019, with 10-14 pts/m2 – planned 
for completion in 2022). At least 9 other countries have completed na
tional surveys with point densities between 0.5-20 pts/m2 (Table 1). In 
2016, the United States Geological Survey (USGS) launched the 3D 
Elevation Program (3DEP), with the goal of acquiring the first national 
LiDAR survey in the United States (US) by 2023. Motivation for that 
project was in part based on a predicted fivefold ($13 billion) return on 
investment (USGS, 2020). In the USGS’s most recent annual report, 67% 
of the US was surveyed or in the process of being surveyed, with a 
minimum Aggregate Nominal Point Density of 2 pts/m2 (USGS, 2020). 

Much denser LiDAR scans in the range of 50-70 pts/m2 have been 

commissioned at the municipal level (Table 1). These include Vienna, 
Austria and portions of the cities of Duursche and Zeebrugges in The 
Netherlands (Vo et al. 2016). Those densities were typically achieved by 
helicopter at lower flight altitudes [300-400m above ground level 
(“AGL”)] with a single flight pass or minimally overlapping flight passes, 
as opposed to the fixed-wing aircraft used in the national scans. The 
stated use cases for denser municipal scans vary but often include 
disaster recovery and flood risk assessment (NYC DOITT, 2018), urban 
planning and asset management (Höfle and Hollaus 2010), and building 
modeling (Forlani et al. 2006). 

Despite increased point densities, the vertical data capture for many 
municipal efforts remains too sparse for a range of applications such as 
street curb and utility pole detection (Laefer 2019) or vertical feature 
classification (e.g. doors and window) for machine learning models 
(Zolanvari et al. 2019). To that end, a handful of district-scale, urban 
aerial LiDAR scans have achieved substantially higher point densities, 
more comprehensive coverage, and improved vertical data density by 
combining multiple, overlapping flight paths oriented diagonally to the 
street grid and flown at slower speeds (e.g. 90km/h) [Hinks et al. 2009] 
and lower heights (e.g. 300-400m AGL) [see Table 1]. One of the first 
such scans was conducted in 2007 over a 1 km2 area of Dublin, Ireland 
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and combined 44 flight paths for an aggregate point density of 225 pts/
m2 (Vo et al. 2016). In 2015, the same team rescanned a slightly 
expanded area using the same flight specifications but with improved 
equipment. That scan reached an aggregate point density of 348 pts/m2 

over 1.5 km2 (Laefer et al. 2017). Most recently, a 2019 multi-pass scan 

of a 1 km2 area of Brooklyn, New York achieved an average aggregate 
point density of 570 pts/m2 (Laefer and Vo 2020) using similar specifi
cations to the Dublin, Ireland scans. Fig. 1 shows a traditional, low- 
density scan (a) and a recent, high density scan of the same building (b). 

To date, existing density and accuracy metrics for single and multi- 
pass aerial LiDAR have only considered point density on horizontal 

Table 1 
Notable Aerial Scans (* indicates projected completion year)  

Location Type YearCompleted Point Density (pts/m2)  Spatialextent(km2)  FlightAGL (m) Source 

Denmark National 2015 8 43,000 - Flatman et al., 2016 
Estonia National 2011 2-3 45,000 1300-2400 Estonia Land Board, 2019 
Finland National 2010 0.5 338,000 - NLS Finland, 2020 
Netherlands (AHN-1) National 2003 0.1-2 42,000 - AHN, 2020 
Netherlands (AHN-2) National 2012 6-10 42,000 - AHN, 2020 
Netherlands (AHN-3) National 2019 6-10 42,000 - AHN, 2020 
Netherlands (AHN-4) National 2022* 10-14 42,000 - AHN, 2020 
Poland National 2015 4-12 290,000 - GUGIK, 2020 
Spain National 2015 0.5 506,000 - PNOA, 2020 
Slovenia National 2015 5 20,000 - ARSO, 2015 
Switzerland National 2023* 15-20 40,000 - Swisstopo, 2020 
Sweden - Laserdata NH National 2009 0.5-1.0 450,000 1700-2300 Lantmateriet, 2020 
Sweden - Laserdata Skog (forest) National 2018 1-2 337,500 3000 Lantmateriet, 2020 
United States National 2023* >2 9,834,000 - USGS, 2020 
Belgium - Flanders DHMV-I Regional 2004 0.05 14,000 - Flanders Information Agency, 2006 
Belgium - Flanders DHMV-II Regional 2015 16 14,000 - Flanders Information Agency, 2015 
Vienna, Austria Municipal 2007 50 400 - Vo et al., 2016 
Duursche, Netherlands Municipal 2007 70 1 - Vo et al., 2016 
Zeebrugges, Netherlands Municipal 2011 65 1 300 Vo et al., 2016 
Dublin, Ireland (2007) Municipal 2007 225 1 400 Laefer et al., 2014 
Dublin, Ireland (2015) Municipal 2015 348 < 2 300 Laefer et al., 2017 
Brooklyn, NY, USA Municipal 2019 570 1 300-400 Laefer and Vo, 2020  

Fig. 1. Comparison of Aerial LiDAR scans of the Brooklyn Army Terminal. Dark areas are locations without data. Images rendered using ambient occlusion.  
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surfaces and accuracy of the point cloud as a whole. Such metrics fail to 
directly address two emerging hallmarks of contemporary urban scan
ning: vertical surface capture characteristics and the impact of 
combining numerous flight paths. Arguably, new metrics are needed 
that explicitly consider vertical surface point density and the error 
introduced from combining overlapping flight passes (not just strip ad
justments). To address these gaps, this paper introduces the following 
metrics: (1) vertical surface density; (2) vertical density as a function of 
horizontal density; (3) vertical surface accuracy; and a decomposition of 
error into (4) within-pass and (5) cross-pass components. These metrics 
are intrinsic and do not require external ground truth measurements. As 
part of this metrics development, the angle of capture analysis of Hinks 
et al. (2009) is extended to include vertical density at various wall 
heights for a popular commercial scanner type. This paper aims to 
demonstrate the importance of these metrics by comparing equivalent 
portions for three contemporary aerial scans. 

As the topic of aerial point cloud data acquisition is a large one, 
several related topics will be considered as outside the scope of this 
study. These include completeness, absolute accuracy with respect to 
ground control points, error attribution, and impact of flight path 
planning on point cloud accuracy. 

This paper proceeds with a historical background of aerial LiDAR 
metrics, practices, and concerns (Section 2), followed by a description of 
the proposed metrics, the methodology utilized to compare the point 
clouds, and the datasets (Section 3). The results follow (Section 4), as 
well as a discussion of the sensitivity and robustness of the new metrics 
(Section 5). The paper closes with a discussion of potential use cases for 
high-density LiDAR scanning and future work (Section 6). 

2. Background 

This section provides context around the traditional metrics for point 
cloud characterization, the methods for performing aerial LiDAR scans, 
and the impact of those methods on point cloud density and accuracy. 

2.1. Aerial LiDAR scan metrics 

Traditional aerial LiDAR scan metrics have focused on density and 
accuracy. For multi-pass scan missions, the most common density met
rics relate to aggregate counts. These include (1) the aggregate nominal 
pulse density – the average number of pulses per area of a relatively flat, 
horizontal surface within the surveyed swath, and (2) the aggregate 
nominal pulse spacing – the square root of the inverse of the pulse 
density. Spacing is more common for low-density scans, whereas density 
is more typical for scans with densities exceeding 1 pts/m2 (Heidemann 
2018). Both metrics are dependent on sample surface selection: if the 
sampled surface is not representative of the dataset overall, then the 
corresponding metrics will not be representative either. 

Density metrics must differentiate between pulses and points. In 
reporting metrics, the term pulse refers to the first return obtained for 
each emitted pulse. A single emitted pulse from a LiDAR unit may 
generate multiple returning points, if the emitted encounters multiple 
objects on its path groundward and a portion of the pulse reflects off of 
each object. Because of this phenomenon, the point count is nearly al
ways higher than the pulse count for a given dataset. For example, the 
2019 Sunset Park scan listed in Table 1 has 1.06 billion points obtained 
from 924 million pulses. As most applications use all available points, 
point-based metrics are usually more useful when profiling existing 
datasets, while pulse-based metrics are usually used during planning. 
The remainder of this paper considers aggregate nominal point density 
(ANPD) as the preferred reporting metric. 

The second common metric for aerial LiDAR is accuracy. Quantifying 
the accuracy of an aerial LiDAR scan is inherently problematic due to the 
absence of ground truth for the entirety of the scan area. Thus, aerial 
LiDAR scans typically rely on ground control points, but these are 
expensive to implement and require access to the ground area being 

mapped (Habib 2018). Common practice estimates local accuracy, 
typically described using root mean squared error (RMSE). This 
approach involves identifying a relatively flat (or at least planar) area 
and evaluating the point cloud’s vertical deviation from that surface 
(ASPRS, 2004). RMSE can only capture error in the vertical direction. 

Other evaluation methods focus on quantifying relative accuracy by 
considering areas of overlap between different point clouds (Latypov 
2002). Such a methodology considers a flat surface, G, and the points 
that lie within the area AG comprising that surface. The average height 
for the points of each point cloud is calculated, and the height difference 
between point clouds is an indicator of closeness. Height differences can 
be calculated for multiple surfaces, and the statistics (e.g., mean, stan
dard deviation) of those differences provide a measure of relative ac
curacy between point clouds. This paper does not address error 
attribution, (e.g., ranging error, angular error, inertial measurement 
unit error) as the subject is well-studied elsewhere (e.g. Glennie 2007). 

2.2. Aerial LiDAR scanning practice 

Historically, aerial LiDAR scanning has employed flight planning and 
equipment parameters reflecting rural applications. These include data 
collection from fixed-wing aircraft flown at altitudes of 1km-3km AGL 
and at relatively high speeds (150-300 km/h) with minimal coverage 
overlap between adjacent flight strips. These choices tend to generate 
low point densities (below 10pts/m2), despite the ability of modern 
equipment to capture 35 −50pts/m2 in a single pass (Riegl 2012). 

Point clouds resulting from these data acquisition strategies are 
sufficiently dense and accurate for large-scale elevation mapping and 
forest density estimation but do not support many urban applications (e. 
g. Zolanvari et al. 2019; Vo et al. 2019). For example, aerial LiDAR scans 
with point densities below 10pts/m2 are not viable for applications 
involving sub-building scale objects (e.g. chimneys, steps). When tasked 
with such applications, local communities have had to rely on terrestrial 
or mobile LiDAR or ground-based imagery for dense, local point cloud 
generation either as the sole data set or as a supplementary data set. As 
an alternative, Hinks et al. (2009) proposed modifications in aerial 
LiDAR flight paths, to increase aggregate point densities and minimize 
vertical surface occlusions. Specifically, increasing strip overlap to 
67%+, flying at lower speeds and altitudes AGL, and combining multiple 
flight passes has generated point densities over 500 pts/m2 (Laefer and 
Vo 2020). By combining the overlapping flight passes collected in this 
manner, complete surface coverage (which occurs when beam footprints 
sufficiently overlap to cover the entire surface) can be attained without 
expanding beam footprints and sacrificing resolution, as described in 
Mandlburger et al. (2015). Executing flight paths that are low and di
agonal to the grid can be difficult when extremely tall buildings are 
present sporadically or no grid exists, but this paper does not address 
these more site-specific aspects of flight planning and, instead, addresses 
the general and more commonly encountered scenario. 

2.3. Point density as a function of flight parameters 

Flight speed, altitude AGL, and angle of capture all influence aerial 
LiDAR point density. To most clearly explain their impacts, the 
following description assumes an even, horizontal surface and a single 
return per emitted pulse. 

LiDAR scanners with a parallel scan pattern emit pulses across their 
operating range (up to 30◦ from nadir, for the scanners used to capture 
the datasets considered herein) at a constant pulse repetition rate, 

fscanner

(
pts
s

)
. If Ascanned

(
m2

s

)

denotes the rectangular area of ground 

scanned in one second, then point density, ρ
(

pts
m2

)
, can be calculated: 

ρ =
fscanner

Ascanned
(1) 
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whereAscanned(m2) is the product of two orthogonal components: 
dacross(m) (the end-to-end distance scanned orthogonal to the path of the 

aircraft) and dalong

(
m
s

)
(the distance scanned per second along the 

aircraft path); dacross and dalong are wholly determined by flight 
parameters: 

dacross = 2Htan(max(θH))

dalong = vaircraft (2) 

where H is the aircraft’s altitude AGL in meters, θH is the scan angle 

relative to nadir, and vaircraft

(
m
s

)
is the velocity of the aircraft. Horizontal 

point density can be calculated as a function of the aircraft’s altitude 

AGL and speed : 

ρ =
fscanner

Ascanned
=

fscanner

2vaircraftHtan(max(θH))
(3)  

Fig. 2 illustrates these factors. 
The scan angle (the angle between the emitted pulse and nadir) also 

impacts point density. Hinks et al. (2009) considered its impact on linear 
resolution (or point spacing), defined as the distance between consec
utive points. This is inversely related to the horizontal point density 
based on Eq (1): 

ρ =
fscanner

Ascanned
=

1
RacrossRalong

(4) 

Fig. 2. Impact of flight parameters on point density.  

Fig. 3. Impact of angle of capture on point resolution.  
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where Racross(m) is the across-path point spacing, and Ralong(m) is the 
along-path point spacing. Modern LiDAR scanners can be configured so 
that Racross and Ralong are roughly equal. Importantly, Racross is indepen
dent of Ralong (which is assumed constant for this analysis) which means 
that ρ is inversely proportional to Racross. 

Fig. 3 illustrates the impact of angle of capture on Racross at nadir 
(RN), at angle of capture θH (RH), and at the base of a vertical wall (RV), 
which can be quantified: 

RN = Htan(θL) (5)  

RH = RNsec2(θH) (6)  

RV = RHcot(θH) (7) 

Where H is the aircraft altitude AGL, and θL is the angular step width 
of the LiDAR scanner (the angle the scanner sweeps between consecutive 
pulses). Modern scanners typically have θL < 0.1◦ , so the approxima
tions sin(θL) ≈ 0 and cos(θL) ≈ 1 are used in Eqs (6-12). As the angle of 
capture, θH, increases from 0◦ at nadir, RH worsens. If the beam en
counters a wall, the vertical resolution at the base of the wall, RV , is 
worse still. Critically, if the horizontal offset from the flight path to a 
wall is small and the aircraft altitude AGL is large, then θH will be small, 
and RV will be large. In fact, RV is infinite at nadir, as the scanner cannot 
capture a vertical surface positioned directly below the scanner. 

Equations (5-7) can be written in terms of point density: 

ρN =
1

RacrossRalong
=

1
Htan(θL)Ralong

(8)  

ρH = ρNcos2(θH) (9)  

ρV = ρH tan(θH) (10) 

Horizontal density decreases as θH increases, but vertical density 
increases in the range 0◦

≤ θH ≤ 45◦ before decreasing from 45◦

≤ θH ≤

90◦ (Fig. 4). Nadir scanners typically operate in the range 0◦

≤ θH ≤ 30◦ , 
but oblique scanners, can operate across larger scan ranges. 

3. Methodology 

This section introduces metrics related to general data yield and 
localized mission accuracy. As part of this, the angle of capture analysis 
of Hinks et al. (2009) is extended to include vertical density at various 
wall heights. The workflow used to apply these metrics is then 
explained, followed by a detailed description of the datasets used to 
demonstrate the value of the metrics. 

3.1. Vertical point density 

To fully capture the impact of the aircraft location on vertical den
sity, this section extends the angle of capture analysis by Hinks et al. 
(2009) of Section 2.3 to consider the vertical resolution at different wall 
heights. Fig. 5a extends Fig. 3 by introducing RW, the vertical resolution 
on the vertical wall at height h. RW can be expressed in terms of RV , θH, 
and θW: 

RW = RV
sin2(θH)

sin2(θH + θW )
(11) 

Eq (11) can also be written in terms of point density: 

ρW = ρV
sin2(θH + θW )

sin2(θH)
= ρN

tan(θH + θL)sin2(θH + θW )

tan2(θH)
(12) 

As stated in Section 2, point density is lowest at the base of the wall, 
which agrees with Eq (12): min(ρW) = ρV in the range 0◦

≤ θH +

θW ≤ 90◦ , and ρV corresponds to θW = 0◦ . Importantly, the density 
gradient on the wall is larger for lower altitudes AGL, as both θH and 
θWincrease. This implies that angle of capture effects are more signifi
cant for modern, high-density aerial LiDAR scans. Fig. 5b shows the 
dependency of ρW on wall height and offset distance. 

Aggregate nominal point density for vertical surfaces (ANPDV) is 
defined identically to its horizontal counterpart, ANPDH, but applied to 
vertical surfaces. While ANPDH is commonly reported for aerial LiDAR 
datasets, ANPDV is not. ANPDV cannot be directly calculated from 

Fig. 4. Point densities relative to ρN (0◦

≤ θH + θL ≤ 90◦ ).  

Fig. 5. Vertical resolution as a function of height on wall and wall distance from a helicopter.  
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ANPDH, as the two metrics are not directly proportional due to the 
impact of angle of capture, among other factors. To address this gap, this 
paper introduces ηHV , the ratio of horizontal to vertical density which is 
defined as: 

ηHV =
ANPDH

ANPDV
(13) 

The term ηHV is greater than one for nadir scanners operated in the 
0◦

≤ θH ≤ 45◦ range, as depicted in Fig. 4. Notably, ANPDV , and ηHV do 
not explicitly consider the wall height, as they are aggregated over the 
entire vertical surface. The upper portions of the tallest building in the 
study area could be used to predict the theoretical maximum density. 
Thus, the overall vertical yield will be generally lower than the theo
retical maximum due to surface roughness and the presence of windows, 
among other things. In contrast, horizontal planes have significantly 
fewer, highly reflective surfaces where returns fail to generate. 

The equations in Sections 2.3 and here assume a nadir scanner. 
Similar equations can be derived for other types of scanners, such as 
oblique scanners (where the scanner does not face directly downward 
from the aircraft) by adjusting θH and θL for the scanning angle and 
pattern. Unmanned aerial vehicles (UAV) used in scanning can fly below 
building height and utilize scan angles θH ≥ 90◦ measured from nadir. 
The analysis demonstrated herein was devised as an extensible frame
work that can be adjusted for the rapidly growing variety of scanner 
types and platforms that are becoming increasingly available. 

3.2. Accuracy 

While knowing the overall accuracy of a point cloud is helpful for 
single pass aerial LiDAR, the impact of overlapping flight passes must be 
considered in high-density datasets. The value of increased point density 
obtained from multiple flight passes must be weighed against the po
tential of increased error due to misalignment of multiple flight passes. 

The proposed metrics decompose local accuracy for point clouds 
composed of multiple, overlapping flight strips by an extension of the 
approach introduced in Latypov (2002). However, unlike Latypov 
(2002), who defined similarity metrics for pairs of overlapping, 

disparate point clouds, the accuracy metrics introduced herein decom
pose the error of a single point cloud into cross-pass and within-pass 
components. The focus here is error attribution. Additionally, the met
rics introduced herein generalize to any surface orientation (i.e., verti
cal, horizontal, canted) and any number of flight passes, whereas 
Latypov (2002) only considered pairs of flight passes on horizontal 
surfaces. Fig. 6 illustrates the proposed approach. 

Beginning with RMSE of a point cloud with respect to a flat surface, 
the distance zi of point i from the surface can be written as: 

zi =
̂h(k)

S + r(i)
k (14) 

where, ̂h(k)

S is the average distance of points in flight pass k from the 
surface S. Here, the known surface G is replaced with S, a plane fit to the 

points from all flight passes, and ̂h(k)

S is measured in the direction 
orthogonal to S, rather than Latypov’s vertical direction. This general
ization allows for the application to non-horizontal surfaces. The term 

r(i)
k is the deviation of zi from ̂h(k)

S for a point i in flight pass k. 
Substituting Eq (14) into the equation for RMSE: 

RMSES =

̅̅̅̅̅̅̅̅̅̅̅̅∑
z2

i

N − 1

√

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

k
∑

i∈k

(
h(k)

S + r(i)
k

)2

N − 1

√
√
√
√

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

k

(
nkh(k)

S
2

+ nkMSEk

)

N − 1

√
√
√
√

(15) 

Within each flight pass k, the sum of the residuals is zero, so the 
cross-term 

∑
k2h(k)

S r(i)
k is zero. Here, RMSES is the square root of the 

weighted average over all flight passes of the average orthogonal offset, 
̂h(k)

S , and the mean squared error of the points in the flight pass, MSEk. 
Hence, RMSE can be decomposed via two new metrics, W and C: 

W =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

N − 1
∑

k
nkMSEk

√

Fig. 6. Decomposition of distance zi (left) into ̂h(k)

S and r(i)
k (right) for point i from flight pass k. Two flight passes are shown but the approach is applicable to any 

number of passes. 
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C =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

N − 1
∑

k
nkh(k)

S
2

√

RMSES =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
C2 + W2

√
(16) 

where W is the weighted average MSE over all flight passes and 
represents the portion of error attributable to within-pass random error. 
The term W corresponds to the precision of surface measurements and is 
likely to be dependent on the quality of the scanning equipment 

(scanner, IMU) and the roughness of the selected “true surface”. In 

contrast, C is the weighted average of ̂h(k)

S over all flight passes and 
represents the error attributable to misalignment across flight passes. 
The parameter C is mostly dependent on the quality of system calibra
tion, which often can be reduced (albeit not entirely eliminated) by strip 
adjustments after data collection. Notably, Eq (16) is an exact decom

position of RMSE: because ̂h(k)

S and r(i)
k are defined orthogonally to the 

surface S, no approximation is introduced. 

Fig. 7. Workflow and surface selection.  

Table 2 
Flight parameters and AGL visualization for the three scans of Sunset Park, Brooklyn.   

USGS 2014 (OCM Partners, 
2015) 

NYC 2017 (NYC DOITT, 
2018) 

Sunset Park 2019 (Laefer and Vo, 
2020) 

Scan date March/April 2014 May 2017 April 2019 
LiDAR scanner Leica ALS70 Leica ALS80 Riegl LMS-Q680i 
Pulse rate 239 kHz 314 kHz 400 kHz 
FOV 32◦ 30◦ 30◦

Aircraft Cessna 404/ 
Cessna 310 
(fixed wing) 

Cessna 402C 
(fixed wing) 

Bell 206 
(rotary) 

Flight speed 278 kph 270 kph 93 kph 
Flight AGL 2290 m 1800 m 300 m 
Swath sidelap 30% 60% 77% 
# of flight 

passes 
4 7 82 

Total flight 
time 

25 min 2 h 6 min 5 h 0 min 

a) Flight parameters for the three scans b) Flight altitude AGL relative to tallest building in scanned 
area.  

M.H. Stanley and D.F. Laefer                                                                                                                                                                                                                



ISPRS Journal of Photogrammetry and Remote Sensing 175 (2021) 268–281

275

3.3. Surface sampling workflow 

The main components of the proposed workflow involve the surface 
selection and patch sampling (Fig. 7a). The recommended process in
volves choosing planar, smooth, unobstructed, and opaque surfaces 
(Fig. 7b). Once a surface is chosen, the area to be sampled was bounded 
precisely by selecting three points near the corners of the area, fitting a 
plane to those points, and defining a rectangular boundary lying in the 
plane, as shown in Fig. 7b. Identifying and bounding the sample surfaces 
was performed manually, but the remainder of the workflow can be 
automated. 

Points were sampled randomly from within the rectangular surface, 
and a square, sample patch was drawn around the point. Sample patch 
dimensions were devised to be (1) sufficiently large to ensure that 
patches include more than three points, (2) sufficiently small to fit the 
smallest dimension of the sample surface, and (3) the same for vertical 
and horizontal surfaces. Sample patches were discarded, if the patch 
contained unwanted obstructions (e.g., car, bench, wall ornamentation). 
Ten thousand patches were sampled for both horizontal and vertical 
surfaces. No restriction was placed to prevent patches from overlapping; 
while overlapping patches may introduce correlation across patches, the 
analyses performed herein do not rely on uncorrelated patches. The 
same patches were used for each dataset. Statistics were calculated over 

the random sampling. 

3.4. Datasets 

To demonstrate the usefulness of the proposed metrics, as well as the 
specific gains generated from targeted, high-density, municipal scans, a 
trio of recent scans (2014-2019) of a 1km2 area of Brooklyn, New York 
were compared. Buildings in the area are low- to medium-rise and do not 
exceed a height of 30m. Each scan was conducted under different flight 
parameters and with different equipment (Table 2). Each scan was 
commercially provided. Strip adjustments were performed on the 2019 
scan. No post-processing information on 2014 and 2017 scans was 
available. 

The 2014 scan was commissioned by the USGS and conducted by a 
third party contractor to evaluate storm damage and erosion of the local 
environment due to Hurricane Sandy. The 2017 scan was funded by New 
York City after being awarded a Disaster Recovery Community Devel
opment Block Grant related to Hurricane Sandy. These two scans 
covered large land areas and were conducted by fixed-wing aircraft at 
high speeds and large altitudes AGL. In contrast, the 2019 NYU-funded 
scan was conducted by a helicopter at a lower speed and a lower altitude 
AGL. Fig. 8 provides a selective visualization of objects in these scans 
and demonstrates the difficulty of identifying sub-building scale objects 

Fig. 8. Similar objects shown for each of the three scans. Points are shaded by the intensity captured. The vehicles are not the same from scan to scan, but similar 
models were selected from the same area of each scan. 
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in low density scans. 
For the datasets tested herein, portions of a largely empty parking lot 

were used to sample the horizontal data and flat, unadorned portions of 
building walls with no windows were used as vertical surfaces (Fig. 7b). 
The goal of this paper was to document the built environment, so sur
faces were chosen to be free of vegetation. The horizontal data came 
from 4, 460m2 of asphalt from 2 parking lots. The vertical data were 

taken from 350m2 from 4 vertical strips along a single building. Hori
zontal samples were discarded if a car was present, resulting in the 
resampling of roughly 30% of the initial points. Wall surfaces were 
unadorned and free of windows, so no vertical points were discarded. 

4. Results 

The suite of five proposed metrics were applied to the three datasets 
described in Section 3.4. Point density and accuracy on the horizontal 
and vertical surfaces are reported for the three scans. Vertical point 
density for the 2019 scan are compared to the theoretical predictions at 
different heights along the tallest wall in the study area. 

4.1. Point density generally 

The horizontal densities of the 2014 and 2017 scans (7 pts/m2 and 11 
pts/m2, respectively) are similar to each other, but the 2019 scan at 510 
pts/m2 is more than an order of magnitude denser. This was intention
ally achieved through use of improved sensor hardware, lower flight 
altitude AGL, slower flight velocity, and more overlapping flight passes 
(6-7 times more). 

While the horizontal density increases progressively for each sub
sequent scan, vertical density increases much faster, which is evident 
from the declining horizontal to vertical density ratio, ηHV : 46.1 in 2014, 
16.5 in 2017, and 10.3 in 2019. The improvement in ηHV in newer scans 
is directly attributable to the specifics of the flight plan; specifically, the 
lower altitudes AGL of the later flights, as shown by the theoretical 
values (Table 3). Holding all else constant, a given wall height causes a 
larger θW for lower altitudes AGL. Larger θW values increase the ρW

ρN 
ratio 

[see Eq (12)] and reduce ηHV. 
Average densities are lower than theoretical densities because sam

ple surfaces may only be partially visible to some flight passes. This is 
particularly true of vertical surfaces, where a flight path may only 
generate a few points on the surface because the angle between path and 
the surface normal is highly acute. Average point density for parallel 
flight paths is provided in Table 3 and is a more direct comparison to the 
theoretical density, as Eq (12) assumes a parallel flight path. 

Table 3 
Density metrics for Brooklyn, NY LiDAR Scans. Horizontal theoretical point 
density is calculated at nadir. Vertical theoretical point density is calculated as 
the average density over wall heights from 0m to 30m for a wall at θH = 27.5◦

(max angle for which top of wall is fully within operating range).   

USGS 2014 
(OCM Partners 
2015) 

NYC 2017( 
NYC DOITT, 
2018) 

Sunset Park 
2019(Laefer and 
Vo 2020) 

Horizontal    
Theoretical point 

density per flight pass 
(pts/m2)  

2.58 4.46 33.27 

Av. point density per 
flight pass 

2.26 3.64 25.78 

Actual aggregate point 
density(pts/m2)  

6.50(SD: 2.19) 10.93(SD: 
2.45) 

510.49(SD: 
24.80) 

Av. number of 
overlapping flight 
passes 

2.88 3.00 19.80 

Vertical    
Theoretical point 

density per flight pass 
(pts/m2)  

1.15 1.98 14.83 

Av. point density per 
flight pass 

0.24 1.02 5.24 

Av. point density - 
parallel flight passes 

- 1.81 14.48 

Actual aggregate point 
density(pts/m2)  

0.14(SD: 0.12) 0.66(SD: 1.39) 49.74(SD: 10.24) 

Av. number of 
overlapping flight 
passes 

0.60 0.65 9.49 

ηHV  46.08 16.49 10.26  

Fig. 9. Point cloud of vertical wall of Army Terminal Building in each scan. Blue rectangle indicates a sample surface.  
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4.2. Point density by wall height 

Fig. 9 shows the actual vertical data for each of the 3 datasets. The 
density by height for each is quantified in Fig. 10. This compares the 
2017 and 2019 results to the theoretical point density predictions of Eq 
(12); the metadata for the 2014 lacked the explicit trajectory informa
tion needed for this calculation. The 2017 and 2019 flight paths selected 
ran parallel to the wall face at a constant offset, with the entire wall face 
in the scanner’s operating range. 

The 2019 results largely agree with the predictions, with a mean 
absolute error (MAE) of only 0.53pts/m2 and mean absolute percentage 
error (MAPE) of 3.6%. In contrast, the 2017 density is quite erratic due 
to random noise in the very small number of points. This is evident from 
the MAE of 0.10pts/m2 and MAPE of 49.2%. Eq (12) also correctly 
predicted a much larger impact from the angle of capture for the 2019 
scan than the 2017 scan due to the lower flight altitude AGL and, hence, 
larger angles θH and θW. 

4.3. Accuracy 

Table 4 reports the accuracy metrics for horizontal and vertical 
surfaces for the three scans. Horizontal accuracy consistently improved 
in the more recent scans. The error decomposition in Table 5 shows that 
this improvement is due to both lower cross-pass error (CH) and lower 
within-pass error (WH). For all three scans, the C/W ratio of 0.42-0.52 
indicates that the majority of error for horizontal surfaces was attrib
utable to within-pass error. Critically, CH decreases in more recent scans 
despite the inclusion of significantly more scan in the 2019 [i.e. 19.8 
flight passes (on average) versus only 3.0 in 2017 and 2.9 in 2014]. The 
decrease in cross-pass ratio indicates that the higher number of passes in 

a) Actual (A) and predicted (P) density for 
2019 scan 

b) Actual (A) and predicted (P) density for 
2014 and 2017 scans 

Fig. 10. Comparison of actual versus predicted vertical densities at different wall heights for a single flight path in each scan. Ground features obstruct density 
estimates below 3m. The predicted densities are calculated from Eq (12) and flight parameters. 2019 path flown at 300m AGL and 97m horizontal offset from wall; 
2017 path flown at 1800m AGL and 315m horizontal offset from wall. Flight path not available for 2014 scan, so density could not be predicted. 

Table 4 
Local accuracy comparison of LiDAR scans for Brooklyn, NY. The 2014 and the 
2017 scans had vertical point densities below 1.5 pts/m2 (fewer than 6 points per 
4m2 sample square) and rarely more than one flight pass per sample square. For 
this reason, both were excluded from the vertical accuracy analysis.   

USGS 2014 
(OCM Partners 
2015) 

NYC 2017( 
NYC DOITT, 
2018) 

Sunset Park 
2019(Laefer and 
Vo 2020) 

Horizontal    
Av. number 

ofoverlapping flight 
passes 

2.880 3.000 19.800 

RMSEH(m)  0.043 0.017 0.010 
CH(m)  0.019 0.007 0.004 
WH(m)  0.038 0.015 0.009 
C/W ratio 0.512 0.456 0.427 
Vertical    
Av. number 

ofoverlapping flight 
passes 

- - 9.490 

RMSEV(m)  - - 0.032 
CV(m)  - - 0.024 
WV(m)  - - 0.019 
C/W ratio - - 1.286  

Table 5 
Density and accuracy metrics for the 2019 scan using different sample patch 
sizes.   

1m2  2m2  4m2  

Density    
Horizontal    
Point density (pts/m2)  513.23 

(SD: 
24.66) 

512.59 
(SD: 
23.20) 

510.49 
(SD: 
24.80) 

Av. point density per flight pass 
(pts/m2)  

25.92 25.89 25.78 

Vertical    
Point density (pts/m2)  49.73 

(SD: 
11.45) 

49.52 
(SD: 9.88) 

49.74 
(SD: 
10.24) 

Av. point density per flight pass 
(pts/m2)  

6.16 5.69 5.24 

ηHV  10.32 10.35 10.26 

Accuracy    
Horizontal    
RMSEH(m)  0.010 0.0096 0.0098 
CH(m)  0.005 0.0042 0.0038 
WH(m)  0.008 0.0085 0.0089 

Vertical    
RMSEV(m)  0.028 0.029 0.029 
CV(m)  0.024 0.025 0.025 
WV(m)  0.014 0.015 0.015  

M.H. Stanley and D.F. Laefer                                                                                                                                                                                                                



ISPRS Journal of Photogrammetry and Remote Sensing 175 (2021) 268–281

278

2019 is less impactful on cross-pass error than other factors (e.g., system 
calibration, time between flights). The within-pass error steadily de
creases over the years from a high of 0.019m in 2014 to 0.004m in 2019. 
Notably, cross-pass error remains in the 2019 scan despite post-flight 
strip adjustments. 

Vertical RMSE is 218% higher than horizontal RMSE for the 2019 
scan and nearly as high as the horizontal RMSE for the 2014 scan. 
Interestingly, the vertical C/W ratio of 1.68 indicates that, unlike the 
findings for horizontal surfaces, the majority of error for vertical sur
faces is attributable to cross-pass error. Specifically, CV is 539% higher 
than CH for the 2019 scan (with fewer than half as many flight passes), 
while the average single flight pass RMSE is only 112% higher for ver
tical surfaces. 

5. Discussion 

Two additional points are relevant to the discussion of new metrics 
for high density aerial LiDAR scanning: metric sensitivity to sample 
patch size and robustness in its applicability to other locations. 

5.1. Patch size sensitivity analysis 

The results reported in Section 4 were calculated using a 4m2 patch 
size. Patch selection size was restricted by the availability of vertical 
surfaces uninterrupted by windows. To check if patch size selection 
impacted the results, the analysis was rerun on the 2019 data consid
ering patches of 1m2 and 2m2. Patch size was found to have no identi
fiable impact on density and accuracy metrics across these scales 
(Table 5). 

5.2. Robustness: Application to 2015 Dublin scan 

To test the applicability of the proposed metrics to other data sets, 
they were applied to a 2015 high density scan of Dublin, Ireland (Laefer 
et al., 2017). That scan utilized the same LiDAR scanner (Riegl Q680i) as 

the Sunset Park 2019 scan, and combined 44 flight paths flown at a 
height of 300m AGL and a speed of 68 kph, but only at 67% overlap and 
achieved an aggregate point density of 348 pts/m2 over 1.5km2 of central 
Dublin. Strip adjustments were made to both datasets. 

Five sample surfaces were used: (1) a parking lot behind Leinster 
House (horizontal), (2) Barnardo Square next to City Hall (horizontal), 
(3) a paved walking area in St. Stephen’s Green (horizontal), and (4) the 
south and (5) west walls of La Touche House (vertical). Notably, the 
surface materials are not necessarily identical to those of the Sunset Park 
scans with respect to roughness and reflectivity. 

Table 6 provides the density and accuracy metrics for the Dublin 
scan. The similar horizontal-to-vertical density ratios (11.71 for Dublin 
and 10.26 for Brooklyn) are reflective of the two scans having been 
performed under similar flight parameters (altitude AGL and velocity) 
and with the same LiDAR scanner. The lower density in the Dublin scan 
for both horizontal (43%) and vertical (50%) surfaces reflects the 
significantly fewer flight passes compared to the Sunset Park scan (41 
versus 82). 

The datasets exhibited very similar within-pass error on both hori
zontal surfaces (0.009m) and vertical surfaces (0.017mand0.015m for 
the Dublin and Sunset Park scans, respectively). Similar W values, likely 
due to comparable equipment and flight parameters, indicate robustness 
of the W metric to different datasets and surface materials. In contrast, 
the cross-pass error levels differed more across the two datasets: CV was 
twice as high for Sunset Park (0.025m versus 0.012m). However, CH is 
higher for Dublin (0.009m versus 0.004m). Fig. 11 delves into the causes 
of this discrepancy by plotting the mean orthogonal offset, or: 

1
k
∑

k
abs

(
̂h(k)

S

)
(17) 

for k flight passes. Mean absolute height is an indication of how far a 
single flight pass tends to differ from the other flight passes with similar 
coverage. For horizontal surfaces, the distribution of mean heights 
across flight paths is similar for the two scans, and the larger CH value for 
the Dublin scan is simply due to consistently larger mean heights 
(Fig. 11). For vertical surfaces, six flight passes for Sunset Park cause the 
majority of CV . Those six flight passes are all in the same direction 
(northeast-southwest), and create very acute angles with the normal of 
the sample surfaces. These flight passes are depicted by the dotted black 
lines in Fig. 12. None of the flight passes in the Dublin scan are as acute, 
which could be the reason that none of them have extreme orthogonal 
offsets, unlike that which occurs in the Sunset Park data. 

Fig. 13 compares actual and predicted point density at various wall 
heights for a single flight pass from both the Dublin and Sunset Park 
scans. The predicted densities are calculated from Eq (12) and the flight 
parameters. The horizontal offset was 97m for the Sunset Park flight pass 
and 110m for the Dublin flight pass, and both passes were flown at an 
altitude of 300m AGL. Point density increased at higher points on the 
wall for both datasets, as predicted. The Dublin scan, in fact, fits the 
prediction more closely than the Brooklyn scan, with a MAE of 0.39pts/
m2 and MAPE of 3.8%, though the actual densities were systematically 
lower than the predictions. This discrepancy is likely attributable to 
local wind conditions. 

The newly introduced metrics enabled a richer comparison of two, 
modern, high-density urban scans flown for the same mission aims. The 
similarities of flight parameters and equipment are apparent from the 
similar ηHV ratios and within-pass error, W. The cause of the difference 
in vertical accuracy was apparent from the error decomposition: acute 
angles between flight paths and vertical surface normals in the Sunset 
Park dataset increased the cross-pass error. 

6. Conclusions 

This paper introduces five new metrics for high-density aerial LiDAR 
datasets (for assessing existing datasets and future flight planning). 

Table 6 
Density and accuracy metrics for the 2015 Dublin scan and 2019 Sunset Park 
scan.   

Dublin City 2015 
(Laefer et al. 2017) 

Sunset Park 2019 
(Laefer and Vo 2020) 

Density   
Horizontal   
Point density (pts/m2)  290.96 

(SD: 50.63) 
510.49 
(SD: 24.80) 

Av. number of overlapping flight passes 8.40 19.80 
Av. point density per flight pass (pts/m2)  34.64 25.78 

Vertical   
Point density (pts/m2)  24.84 

(SD: 5.99) 
49.74 
(SD: 10.24) 

Av. number of overlapping flight passes 4.17 9.49 
Av. point density per flight pass (pts/m2)  5.96 5.24 

ηHV  11.71 10.26 

Accuracy   
Horizontal   
Av. number of overlapping flight passes 8.40 19.80 
RMSEH(m)  0.013 0.010 
CH(m)  0.009 0.004 
WH(m)  0.009 0.009 
C/W ratio 1.002 0.427 

Vertical   
Av. number of overlapping flight passes 4.17 9.49 
RMSEV(m)  0.022 0.029 
CV(m)  0.012 0.025 
WV(m)  0.017 0.015 
C/W ratio 0.723 1.678  
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These metrics describe density and accuracy for vertical surfaces and the 
impact of combining numerous, overlapping flight passes on accuracy. 
The increased desire for better vertical data capture in urban environ
ments and the reliance on multi-pass missions for more complete 

coverage motivate the need for these metrics. This paper also quantifies 
the impact of angle of capture on vertical density. Accounting for this 
impact should enable better density prediction during flight planning. 

Beyond the introduced metrics, this paper makes three significant 

Fig. 11. Mean orthogonal offset relative to fitted surface S for each flight pass over the samples of both datasets and both dimensions. Two outlier flight passes are 
omitted from Dublin vertical, because they each had only two points on the surface. 

a) Flight paths for Sunset Park dataset b) Flight paths for Dublin dataset 

Fig. 12. Flight paths indicated by overlaid lines and vertical sample surfaces indicated with pink boxes. Dotted black lines in Sunset Park figure indicate flight passes 
at extreme acute angles relative to the sample surface normals. 
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contributions. The first is the introduction of a vertical density estima
tion equation that considers both sensor position and target wall height. 
By explicitly including the angle of capture, the vertical density (which 
cannot be directly estimated from the horizontal density) can now be 
reliably predicted for specific buildings of interest. This enables a much 
more tailored flight mission if a specific minimum density is required for 
visualization or other downstream applications. The second contribu
tion is the use of cross-pass error as a meaningful parameter to compare 
high-density, urban point clouds. For point clouds generated under 
similar flight parameters, the cross-pass error will fully identify any 
differences in accuracy contributable to the execution of the flyover. 
Lastly, the paper identifies and quantifies the disproportionate impact of 
modern, optimized flight missions on vertical density (positive) and 
accuracy (negative). The detrimental impact on accuracy can be reduced 
by avoiding a reliance on highly acute flight paths for documenting 
buildings of particular interest. Understanding these factors can improve 
future mission planning and subsequent data processing. The verifica
tion and applicability of the proposed metrics were demonstrated on 
four recent, aerial LiDAR scans at two urban locations. 

Several of the concepts presented in this paper warrant future 
consideration. Foremost is the need to test these metrics on datasets 
representing a broader range of flight parameters, equipment calibra
tion, and surface compositions than what was compared herein. In order 
to predict vertical densities more generally, the angle of capture analysis 
should be extended to off-nadir scanners and various scan patterns. 
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