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ARTICLE INFO ABSTRACT

Keywords:
Machine learning
time series

Time series of wetland methane fluxes measured by eddy covariance require gap-filling to estimate daily, sea-
sonal, and annual emissions. Gap-filling methane fluxes is challenging because of high variability and complex
responses to multiple drivers. To date, there is no widely established gap-filling standard for wetland methane

‘mp‘gﬁfwn fluxes, with regards both to the best model algorithms and predictors. This study synthesizes results of different
xgr?ept-har:: 8 gap-filling methods systematically applied at 17 wetland sites spanning boreal to tropical regions and including
flux all major wetland classes and two rice paddies. Procedures are proposed for: 1) creating realistic artificial gap
wetlands scenarios, 2) training and evaluating gap-filling models without overstating performance, and 3) predicting half-

hourly methane fluxes and annual emissions with realistic uncertainty estimates. Performance is compared be-
tween a conventional method (marginal distribution sampling) and four machine learning algorithms. The
conventional method achieved similar median performance as the machine learning models but was worse than
the best machine learning models and relatively insensitive to predictor choices. Of the machine learning models,
decision tree algorithms performed the best in cross-validation experiments, even with a baseline predictor set,
and artificial neural networks showed comparable performance when using all predictors. Soil temperature was
frequently the most important predictor whilst water table depth was important at sites with substantial water
table fluctuations, highlighting the value of data on wetland soil conditions. Raw gap-filling uncertainties from
the machine learning models were underestimated and we propose a method to calibrate uncertainties to ob-
servations. The python code for model development, evaluation, and uncertainty estimation is publicly available.
This study outlines a modular and robust machine learning workflow and makes recommendations for, and
evaluates an improved baseline of, methane gap-filling models that can be implemented in multi-site syntheses or
standardized products from regional and global flux networks (e.g., FLUXNET).

1. Introduction

Globally, wetlands emit 102-200 teragrams (Tg) of the greenhouse
gas methane (CH4) to the atmosphere annually and the scarcity of
wetland CH4 flux data has hindered efforts to better constrain emission
uncertainties (Saunois et al. 2020). Eddy covariance-based measure-
ments of CHy fluxes have increased rapidly over the last two decades,
leading to the release of the first global compilation of CHy4 flux data
from 81 sites in 2020 (FLUXNET-CH4 community product Version 1.0;
Knox et al. 2019; Delwiche et al. 2021). The growth in available CHy4
data can help improve bottom-up estimates of regional-to-global
wetland CH4 sources (Treat et al. 2018; Peltola et al. 2019; Rose-
ntreter et al. 2021) but this requires data processing standards that
ensure eddy covariance CHy flux data products are of the same quality
and provenance as carbon dioxide (CO,) and energy fluxes (e.g.,
FLUXNET2015; Pastorello et al. 2020). Gap-filling is a particularly
important step during data processing as it impacts estimates of
ecosystem carbon and radiative balance at individual sites, due to the
potency of CH4 as a greenhouse gas (Neubauer and Megonigal 2015;
Hemes et al. 2019; Giinther et al. 2020), and can alter upscaled pre-
dictions in data driven CH4 flux models (Turetsky et al. 2014; Treat et al.
2018; Peltola et al. 2019). Comprehensive evaluations of gap-filling
methods for CHy fluxes across many wetland sites are still lacking and
needed in order to advance existing methods (Nemitz et al. 2018;

Mammarella et al. 2020).

Gaps of various lengths arise in time series of eddy covariance CH4
fluxes because of system failure (including signal degradation due to
sensor soiling), insufficient turbulent mixing, extreme weather condi-
tions, irregular maintenance, and wind direction filtering, among other
reasons. Technical challenges remain in precise and accurate measure-
ment of eddy covariance CHy4 fluxes (Morin, 2018; Knox et al. 2019)
despite recent technological advances in spectra-based gas analyzers
(Nemitz et al. 2018). After filtering, annual data coverage can be low for
CH4 (25-40%; Delwiche et al. 2021). Therefore gap-filling procedures
are required to construct the continuous time series for quantifying
daily, seasonally, and annually integrated CH4 emission estimates.
Gap-filling techniques used to impute half-hourly eddy covariance
fluxes at individual sites include look-up tables (Reichstein et al. 2005),
machine learning and genetic algorithms (Ooba et al. 2006; Moffat et al.
2007; Kim et al. 2020), multiple imputation (Hui et al. 2004; Vitale et al.
2018), and process models (Oikawa et al. 2017). Any bias tied to a given
method propagates to seasonal and annual CH4 emissions and can
therefore impact data driven CH4 emission estimates at regional to
global scales (Falge et al. 2001; Moffat et al. 2007; Peltola et al. 2019;
Vitale et al. 2019).

Marginal distribution sampling (MDS) (Reichstein et al. 2005; Mof-
fat et al. 2007; Pastorello et al. 2020) and machine learning (ML) have
become the standard gap-filling methods for CO, fluxes in the eddy
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covariance community (Wutzler et al. 2018), while no similar standard
has yet been established for CH4 fluxes. MDS is a multi-step sampling
scheme, akin to a complex decision tree, and uses look-up tables to
identify similar predictor conditions within a given time window, which
conservatively expands around the gap, only as is necessary. MDS is an
efficient gap-filling method that supplements the look-up tables with
diurnal cycle interpolation, allowing it to function when there are gaps
in predictors. However, MDS performance can be limited by the number
of permissible predictors and current predictor choices are optimized for
COs, not CHy fluxes (Falge et al. 2001). Moreover, unlike CO fluxes,
CH4 fluxes at many sites appear to lack a consistent diel cycle and
display different diel patterns (Bansal et al. 2018). In contrast, ML is well
suited to high-dimensional datasets and can capture nonlinear re-
lationships between predictors and fluxes (Tramontana et al. 2016;
Bodesheim et al. 2018) albeit they generally need more time to train and
evaluate. A summary of some of the methodological considerations for
MDS and four different ML algorithms considered in this study are
shown in Table 1.

To date, artificial neural networks (ANN) have been found to be
effective for gap-filling CHy4 fluxes across six high-latitude wetlands
(Dengel et al. 2013). ANN have since been used across a variety of eddy
covariance sites at natural, rewetted, and urban wetlands (Morin et al.
2014; Goodrich et al. 2015; Rey-Sanchez et al. 2018; Hemes et al. 2019;
Li et al. 2020; Koebsch et al. 2020), tidal salt marshes (Vazquez-Lule and
Vargas 2021), and rice paddies (Knox et al. 2016; Runkle et al. 2019), as
well as in a FLUXNET-CHj4 synthesis and the FLUXNET-CH4 community
product Version 1.0 (Knox et al. 2019; Delwiche et al. 2021). However,
the ANN algorithms developed by Dengel et al. (2013) and Moffat et al.
(2007) were only inter-compared in detail among six high-latitude sites
and were only evaluated on single site-growing-seasons of data. More
recently, random forests (RF) were found to match or outperform both
MDS and ANN at five wetlands and rice paddies, with strengths in
predicting interannual variability from a single multi-year model (Kim
et al. 2020). Overall, although some important insights into CHy4
gap-filling strategies with ML have been made at individual, or small sets
of sites, comprehensive experiments are still needed to identify the best
approaches across the global distribution of wetlands.

In addition to algorithm choice, investigators need to consider the
causes of spatial and temporal variability and the effects of biases be-
tween training and test data. The complexity of wetland CHy4 production,
consumption, and transport processes can lead to high temporal and
spatial variability in fluxes across flux tower footprints. Relationships
between biophysical drivers and CH4 flux can be nonlinear and obscured
by lags and asynchronicity (Sturtevant et al. 2016). Additionally, the
temporal signals in CHy4 flux time series are observed across a broad
range of hourly, multi-day, and seasonal timescales (Knox et al. 2019;
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Knox et al. 2021), and can lack a clear diel cycle as observed for CO5
(Moffat et al. 2007). Challenges also arise for standardization due to site
uniqueness (Bridgham et al. 2013; Trifunovic et al. 2020). For example,
Knox et al. (2019) showed that variation in water table depth, a
well-established control on wetland CH,4 fluxes, only measurably
affected CHy4 flux at sites where its range extended across the soil sur-
face. Similarly, the spatial mosaic of inundation and vegetation varies
both within and across wetland classes and affects wetland CH4 flux via
substrate supply and gas transport processes (Matthes et al. 2014;
McNicol et al. 2017; Rey-Sanchez et al. 2018). This high spatial het-
erogeneity creates a wind direction (footprint) dependency rarely
observed for CO, fluxes (Tuovinen et al. 2019). To be able to explain the
complex dynamics of wetland CH4 emissions, process models need in-
formation on water table position, soil oxygen and moisture, and soil
temperature (Bridgham et al. 2013). Other issues include biases in
training observations introduced by low turbulence (friction velocity,
USTAR) filters (Gockede et al. 2019) which might make gap-filling
models more prone to errors during imputation of CH4 flux from
higher-to-lower turbulence conditions (Dengel et al. 2013), as is
observed at some sites for daytime-to-nighttime imputation of CO; flux
(Moffat et al. 2007). Conditions that lead to exceptional but short-lived
fluxes (e.g., ebullition events) may also be less easy to capture in training
and test data (Ueyama et al. 2020b; Taoka et al. 2020). In sum, the
combination of high temporal variability of CHy flux within and across
sites (Knox et al. 2019), high spatial variation of fluxes in some wetlands
(Morin et al. 2017), and the sensitivity of fluxes to a suite of drivers at
different timescales (Sturtevant et al. 2016), requires a thorough eval-
uation of CHy flux gap-filling models across a broad range of possible
gap lengths.

This study provides a systematic evaluation of MDS and four ML
algorithms for gap-filling CH4 fluxes at 17 FLUXNET-CH4 sites. The 17
sites cover a wide range of wetland types, and climate and gap condi-
tions (i.e., length and distribution). Collectively, these sites provide a
large and fairly standard set of predictors, allowing for a robust across-
site comparison of model performance and predictor importance. The
overall ML workflow from artificial gap generation, to cross validation
and testing, and to prediction uncertainty estimation, is robust and
reproducible (Pastorello et al. 2020; Nemitz et al. 2018) and designed to
be general and applicable to a wide range of gap-filling scenarios across
terrestrial wetland ecosystems. The data and code are made public
[https://github.com/stanfordmlgroup/methane-gapfill-ml].

Table 1
An overview of marginal distribution sampling and potential machine learning algorithms for gap-filling of CH4 flux in wetlands.
Method Marginal Distribution Lasso Regression (Lasso) Artificial Neural Network Random Forest (RF) XGBoost
Sampling (MDS) (ANN)
Justification Simple alternative to ML Interpretable baseline Most common current Fast and promising for Strong in other ML
method tabular data applications with tabular
data
Class Multi-step sampling Linear regression Regression Regression (Decision tree) Regression (Decision tree)
scheme
Algorithm Multi-step look-up table Least squares regression with Layers of nodes performing Ensemble of decision trees Similar to random forest

Pre-processing

with backup of diurnal
cycle interpolation

Predictor choice
(combinations of 3)

regularization penalty on
coefficients to "shrink"
unimportant coefficients to zero
Imputation

Hyperparameter None Yes (minimal)
Tuning

Interpretability Low High (coefficients)

Uncertainty Variance of observations  Bootstrap ensembles

References (Falge et al. 2001; (Tibshirani 1996)

Reichstein et al. 2005)

linear transformations with
nonlinear transfer functions

Normalization & imputation
Yes
Low

Bootstrap ensembles
(Rojas 2013)

learned independently on
randomly bagged data
subsets

Imputation

Yes
High (importances)

Bootstrap ensembles
(Breiman 2001)

but decision trees learn
iteratively using gradient
boosting

None (Imputation
optional)

Yes (few)

High (importances)
Bootstrap ensembles
(Chen and Guestrin 2016)
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2. Materials and Methods
2.1. Site Data

Seventeen managed agricultural (i.e., rice paddies) and natural
wetlands were selected from Version 1 of the FLUXNET-CH4 database
(Delwiche et al. 2021) for the comparison of gap-filling methods
(Table 2). Selection criteria of the sites included: 1) at least one calendar
year of measured fluxes; and 2) a complete set of measured physical and
biological predictors, including soil temperature and water-table depth
(Table A.1). Although FLUXNET-CH4 contains other ecosystem classes,
including several upland cover types, lakes, and mangroves, these eco-
systems were beyond the scope of the present study.

The 17 sites span tropical to boreal climates and diverse and repre-
sentative wetland types (Figure 1), including bogs (5), marshes (5), fens
(4), a tropical swamp (1), and rice paddies (2). Altogether, 32.4 site-
years of CHy flux data were used for gap-filling model development
and validation, collected during 2010-2018. Data pre-processing steps
prior to gap-filling were the same as described in (Delwiche et al. 2021).
Each site was classified into a wetland class based on site investigator
self-reporting.

2.2. Predictor Variables

For each site, four different combinations of input predictors were
tested (Table 3). The simple “temporal set” consisted of two variables
that mimic a generic seasonal cycle (sine and cosine functions with
yearly wavelengths and amplitude equal to 1) and decimal day of year
(delta). The “meteorological set” included four variables (air tempera-
ture (TA), incoming shortwave radiation (SW_IN), wind speed (WS), and
atmospheric pressure (PA)) measured at eddy covariance towers that
were gap-filled using atmospheric reanalysis products (ERA-Interim
reanalysis data; Vuichard and Papale 2015). The “baseline set” com-
bined the temporal and meteorological sets, for a total of 7 predictors.
These predictors were chosen as the baseline for comparison for their
consistent availability as core eddy covariance measurements and
because they were used to gap-fill the FLUXNET-CH4 Version 1.0 dataset
(Knox et al. 2019; Delwiche et al. 2021).

Beyond the baseline predictors of Knox et al. (2019), the use of all
predictors at each site was also tested, providing a large and comparable
predictor set that always included soil temperature, and soil moisture,
and/or water table position, among others (Table 3). Although avail-
ability of these additional predictors varied widely across other
FLUXNET-CH4 sites, for these 17 sites, the additional predictors

Table 2
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constituting the all-predictor set were highly consistent. Missing pre-
dictor data were mean-imputed and “imputed flag” predictors were
created, which is standard in ML.

2.3. Machine Learning Model Training Procedure

Four ML algorithms were trained with each of the four subsets of
input predictors (Table 3), leading to a total of 16 algorithm-predictor
combinations per site, which were evaluated using a nested cross vali-
dation procedure (Figure 2). In each algorithm-by-predictor set experi-
ment, the following steps were repeated for each site. Firstly, artificial
gaps were introduced which constituted a single, held-out test set. The
test set was only used after model training and selection to evaluate the
gap-filling performance of the selected models. Secondly, following
Moffat et al. (2007), 10 additional pairs of training and validation sets of
artificial gaps were created with several independent samples of artifi-
cial gaps to mitigate potential bias in model performance for any
particular gap sequence. Thirdly, for each algorithm-by-predictor com-
bination, a model was trained on each of the 10 training sets and the best
ML hyperparameters were selected based on average model perfor-
mance during 5-fold cross-validation. Cross-validation involved creating
5 random subsets (folds) of each training set, training the model multiple
times with a broad hyperparameter grid search on 4 folds, and evalu-
ating the models on one held-out fold. This hyperparameter search was
repeated 5 times, changing the held-out fold each time. The best
hyperparameters across all folds were then used to refit the model on the
full training set, resulting in 10 trained models for each
algorithm-by-predictor combination. Fourthly, each of the 10 models
was evaluated using the corresponding validation set, and the mean and
variance of model scores for the 10 validation sets were used to compare
algorithm classes with different input predictor groups. Finally, the 10
models of the algorithm classes that scored highest on the validation sets
were ensembled and the ensemble mean prediction was evaluated
against the test set.

2.4. Gap-filling Methods

Marginal Distribution Sampling and four ML algorithms were used
for gap-filling, including lasso regression, artificial neural networks,
random forests, and gradient boosted decision trees. Each ML algorithm
was trained using the four different predictor subsets at each site. The
“xgboost” package (Chen and Guestrin 2016) was used to implement the
gradient boosted decision tree models and the “scikit-learn” package
(Pedregosa et al. 2011) in python (Van Rossum and Drake 2009) was

Site information and data references for 17 FLUXNET-CH4 wetland sites. Sites are arranged in order of increasing mean of observed CH4 flux (which is also sensitive to
differences in temporal coverage between sites) and days refers to the number of days with some observed CH4 fluxes. Data are the same as those published in the
FLUXNET-CH4 community product Version 1.0 (https://fluxnet.org/data/fluxnet-ch4-community-product/) (Delwiche et al. 2021). Mean annual temperature and
precipitation were extracted from respective WorldClim 2.0 gridded products at site locations (Fick and Hijmans 2017).

Site ID Climate Zone Mean Annual Temp.°C Mean Annual Precip.mm Mean FCH4,nmol m 257! Days,n Site DOI

US-Uaf Boreal -2.8 298 2.7 2922 (Iwata et al. 2020b)

US-Los Temperate 4.1 833 18.4 1826 (Desai 2020)

SE-Deg Boreal 1.7 620 31.7 1826 (Nilsson and Peichl 2020)
FI-Sii Boreal 3.2 666 35.4 2191 (Vesala et al. 2020b)

US-Twt Temperate 15.2 372 37.7 3016 (Knox et al. 2020)

FI-Si2 Boreal 3.2 664 46.1 1827 (Vesala et al. 2020a)

CA-SCB Boreal -2.8 414 46.3 1417 (Sonnentag and Helbig 2020)
NZ-Kop Temperate 13.9 1343 47.0 1461 (Campbell and Goodrich 2020)
FI-Lom Boreal -0.4 484 49.7 1826 (Lohila et al. 2020)

JP-Mse Temperate 141 1305 59.4 366 (Iwata 2020a)

JP-BBY Temperate 6.7 1153 65.0 1461 (Ueyama et al. 2020a)
BR-Npw Tropical 25.2 1318 69.7 1122 (Vourlitis et al. 2020)
US-Tw4 Temperate 15.4 370 97.5 2191 (Eichelmann et al. 2020)
US-WPT Temperate 9.9 881 127.6 1096 (Chen and Chu 2020)
US-Myb Temperate 15.4 346 142.8 3287 (Matthes et al. 2020)
US-Twl Temperate 15.4 371 166.7 2922 (Valach et al. 2020)

US-OWC Temperate 9.9 898 627.3 669 (Bohrer et al. 2020)
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Figure 1. (a) Map of the 17 wetland sites used for the gap-filling experiment and (b) average daily data coverage (%) at each site. The average daily data coverage
was computed at each site as the proportion of available to total (48) half-hourly flux periods per day, averaging across available years of data. In addition to
spanning a wide geographic and climatic range, the temporal distribution of gaps and their lengths varied greatly across sites providing a large range of conditions for
model testing and evaluation.
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Table 3
Input predictor subsets with variables and their abbreviations used in the text
and figures. Further details for predictors are provided in Table A.1.

Predictor Subset Predictor Variables

Temporal Yearly sine

Yearly cosine

Delta (decimal day of year)
Air temperature (TA)
Incoming shortwave radiation
(SW_IN)

Wind speed (WS)
Atmospheric pressure (PA)
Temporal + Meteorological

Meteorological

Baseline
Applied in (Knox et al. 2019) and
FLUXNET-CH4 Version 1.0 (Delwiche

et al. 2021)
All Baseline + all other available eddy
covariance measurements, including:
Soil

Soil temperature (TS)

Water table depth (WTD)

Soil water content (SWC)

Carbon fluxes

Net ecosystem exchange (NEE)
Ecosystem respiration (RECO - day-
and-night methods)*

Gross primary productivity (GPP -
day-and-night methods)

Energy fluxes

Latent heat (LE)

Sensible heat (H)

Soil heat (G)

Additional meteorology

Radiation fluxes (SW_OUT, LW_IN/
OUT, NETRAD)

Friction velocity (USTAR)

Vapor pressure deficit (VPD)
Precipitation (P)

Relative humidity (RH)

Snow depth (SD)

Photosynthetic photon flux density
(PPFD_IN/OUT)

Wind direction (WD)

" Both conventional nighttime temperature extrapolation method (Reichstein
et al. 2005) and more recent daytime method (Lasslop et al. 2010) variables
were included.

used to implement lasso regression, artificial neural networks, and
random forests.

2.4.1. MDS

The Marginal Distribution Sampling method originally proposed by
(Reichstein et al. 2005) is based on the construction of a look-up table
around each single gap (half hour). The method considers three possible
drivers, one identified as the main driver and the other two as additional
drivers. For each driver, a threshold value is set to define the similarity
conditions. For each gap, the missing value is replaced with the average
of the measurements found in the time window around the gap with
similar meteorological conditions (i.e., similar value of the drivers). The
algorithm first tries to use all three drivers for a window which is kept as
short as possible to avoid the confounding effects of other slow-changing
drivers such as phenology. If no similar conditions are found, the win-
dow size is increased and only the main driver is considered, or alter-
natively, and as a last option, the mean diurnal cycle within adjacent
days is used. More details on the overall strategy and compromise be-
tween having a larger window or only one driver included can be found
in the appendix of (Reichstein et al. 2005). The original method,
designed for CO, fluxes, uses SW_IN as the main driver, and TA, and VPD
as additional drivers. In the current application of the method to wetland
CHj4 fluxes, however, seven different driver combinations were tested as
reported in Table 4.
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2.4.2. ML Algorithms

Serving as an interpretable and simple baseline model, penalized
linear regression was tested for flux gap-filling, referred to here as Least
Absolute Shrinkage and Selection Operator (Lasso; Tibshirani 1996).
Lasso regression penalizes the sum of the absolute value of coefficients
leading to a sparse selection of variables. The regularization coefficient
(penalty) was selected during cross validation. Predictors were stan-
dardized after imputation by subtracting the mean and dividing by the
standard deviation which is necessary for methods that are not
scale-invariant such as Lasso and thus are sensitive to predictor data
ranges.

Artificial neural networks (ANN, i.e., shallow multilayer percep-
trons) were tested and have been used in previous works for CO5 and
CHy4 fluxes (Goodrich et al. 2015; Dengel et al. 2013; Knox et al. 2016;
Hemes et al. 2019; Li et al. 2020). Neural networks consist of a few
layers, with each layer containing different numbers of nodes that
sequentially apply linear transformations with parameters that are
learned during model training. These layers are separated by nonlinear
activation functions that enable the neural network to model more
complex functions. During training, the parameters of each layer’s
transformation were adjusted to minimize the squared loss between the
predicted and observed flux values. Hyperparameters tuned during cross
validation included the optimization method for adjusting parameters
(LBFGS or Adam), learning rate (0.01, 0.001, 0.0001), the nonlinear
activation function (hyperbolic tangent or rectified linear unit), the
numbers of hidden layers (1 or 2; Knox et al. 2019), and the number of
nodes per layer (5-30). Normalization was the same as Lasso.

Random forests have been commonly used to model tabular data and
have recently emerged for gap-filling CH4 fluxes (Kim et al. 2020).
Random forests are an ensemble of decision trees which are each learned
independently on bootstrapped data (Breiman 2001). The mean of the
predictions across the ensemble of trees is taken as the final prediction.
Hyperparameters tuned during cross validation included the number of
trees (50-500), the maximum depth per tree (10-110, as well as no
maximum depth), the number of predictors considered at each split (n or
square-root of n), the minimum number of samples required to split a
node (2, 5, or 10), the minimum number of samples required at each leaf
node (1, 2, or 4), and whether to bootstrap the data when building trees.
Normalization is not required for RF. Predictor importance was
computed as reduction in Gini impurity (Breiman 2001).

Boosting enables decision trees to be grown iteratively based on the
mistakes of prior trees (Freund and Schapire 1999). XGBoost was tested
as a widely used and efficient gradient boosted decision tree framework
that builds decision trees sequentially (Chen and Guestrin 2016) and has
demonstrated success in a wide variety of ML applications. A squared
loss was used as the objective function with the default learning rate of
0.1. The number of decision trees, the maximum depth per tree, and the
minimum number of samples required to split a node used the same
ranges as RF. Other hyperparameters tuned included the proportion of
the training data to subsample prior to growing trees (0.75, 0.85, or
0.95), the minimum loss reduction required to split a leaf node (0, 0.2, or
0.4), and the fraction of predictors that were randomly selected for the
construction of each tree (0.6, 0.7, 0.8, or 0.9). XGBoost handles pre-
dictor imputation during training using sparsity-aware split finding,
which provides a default direction on each node in the decision tree and
allows for skipping over missing values (Chen and Guestrin 2016).
Normalization is not required for XGBoost.

2.5. Artificial Gap Generation

Different gap lengths occur naturally in the time series of eddy
covariance flux measurements, for reasons that include instrument
malfunction, power outages, seasonal changes (winter), and data QA/
QC (Moffat et al. 2007). Introducing artificial gaps into the flux data,
across this range of observed gap lengths is necessary to provide scorable
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Figure 2. Artificial gap generation and evaluation procedure. (a) Artificial gaps are introduced to create the test set, which is set aside, followed by several
alternative validation sets. (b) One model is trained on each validation set, including a 5-fold cross validation step to tune hyperparameters. The validation set
performance can be compared across the different algorithms. Then, for select algorithms (best on validation set), the 10-model ensemble is run on the test set to fill
in gaps and mean predictions are used to obtain a final score while prediction variance is used to parameterized uncertainty distributions. With this procedure, no

model tuning or predictor selection is performed on the test set.

Table 4

Driver combinations used for the MDS method. SW_IN = Incoming shortwave
radiation (W m—2), TA = air temperature (°C), PA = air pressure (hP), WID =
water table depth (m), WS = wind speed (m s—1), RECO = ecosystem respiration
(umol CO2 m—2 s—1). The values in parenthesis are the thresholds used to
define similar conditions (i.e., value + threshold). In case of SW_IN, as in the
original formulation of the method in (Reichstein et al. 2005), the thresholds are
two (20, 50): similar conditions for a measured value V are considered in the
range V &+ 50 if V > 50, V & 20 if V < 20 and V + V for values of V between 20
and 50.

Combination ~ Main driver Secondary driver 1 Secondary driver 2
(threshold) (threshold) (threshold)

1 SW_IN (20, 50) TA (2.5) PA (0.2)

2 TA (2.5) SW_IN (20, 50) PA (0.2)

3 TA (2.5) SW_IN (20, 50) RECO (1)

4 TA (2.5) SW_IN (20, 50) WTD (0.02)

5 TA (2.5) SW_IN (20, 50) TS (1)

6 TA (2.5) WS (1) PA (0.2)

7 TA (2.5) SW_IN (20, 50) WS (1)

validation and test cases. Previous studies have achieved this by eval-
uating models on different artificial gap-length scenarios. In each sce-
nario, gaps of a limited range of lengths (e.g., 1-8 half-hours) are

introduced and model performance is compared among the different
gap-length scenarios (Moffat et al. 2007; Kim et al. 2020). This approach
ensures gaps of all lengths are evaluated because it relies on sampling
gaps randomly or uniformly within fixed gap length scenarios. However,
the resulting gap distributions also become skewed when longer gaps
form due to artificial gaps merging with observed gaps. This may
incorrectly favor models that perform better on longer gaps which are
less common in eddy covariance flux data.

To retain the observed gap length distribution, a new artificial gap
generation procedure was developed. The new procedure takes into
account the locations of the observed gaps when generating artificial
gaps of varying lengths, such that the observed plus artificial gap length
distribution resembles the observed distribution. Formally, the artificial
gap generation procedure finds a distribution q of artificial gap lengths
for each site such that the true empirical distribution p of gap lengths at
that site is approximated by the union of q and p, which is denoted r = q
U p. In order to obtain a distribution r which is close to p, a method is
proposed for finding q. Intuitively, the histogram of g should look
“compressed” compared to the histogram of p; that is, it places more
weight on shorter gap lengths and has lighter tails: while shorter gap
lengths will be sampled more from g, longer gaps will still form from the
merging that occurs between newly sampled and observed existing gaps.
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A detailed description and parameterization of the artificial gap gener-
ation algorithm are provided in Appendix B.

The proposed method thus maintains a similar distribution of gap
lengths to the observed distribution, aiming to strike a balance between
having enough scorable (artificial) gaps for model training and ensuring
the distribution of gaps input to the model is similar to that of the
observed data. As this method does not use prescribed gap scenarios, it is
important to inspect the resulting artificial gap distributions. For this
study, site-specific gap sampling details and gap length distributions are
provided in Appendix C.

2.6. Evaluation

For each site, MDS-and the ML algorithm-predictor combinations
were compared by evaluating predictive performance on the 10 vali-
dation sets. The best two algorithms and their ensemble performance
were then evaluated on the test set using both baseline and all predictors
to: 1) measure absolute improvements over previously implemented
standards (ANN plus baseline predictors; Knox et al. 2019); 2) under-
stand how each algorithm benefited (if at all) from using all, rather than
only baseline, predictors; and 3) measure the effect that the different
algorithm predictions had on cumulative annual and growing season
CH,4 emissions estimates for each site, and associated uncertainties.

2.6.1. Performance Measures

Model performance was measured using the coefficient of determi-
nation (Rz), mean absolute error normalized by the standard deviation
of CHy4 flux (nMAE), mean bias (Bias), root mean squared error (RMSE),
and standard deviation. R? was used to measure the ability of the gap-
filling model to reproduce the time series pattern, after confirming
that Pearson correlations were all positive (Taylor 1990). nMAE was
used to measure the difference between predictions from observations
regardless of the direction of the error; the normalization allows us to
compare across sites despite large differences in flux variability. Finally,
Bias was used to measure the average direction of error, which will have
the largest consequence on site emission sums. The nonparametric basic
bootstrap with 5,000 bootstrap replicates was used to compute vari-
ability around the performance metrics on the test set (Efron and Tib-
shirani 1994); and 95% confidence intervals for each measure were
reported. Taylor diagrams were used to visually compare the perfor-
mance of each of the models with different input predictors. Taylor di-
agrams provide a visually intuitive way of displaying the performance of
each model in terms of three metrics: R?, root mean squared error
(RMSE), and standard deviation (Taylor, 2001). Finally, nMAE and Bias
were used to assess the performance of the models across different gap
lengths similar to Moffat et al. (2007), Nemitz et al. (2018), Kim et al.
(2020), and Knox et al. (2019): very short gaps (1 half hour), short gaps
(2-8 half hours), medium gaps (9-64 half hours, i.e., 1.5 days), long gaps
(1.5-12 consecutive days), and extremely long gaps (> 12 consecutive
days).

2.6.2. Statistical Analysis

Validation set performance was evaluated coarsely using differences
in median model metrics and was only used to select models for the more
detailed statistical comparison on the test set. Then, for each site, the test
set performance of the best two algorithms was compared (RF, as the
faster of the two decision tree algorithms, and ANN) with two predictor
sets (baseline and all). The performance metrics showed significant non-
normality across the 17 sites according to the Shapiro-Wilk test. As a
result, the Friedman test followed by post hoc Nemenyi was used for
evaluating pairwise comparisons. This pair of tests is the nonparametric
equivalent of the one-way ANOVA with repeated measures (followed by
Tukey’s test) and is the standard procedure when the assumptions of
ANOVA are not met (normality in this case; Derrac et al. 2011;
Schuurmans 2006). Performance metric comparisons were implemented
in R (R Core Team 2021) using the PMCMR package (Pohlert 2014).
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To evaluate whether the gap-filling performance is related to the
characteristics of CH4 flux, Pearson correlation coefficient between the
best model performance metrics (RF and all predictors) and the annual
mean and variance of the fluxes were analyzed. Correlation analyses
were performed in Python using the ‘scipy’ package (Virtanen et al.
2020).

2.6.3. Evaluating Systematic USTAR Bias

Filtering to remove eddy covariance CH4 fluxes during low turbu-
lence conditions (using friction velocity, USTAR, as a measure of tur-
bulence) may introduce a systematic bias into ML training because the
efficiency of CHy4 gas transport mechanisms such as plant mediated flow
can increase with wind speed (Laanbroek 2010). To approximate an
evaluation of biases introduced from low USTAR filtering, the amount of
filtered data across each site was quantified (0-21%) and the same
fraction of high USTAR conditions (top percentile) was removed from
each paired training and validation set. The original and
high-USTAR-filtered model performance was then evaluated on the
scorable gaps created with the high USTAR filter. Although an imperfect
analogue, this test therefore simulated model extrapolation to very low
USTAR conditions by evaluating performance during extrapolations to
high USTAR conditions.

2.7. Uncertainty Estimation

2.7.1. Uncertainty Evaluation

Machine learning model (gap-filling) uncertainty for each half-hour
flux prediction was estimated using the variation of the model ensemble
predictions. For each input, the mean and variance of the ensemble
predictions were used to parameterize a double exponential distribution
(a probabilistic prediction) (Hollinger and Richardson 2005). The confi-
dence intervals of the specified confidence level are computed using this
full distribution. Similar to Richardson and Hollinger (2007), Lasslop
et al. (2008), Richardson et al. (2012), Menzer et al. (2013), Vitale et al.
(2019), the model ensemble uncertainty was used to approximate
random flux uncertainty. It is acknowledged, however, that because the
contribution of missing values in input predictors is not taken into ac-
count, the derived uncertainties only approximate the total random
uncertainties that can be better accounted for with alternative multiple
imputation methods (Vitale et al. 2018). The described method focuses
on providing a method to robustly evaluate gap-filling uncertainties in a
manner suitable for ML ensemble workflows.

The consistency of the uncertainty estimates was evaluated using
standard probabilistic forecasting evaluation measures, namely cali-
bration and sharpness (Gneiting et al. 2007). Calibration captures the
consistency between probabilistic forecasts and observations, and
measures whether predicted distributions correctly capture confidence
levels as validated against observed data. A well-calibrated model pro-
duces predictive distributions such that P% confidence interval (CI)
contains the observations P% of the time. A model can be well calibrated
only at specific percentiles (e.g., 95%) or across multiple percentiles. At
a minimum, models should be well calibrated at the specific desired
percentile before uncertainty estimates at that percentile can be reliably
used. Once models are shown to be well calibrated, they can be
compared using sharpness - a property that measures the concentration
of the predictive distributions. The approach of maximizing sharpness
subject to calibration is widely adopted in meteorology (Gneiting and
Katzfuss 2014). Model improvement is captured by increasing sharp-
ness, subject to calibration. For each site, performance was evaluated at
the 95% CI. Calibration was measured by computing the proportion of
the observed values within the 95% CIs and measured sharpness using
the mean width of the 95% CIs across the test set. A normalized sharp-
ness metric is reported by dividing by the standard deviation of flux to
account for the differing flux variance at each site.
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2.7.2. Uncertainty Interval Scaling

Models that produce predictive distributions, such as the ML
ensemble in the present study, are not necessarily well calibrated by
default. Several techniques have been proposed to calibrate models after
they are trained (post-processing calibration), most often using Platt
scaling (Platt 1999) and isotonic regression (Zadrozny and Elkan 2002).
In this work, Platt scaling is adopted to calibrate the ensemble pre-
dictions. Platt scaling learns a scaling parameter that is used to scale the
variance uniformly for every input. This parameter is learned by
assuming a distribution (e.g., double exponential) and using maximum
likelihood estimation to derive a value from observed data. A double
exponential distribution was assumed and derived a closed-form
expression for the scaling parameter (see Appendix D for derivation).
Following this calibration procedure, the probabilistic predictions of
different models were compared by measuring the sharpness of the
calibrated distributions.

2.8. Annual and Growing Season Emissions

Annual CHy4 emissions were computed as the mean cumulative sum
of the 10 gap-filled flux time series, predicted by each ML model
ensemble. To account for the uncertainty calibration procedure,
ensemble predictions were rescaled (spread out) around the mean in
proportion to the Platt scaling value. Annual sums and uncertainties
(uncalibrated and calibrated) were quantified from the mean and vari-
ance of the cumulative sums, respectively. As is standard for CO, gap-
filling, site-years with a gap of 60 days or longer during the growing
or shoulder seasons were excluded (Richardson and Hollinger 2007;
Richardson et al. 2012), except for US-Uaf, which only had one site-year
available, and for US-OWC, which had large shoulder or growing season
gaps during both available years. Additional date thresholds were
applied for the two rice paddies (US-Twt and JP-Mse) to only sum fluxes
during the rice growing season based on rice management information
(Knox et al. 2016; Miyata et al. 2000). All other gap-filled values for gap
lengths < 60 days were included. Annual or growing season CH,4 emis-
sions estimates were also computed for each of the seven MDS models
(different predictor sets) as the cumulative sum of the gap-filled time
series. Similar to ML, summed uncertainties were taken as the variance
of the sums from the seven MDS models, however no calibration method
was applied.

3. Results
3.1. Scorable Gap Conditions

In addition to their wide geographical distribution (Figure 1a), the
17 wetland sites also covered a wide range of biophysical conditions.
Across all sites, water table depth (WTD) ranged from < -1 mto > 1 m
relative to the soil surface, while gross primary production (GPP) ranged
from zero in winter to > 40 pmol m2s! (Figure 3a). Unlike GPP,
within site variation in WTD was small relative to across site variation,
with the WTD range at some sites being either entirely above (e.g., US-
Myb) or below (e.g., US-Uaf) the soil surface. Rice paddies and one
tropical swamp (i.e., JP-Mse, US-Twl, US-Twt, and BR-Npw) showed
larger fluctuations that crossed the soil surface (+ 50 cm or more). In
addition, soil temperature (TS) spanned from -10°C to > 40°C across
sites, and CHy fluxes ranged across 5 orders of magnitude from < 0.01 to
> 1,000 nmol m 257! (Figure 3c). Sites tended to overlap more in their
range of TS and CH4 flux (FCH4), but were more distinctive in WTD and
GPP. The biophysical conditions for scorable test conditions introduced
as artificial gaps in the test set (Figure 3b, d) displayed a similar range,
indicating that models were evaluated on the full range of observed data
conditions.
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Figure 3. The coverage of training and test data for select predictor and CH4
flux conditions. All observations (a, ¢), and scorable gaps (b, d) spanned a wide
range of (a, b) water table depth and gross primary production (GPP), and (c, d)
CH4 flux (FCH4) and soil temperature (TS).

3.2. Performance Patterns on the Validation Set

Median MDS performance ®R? = 0.65; nMAE = 0.35; Bias = -0.03
nmol m~2 s~ 1) was better than median ML performance R? = 0.56;
nMAE = 0.39; Bias = 0.01 nmol m—2 s’l). However, predictor subsets
had little effect on MDS performance (Figure 4a, c, e). Only slight im-
provements were seen over baseline meteorological predictors (i.e.,
SW_IN, TA, and PA) when one of the CH4-centric predictors (i.e., WID,
TS, RECO, or WS) was included. Overall, the best performing predictor
combination for MDS was TA, PA, and WS ®? = 0.66; nMAE = 0.34;
Bias = -0.07 nmol m 2 s~ 1).

There was a larger spread in performance across the ML (Figure 4b,
d, f). Median performance increased from Lasso R = 0.37; nMAE =
0.51; Bias = 0.10 nmol m~2 s~ 1), to ANN (R? = 0.58; nMAE = 0.39; Bias
= 0.06 nmol m 2 s™1), to XGBoost (R = 0.65; nMAE = 0.35; Bias =
-0.11 nmol m~2s™!) and RF (R* = 0.67; nMAE = 0.32; Bias = 0.01 nmol
m~2 s71). Unlike MDS, ML performance was strongly dependent on the
predictor set. Using all predictors was consistently the best choice across
all sites and all classes of models, while using the meteorological subset
alone performed the worst. Median model performance ranged from R2
of 0.27, nMAE of 0.60, and mean Bias of 0.08 nmol m~2 s™! for Lasso
model class with the meteorological predictors only, to R? of 0.79, nMAE
of 0.26, and Bias of 0.12 nmol m~2 s~ for the RF model class with all
predictors. Notably, decision tree models using the baseline predictor set
(e.g., RF R? = 0.75; nMAE = 0.29; Bias = 0.02 nmol m~2 s™1) still
outperformed ANN using all predictors (R? = 0.70; nMAE = 0.31; Bias =
0.05 nmol m~2 s~ 1). For both decision tree and ANN models, the tem-
poral set was much more important for baseline performance than the
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Figure 4. Boxplots illustrating 10 validation set performance metrics for each of the models (Lasso regression (Lasso), artificial neural networks (ANN), random
forests (RF), and gradient boosted decision trees (XGBoost)) and predictor subsets across the 17 sites: (a, b) R2, (¢, d) normalized mean absolute error (nMAE), (e, f)
bias, where the left column is Marginal Distribution Sampling and the right column is machine learning. Each colored box shows the quartiles of the performance
metrics and the whiskers show the rest of the distribution, excluding points determined to be outliers that are presented individually.

meteorological set. As the temporal set can be created for any CH4 gap-
filling effort, the meteorological set is unlikely to be used alone in
practice and is therefore only distinguished here to understand its
relative contribution to the baseline set.

3.3. Test Set Performance Patterns

The ANN and RF (as the faster of the two decision tree algorithms)
achieved the best performance on the validation set and were then
evaluated on the test set for each site. Test set performance patterns
were similar to the validation set, confirming that the models were not
over-fit. Median performance on the test set was better overall for RF
(R? = 0.79; nMAE = 0.27; Bias = 0.24 nmol m~2 s™!) than ANN (R? =
0.73; nMAE = 0.30; Bias = 0.18 nmol m 2 s™!). Median nMAE and R*
both improved when ANN used all rather than baseline predictors (p =
0.0007 and p = 0.0004, respectively). Similarly, median nMAE and R?
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both improved when RF used all rather than baseline predictors (p =
0.0031 and p = 0.0050, respectively). Test set evaluation also provided
some evidence of RF outperforming ANN in general. Using all pre-
dictors, median nMAE for the RF was smaller than that of the ANN (p =
1.40e-8) although there was no significant difference between the me-
dian R? of RF and ANN (p = 0.191). Similarly, with baseline predictors,
median nMAE for the RF was smaller than that of the ANN (p = 0.0078)
but there was no significant difference between the median R? of RF and
ANN (p = 0.056).

A large spread in performance was observed within most wetland
classes, suggesting a high level of site uniqueness, rather than general-
izability, within a particular wetland class (Figure 5). The large spread
was especially apparent for bogs and fens, whereas marshes and the two
rice paddies were clustered at intermediate to high performance. To
better understand the patterns of performance within and among
wetland classes, correlations were examined between best model
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Figure 5. Taylor diagram visualizing artificial neural network (ANN) and random forest (RF) performance improvements on the test set between the baseline and all
predictor sets for each of the 17 primary sites. The baseline set metrics for each algorithm are shown in small grey circle symbols and the all predictor set metrics are
shown in larger color-filled symbols. Model improvements can be measured in the Taylor diagram in proportion to 2D shifts towards the black star at (1, 0). Taylor
diagrams display the ratio of the standard deviation of predictions to observations on the x and y axes, the correlation of predictions to the observed temporal pattern
on the curved right axis, and the root mean square error of predictions on the diagram surface as concentric (orange) circles around the origin.

performance metrics and the annual mean and variance of the fluxes.
There was no significant relationship between model performance and
the annual mean of site CHy4 fluxes, however, there was a clear negative
relationship between performance and the coefficient of variation of
CHy4 fluxes (p = 0.001; p = 0.72) and an even stronger negative corre-
lation with the proportion of flux variance at short (hourly) timescales
(p = 1.44e-6; p = 0.89) (Figure E.1).

ANN performance showed larger improvements when all predictors
were used rather than only baseline predictors (Figure 6) and RF per-
formance showed small or negligible improvements. However, absolute
RF performance was already relatively high using only the baseline
predictors. Overall, the largest ANN and RF performance improvements

were observed in marshes, with exceptionally large gains at one site (US-
OWOCQ). Several other bog, rice paddy and swamp sites achieved mod-
erate improvements from the additional predictors (i.e., 0.1 to 0.2 in-
crease in R?), whereas only small improvements were observed at fens,
with less than a 0.05 increase in R2.

Across all very short (1 half-hour), short (2-8 half-hours), medium (9-
64 half-hours), and long (65-576 half-hours) gap lengths, bias was low
for both the ANN and RF models. Errors (nMAE) and biases were typi-
cally smaller for RF than ANN, and biases were generally larger at
marshes and the swamp (Figure 7). For the longest gaps (577+ half-
hours), RF and ANN performance was less consistent and the largest
biases were introduced at marsh sites when using RF.
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Figure 6. Improvements in test set performance metrics for the artificial neural network (ANN) and random forest (RF) algorithms between the baseline and all

predictor sets on the 17 wetland sites. Vertical error bars show the 95% confidence interval around the improvement, computed using the nonparametric basic
bootstrap with 5,000 replicates. Sites are plotted in order of the total of R2 and nMAE improvement.
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Finally, an exploratory evaluation of errors that may be introduced
due to USTAR filtering was conducted. The test set was used with the
best model formulations (RF and all predictors). Model performance
showed a slight reduction in performance when extrapolating to high
USTAR conditions (Table E.2), suggesting that similar extrapolations to
low USTAR conditions may introduce small but non-negligible errors.
Average Bias across all 17 sites increased by 9%, average nMAE by 10%,
and R? decreased by 8%.

3.4. Predictor Importance

Variable importance rankings are readily retrievable from RF
models. The most important predictors of the RF model (in order) across
all 17 sites were temporal, TS, radiation (aggregate of SW_IN, SW_OUT,
LW_IN, LW_OUT, and NETRAD), and RECO (Figure 8), with TS being the
single most important predictor for many sites. Air temperature (TA)
and turbulence (WS and USTAR), GPP and NEE, and WTD were useful
for some sites, but not universally. Wind direction (WD) was important
at 2 sites (US-OWC and US-Myb). Generally, there were few strong
patterns within bogs, fens and marshes (which were the only classes
with at least 4 representative sites), suggesting that predictor groups are
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not necessarily tied to wetland classification, although TS was important
at all of the bogs. Notably, the baseline set captured several of the key
predictors and all of the important meteorological predictors, except
wind direction. Of the two partitioning methods for RECO and GPP
(nighttime and daytime), the nighttime method ranked higher at 15 and
13 (of 17 total) sites, respectively.

3.5. Uncertainty Estimation

The gap-filling prediction uncertainties for the two best ML algo-
rithms (ANN and RF) were evaluated with respect to the concepts of
calibration and sharpness. For ANN, the baseline predictor set model
ensemble was evaluated because it most closely approximates a previ-
ously described method (Knox et al. 2019) which was used to gap-fill the
FLUXNET-CH4 Version 1.0 community product (Delwiche et al. 2021).
The prediction uncertainties of both the ANN and RF were not
well-calibrated by default (Figure 9). In other words, without calibration
by scaling, the 95% CI of the estimates for both models contained
significantly less than 95% of the observed values (56.6% on average for
ANN, 28.4% on average for RF), indicating that the models produced
overly tight uncertainties across all sites. The ANN produced wider (less



J. Irvin et al.

<b°°’

Agricultural and Forest Meteorology 308-309 (2021) 108528

o é\ Q\@

Soil Temperature . . .

Water Table Depth

Soil Water Content
Ecosystem Respiration
Gross Primary Productivity
Net Ecosystem Exchange
Latent Heat

Sensible Heat

Soil Heat

Wind Direction

Vapor Pressure Deficit
Relative Humidity

Photon Flux

Predictor Subgroup

Precipitation

Snow Depth
Temporal ..

Radiation

Air Temperature

Air Turbulence

Air Pressure

A X
S R R
7 & N
Q‘é\,y‘ooc,((\

- L2 @

P EOE SR IS E @

) \g,)o AR N CL S &
Site

Predictor Group

B Baseline
B Micrometeorology

M Energy Fluxes

B Soil

B Carbon Fluxes
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sharp) uncertainty estimates than the RF without calibration.

At all sites, both ANN and RF model prediction uncertainties were
well-calibrated after performing the calibration step (Figure 9). In other
words, the 95% CI of the estimates contained close to 95% of the
observed values in the test set (95.6% on average for ANN, 95.2% on
average for RF). Notably, once calibrated, the RF model made sharper
predictions across all of the sites than the ANN model. The sites where
predictions remained the widest (least sharp) after normalizing by the
standard deviation of flux were US-Uaf, US-Twt, US-OWC, BR-Npw, and
US-Los, which were the sites with the worst performance in terms of R
on the test set. These sites had one or more of a site-specific combination
of low seasonality and/or extremely long gaps and/or highly variable
fluxes. Similarly, the sites whose predictions were the sharpest corre-
sponded to the sites with the best performance on the test set. Examples
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of pre- and post-calibration uncertainty ranges are shown in Figure E.3.

3.6. Annual and Growing Season Emissions

A total of 30.4 site years were gap-filled with MDS with best (TA, WS,
and PA) predictors, and the baseline ML (ANN plus baseline predictors)
and best ML (RF plus all predictors) models and summed for annual or
growing season CH4 emissions. Note that reported uncertainties around
summed emissions reflect only gap-filling uncertainties and exclude
additional random uncertainties which, though tending to be small, can
be considered separately (Knox et al. 2019) or in an integrated manner
(Vitale et al. 2018).

Annual and growing season emissions did not differ significantly
(measured by overlapping 95% CI) at any of the sites when comparing
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Figure 9. Per-site calibration and sharpness for the baseline model (ANN-+Baseline) and best model (RF+All) before and after Platt scaling on the test set. The results
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scaling factor which is learned from the data to adjust the ensemble uncertainty estimates and yield calibrated uncertainties. Sharpness was measured as the mean
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the two ML gap-filling methods (Table 5). Calibrated prediction un-
certainties for ANN and RF resulted in less sharp, but more plausible,
95% CI around the annual sum. For all sites except US-OWC and BR-
Npw, emissions from the best ML model (RF and All) fell within the
unscaled 95% CI of the baseline model (ANN and Baseline; approxi-
mating Knox et al. 2019), supporting a generally high level of accuracy
for the baseline method under the majority of site and gap conditions in
this analysis. At the highly variable US-OWC marsh and BR-Npw swamp
sites, the best model predictions fell outside the unscaled but within the
scaled baseline CI, which underscores the implausible sharpness of
unscaled ML ensemble predictions but does not support greater accuracy
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of RF than ANN. Uncertainties around MDS were much sharper (median
95% CI was + 3% of annual emissions) than the scaled ML methods for
ANN (+ 38%) and RF (+ 18%). The sharp uncertainties resulted in small
but significant differences between annual and growing season sums
from MDS and one ML model (e.g., JP-BBY, BR-Npw, US-Tw1) or both
ML models (e.g., CA-SCB, US-Los).
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Mean annual and growing season emissions estimates for three methods (MDS, ANN, and RF) and their uncalibrated and calibrated uncertainties (95% CI) across the 17
sites. Calibration is only applicable to ML model ensemble methods and therefore cannot be reported for MDS.

Site(class) Annual or Growing Season Date Ranges (Annual means

Mean Annual or Growing Season Methane Emissions + Gap-Filling Uncertainty (95% CI) (g CH4-Cm™

2

only computed on years with good or comparable data yh
coverage) Best MDS,(TA, WS, ANN-+Baseline,(as in Knox et al. 2019) RF+All,Best modelUnc. not
PA)Unc. not scaled Unc. not scaledCalibrated (lower) scaledCalibrated (lower)
JP-BBY (bog) March 2016 - 17.84 £ 0.29 18.15 + 0.86 17.65 £+ 0.13
December 2017 18.22 + 3.93 17.65 + 1.75
NZ-Kop (bog)  January 2012 - December 2014 17.57 + 0.38 15.39 +1.78 17.98 +0.28
17.97 +£ 9.57 17.98 + 3.22
CA-SCB (bog) April 2014 - 11.33 £ 0.24 11.21 £+ 0.60 11.60 £+ 0.16
November 2014 11.61 + 2.82 11.71 + 2.05
March 2016 -
December 2016
March 2017 -
November 2017
US-Uaf (bog) April 2011 - 0.57 = 0.03 0.50 + 0.09 0.54 +0.03
October 2011 0.57 £ 0.58 0.56 + 0.40
May - October,
2012 - 2017
May 2018 -
November 2018
FI-Si2 April - November, 11.36 = 0.56 12.33 £ 1.23 11.68 + 0.91
(bog) 2012 - 2013 12.60 + 8.63 11.81 +£8.35
FI-Lom (fen) January 2006 - December 2010 15.61 £+ 0.16 15.75 + 0.74 15.63 + 0.09
15.76 + 3.83 15.63 + 1.12
FI-Sii January 2013 - November 2014 12.09 + 0.36 12.47 + 0.80 12.07 £ 0.25
(fen) March 2016 - 12.52 + 2.9 12.10 £+ 2.12
December 2018
SE-Deg (fen) January 2014 - December 2016 11.63 + 0.14 11.44 + 0.68 11.30 £+ 0.05
January 2018 - December 2018 11.58 + 2.18 11.31 £+ 0.60
US-Los (fen) January 2014 - December 2018 6.56 + 0.49 6.25 + 1.29 6.28 + 0.20
7.79 + 10.09 6.63 + 3.2
US-Myb January 2011 - 49.18 £ 0.79 47.97 £ 3.76 49.14 + 0.29
(marsh) December 2018 48.43 £ 16.71 49.15 + 4.44
US-OWC April 2016 - 116.85 + 2.15 117.09 + 7.56 131.69 + 7.97
(marsh) October 2016 120.07 + 46.19 132.44 + 60.2
US-Twl January 2013 - December 2018 47.42 + 2.09 44.81 + 6.62 44.88 + 0.87
(marsh) 46.14 + 32.2 44.89 + 7.52
US-Tw4 January 2014 - December 2018 32.86 + 0.70 32.32 +£2.81 32.63 +0.23
(marsh) 32.66 + 13.87 32.64 + 3.05
US-WPT March 2011 - 50.45 + 1.55 48.88 + 3.02 52.28 + 0.66
(marsh) December 2013 49.21 + 14.17 52.27 + 8.61
US-Twt (rice April - October, 7.90 £+ 0.44 8.06 + 1.96 8.44 + 0.66
paddy) 2010 - 2016 8.58 + 8.41 8.56 + 5.07
JP-Mse (rice May 2012 - 9.39 + 0.44 8.88 + 0.66 9.51 + 0.17
paddy) September 2012 8.99 +1.75 9.51 +1.57
BR-Npw January 2014 - December 2016 25.90 + 1.61 19.22 + 2.52 24.73 £ 0.63
(swamp) 21.85 + 14.23 25.01 + 8.01

4. Discussion
4.1. Methods & Algorithms

The gap-filling approach outlined in this study optimizes for the
training and evaluation of ML gap-filling models. A new technique is
proposed for generating artificial gap scenarios that resemble the true
observed gap distributions. This is important to ensure that ML models
are trained and scored on unbiased distributions of gap lengths. Using
this artificial gap generation procedure, one can generate many site-
specific scenarios and reliably evaluate models on their ability to fill
data gaps. There are trade-offs between this approach and the intro-
duction of uniform gap-length scenarios (e.g., (Moffat et al. 2007),
which alternatively ensures a consistent number of scorable gaps (even
extremely long gaps) at the expense of unbiased training conditions.
However, the proposed method is recommended for ML-focused studies
given that the gap-filling of extremely long gaps (e.g., multiple months)
is much less reliable, regardless of the method used, and are best avoided
entirely, if possible.

Decision tree-based models (RF and XGBoost) showed better per-
formance than ANN and Lasso models across the majority of the 17
wetland and rice paddy sites. This is consistent with recent work on CH4
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gap-filling which demonstrated that a RF gap-filling model out-
performed both ANN and support vector regression models across five
wetland and rice paddy sites (Nemitz et al. 2018; Kim et al. 2020; Knox
et al. 2019). RF models are also relatively easy to tune, fast to train even
on large datasets, and require little preprocessing. Furthermore,
decision-tree-based models are more interpretable (presently) than ANN
(Russell and Norvig 1995), which enables analysis of important pre-
dictors. In comparison to ML approaches, MDS was tested as an easy and
fast method that makes use of only three predictors. MDS scored highly
on average although still much lower than the best ML models. Kim
et al. (2020) also found that MDS more frequently introduced statistical
bias in annual sums than ML models.

Although RF and ANN models are recommended ML methods, there
is still room to improve their gap-filling performance, especially on long
gaps. Recent deep neural network architectures have shown impressive
results in modeling long sequences in natural language processing,
particularly recurrent neural network variants (Lipton et al. 2015) and
Transformers (Vaswani et al. 2017). These models have the potential to
reproduce highly nonlinear variable interactions using large datasets
including half-hourly time series flux data and may be able to capture
lagged relationships between predictors and CH4 flux without further
manual revision. However, representing non-stationary conditions such
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as pulse events has proven to be challenging for ML approaches (Vargas
et al. 2018). Future work could explore the effectiveness of deep neural
network architectures for gap-filling CHy4. It is likely, however, that
problems of non-stationarity during long gaps will apply for CHy4 as they
do for CO, imputation (Richardson and Hollinger 2007) and are best
handled during data collection.

4.2. Methane Predictors

The inclusion of soil temperature (TS) and ecosystem carbon flux
predictors (NEE, RECO, and GPP) improved gap-filling performance
over the baseline set (three temporal, plus TA, PA, SW_IN, and WS), in
broad agreement with known controls by temperature (Yvon-Durocher
et al. 2014) and substrate availability (Whiting and Chanton 1993;
(Hatala et al., 2012); McNicol et al. 2020; Laanbroek 2010). Soil tem-
perature was the single most important additional predictor over the
baseline set at most sites, followed by RECO. While TS was available at
all sites in this study, it is not available across all FLUXNET sites.
Although NEE and its component ecosystem carbon fluxes (GPP and
RECO) are highly correlated, the consistent favoring of RECO suggests
they are not perfectly interchangeable for gap-filling performance, and
RECO and CHjy flux are both largely the result of microbial metabolism,
and are similarly affected by environmental drivers (Morin et al. 2014),
However, partitioned fluxes (RECO and GPP) are overall less practical
than measured NEE as predictors because they are typically partitioned
from NEE as a function of TS, and thus its importance may largely reflect
its correlation with TS (Reichstein et al. 2005; Keenan et al. 2019) while
RECO is limited in its ability to represent respiration fluxes across
different ecosystems (Barba et al. 2018).

Water table depth, a proxy for the balance of anaerobic CHy4-pro-
ducing and aerobic CH4-consuming soil volumes (Bridgham et al. 2013),
was an important predictor at rice and swamp sites that undergo larger
changes in seasonal inundation (Dalmagro et al. 2018; Muramatsu et al.
2017), but not at other wetland types. Although WTD has been found to
be important in bogs and fens (Moore et al. 2011; Goodrich et al. 2015;
Koebsch et al. 2020), it was only an important gap-filling predictor at
one of the five bogs in this study. This is consistent with prior work
showing that WTD becomes important when its range is large and/or
crosses above and below the soil surface (Knox et al. 2019; Alekseychik
et al. 2021; Knox et al. 2021). Moreover, in some wetlands, WTD is only
a coarse proxy for anaerobic volume activity due to the presence of
anaerobic microsites in drained layers and anaerobic methane oxidation
in saturated layers (Yang et al. 2017). Although WTD was available at all
17 sites, it is only currently reported for half of wetland sites in
FLUXNET-CH4 (Knox et al. 2019). The moderate importance of WTD
measurements as a predictor in many sites, and high importance in
some, suggests it should be widely collected and reported to ensure
optimal CH4 gap-filling when using ML models. The predictor experi-
ments also allowed us to investigate the usefulness of broad classes of
predictors. As “fuzzy” temporal predictors (cosine year, sine year, and
delta) (Moffat et al. 2007), can be computed, they are always recom-
mended for gap-filling. It was also confirmed that the most useful
meteorological predictors (TA, SW_IN, WS and PA) were already
included in the baseline model of a recent synthesis (Knox et al. 2019).

The performance improvements using all predictors in this study
suggests a moderate amount of predictor redundancy does not harm ML
performance and predictor curation may be less important for ML than
in other modeling approaches. Kim et al. (2020) similarly showed that
ML models can benefit from a large predictor set that includes soil
variables and that dimension-reduction via principal component anal-
ysis was not necessary to achieve good performance. However, site
uniqueness may also necessitate the tailoring of models for optimal
performance at individual sites, illustrated in this study by the ranges in
1) observed CH4 fluxes, 2) model performance, and 3) predictor
importance within bog, fen, and marsh classes. For instance, despite
high spatial variability in CH4 fluxes at some wetlands (Rey-Sanchez
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et al. 2018; Matthes et al. 2014), WD (which determines the flux foot-
print) was only an important predictor at one marsh site (US-OWQ),
which has very high spatial variation in flux between different cover
types (Rey-Sanchez et al. 2018). The site-specificity of WD for hetero-
geneous sites was also reported in a recent study that used a ML
approach to partition NEE (Tramontana et al. 2020). Entirely new pre-
dictors may also be necessary at some sites, such as salinity, which is
likely an important predictor for gap-filling at estuaries or other coastal
locations with a (tidal) salinity influence (Holmquist et al. 2018; Pof-
fenbarger et al. 2011). Although not prioritized in the present study, a
more parsimonious predictor set may be identified via a combination of
site-specific and process knowledge, as well as automated feature se-
lection methods (Kumar and Minz 2014). Curated predictor sets should,
however, be reevaluated when gap-filling new data (e.g., site-years, or
across multiple sites) as past models may be overfit with respect to new
data conditions.

Future work could also explore the use of led or lagged predictors,
which could be used to engineer predictors with greater coherence with
CH4 flux (Vitale et al. 2018). For example, recent syntheses have
demonstrated that the timing and seasonality of CH4 fluxes lags TS
across several FLUXNET-CH4 sites (Delwiche et al. 2021), leading to an
apparent hysteretic dependency (Chang et al. 2021), and therefore using
lagged TS predictors may improve ML gap-filling performance. More
sophisticated feature selection methods are possible, such as informa-
tion theory, which can be used to first identify the predictor and time-
scale of the lag (or lead), and then curate a more parsimonious predictor
set (e.g., Sturtevant et al. 2016; Knox et al. 2021). Overall, improve-
ments in the measurement and coverage of key soil predictors, especially
high-quality soil temperature and water table depth data, is
recommended.

4.3. Integrated Emissions & Uncertainties

Computing annual or growing season CH,4 emissions requires gap-
filling because filtering of EC data and other acquisition issues typi-
cally creates gaps of a wide variety of lengths, and especially an abun-
dance of short gaps (Table C2). Gaps are not normally distributed in time
and therefore FCH4 observations are likely to be biased, which will
propagate to the time-integrated flux. However, the investigator must
decide: 1) which gap-filled values are likely to be of sufficient accuracy
to be retained, and 2) whether the retained gap-filled plus observed
values are sufficient to integrate emissions over an annual, seasonal, or
other timeframe. As a rough guide, filled values should be treated with
greater scrutiny as they become longer and less frequent in the scorable
dataset. The most abundant scorable gaps of length one half-hour to
approximately 12 days can be filled confidently, given performance
metric checks as described in this study. Investigators should, however,
be aware that episodic fluxes, perhaps due to ebullition events, may not
always be captured and instead may be filled with average fluxes for the
most comparable conditions (e.g., FCH4 and MAE spikes in Figure E.2).
Greater scrutiny of evaluation metrics is recommended for gaps longer
than approximately 12 days, but less than multiple months, whereas,
filled values in gaps of multiple months (> 60 days) should generally be
excluded, as is done in COy gap-filling (Wutzler et al. 2018). The
exception may be very long (decadal) datasets where the monthly-scale
gap occurs in a season with ample data from other sites-years and can be
reasonably evaluated. After determining which filled values to retain,
the coverage of filled plus observed fluxes should be considered with
respect to the integration period. For rice paddies (e.g., US-Twt,
JP-Mse), and sites with low winter season fluxes due to frozen soils
(US-OWC or US-Uaf), it may be adequate and interesting to report a
growing season flux as is done in this study and the FLUXNET-CH4
synthesis (Delwiche et al. 2021). Time-integrated uncertainties from
ML gap-filling methods will also widen significantly as more gap-filling
is required and should always be reported alongside long-term sums.

The improvement in performance gained by using ML over MDS, and
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all predictors over baseline predictors, did not have a significant effect
on annual CH,4 emissions estimates at most sites. However, seemingly
minor changes in CHy fluxes can have disproportionate impacts when
calculating greenhouse gas emissions due to the high radiative forcing
effects of CH4 or when sparsely distributed sites are used in data-driven
regional or global upscaling efforts (Tramontana et al. 2016; Roberts
et al. 2017). Specifically, absolute differences in annual emissions
among the gap-filling methods were larger at high-emitting sites which
could lead to larger upscaling errors in high-emitting tropical regions
that account for > 60% of global wetland sources (Wania et al. 2013;
Bloom et al. 2017; Saunois et al. 2020). These results therefore highlight
the need for robust methods for estimating and propagating uncertainty
from flux gap-filling to upscaling.

Machine learning model-generated uncertainties around both half-
hourly predictions and annual emissions have been underestimated. A
scaling procedure (Platt scaling) which expands the uncertainty esti-
mates can be used to produce well-calibrated predictions. Well-
calibrated models can be compared using the sharpness of their pre-
dictions, where sharper predictions corresponded to better models.
Using this method, sharper uncalibrated RF (compared to ANN) pre-
diction uncertainties were retained post-calibration, indicating greater
precision of predictions. However, the frequent overlap between un-
calibrated and calibrated for both algorithms means a firm conclusion
about algorithm differences in accuracy is not possible. It is also
acknowledged that this uncertainty does not capture all sources of un-
certainty that could arise from random measurement errors, unseen
events, uncertainties in the predictors, or other systematic bias, among
others. However, calibrating predictive ML models to avoid under-
estimating gap-filling uncertainties is strongly recommended.

Other calibration methods have the potential to achieve calibration
while producing sharper predictions (Kuleshov et al. 2018). Further-
more, probabilistic models like Gaussian processes or multiple imputa-
tion methods may be able to produce well-calibrated models without the
need for post-processing calibration procedures (Vitale et al. 2018;
Camps-Valls et al. 2019). Recently, a method for producing uncertainty
estimates from any gradient boosting model was introduced which may
enable decision tree models to produce well-calibrated, probabilistic
predictions without requiring a model ensemble or post-processing
calibration (Duan et al. 2020). Finally, deep learning models can cap-
ture highly nonlinear relationships in large datasets and make proba-
bilistic predictions which have the potential to outperform other
gap-filling methods.

5. Conclusions

This study outlines a robust and reproducible ML workflow for CH4
gap-filling models that can be applied at individual wetland sites or in
multi-site syntheses. Specifically, the study advances CH4 gap-filling in
wetlands using ML by: 1) introducing a thorough gap-filling model
development and validation procedure that reliably generates gaps and
splits the data into training, validation, and test sets; 2) experimentally
evaluating conventional MDS (with drivers adapted for wetland CH4
fluxes) against combinations of ML algorithms and predictor sets; and 3)
proposing a model calibration method to estimate, evaluate, and cali-
brate model uncertainties. This study also provides insights into meth-
odological choices. Decision tree algorithms (RF and XGBoost) offer the
best performance on average; using all predictors (or best set for MDS),
median nMAE followed the order Lasso (0.42) > MDS (0.34) > ANN
(0.31) > RF/XGBoost (0.26), and median R? followed the order Lasso
(0.57) < MDS (0.66) < ANN (0.70) < RF/XGBoost (0.79). Overall, RF is
recommended as it benefits from less pre-processing and faster run-time
than XGBoost. ANN predictions had less bias when filling the longest
gaps and performance improved when using all rather than baseline
predictors, suggesting ANN may benefit from additional predictor
curation and feature engineering. Using all available variables collected
at eddy covariance towers as predictors is also fast, effective, and
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reasonable, given the large ratio of observations to predictors (favorable
data dimensionality). Conventional MDS also proved to be a fast method
that provides reasonable performance when CH4 predictors (air tem-
perature, air pressure, and wind speed) are selected, however, the lack of
post-calibration results in uncertainties that are very sharp (unrealistic).
ML prediction uncertainties, in contrast, can be calibrated to observa-
tions using Platt scaling. Finally, based on variable importance results, it
is recommended that soil temperature and water table depth are
measured at all wetland eddy covariance sites. The python code for
developing gap-filling methods, comparing predictions, and calibrating
uncertainties is available [https://github.com/stanfordmlgroup/
methane-gapfill-ml]. For future evaluations at wetlands and other eco-
systems, this code can provide a foundation for the development of
standardized eddy covariance CHy4 processing by different teams and
Regional Flux Networks which can also be tested on nitrous oxide fluxes
as longer time series become available (Papale 2020).
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