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52 U.S. Geological Survey, California Water Science Center, 6000 J Street, Placer Hall, Sacramento, CA, 95819, USGS: US Geological Survey 
53 National Ecological Observatory Network, Battelle, 1685 38th St Ste 100, Boulder, Colorado, 80301, USA| National Ecological Observatory Network 
54 Graduate School of Life and Environmental Sciences, Osaka Prefecture University| Osaka Prefecture University 
55 Agriculture and Climate Group, Agroscope, Switzerland| Agroscope 
56 Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA| University of Delaware Department of Plant and Soil Sciences A 
57 California State University San Marcos, San Marcos, CA, USA| California State University San Marcos 
58 U.S. Geological Survey, Wetland and Aquatic Research Center, Lafayette LA| USGS: US Geological Survey 
59 Sarawak Tropical Peat Research Institute, Sarawak, Malaysia| Sarawak Tropical Peat Research Institute 
60 Dept. Biology, San Diego State University, San Diego, CA 92182, USA; Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 
2TN, United Kingdom| San Diego State University 
61 International Rice Research Institute, Philippines| International Rice Research Institute 
62 University of Nebraska-Lincoln, Department of Biological Systems Engineering, Lincoln, NE 68583, USA| University of Nebraska-Lincoln 
63 Agronomy Department, University of Florida, Gainesville FL, 32601| UF: University of Florida 
64 Department of Earth Sciences, Vrije Universiteit, Amsterdam, Netherlands| Vrije Universiteit Amsterdam 
65 University of Copenhagen, Department of Geosciences and Natural Resource Management| University of Copenhagen: Kobenhavns Universitet 
66 Institute of Meteorology and Climate Research - Atmospheric Environmental Research, Karlsruhe Institute of Technology (KIT Campus Alpin), 82467 Garmisch- 
Partenkirchen, Germany| Karlsruhe Institute of Technology: Karlsruher Institut fur Technologie 
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A B S T R A C T   

Time series of wetland methane fluxes measured by eddy covariance require gap-filling to estimate daily, sea
sonal, and annual emissions. Gap-filling methane fluxes is challenging because of high variability and complex 
responses to multiple drivers. To date, there is no widely established gap-filling standard for wetland methane 
fluxes, with regards both to the best model algorithms and predictors. This study synthesizes results of different 
gap-filling methods systematically applied at 17 wetland sites spanning boreal to tropical regions and including 
all major wetland classes and two rice paddies. Procedures are proposed for: 1) creating realistic artificial gap 
scenarios, 2) training and evaluating gap-filling models without overstating performance, and 3) predicting half- 
hourly methane fluxes and annual emissions with realistic uncertainty estimates. Performance is compared be
tween a conventional method (marginal distribution sampling) and four machine learning algorithms. The 
conventional method achieved similar median performance as the machine learning models but was worse than 
the best machine learning models and relatively insensitive to predictor choices. Of the machine learning models, 
decision tree algorithms performed the best in cross-validation experiments, even with a baseline predictor set, 
and artificial neural networks showed comparable performance when using all predictors. Soil temperature was 
frequently the most important predictor whilst water table depth was important at sites with substantial water 
table fluctuations, highlighting the value of data on wetland soil conditions. Raw gap-filling uncertainties from 
the machine learning models were underestimated and we propose a method to calibrate uncertainties to ob
servations. The python code for model development, evaluation, and uncertainty estimation is publicly available. 
This study outlines a modular and robust machine learning workflow and makes recommendations for, and 
evaluates an improved baseline of, methane gap-filling models that can be implemented in multi-site syntheses or 
standardized products from regional and global flux networks (e.g., FLUXNET).   

1. Introduction 

Globally, wetlands emit 102-200 teragrams (Tg) of the greenhouse 
gas methane (CH4) to the atmosphere annually and the scarcity of 
wetland CH4 flux data has hindered efforts to better constrain emission 
uncertainties (Saunois et al. 2020). Eddy covariance-based measure
ments of CH4 fluxes have increased rapidly over the last two decades, 
leading to the release of the first global compilation of CH4 flux data 
from 81 sites in 2020 (FLUXNET-CH4 community product Version 1.0; 
Knox et al. 2019; Delwiche et al. 2021). The growth in available CH4 
data can help improve bottom-up estimates of regional-to-global 
wetland CH4 sources (Treat et al. 2018; Peltola et al. 2019; Rose
ntreter et al. 2021) but this requires data processing standards that 
ensure eddy covariance CH4 flux data products are of the same quality 
and provenance as carbon dioxide (CO2) and energy fluxes (e.g., 
FLUXNET2015; Pastorello et al. 2020). Gap-filling is a particularly 
important step during data processing as it impacts estimates of 
ecosystem carbon and radiative balance at individual sites, due to the 
potency of CH4 as a greenhouse gas (Neubauer and Megonigal 2015; 
Hemes et al. 2019; Günther et al. 2020), and can alter upscaled pre
dictions in data driven CH4 flux models (Turetsky et al. 2014; Treat et al. 
2018; Peltola et al. 2019). Comprehensive evaluations of gap-filling 
methods for CH4 fluxes across many wetland sites are still lacking and 
needed in order to advance existing methods (Nemitz et al. 2018; 

Mammarella et al. 2020). 
Gaps of various lengths arise in time series of eddy covariance CH4 

fluxes because of system failure (including signal degradation due to 
sensor soiling), insufficient turbulent mixing, extreme weather condi
tions, irregular maintenance, and wind direction filtering, among other 
reasons. Technical challenges remain in precise and accurate measure
ment of eddy covariance CH4 fluxes (Morin, 2018; Knox et al. 2019) 
despite recent technological advances in spectra-based gas analyzers 
(Nemitz et al. 2018). After filtering, annual data coverage can be low for 
CH4 (25-40%; Delwiche et al. 2021). Therefore gap-filling procedures 
are required to construct the continuous time series for quantifying 
daily, seasonally, and annually integrated CH4 emission estimates. 
Gap-filling techniques used to impute half-hourly eddy covariance 
fluxes at individual sites include look-up tables (Reichstein et al. 2005), 
machine learning and genetic algorithms (Ooba et al. 2006; Moffat et al. 
2007; Kim et al. 2020), multiple imputation (Hui et al. 2004; Vitale et al. 
2018), and process models (Oikawa et al. 2017). Any bias tied to a given 
method propagates to seasonal and annual CH4 emissions and can 
therefore impact data driven CH4 emission estimates at regional to 
global scales (Falge et al. 2001; Moffat et al. 2007; Peltola et al. 2019; 
Vitale et al. 2019). 

Marginal distribution sampling (MDS) (Reichstein et al. 2005; Mof
fat et al. 2007; Pastorello et al. 2020) and machine learning (ML) have 
become the standard gap-filling methods for CO2 fluxes in the eddy 
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covariance community (Wutzler et al. 2018), while no similar standard 
has yet been established for CH4 fluxes. MDS is a multi-step sampling 
scheme, akin to a complex decision tree, and uses look-up tables to 
identify similar predictor conditions within a given time window, which 
conservatively expands around the gap, only as is necessary. MDS is an 
efficient gap-filling method that supplements the look-up tables with 
diurnal cycle interpolation, allowing it to function when there are gaps 
in predictors. However, MDS performance can be limited by the number 
of permissible predictors and current predictor choices are optimized for 
CO2, not CH4 fluxes (Falge et al. 2001). Moreover, unlike CO2 fluxes, 
CH4 fluxes at many sites appear to lack a consistent diel cycle and 
display different diel patterns (Bansal et al. 2018). In contrast, ML is well 
suited to high-dimensional datasets and can capture nonlinear re
lationships between predictors and fluxes (Tramontana et al. 2016; 
Bodesheim et al. 2018) albeit they generally need more time to train and 
evaluate. A summary of some of the methodological considerations for 
MDS and four different ML algorithms considered in this study are 
shown in Table 1. 

To date, artificial neural networks (ANN) have been found to be 
effective for gap-filling CH4 fluxes across six high-latitude wetlands 
(Dengel et al. 2013). ANN have since been used across a variety of eddy 
covariance sites at natural, rewetted, and urban wetlands (Morin et al. 
2014; Goodrich et al. 2015; Rey-Sanchez et al. 2018; Hemes et al. 2019; 
Li et al. 2020; Koebsch et al. 2020), tidal salt marshes (Vázquez-Lule and 
Vargas 2021), and rice paddies (Knox et al. 2016; Runkle et al. 2019), as 
well as in a FLUXNET-CH4 synthesis and the FLUXNET-CH4 community 
product Version 1.0 (Knox et al. 2019; Delwiche et al. 2021). However, 
the ANN algorithms developed by Dengel et al. (2013) and Moffat et al. 
(2007) were only inter-compared in detail among six high-latitude sites 
and were only evaluated on single site-growing-seasons of data. More 
recently, random forests (RF) were found to match or outperform both 
MDS and ANN at five wetlands and rice paddies, with strengths in 
predicting interannual variability from a single multi-year model (Kim 
et al. 2020). Overall, although some important insights into CH4 
gap-filling strategies with ML have been made at individual, or small sets 
of sites, comprehensive experiments are still needed to identify the best 
approaches across the global distribution of wetlands. 

In addition to algorithm choice, investigators need to consider the 
causes of spatial and temporal variability and the effects of biases be
tween training and test data. The complexity of wetland CH4 production, 
consumption, and transport processes can lead to high temporal and 
spatial variability in fluxes across flux tower footprints. Relationships 
between biophysical drivers and CH4 flux can be nonlinear and obscured 
by lags and asynchronicity (Sturtevant et al. 2016). Additionally, the 
temporal signals in CH4 flux time series are observed across a broad 
range of hourly, multi-day, and seasonal timescales (Knox et al. 2019; 

Knox et al. 2021), and can lack a clear diel cycle as observed for CO2 
(Moffat et al. 2007). Challenges also arise for standardization due to site 
uniqueness (Bridgham et al. 2013; Trifunovic et al. 2020). For example, 
Knox et al. (2019) showed that variation in water table depth, a 
well-established control on wetland CH4 fluxes, only measurably 
affected CH4 flux at sites where its range extended across the soil sur
face. Similarly, the spatial mosaic of inundation and vegetation varies 
both within and across wetland classes and affects wetland CH4 flux via 
substrate supply and gas transport processes (Matthes et al. 2014; 
McNicol et al. 2017; Rey-Sanchez et al. 2018). This high spatial het
erogeneity creates a wind direction (footprint) dependency rarely 
observed for CO2 fluxes (Tuovinen et al. 2019). To be able to explain the 
complex dynamics of wetland CH4 emissions, process models need in
formation on water table position, soil oxygen and moisture, and soil 
temperature (Bridgham et al. 2013). Other issues include biases in 
training observations introduced by low turbulence (friction velocity, 
USTAR) filters (Göckede et al. 2019) which might make gap-filling 
models more prone to errors during imputation of CH4 flux from 
higher-to-lower turbulence conditions (Dengel et al. 2013), as is 
observed at some sites for daytime-to-nighttime imputation of CO2 flux 
(Moffat et al. 2007). Conditions that lead to exceptional but short-lived 
fluxes (e.g., ebullition events) may also be less easy to capture in training 
and test data (Ueyama et al. 2020b; Taoka et al. 2020). In sum, the 
combination of high temporal variability of CH4 flux within and across 
sites (Knox et al. 2019), high spatial variation of fluxes in some wetlands 
(Morin et al. 2017), and the sensitivity of fluxes to a suite of drivers at 
different timescales (Sturtevant et al. 2016), requires a thorough eval
uation of CH4 flux gap-filling models across a broad range of possible 
gap lengths. 

This study provides a systematic evaluation of MDS and four ML 
algorithms for gap-filling CH4 fluxes at 17 FLUXNET-CH4 sites. The 17 
sites cover a wide range of wetland types, and climate and gap condi
tions (i.e., length and distribution). Collectively, these sites provide a 
large and fairly standard set of predictors, allowing for a robust across- 
site comparison of model performance and predictor importance. The 
overall ML workflow from artificial gap generation, to cross validation 
and testing, and to prediction uncertainty estimation, is robust and 
reproducible (Pastorello et al. 2020; Nemitz et al. 2018) and designed to 
be general and applicable to a wide range of gap-filling scenarios across 
terrestrial wetland ecosystems. The data and code are made public 
[https://github.com/stanfordmlgroup/methane-gapfill-ml]. 

Table 1 
An overview of marginal distribution sampling and potential machine learning algorithms for gap-filling of CH4 flux in wetlands.  

Method Marginal Distribution 
Sampling (MDS) 

Lasso Regression (Lasso) Artificial Neural Network 
(ANN) 

Random Forest (RF) XGBoost 

Justification Simple alternative to ML Interpretable baseline Most common current 
method 

Fast and promising for 
tabular data 

Strong in other ML 
applications with tabular 
data 

Class Multi-step sampling 
scheme 

Linear regression Regression Regression (Decision tree) Regression (Decision tree) 

Algorithm Multi-step look-up table 
with backup of diurnal 
cycle interpolation 

Least squares regression with 
regularization penalty on 
coefficients to "shrink" 
unimportant coefficients to zero 

Layers of nodes performing 
linear transformations with 
nonlinear transfer functions 

Ensemble of decision trees 
learned independently on 
randomly bagged data 
subsets 

Similar to random forest 
but decision trees learn 
iteratively using gradient 
boosting 

Pre-processing Predictor choice 
(combinations of 3) 

Imputation Normalization & imputation Imputation None (Imputation 
optional) 

Hyperparameter 
Tuning 

None Yes (minimal) Yes Yes Yes (few) 

Interpretability Low High (coefficients) Low High (importances) High (importances) 
Uncertainty Variance of observations Bootstrap ensembles Bootstrap ensembles Bootstrap ensembles Bootstrap ensembles 
References (Falge et al. 2001;  

Reichstein et al. 2005) 
(Tibshirani 1996) (Rojas 2013) (Breiman 2001) (Chen and Guestrin 2016)  
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2. Materials and Methods 

2.1. Site Data 

Seventeen managed agricultural (i.e., rice paddies) and natural 
wetlands were selected from Version 1 of the FLUXNET-CH4 database 
(Delwiche et al. 2021) for the comparison of gap-filling methods 
(Table 2). Selection criteria of the sites included: 1) at least one calendar 
year of measured fluxes; and 2) a complete set of measured physical and 
biological predictors, including soil temperature and water-table depth 
(Table A.1). Although FLUXNET-CH4 contains other ecosystem classes, 
including several upland cover types, lakes, and mangroves, these eco
systems were beyond the scope of the present study. 

The 17 sites span tropical to boreal climates and diverse and repre
sentative wetland types (Figure 1), including bogs (5), marshes (5), fens 
(4), a tropical swamp (1), and rice paddies (2). Altogether, 32.4 site- 
years of CH4 flux data were used for gap-filling model development 
and validation, collected during 2010-2018. Data pre-processing steps 
prior to gap-filling were the same as described in (Delwiche et al. 2021). 
Each site was classified into a wetland class based on site investigator 
self-reporting. 

2.2. Predictor Variables 

For each site, four different combinations of input predictors were 
tested (Table 3). The simple “temporal set” consisted of two variables 
that mimic a generic seasonal cycle (sine and cosine functions with 
yearly wavelengths and amplitude equal to 1) and decimal day of year 
(delta). The “meteorological set” included four variables (air tempera
ture (TA), incoming shortwave radiation (SW_IN), wind speed (WS), and 
atmospheric pressure (PA)) measured at eddy covariance towers that 
were gap-filled using atmospheric reanalysis products (ERA-Interim 
reanalysis data; Vuichard and Papale 2015). The “baseline set” com
bined the temporal and meteorological sets, for a total of 7 predictors. 
These predictors were chosen as the baseline for comparison for their 
consistent availability as core eddy covariance measurements and 
because they were used to gap-fill the FLUXNET-CH4 Version 1.0 dataset 
(Knox et al. 2019; Delwiche et al. 2021). 

Beyond the baseline predictors of Knox et al. (2019), the use of all 
predictors at each site was also tested, providing a large and comparable 
predictor set that always included soil temperature, and soil moisture, 
and/or water table position, among others (Table 3). Although avail
ability of these additional predictors varied widely across other 
FLUXNET-CH4 sites, for these 17 sites, the additional predictors 

constituting the all-predictor set were highly consistent. Missing pre
dictor data were mean-imputed and “imputed flag” predictors were 
created, which is standard in ML. 

2.3. Machine Learning Model Training Procedure 

Four ML algorithms were trained with each of the four subsets of 
input predictors (Table 3), leading to a total of 16 algorithm-predictor 
combinations per site, which were evaluated using a nested cross vali
dation procedure (Figure 2). In each algorithm-by-predictor set experi
ment, the following steps were repeated for each site. Firstly, artificial 
gaps were introduced which constituted a single, held-out test set. The 
test set was only used after model training and selection to evaluate the 
gap-filling performance of the selected models. Secondly, following 
Moffat et al. (2007), 10 additional pairs of training and validation sets of 
artificial gaps were created with several independent samples of artifi
cial gaps to mitigate potential bias in model performance for any 
particular gap sequence. Thirdly, for each algorithm-by-predictor com
bination, a model was trained on each of the 10 training sets and the best 
ML hyperparameters were selected based on average model perfor
mance during 5-fold cross-validation. Cross-validation involved creating 
5 random subsets (folds) of each training set, training the model multiple 
times with a broad hyperparameter grid search on 4 folds, and evalu
ating the models on one held-out fold. This hyperparameter search was 
repeated 5 times, changing the held-out fold each time. The best 
hyperparameters across all folds were then used to refit the model on the 
full training set, resulting in 10 trained models for each 
algorithm-by-predictor combination. Fourthly, each of the 10 models 
was evaluated using the corresponding validation set, and the mean and 
variance of model scores for the 10 validation sets were used to compare 
algorithm classes with different input predictor groups. Finally, the 10 
models of the algorithm classes that scored highest on the validation sets 
were ensembled and the ensemble mean prediction was evaluated 
against the test set. 

2.4. Gap-filling Methods 

Marginal Distribution Sampling and four ML algorithms were used 
for gap-filling, including lasso regression, artificial neural networks, 
random forests, and gradient boosted decision trees. Each ML algorithm 
was trained using the four different predictor subsets at each site. The 
“xgboost” package (Chen and Guestrin 2016) was used to implement the 
gradient boosted decision tree models and the “scikit-learn” package 
(Pedregosa et al. 2011) in python (Van Rossum and Drake 2009) was 

Table 2 
Site information and data references for 17 FLUXNET-CH4 wetland sites. Sites are arranged in order of increasing mean of observed CH4 flux (which is also sensitive to 
differences in temporal coverage between sites) and days refers to the number of days with some observed CH4 fluxes. Data are the same as those published in the 
FLUXNET-CH4 community product Version 1.0 (https://fluxnet.org/data/fluxnet-ch4-community-product/) (Delwiche et al. 2021). Mean annual temperature and 
precipitation were extracted from respective WorldClim 2.0 gridded products at site locations (Fick and Hijmans 2017).  

Site ID Climate Zone Mean Annual Temp.◦C Mean Annual Precip.mm Mean FCH4,nmol m−2 s−1 Days,n Site DOI 

US-Uaf Boreal -2.8 298 2.7 2922 (Iwata et al. 2020b) 
US-Los Temperate 4.1 833 18.4 1826 (Desai 2020) 
SE-Deg Boreal 1.7 620 31.7 1826 (Nilsson and Peichl 2020) 
FI-Sii Boreal 3.2 666 35.4 2191 (Vesala et al. 2020b) 
US-Twt Temperate 15.2 372 37.7 3016 (Knox et al. 2020) 
FI-Si2 Boreal 3.2 664 46.1 1827 (Vesala et al. 2020a) 
CA-SCB Boreal -2.8 414 46.3 1417 (Sonnentag and Helbig 2020) 
NZ-Kop Temperate 13.9 1343 47.0 1461 (Campbell and Goodrich 2020) 
FI-Lom Boreal -0.4 484 49.7 1826 (Lohila et al. 2020) 
JP-Mse Temperate 14.1 1305 59.4 366 (Iwata 2020a) 
JP-BBY Temperate 6.7 1153 65.0 1461 (Ueyama et al. 2020a) 
BR-Npw Tropical 25.2 1318 69.7 1122 (Vourlitis et al. 2020) 
US-Tw4 Temperate 15.4 370 97.5 2191 (Eichelmann et al. 2020) 
US-WPT Temperate 9.9 881 127.6 1096 (Chen and Chu 2020) 
US-Myb Temperate 15.4 346 142.8 3287 (Matthes et al. 2020) 
US-Tw1 Temperate 15.4 371 166.7 2922 (Valach et al. 2020) 
US-OWC Temperate 9.9 898 627.3 669 (Bohrer et al. 2020)  
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Figure 1. (a) Map of the 17 wetland sites used for the gap-filling experiment and (b) average daily data coverage (%) at each site. The average daily data coverage 
was computed at each site as the proportion of available to total (48) half-hourly flux periods per day, averaging across available years of data. In addition to 
spanning a wide geographic and climatic range, the temporal distribution of gaps and their lengths varied greatly across sites providing a large range of conditions for 
model testing and evaluation. 
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used to implement lasso regression, artificial neural networks, and 
random forests. 

2.4.1. MDS 

The Marginal Distribution Sampling method originally proposed by 
(Reichstein et al. 2005) is based on the construction of a look-up table 
around each single gap (half hour). The method considers three possible 
drivers, one identified as the main driver and the other two as additional 
drivers. For each driver, a threshold value is set to define the similarity 
conditions. For each gap, the missing value is replaced with the average 
of the measurements found in the time window around the gap with 
similar meteorological conditions (i.e., similar value of the drivers). The 
algorithm first tries to use all three drivers for a window which is kept as 
short as possible to avoid the confounding effects of other slow-changing 
drivers such as phenology. If no similar conditions are found, the win
dow size is increased and only the main driver is considered, or alter
natively, and as a last option, the mean diurnal cycle within adjacent 
days is used. More details on the overall strategy and compromise be
tween having a larger window or only one driver included can be found 
in the appendix of (Reichstein et al. 2005). The original method, 
designed for CO2 fluxes, uses SW_IN as the main driver, and TA, and VPD 
as additional drivers. In the current application of the method to wetland 
CH4 fluxes, however, seven different driver combinations were tested as 
reported in Table 4. 

2.4.2. ML Algorithms 

Serving as an interpretable and simple baseline model, penalized 
linear regression was tested for flux gap-filling, referred to here as Least 
Absolute Shrinkage and Selection Operator (Lasso; Tibshirani 1996). 
Lasso regression penalizes the sum of the absolute value of coefficients 
leading to a sparse selection of variables. The regularization coefficient 
(penalty) was selected during cross validation. Predictors were stan
dardized after imputation by subtracting the mean and dividing by the 
standard deviation which is necessary for methods that are not 
scale-invariant such as Lasso and thus are sensitive to predictor data 
ranges. 

Artificial neural networks (ANN, i.e., shallow multilayer percep
trons) were tested and have been used in previous works for CO2 and 
CH4 fluxes (Goodrich et al. 2015; Dengel et al. 2013; Knox et al. 2016; 
Hemes et al. 2019; Li et al. 2020). Neural networks consist of a few 
layers, with each layer containing different numbers of nodes that 
sequentially apply linear transformations with parameters that are 
learned during model training. These layers are separated by nonlinear 
activation functions that enable the neural network to model more 
complex functions. During training, the parameters of each layer’s 
transformation were adjusted to minimize the squared loss between the 
predicted and observed flux values. Hyperparameters tuned during cross 
validation included the optimization method for adjusting parameters 
(LBFGS or Adam), learning rate (0.01, 0.001, 0.0001), the nonlinear 
activation function (hyperbolic tangent or rectified linear unit), the 
numbers of hidden layers (1 or 2; Knox et al. 2019), and the number of 
nodes per layer (5-30). Normalization was the same as Lasso. 

Random forests have been commonly used to model tabular data and 
have recently emerged for gap-filling CH4 fluxes (Kim et al. 2020). 
Random forests are an ensemble of decision trees which are each learned 
independently on bootstrapped data (Breiman 2001). The mean of the 
predictions across the ensemble of trees is taken as the final prediction. 
Hyperparameters tuned during cross validation included the number of 
trees (50-500), the maximum depth per tree (10-110, as well as no 
maximum depth), the number of predictors considered at each split (n or 
square-root of n), the minimum number of samples required to split a 
node (2, 5, or 10), the minimum number of samples required at each leaf 
node (1, 2, or 4), and whether to bootstrap the data when building trees. 
Normalization is not required for RF. Predictor importance was 
computed as reduction in Gini impurity (Breiman 2001). 

Boosting enables decision trees to be grown iteratively based on the 
mistakes of prior trees (Freund and Schapire 1999). XGBoost was tested 
as a widely used and efficient gradient boosted decision tree framework 
that builds decision trees sequentially (Chen and Guestrin 2016) and has 
demonstrated success in a wide variety of ML applications. A squared 
loss was used as the objective function with the default learning rate of 
0.1. The number of decision trees, the maximum depth per tree, and the 
minimum number of samples required to split a node used the same 
ranges as RF. Other hyperparameters tuned included the proportion of 
the training data to subsample prior to growing trees (0.75, 0.85, or 
0.95), the minimum loss reduction required to split a leaf node (0, 0.2, or 
0.4), and the fraction of predictors that were randomly selected for the 
construction of each tree (0.6, 0.7, 0.8, or 0.9). XGBoost handles pre
dictor imputation during training using sparsity-aware split finding, 
which provides a default direction on each node in the decision tree and 
allows for skipping over missing values (Chen and Guestrin 2016). 
Normalization is not required for XGBoost. 

2.5. Artificial Gap Generation 

Different gap lengths occur naturally in the time series of eddy 
covariance flux measurements, for reasons that include instrument 
malfunction, power outages, seasonal changes (winter), and data QA/ 
QC (Moffat et al. 2007). Introducing artificial gaps into the flux data, 
across this range of observed gap lengths is necessary to provide scorable 

Table 3 
Input predictor subsets with variables and their abbreviations used in the text 
and figures. Further details for predictors are provided in Table A.1.  

Predictor Subset Predictor Variables 

Temporal Yearly sine 
Yearly cosine 
Delta (decimal day of year) 

Meteorological Air temperature (TA) 
Incoming shortwave radiation 
(SW_IN) 
Wind speed (WS) 
Atmospheric pressure (PA) 

Baseline 
Applied in (Knox et al. 2019) and 
FLUXNET-CH4 Version 1.0 (Delwiche 
et al. 2021) 

Temporal + Meteorological 

All Baseline + all other available eddy 
covariance measurements, including: 
Soil 
Soil temperature (TS) 
Water table depth (WTD) 
Soil water content (SWC) 
Carbon fluxes 
Net ecosystem exchange (NEE) 
Ecosystem respiration (RECO - day- 
and-night methods)* 
Gross primary productivity (GPP - 
day-and-night methods) 
Energy fluxes 
Latent heat (LE) 
Sensible heat (H) 
Soil heat (G) 
Additional meteorology 
Radiation fluxes (SW_OUT, LW_IN/ 
OUT, NETRAD) 
Friction velocity (USTAR) 
Vapor pressure deficit (VPD) 
Precipitation (P) 
Relative humidity (RH) 
Snow depth (SD) 
Photosynthetic photon flux density 
(PPFD_IN/OUT) 
Wind direction (WD)  

* Both conventional nighttime temperature extrapolation method (Reichstein 
et al. 2005) and more recent daytime method (Lasslop et al. 2010) variables 
were included. 
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validation and test cases. Previous studies have achieved this by eval
uating models on different artificial gap-length scenarios. In each sce
nario, gaps of a limited range of lengths (e.g., 1-8 half-hours) are 

introduced and model performance is compared among the different 
gap-length scenarios (Moffat et al. 2007; Kim et al. 2020). This approach 
ensures gaps of all lengths are evaluated because it relies on sampling 
gaps randomly or uniformly within fixed gap length scenarios. However, 
the resulting gap distributions also become skewed when longer gaps 
form due to artificial gaps merging with observed gaps. This may 
incorrectly favor models that perform better on longer gaps which are 
less common in eddy covariance flux data. 

To retain the observed gap length distribution, a new artificial gap 
generation procedure was developed. The new procedure takes into 
account the locations of the observed gaps when generating artificial 
gaps of varying lengths, such that the observed plus artificial gap length 
distribution resembles the observed distribution. Formally, the artificial 
gap generation procedure finds a distribution q of artificial gap lengths 
for each site such that the true empirical distribution p of gap lengths at 
that site is approximated by the union of q and p, which is denoted r = q 
∪ p. In order to obtain a distribution r which is close to p, a method is 
proposed for finding q. Intuitively, the histogram of q should look 
“compressed” compared to the histogram of p; that is, it places more 
weight on shorter gap lengths and has lighter tails: while shorter gap 
lengths will be sampled more from q, longer gaps will still form from the 
merging that occurs between newly sampled and observed existing gaps. 

Figure 2. Artificial gap generation and evaluation procedure. (a) Artificial gaps are introduced to create the test set, which is set aside, followed by several 
alternative validation sets. (b) One model is trained on each validation set, including a 5-fold cross validation step to tune hyperparameters. The validation set 
performance can be compared across the different algorithms. Then, for select algorithms (best on validation set), the 10-model ensemble is run on the test set to fill 
in gaps and mean predictions are used to obtain a final score while prediction variance is used to parameterized uncertainty distributions. With this procedure, no 
model tuning or predictor selection is performed on the test set. 

Table 4 
Driver combinations used for the MDS method. SW_IN = Incoming shortwave 
radiation (W m−2), TA = air temperature (◦C), PA = air pressure (hP), WTD =
water table depth (m), WS = wind speed (m s−1), RECO = ecosystem respiration 
(µmol CO2 m−2 s−1). The values in parenthesis are the thresholds used to 
define similar conditions (i.e., value ± threshold). In case of SW_IN, as in the 
original formulation of the method in (Reichstein et al. 2005), the thresholds are 
two (20, 50): similar conditions for a measured value V are considered in the 
range V ± 50 if V > 50, V ± 20 if V < 20 and V ± V for values of V between 20 
and 50.  

Combination Main driver 
(threshold) 

Secondary driver 1 
(threshold) 

Secondary driver 2 
(threshold) 

1 SW_IN (20, 50) TA (2.5) PA (0.2) 
2 TA (2.5) SW_IN (20, 50) PA (0.2) 
3 TA (2.5) SW_IN (20, 50) RECO (1) 
4 TA (2.5) SW_IN (20, 50) WTD (0.02) 
5 TA (2.5) SW_IN (20, 50) TS (1) 
6 TA (2.5) WS (1) PA (0.2) 
7 TA (2.5) SW_IN (20, 50) WS (1)  
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A detailed description and parameterization of the artificial gap gener
ation algorithm are provided in Appendix B. 

The proposed method thus maintains a similar distribution of gap 
lengths to the observed distribution, aiming to strike a balance between 
having enough scorable (artificial) gaps for model training and ensuring 
the distribution of gaps input to the model is similar to that of the 
observed data. As this method does not use prescribed gap scenarios, it is 
important to inspect the resulting artificial gap distributions. For this 
study, site-specific gap sampling details and gap length distributions are 
provided in Appendix C. 

2.6. Evaluation 

For each site, MDS-and the ML algorithm-predictor combinations 
were compared by evaluating predictive performance on the 10 vali
dation sets. The best two algorithms and their ensemble performance 
were then evaluated on the test set using both baseline and all predictors 
to: 1) measure absolute improvements over previously implemented 
standards (ANN plus baseline predictors; Knox et al. 2019); 2) under
stand how each algorithm benefited (if at all) from using all, rather than 
only baseline, predictors; and 3) measure the effect that the different 
algorithm predictions had on cumulative annual and growing season 
CH4 emissions estimates for each site, and associated uncertainties. 

2.6.1. Performance Measures 
Model performance was measured using the coefficient of determi

nation (R2), mean absolute error normalized by the standard deviation 
of CH4 flux (nMAE), mean bias (Bias), root mean squared error (RMSE), 
and standard deviation. R2 was used to measure the ability of the gap- 
filling model to reproduce the time series pattern, after confirming 
that Pearson correlations were all positive (Taylor 1990). nMAE was 
used to measure the difference between predictions from observations 
regardless of the direction of the error; the normalization allows us to 
compare across sites despite large differences in flux variability. Finally, 
Bias was used to measure the average direction of error, which will have 
the largest consequence on site emission sums. The nonparametric basic 
bootstrap with 5,000 bootstrap replicates was used to compute vari
ability around the performance metrics on the test set (Efron and Tib
shirani 1994); and 95% confidence intervals for each measure were 
reported. Taylor diagrams were used to visually compare the perfor
mance of each of the models with different input predictors. Taylor di
agrams provide a visually intuitive way of displaying the performance of 
each model in terms of three metrics: R2, root mean squared error 
(RMSE), and standard deviation (Taylor, 2001). Finally, nMAE and Bias 
were used to assess the performance of the models across different gap 
lengths similar to Moffat et al. (2007), Nemitz et al. (2018), Kim et al. 
(2020), and Knox et al. (2019): very short gaps (1 half hour), short gaps 
(2-8 half hours), medium gaps (9-64 half hours, i.e., 1.5 days), long gaps 
(1.5-12 consecutive days), and extremely long gaps (> 12 consecutive 
days). 

2.6.2. Statistical Analysis 
Validation set performance was evaluated coarsely using differences 

in median model metrics and was only used to select models for the more 
detailed statistical comparison on the test set. Then, for each site, the test 
set performance of the best two algorithms was compared (RF, as the 
faster of the two decision tree algorithms, and ANN) with two predictor 
sets (baseline and all). The performance metrics showed significant non- 
normality across the 17 sites according to the Shapiro-Wilk test. As a 
result, the Friedman test followed by post hoc Nemenyi was used for 
evaluating pairwise comparisons. This pair of tests is the nonparametric 
equivalent of the one-way ANOVA with repeated measures (followed by 
Tukey’s test) and is the standard procedure when the assumptions of 
ANOVA are not met (normality in this case; Derrac et al. 2011; 
Schuurmans 2006). Performance metric comparisons were implemented 
in R (R Core Team 2021) using the PMCMR package (Pohlert 2014). 

To evaluate whether the gap-filling performance is related to the 
characteristics of CH4 flux, Pearson correlation coefficient between the 
best model performance metrics (RF and all predictors) and the annual 
mean and variance of the fluxes were analyzed. Correlation analyses 
were performed in Python using the ‘scipy’ package (Virtanen et al. 
2020). 

2.6.3. Evaluating Systematic USTAR Bias 
Filtering to remove eddy covariance CH4 fluxes during low turbu

lence conditions (using friction velocity, USTAR, as a measure of tur
bulence) may introduce a systematic bias into ML training because the 
efficiency of CH4 gas transport mechanisms such as plant mediated flow 
can increase with wind speed (Laanbroek 2010). To approximate an 
evaluation of biases introduced from low USTAR filtering, the amount of 
filtered data across each site was quantified (0-21%) and the same 
fraction of high USTAR conditions (top percentile) was removed from 
each paired training and validation set. The original and 
high-USTAR-filtered model performance was then evaluated on the 
scorable gaps created with the high USTAR filter. Although an imperfect 
analogue, this test therefore simulated model extrapolation to very low 
USTAR conditions by evaluating performance during extrapolations to 
high USTAR conditions. 

2.7. Uncertainty Estimation 

2.7.1. Uncertainty Evaluation 
Machine learning model (gap-filling) uncertainty for each half-hour 

flux prediction was estimated using the variation of the model ensemble 
predictions. For each input, the mean and variance of the ensemble 
predictions were used to parameterize a double exponential distribution 
(a probabilistic prediction) (Hollinger and Richardson 2005). The confi
dence intervals of the specified confidence level are computed using this 
full distribution. Similar to Richardson and Hollinger (2007), Lasslop 
et al. (2008), Richardson et al. (2012), Menzer et al. (2013), Vitale et al. 
(2019), the model ensemble uncertainty was used to approximate 
random flux uncertainty. It is acknowledged, however, that because the 
contribution of missing values in input predictors is not taken into ac
count, the derived uncertainties only approximate the total random 
uncertainties that can be better accounted for with alternative multiple 
imputation methods (Vitale et al. 2018). The described method focuses 
on providing a method to robustly evaluate gap-filling uncertainties in a 
manner suitable for ML ensemble workflows. 

The consistency of the uncertainty estimates was evaluated using 
standard probabilistic forecasting evaluation measures, namely cali
bration and sharpness (Gneiting et al. 2007). Calibration captures the 
consistency between probabilistic forecasts and observations, and 
measures whether predicted distributions correctly capture confidence 
levels as validated against observed data. A well-calibrated model pro
duces predictive distributions such that P% confidence interval (CI) 
contains the observations P% of the time. A model can be well calibrated 
only at specific percentiles (e.g., 95%) or across multiple percentiles. At 
a minimum, models should be well calibrated at the specific desired 
percentile before uncertainty estimates at that percentile can be reliably 
used. Once models are shown to be well calibrated, they can be 
compared using sharpness - a property that measures the concentration 
of the predictive distributions. The approach of maximizing sharpness 
subject to calibration is widely adopted in meteorology (Gneiting and 
Katzfuss 2014). Model improvement is captured by increasing sharp
ness, subject to calibration. For each site, performance was evaluated at 
the 95% CI. Calibration was measured by computing the proportion of 
the observed values within the 95% CIs and measured sharpness using 
the mean width of the 95% CIs across the test set. A normalized sharp
ness metric is reported by dividing by the standard deviation of flux to 
account for the differing flux variance at each site. 
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2.7.2. Uncertainty Interval Scaling 
Models that produce predictive distributions, such as the ML 

ensemble in the present study, are not necessarily well calibrated by 
default. Several techniques have been proposed to calibrate models after 
they are trained (post-processing calibration), most often using Platt 
scaling (Platt 1999) and isotonic regression (Zadrozny and Elkan 2002). 
In this work, Platt scaling is adopted to calibrate the ensemble pre
dictions. Platt scaling learns a scaling parameter that is used to scale the 
variance uniformly for every input. This parameter is learned by 
assuming a distribution (e.g., double exponential) and using maximum 
likelihood estimation to derive a value from observed data. A double 
exponential distribution was assumed and derived a closed-form 
expression for the scaling parameter (see Appendix D for derivation). 
Following this calibration procedure, the probabilistic predictions of 
different models were compared by measuring the sharpness of the 
calibrated distributions. 

2.8. Annual and Growing Season Emissions 

Annual CH4 emissions were computed as the mean cumulative sum 
of the 10 gap-filled flux time series, predicted by each ML model 
ensemble. To account for the uncertainty calibration procedure, 
ensemble predictions were rescaled (spread out) around the mean in 
proportion to the Platt scaling value. Annual sums and uncertainties 
(uncalibrated and calibrated) were quantified from the mean and vari
ance of the cumulative sums, respectively. As is standard for CO2 gap- 
filling, site-years with a gap of 60 days or longer during the growing 
or shoulder seasons were excluded (Richardson and Hollinger 2007; 
Richardson et al. 2012), except for US-Uaf, which only had one site-year 
available, and for US-OWC, which had large shoulder or growing season 
gaps during both available years. Additional date thresholds were 
applied for the two rice paddies (US-Twt and JP-Mse) to only sum fluxes 
during the rice growing season based on rice management information 
(Knox et al. 2016; Miyata et al. 2000). All other gap-filled values for gap 
lengths < 60 days were included. Annual or growing season CH4 emis
sions estimates were also computed for each of the seven MDS models 
(different predictor sets) as the cumulative sum of the gap-filled time 
series. Similar to ML, summed uncertainties were taken as the variance 
of the sums from the seven MDS models, however no calibration method 
was applied. 

3. Results 

3.1. Scorable Gap Conditions 

In addition to their wide geographical distribution (Figure 1a), the 
17 wetland sites also covered a wide range of biophysical conditions. 
Across all sites, water table depth (WTD) ranged from < -1 m to > 1 m 
relative to the soil surface, while gross primary production (GPP) ranged 
from zero in winter to > 40 µmol m−2 s−1 (Figure 3a). Unlike GPP, 
within site variation in WTD was small relative to across site variation, 
with the WTD range at some sites being either entirely above (e.g., US- 
Myb) or below (e.g., US-Uaf) the soil surface. Rice paddies and one 
tropical swamp (i.e., JP-Mse, US-Tw1, US-Twt, and BR-Npw) showed 
larger fluctuations that crossed the soil surface (± 50 cm or more). In 
addition, soil temperature (TS) spanned from -10◦C to > 40◦C across 
sites, and CH4 fluxes ranged across 5 orders of magnitude from < 0.01 to 
> 1,000 nmol m−2 s−1 (Figure 3c). Sites tended to overlap more in their 
range of TS and CH4 flux (FCH4), but were more distinctive in WTD and 
GPP. The biophysical conditions for scorable test conditions introduced 
as artificial gaps in the test set (Figure 3b, d) displayed a similar range, 
indicating that models were evaluated on the full range of observed data 
conditions. 

3.2. Performance Patterns on the Validation Set 

Median MDS performance (R2 = 0.65; nMAE = 0.35; Bias = -0.03 
nmol m−2 s−1) was better than median ML performance (R2 = 0.56; 
nMAE = 0.39; Bias = 0.01 nmol m−2 s−1). However, predictor subsets 
had little effect on MDS performance (Figure 4a, c, e). Only slight im
provements were seen over baseline meteorological predictors (i.e., 
SW_IN, TA, and PA) when one of the CH4-centric predictors (i.e., WTD, 
TS, RECO, or WS) was included. Overall, the best performing predictor 
combination for MDS was TA, PA, and WS (R2 = 0.66; nMAE = 0.34; 
Bias = -0.07 nmol m−2 s−1). 

There was a larger spread in performance across the ML (Figure 4b, 
d, f). Median performance increased from Lasso (R2 = 0.37; nMAE =
0.51; Bias = 0.10 nmol m−2 s−1), to ANN (R2 = 0.58; nMAE = 0.39; Bias 
= 0.06 nmol m−2 s−1), to XGBoost (R2 = 0.65; nMAE = 0.35; Bias =
-0.11 nmol m−2 s−1) and RF (R2 = 0.67; nMAE = 0.32; Bias = 0.01 nmol 
m−2 s−1). Unlike MDS, ML performance was strongly dependent on the 
predictor set. Using all predictors was consistently the best choice across 
all sites and all classes of models, while using the meteorological subset 
alone performed the worst. Median model performance ranged from R2 

of 0.27, nMAE of 0.60, and mean Bias of 0.08 nmol m−2 s−1 for Lasso 
model class with the meteorological predictors only, to R2 of 0.79, nMAE 
of 0.26, and Bias of 0.12 nmol m−2 s−1 for the RF model class with all 
predictors. Notably, decision tree models using the baseline predictor set 
(e.g., RF R2 = 0.75; nMAE = 0.29; Bias = 0.02 nmol m−2 s−1) still 
outperformed ANN using all predictors (R2 = 0.70; nMAE = 0.31; Bias =
0.05 nmol m−2 s−1). For both decision tree and ANN models, the tem
poral set was much more important for baseline performance than the 

Figure 3. The coverage of training and test data for select predictor and CH4 
flux conditions. All observations (a, c), and scorable gaps (b, d) spanned a wide 
range of (a, b) water table depth and gross primary production (GPP), and (c, d) 
CH4 flux (FCH4) and soil temperature (TS). 
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meteorological set. As the temporal set can be created for any CH4 gap- 
filling effort, the meteorological set is unlikely to be used alone in 
practice and is therefore only distinguished here to understand its 
relative contribution to the baseline set. 

3.3. Test Set Performance Patterns 

The ANN and RF (as the faster of the two decision tree algorithms) 
achieved the best performance on the validation set and were then 
evaluated on the test set for each site. Test set performance patterns 
were similar to the validation set, confirming that the models were not 
over-fit. Median performance on the test set was better overall for RF 
(R2 = 0.79; nMAE = 0.27; Bias = 0.24 nmol m−2 s−1) than ANN (R2 =

0.73; nMAE = 0.30; Bias = 0.18 nmol m−2 s−1). Median nMAE and R2 

both improved when ANN used all rather than baseline predictors (p =
0.0007 and p = 0.0004, respectively). Similarly, median nMAE and R2 

both improved when RF used all rather than baseline predictors (p =
0.0031 and p = 0.0050, respectively). Test set evaluation also provided 
some evidence of RF outperforming ANN in general. Using all pre
dictors, median nMAE for the RF was smaller than that of the ANN (p =
1.40e-8) although there was no significant difference between the me
dian R2 of RF and ANN (p = 0.191). Similarly, with baseline predictors, 
median nMAE for the RF was smaller than that of the ANN (p = 0.0078) 
but there was no significant difference between the median R2 of RF and 
ANN (p = 0.056). 

A large spread in performance was observed within most wetland 
classes, suggesting a high level of site uniqueness, rather than general
izability, within a particular wetland class (Figure 5). The large spread 
was especially apparent for bogs and fens, whereas marshes and the two 
rice paddies were clustered at intermediate to high performance. To 
better understand the patterns of performance within and among 
wetland classes, correlations were examined between best model 

Figure 4. Boxplots illustrating 10 validation set performance metrics for each of the models (Lasso regression (Lasso), artificial neural networks (ANN), random 
forests (RF), and gradient boosted decision trees (XGBoost)) and predictor subsets across the 17 sites: (a, b) R2, (c, d) normalized mean absolute error (nMAE), (e, f) 
bias, where the left column is Marginal Distribution Sampling and the right column is machine learning. Each colored box shows the quartiles of the performance 
metrics and the whiskers show the rest of the distribution, excluding points determined to be outliers that are presented individually. 
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performance metrics and the annual mean and variance of the fluxes. 
There was no significant relationship between model performance and 
the annual mean of site CH4 fluxes, however, there was a clear negative 
relationship between performance and the coefficient of variation of 
CH4 fluxes (p = 0.001; ρ = 0.72) and an even stronger negative corre
lation with the proportion of flux variance at short (hourly) timescales 
(p = 1.44e-6; ρ = 0.89) (Figure E.1). 

ANN performance showed larger improvements when all predictors 
were used rather than only baseline predictors (Figure 6) and RF per
formance showed small or negligible improvements. However, absolute 
RF performance was already relatively high using only the baseline 
predictors. Overall, the largest ANN and RF performance improvements 

were observed in marshes, with exceptionally large gains at one site (US- 
OWC). Several other bog, rice paddy and swamp sites achieved mod
erate improvements from the additional predictors (i.e., 0.1 to 0.2 in
crease in R2), whereas only small improvements were observed at fens, 
with less than a 0.05 increase in R2. 

Across all very short (1 half-hour), short (2-8 half-hours), medium (9- 
64 half-hours), and long (65-576 half-hours) gap lengths, bias was low 
for both the ANN and RF models. Errors (nMAE) and biases were typi
cally smaller for RF than ANN, and biases were generally larger at 
marshes and the swamp (Figure 7). For the longest gaps (577+ half- 
hours), RF and ANN performance was less consistent and the largest 
biases were introduced at marsh sites when using RF. 

Figure 5. Taylor diagram visualizing artificial neural network (ANN) and random forest (RF) performance improvements on the test set between the baseline and all 
predictor sets for each of the 17 primary sites. The baseline set metrics for each algorithm are shown in small grey circle symbols and the all predictor set metrics are 
shown in larger color-filled symbols. Model improvements can be measured in the Taylor diagram in proportion to 2D shifts towards the black star at (1, 0). Taylor 
diagrams display the ratio of the standard deviation of predictions to observations on the x and y axes, the correlation of predictions to the observed temporal pattern 
on the curved right axis, and the root mean square error of predictions on the diagram surface as concentric (orange) circles around the origin. 

Figure 6. Improvements in test set performance metrics for the artificial neural network (ANN) and random forest (RF) algorithms between the baseline and all 
predictor sets on the 17 wetland sites. Vertical error bars show the 95% confidence interval around the improvement, computed using the nonparametric basic 
bootstrap with 5,000 replicates. Sites are plotted in order of the total of R2 and nMAE improvement. 
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Finally, an exploratory evaluation of errors that may be introduced 
due to USTAR filtering was conducted. The test set was used with the 
best model formulations (RF and all predictors). Model performance 
showed a slight reduction in performance when extrapolating to high 
USTAR conditions (Table E.2), suggesting that similar extrapolations to 
low USTAR conditions may introduce small but non-negligible errors. 
Average Bias across all 17 sites increased by 9%, average nMAE by 10%, 
and R2 decreased by 8%. 

3.4. Predictor Importance 

Variable importance rankings are readily retrievable from RF 
models. The most important predictors of the RF model (in order) across 
all 17 sites were temporal, TS, radiation (aggregate of SW_IN, SW_OUT, 
LW_IN, LW_OUT, and NETRAD), and RECO (Figure 8), with TS being the 
single most important predictor for many sites. Air temperature (TA) 
and turbulence (WS and USTAR), GPP and NEE, and WTD were useful 
for some sites, but not universally. Wind direction (WD) was important 
at 2 sites (US-OWC and US-Myb). Generally, there were few strong 
patterns within bogs, fens and marshes (which were the only classes 
with at least 4 representative sites), suggesting that predictor groups are 

not necessarily tied to wetland classification, although TS was important 
at all of the bogs. Notably, the baseline set captured several of the key 
predictors and all of the important meteorological predictors, except 
wind direction. Of the two partitioning methods for RECO and GPP 
(nighttime and daytime), the nighttime method ranked higher at 15 and 
13 (of 17 total) sites, respectively. 

3.5. Uncertainty Estimation 

The gap-filling prediction uncertainties for the two best ML algo
rithms (ANN and RF) were evaluated with respect to the concepts of 
calibration and sharpness. For ANN, the baseline predictor set model 
ensemble was evaluated because it most closely approximates a previ
ously described method (Knox et al. 2019) which was used to gap-fill the 
FLUXNET-CH4 Version 1.0 community product (Delwiche et al. 2021). 
The prediction uncertainties of both the ANN and RF were not 
well-calibrated by default (Figure 9). In other words, without calibration 
by scaling, the 95% CI of the estimates for both models contained 
significantly less than 95% of the observed values (56.6% on average for 
ANN, 28.4% on average for RF), indicating that the models produced 
overly tight uncertainties across all sites. The ANN produced wider (less 

Figure 7. Performance of the two best algorithms (ANN+All and RF+All) on the test sets, broken down by gap length for the 17 primary sites. Swamp values on long 
gaps (> 65 half-hours) are not shown here as the R2 is not well-defined on single samples. Gap length values indicate merged gap lengths after test gap generation. 
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sharp) uncertainty estimates than the RF without calibration. 
At all sites, both ANN and RF model prediction uncertainties were 

well-calibrated after performing the calibration step (Figure 9). In other 
words, the 95% CI of the estimates contained close to 95% of the 
observed values in the test set (95.6% on average for ANN, 95.2% on 
average for RF). Notably, once calibrated, the RF model made sharper 
predictions across all of the sites than the ANN model. The sites where 
predictions remained the widest (least sharp) after normalizing by the 
standard deviation of flux were US-Uaf, US-Twt, US-OWC, BR-Npw, and 
US-Los, which were the sites with the worst performance in terms of R2 

on the test set. These sites had one or more of a site-specific combination 
of low seasonality and/or extremely long gaps and/or highly variable 
fluxes. Similarly, the sites whose predictions were the sharpest corre
sponded to the sites with the best performance on the test set. Examples 

of pre- and post-calibration uncertainty ranges are shown in Figure E.3. 

3.6. Annual and Growing Season Emissions 

A total of 30.4 site years were gap-filled with MDS with best (TA, WS, 
and PA) predictors, and the baseline ML (ANN plus baseline predictors) 
and best ML (RF plus all predictors) models and summed for annual or 
growing season CH4 emissions. Note that reported uncertainties around 
summed emissions reflect only gap-filling uncertainties and exclude 
additional random uncertainties which, though tending to be small, can 
be considered separately (Knox et al. 2019) or in an integrated manner 
(Vitale et al. 2018). 

Annual and growing season emissions did not differ significantly 
(measured by overlapping 95% CI) at any of the sites when comparing 

Figure 8. Predictor importance of the best model (RF+All) on each of the 17 primary sites. Darker color indicates higher importance assigned to that predictor for 
that site. The predictors within each group were arranged in descending order by the sum of the importance values across the sites. Note that all radiation predictors 
were grouped (e.g., incoming shortwave radiation (SW_IN), outgoing shortwave radiation (SW_OUT), net radiation (NETRAD), etc.), as were air turbulence (friction 
velocity (USTAR) and wind speed (WS)). Similarly, predictors with alternative methods (e.g., daytime/nighttime partitioning) were grouped as were those with 
multiple depths of measurement (e.g. soil temperature (TS)). For full details please refer to Table A.1. 
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the two ML gap-filling methods (Table 5). Calibrated prediction un
certainties for ANN and RF resulted in less sharp, but more plausible, 
95% CI around the annual sum. For all sites except US-OWC and BR- 
Npw, emissions from the best ML model (RF and All) fell within the 
unscaled 95% CI of the baseline model (ANN and Baseline; approxi
mating Knox et al. 2019), supporting a generally high level of accuracy 
for the baseline method under the majority of site and gap conditions in 
this analysis. At the highly variable US-OWC marsh and BR-Npw swamp 
sites, the best model predictions fell outside the unscaled but within the 
scaled baseline CI, which underscores the implausible sharpness of 
unscaled ML ensemble predictions but does not support greater accuracy 

of RF than ANN. Uncertainties around MDS were much sharper (median 
95% CI was ± 3% of annual emissions) than the scaled ML methods for 
ANN (± 38%) and RF (± 18%). The sharp uncertainties resulted in small 
but significant differences between annual and growing season sums 
from MDS and one ML model (e.g., JP-BBY, BR-Npw, US-Tw1) or both 
ML models (e.g., CA-SCB, US-Los). 

Figure 9. Per-site calibration and sharpness for the baseline model (ANN+Baseline) and best model (RF+All) before and after Platt scaling on the test set. The results 
without scaling (filled bar) represent the previous way of constructing uncertainty estimates, by training an ensemble of models and using the variation of the 
predictions without any adjustment, which leads to overly sharp confidence intervals measured by coverage. The results with scaling (hashed bar) incorporate a 
scaling factor which is learned from the data to adjust the ensemble uncertainty estimates and yield calibrated uncertainties. Sharpness was measured as the mean 
width of the 95% uncertainty estimates on the test set normalized by the standard deviation of flux at the site. 
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4. Discussion 

4.1. Methods & Algorithms 

The gap-filling approach outlined in this study optimizes for the 
training and evaluation of ML gap-filling models. A new technique is 
proposed for generating artificial gap scenarios that resemble the true 
observed gap distributions. This is important to ensure that ML models 
are trained and scored on unbiased distributions of gap lengths. Using 
this artificial gap generation procedure, one can generate many site- 
specific scenarios and reliably evaluate models on their ability to fill 
data gaps. There are trade-offs between this approach and the intro
duction of uniform gap-length scenarios (e.g., (Moffat et al. 2007), 
which alternatively ensures a consistent number of scorable gaps (even 
extremely long gaps) at the expense of unbiased training conditions. 
However, the proposed method is recommended for ML-focused studies 
given that the gap-filling of extremely long gaps (e.g., multiple months) 
is much less reliable, regardless of the method used, and are best avoided 
entirely, if possible. 

Decision tree-based models (RF and XGBoost) showed better per
formance than ANN and Lasso models across the majority of the 17 
wetland and rice paddy sites. This is consistent with recent work on CH4 

gap-filling which demonstrated that a RF gap-filling model out
performed both ANN and support vector regression models across five 
wetland and rice paddy sites (Nemitz et al. 2018; Kim et al. 2020; Knox 
et al. 2019). RF models are also relatively easy to tune, fast to train even 
on large datasets, and require little preprocessing. Furthermore, 
decision-tree-based models are more interpretable (presently) than ANN 
(Russell and Norvig 1995), which enables analysis of important pre
dictors. In comparison to ML approaches, MDS was tested as an easy and 
fast method that makes use of only three predictors. MDS scored highly 
on average although still much lower than the best ML models. Kim 
et al. (2020) also found that MDS more frequently introduced statistical 
bias in annual sums than ML models. 

Although RF and ANN models are recommended ML methods, there 
is still room to improve their gap-filling performance, especially on long 
gaps. Recent deep neural network architectures have shown impressive 
results in modeling long sequences in natural language processing, 
particularly recurrent neural network variants (Lipton et al. 2015) and 
Transformers (Vaswani et al. 2017). These models have the potential to 
reproduce highly nonlinear variable interactions using large datasets 
including half-hourly time series flux data and may be able to capture 
lagged relationships between predictors and CH4 flux without further 
manual revision. However, representing non-stationary conditions such 

Table 5 
Mean annual and growing season emissions estimates for three methods (MDS, ANN, and RF) and their uncalibrated and calibrated uncertainties (95% CI) across the 17 
sites. Calibration is only applicable to ML model ensemble methods and therefore cannot be reported for MDS.  

Site(class) Annual or Growing Season Date Ranges (Annual means 
only computed on years with good or comparable data 
coverage) 

Mean Annual or Growing Season Methane Emissions ± Gap-Filling Uncertainty (95% CI) (g CH4-C m−2 

y−1) 
Best MDS,(TA, WS, 
PA)Unc. not scaled 

ANN+Baseline,(as in Knox et al. 2019) 
Unc. not scaledCalibrated (lower) 

RF+All,Best modelUnc. not 
scaledCalibrated (lower) 

JP-BBY (bog) March 2016 - 
December 2017 

17.84 ± 0.29 18.15 ± 0.86 
18.22 ± 3.93 

17.65 ± 0.13 
17.65 ± 1.75 

NZ-Kop (bog) January 2012 - December 2014 17.57 ± 0.38 15.39 ± 1.78 
17.97 ± 9.57 

17.98 ± 0.28 
17.98 ± 3.22 

CA-SCB (bog) April 2014 - 
November 2014 
March 2016 - 
December 2016 
March 2017 - 
November 2017 

11.33 ± 0.24 11.21 ± 0.60 
11.61 ± 2.82 

11.60 ± 0.16 
11.71 ± 2.05 

US-Uaf (bog) April 2011 - 
October 2011 
May - October, 
2012 - 2017 
May 2018 - 
November 2018 

0.57 ± 0.03 0.50 ± 0.09 
0.57 ± 0.58 

0.54 ± 0.03 
0.56 ± 0.40 

FI-Si2 
(bog) 

April - November, 
2012 - 2013 

11.36 ± 0.56 12.33 ± 1.23 
12.60 ± 8.63 

11.68 ± 0.91 
11.81 ± 8.35 

FI-Lom (fen) January 2006 - December 2010 15.61 ± 0.16 15.75 ± 0.74 
15.76 ± 3.83 

15.63 ± 0.09 
15.63 ± 1.12 

FI-Sii 
(fen) 

January 2013 - November 2014 
March 2016 - 
December 2018 

12.09 ± 0.36 12.47 ± 0.80 
12.52 ± 2.9 

12.07 ± 0.25 
12.10 ± 2.12 

SE-Deg (fen) January 2014 - December 2016 
January 2018 - December 2018 

11.63 ± 0.14 11.44 ± 0.68 
11.58 ± 2.18 

11.30 ± 0.05 
11.31 ± 0.60 

US-Los (fen) January 2014 - December 2018 6.56 ± 0.49 6.25 ± 1.29 
7.79 ± 10.09 

6.28 ± 0.20 
6.63 ± 3.2 

US-Myb 
(marsh) 

January 2011 - 
December 2018 

49.18 ± 0.79 47.97 ± 3.76 
48.43 ± 16.71 

49.14 ± 0.29 
49.15 ± 4.44 

US-OWC 
(marsh) 

April 2016 - 
October 2016 

116.85 ± 2.15 117.09 ± 7.56 
120.07 ± 46.19 

131.69 ± 7.97 
132.44 ± 60.2 

US-Tw1 
(marsh) 

January 2013 - December 2018 47.42 ± 2.09 44.81 ± 6.62 
46.14 ± 32.2 

44.88 ± 0.87 
44.89 ± 7.52 

US-Tw4 
(marsh) 

January 2014 - December 2018 32.86 ± 0.70 32.32 ± 2.81 
32.66 ± 13.87 

32.63 ± 0.23 
32.64 ± 3.05 

US-WPT 
(marsh) 

March 2011 - 
December 2013 

50.45 ± 1.55 48.88 ± 3.02 
49.21 ± 14.17 

52.28 ± 0.66 
52.27 ± 8.61 

US-Twt (rice 
paddy) 

April - October, 
2010 - 2016 

7.90 ± 0.44 8.06 ± 1.96 
8.58 ± 8.41 

8.44 ± 0.66 
8.56 ± 5.07 

JP-Mse (rice 
paddy) 

May 2012 - 
September 2012 

9.39 ± 0.44 8.88 ± 0.66 
8.99 ± 1.75 

9.51 ± 0.17 
9.51 ± 1.57 

BR-Npw 
(swamp) 

January 2014 - December 2016 25.90 ± 1.61 19.22 ± 2.52 
21.85 ± 14.23 

24.73 ± 0.63 
25.01 ± 8.01  
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as pulse events has proven to be challenging for ML approaches (Vargas 
et al. 2018). Future work could explore the effectiveness of deep neural 
network architectures for gap-filling CH4. It is likely, however, that 
problems of non-stationarity during long gaps will apply for CH4 as they 
do for CO2 imputation (Richardson and Hollinger 2007) and are best 
handled during data collection. 

4.2. Methane Predictors 

The inclusion of soil temperature (TS) and ecosystem carbon flux 
predictors (NEE, RECO, and GPP) improved gap-filling performance 
over the baseline set (three temporal, plus TA, PA, SW_IN, and WS), in 
broad agreement with known controls by temperature (Yvon-Durocher 
et al. 2014) and substrate availability (Whiting and Chanton 1993; 
(Hatala et al., 2012); McNicol et al. 2020; Laanbroek 2010). Soil tem
perature was the single most important additional predictor over the 
baseline set at most sites, followed by RECO. While TS was available at 
all sites in this study, it is not available across all FLUXNET sites. 
Although NEE and its component ecosystem carbon fluxes (GPP and 
RECO) are highly correlated, the consistent favoring of RECO suggests 
they are not perfectly interchangeable for gap-filling performance, and 
RECO and CH4 flux are both largely the result of microbial metabolism, 
and are similarly affected by environmental drivers (Morin et al. 2014), 
However, partitioned fluxes (RECO and GPP) are overall less practical 
than measured NEE as predictors because they are typically partitioned 
from NEE as a function of TS, and thus its importance may largely reflect 
its correlation with TS (Reichstein et al. 2005; Keenan et al. 2019) while 
RECO is limited in its ability to represent respiration fluxes across 
different ecosystems (Barba et al. 2018). 

Water table depth, a proxy for the balance of anaerobic CH4-pro
ducing and aerobic CH4-consuming soil volumes (Bridgham et al. 2013), 
was an important predictor at rice and swamp sites that undergo larger 
changes in seasonal inundation (Dalmagro et al. 2018; Muramatsu et al. 
2017), but not at other wetland types. Although WTD has been found to 
be important in bogs and fens (Moore et al. 2011; Goodrich et al. 2015; 
Koebsch et al. 2020), it was only an important gap-filling predictor at 
one of the five bogs in this study. This is consistent with prior work 
showing that WTD becomes important when its range is large and/or 
crosses above and below the soil surface (Knox et al. 2019; Alekseychik 
et al. 2021; Knox et al. 2021). Moreover, in some wetlands, WTD is only 
a coarse proxy for anaerobic volume activity due to the presence of 
anaerobic microsites in drained layers and anaerobic methane oxidation 
in saturated layers (Yang et al. 2017). Although WTD was available at all 
17 sites, it is only currently reported for half of wetland sites in 
FLUXNET-CH4 (Knox et al. 2019). The moderate importance of WTD 
measurements as a predictor in many sites, and high importance in 
some, suggests it should be widely collected and reported to ensure 
optimal CH4 gap-filling when using ML models. The predictor experi
ments also allowed us to investigate the usefulness of broad classes of 
predictors. As “fuzzy” temporal predictors (cosine year, sine year, and 
delta) (Moffat et al. 2007), can be computed, they are always recom
mended for gap-filling. It was also confirmed that the most useful 
meteorological predictors (TA, SW_IN, WS and PA) were already 
included in the baseline model of a recent synthesis (Knox et al. 2019). 

The performance improvements using all predictors in this study 
suggests a moderate amount of predictor redundancy does not harm ML 
performance and predictor curation may be less important for ML than 
in other modeling approaches. Kim et al. (2020) similarly showed that 
ML models can benefit from a large predictor set that includes soil 
variables and that dimension-reduction via principal component anal
ysis was not necessary to achieve good performance. However, site 
uniqueness may also necessitate the tailoring of models for optimal 
performance at individual sites, illustrated in this study by the ranges in 
1) observed CH4 fluxes, 2) model performance, and 3) predictor 
importance within bog, fen, and marsh classes. For instance, despite 
high spatial variability in CH4 fluxes at some wetlands (Rey-Sanchez 

et al. 2018; Matthes et al. 2014), WD (which determines the flux foot
print) was only an important predictor at one marsh site (US-OWC), 
which has very high spatial variation in flux between different cover 
types (Rey-Sanchez et al. 2018). The site-specificity of WD for hetero
geneous sites was also reported in a recent study that used a ML 
approach to partition NEE (Tramontana et al. 2020). Entirely new pre
dictors may also be necessary at some sites, such as salinity, which is 
likely an important predictor for gap-filling at estuaries or other coastal 
locations with a (tidal) salinity influence (Holmquist et al. 2018; Pof
fenbarger et al. 2011). Although not prioritized in the present study, a 
more parsimonious predictor set may be identified via a combination of 
site-specific and process knowledge, as well as automated feature se
lection methods (Kumar and Minz 2014). Curated predictor sets should, 
however, be reevaluated when gap-filling new data (e.g., site-years, or 
across multiple sites) as past models may be overfit with respect to new 
data conditions. 

Future work could also explore the use of led or lagged predictors, 
which could be used to engineer predictors with greater coherence with 
CH4 flux (Vitale et al. 2018). For example, recent syntheses have 
demonstrated that the timing and seasonality of CH4 fluxes lags TS 
across several FLUXNET-CH4 sites (Delwiche et al. 2021), leading to an 
apparent hysteretic dependency (Chang et al. 2021), and therefore using 
lagged TS predictors may improve ML gap-filling performance. More 
sophisticated feature selection methods are possible, such as informa
tion theory, which can be used to first identify the predictor and time
scale of the lag (or lead), and then curate a more parsimonious predictor 
set (e.g., Sturtevant et al. 2016; Knox et al. 2021). Overall, improve
ments in the measurement and coverage of key soil predictors, especially 
high-quality soil temperature and water table depth data, is 
recommended. 

4.3. Integrated Emissions & Uncertainties 

Computing annual or growing season CH4 emissions requires gap- 
filling because filtering of EC data and other acquisition issues typi
cally creates gaps of a wide variety of lengths, and especially an abun
dance of short gaps (Table C2). Gaps are not normally distributed in time 
and therefore FCH4 observations are likely to be biased, which will 
propagate to the time-integrated flux. However, the investigator must 
decide: 1) which gap-filled values are likely to be of sufficient accuracy 
to be retained, and 2) whether the retained gap-filled plus observed 
values are sufficient to integrate emissions over an annual, seasonal, or 
other timeframe. As a rough guide, filled values should be treated with 
greater scrutiny as they become longer and less frequent in the scorable 
dataset. The most abundant scorable gaps of length one half-hour to 
approximately 12 days can be filled confidently, given performance 
metric checks as described in this study. Investigators should, however, 
be aware that episodic fluxes, perhaps due to ebullition events, may not 
always be captured and instead may be filled with average fluxes for the 
most comparable conditions (e.g., FCH4 and MAE spikes in Figure E.2). 
Greater scrutiny of evaluation metrics is recommended for gaps longer 
than approximately 12 days, but less than multiple months, whereas, 
filled values in gaps of multiple months (> 60 days) should generally be 
excluded, as is done in CO2 gap-filling (Wutzler et al. 2018). The 
exception may be very long (decadal) datasets where the monthly-scale 
gap occurs in a season with ample data from other sites-years and can be 
reasonably evaluated. After determining which filled values to retain, 
the coverage of filled plus observed fluxes should be considered with 
respect to the integration period. For rice paddies (e.g., US-Twt, 
JP-Mse), and sites with low winter season fluxes due to frozen soils 
(US-OWC or US-Uaf), it may be adequate and interesting to report a 
growing season flux as is done in this study and the FLUXNET-CH4 
synthesis (Delwiche et al. 2021). Time-integrated uncertainties from 
ML gap-filling methods will also widen significantly as more gap-filling 
is required and should always be reported alongside long-term sums. 

The improvement in performance gained by using ML over MDS, and 
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all predictors over baseline predictors, did not have a significant effect 
on annual CH4 emissions estimates at most sites. However, seemingly 
minor changes in CH4 fluxes can have disproportionate impacts when 
calculating greenhouse gas emissions due to the high radiative forcing 
effects of CH4 or when sparsely distributed sites are used in data-driven 
regional or global upscaling efforts (Tramontana et al. 2016; Roberts 
et al. 2017). Specifically, absolute differences in annual emissions 
among the gap-filling methods were larger at high-emitting sites which 
could lead to larger upscaling errors in high-emitting tropical regions 
that account for > 60% of global wetland sources (Wania et al. 2013; 
Bloom et al. 2017; Saunois et al. 2020). These results therefore highlight 
the need for robust methods for estimating and propagating uncertainty 
from flux gap-filling to upscaling. 

Machine learning model-generated uncertainties around both half- 
hourly predictions and annual emissions have been underestimated. A 
scaling procedure (Platt scaling) which expands the uncertainty esti
mates can be used to produce well-calibrated predictions. Well- 
calibrated models can be compared using the sharpness of their pre
dictions, where sharper predictions corresponded to better models. 
Using this method, sharper uncalibrated RF (compared to ANN) pre
diction uncertainties were retained post-calibration, indicating greater 
precision of predictions. However, the frequent overlap between un
calibrated and calibrated for both algorithms means a firm conclusion 
about algorithm differences in accuracy is not possible. It is also 
acknowledged that this uncertainty does not capture all sources of un
certainty that could arise from random measurement errors, unseen 
events, uncertainties in the predictors, or other systematic bias, among 
others. However, calibrating predictive ML models to avoid under
estimating gap-filling uncertainties is strongly recommended. 

Other calibration methods have the potential to achieve calibration 
while producing sharper predictions (Kuleshov et al. 2018). Further
more, probabilistic models like Gaussian processes or multiple imputa
tion methods may be able to produce well-calibrated models without the 
need for post-processing calibration procedures (Vitale et al. 2018; 
Camps-Valls et al. 2019). Recently, a method for producing uncertainty 
estimates from any gradient boosting model was introduced which may 
enable decision tree models to produce well-calibrated, probabilistic 
predictions without requiring a model ensemble or post-processing 
calibration (Duan et al. 2020). Finally, deep learning models can cap
ture highly nonlinear relationships in large datasets and make proba
bilistic predictions which have the potential to outperform other 
gap-filling methods. 

5. Conclusions 

This study outlines a robust and reproducible ML workflow for CH4 
gap-filling models that can be applied at individual wetland sites or in 
multi-site syntheses. Specifically, the study advances CH4 gap-filling in 
wetlands using ML by: 1) introducing a thorough gap-filling model 
development and validation procedure that reliably generates gaps and 
splits the data into training, validation, and test sets; 2) experimentally 
evaluating conventional MDS (with drivers adapted for wetland CH4 
fluxes) against combinations of ML algorithms and predictor sets; and 3) 
proposing a model calibration method to estimate, evaluate, and cali
brate model uncertainties. This study also provides insights into meth
odological choices. Decision tree algorithms (RF and XGBoost) offer the 
best performance on average; using all predictors (or best set for MDS), 
median nMAE followed the order Lasso (0.42) > MDS (0.34) > ANN 
(0.31) > RF/XGBoost (0.26), and median R2 followed the order Lasso 
(0.57) < MDS (0.66) < ANN (0.70) < RF/XGBoost (0.79). Overall, RF is 
recommended as it benefits from less pre-processing and faster run-time 
than XGBoost. ANN predictions had less bias when filling the longest 
gaps and performance improved when using all rather than baseline 
predictors, suggesting ANN may benefit from additional predictor 
curation and feature engineering. Using all available variables collected 
at eddy covariance towers as predictors is also fast, effective, and 

reasonable, given the large ratio of observations to predictors (favorable 
data dimensionality). Conventional MDS also proved to be a fast method 
that provides reasonable performance when CH4 predictors (air tem
perature, air pressure, and wind speed) are selected, however, the lack of 
post-calibration results in uncertainties that are very sharp (unrealistic). 
ML prediction uncertainties, in contrast, can be calibrated to observa
tions using Platt scaling. Finally, based on variable importance results, it 
is recommended that soil temperature and water table depth are 
measured at all wetland eddy covariance sites. The python code for 
developing gap-filling methods, comparing predictions, and calibrating 
uncertainties is available [https://github.com/stanfordmlgroup/ 
methane-gapfill-ml]. For future evaluations at wetlands and other eco
systems, this code can provide a foundation for the development of 
standardized eddy covariance CH4 processing by different teams and 
Regional Flux Networks which can also be tested on nitrous oxide fluxes 
as longer time series become available (Papale 2020). 
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