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ABSTRACT

In this paper, we propose a general framework to provide a
desirable trade-off between inference accuracy and privacy
protection in the inference as service scenario. Instead of
sending data directly to the server, the user will preprocess
the data through a privacy-preserving mapping, which will
increase privacy protection but reduce inference accuracy. To
properly address the trade-off between privacy protection and
inference accuracy, we formulate an optimization problem to
find the optimal privacy-preserving mapping. Even though
the problem is non-convex in general, we characterize nice
structures of the problem and develop an iterative algorithm
to find the desired privacy-preserving mapping.

Index Terms— statistical inference, privacy-preserving,
privacy-accuracy trade-off, iterative algorithm.

1. INTRODUCTION

The Internet of Things (IoT) is an emerging communication
paradigm that aims at connecting different kinds of devices to
the Internet [1, 2, 3]. Within the past decade, the number of
IoT devices being introduced in the market has increased dra-
matically due to its low cost and convenience [4]. However,
as machine learning models with a large number of param-
eters become much more complex [5], it is difficult to run
those models on IoT devices. One of the emerging solutions
to this problem is so called inference as service (IAS) [6, 7].
In IAS, the devices will send data to a server in the cloud, who
will make inference using powerful machine learning models.
However, IAS brings privacy issues, as the devices will send
their data to the cloud without knowing where these data is
stored or what future purposes these data might serve. There
are some interesting works that attempt to address this issue
using Homomorphic Encryption (HE) technique [8, 9, 10].
Unfortunately, the complexity of HE based solution is very
high, and its privacy relies on the (unproved) assumption that
certain mathematical problems are difficult to solve.

The goal of our paper is to address the fundamental trade-
off between inference accuracy and privacy protection from
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information theory perspective. Instead of sending data di-
rectly to the server, the user will preprocess the data through
a privacy-preserving mapping. This privacy-preserving map-
ping has two opposing effects. On one hand, it will prevent
the server from observing the data directly and hence enhance
the privacy protection. On the other hand, this might reduce
the inference accuracy. To properly address the trade-off be-
tween these two competing goals, we formulate an optimiza-
tion problem to find the optimal privacy-preserving mapping.
As the inference accuracy is directly related to the mutual in-
formation, we use mutual information to measure the infer-
ence accuracy. However, determining the privacy measure is
tricky, as there are many existing information leakage mea-
sures [11], each of which is useful for certain specific sce-
narios. Hence, in our problem formulation, instead of us-
ing a specific privacy leakage measure, we propose a general
framework to measure privacy leakage. The proposed privacy
leakage metric is defined by a continuous function f. Differ-
ent choices of f lead to different privacy measures. For ex-
ample, if f is chosen to be log function, the proposed privacy
leakage metric is the same as mutual information, a widely
used information leakage measure.

If we optimize over the space of privacy-mapping directly,
the formulated optimization problem is a complicated non-
convex problem. Through various transformations and vari-
able augmentations, we reveal certain nice structures of the
optimization problem. We then exploit these structures to de-
sign an iterative update algorithm to solve the optimization
problem for general f. Compared with solving the optimiza-
tion problem using gradient ascent in the space of privacy-
mapping directly, the proposed method does not need param-
eter tuning, converges much faster and finds solutions that
have much better qualities. To further illustrate the proposed
framework and algorithm, we also provide several examples
by specializing f to particular function choices.

There exist many other privacy-preserving techniques
that are based on perturbations of data and thus provide
privacy guarantees at the expense of a loss of accuracy
[12, 13, 14]. For example, k-anonymity is proposed by
Samarati and Sweeney [15], which requires that each record
is indistinguishable from at least k-1 other records within
the dataset. Differential privacy works by adding a pre-
determined amount of randomness into a computation per-



formed on a data set [16]. Moreover, various minimax for-
mulations and algorithms have also been proposed to defend
against inference attack in different scenarios [17, 18, 19].
These concepts and techniques are very useful for the pri-
vacy protection of data analysis through a dataset or database,
which is different from the setup considered in this paper.

2. PROBLEM FORMULATION

Consider an inference problem, in which one would like to
infer the parameter S € S of data Y € ), where ) is a fi-
nite set. For example, Y could be a picture and S could be
the label of the picture. In the inference as service scenario,
one would send Y to the server who will determine the pa-
rameter S using its sophisticated models and powerful com-
puting capabilities. However, directly sending data Y to the
server brings the privacy issue, as now the server knows Y
perfectly. To reduce the privacy leakage, instead of sending
Y directly, one can employ a privacy-preserving mapping to
transform data Y to U € U and send U to the server, where U
is also a finite set. Without loss of generality, we will employ
a randomized privacy-preserving mapping and use p(u|y) to
denote the probability that data Y = y will be mapped to
U = u. Furthermore, we use p(s) to denote the prior distri-
bution of S and p(y|s) to denote the conditional distribution
Y given S.

Even though this mapping reduces the privacy leakage, it
could unfortunately reduce inference accuracy. As the result,
to find the optimal map p(u|y), we need to strike a balance
between the inference accuracy and data privacy.

To measure the inference accuracy, note that the distribu-
tional difference between p(s) and p(s|u) characterizes the
information about s contained in u. Since the inference at the
server side is solely based on u, such information determines
the inference accuracy. As I(S;U) is the averaged KL di-
vergence between p(s) and p(s|u), we use it to measure the
inference accuracy.

To measure the privacy leakage, we consider a general
metric Ey,y[d(y,u)] to characterize the distance Y and U.
The larger the distance, the better the privacy protection. Here
d(y,u) = f (pz();"’z)) and f is a continuous function defined
on (0, +00). Different choices of f will lead to different pri-
vacy measures (examples will be provided in the sequel). Let
o(y,u) = I()?SI 7 which can be viewed as a ratio representing
the information provided by the observed sample .

Note that ¢(y, u) = p’(’éllfi) = p’(’gg). Hence we will also
(u)

use PIZulu) to calculate ¢(y, u) in the sequel.
Using these measures, we formulate an optimization
problem to find the optimal mapping p(u|y)

Flp(uly)] = 1(S;U) + BEy,uld(y,w)], (1)

max
p(uly)

st Y pluly) =1,y € V. )

Here, 8 € (0, 00) is a weight that indicates the relative impor-
tance of maximizing I(S;U), which will lead to a better in-
ference accuracy, and maximizing the distance Ey, ¢ [d(y, u)]
between Y and U, which will enhance the privacy protection.

The proposed framework in (1) is very general. Differ-
ent choices of f will lead to different privacy measures. For
example, if we choose f to be log(-), then we have

p(u)
= 2 plplub)lo g( <u|y>)
— S p) D lp(uly) || ()] =

Y

Ey,u[d

—I[U; Y],

in which Dk (- || -) is the KL divergence. As the result,
choosing f to be the log function means we will use mutual
information between U and Y to measure information leak-
age, a very common choice in information theory study. More
examples will be provided in Section 4.

3. ALGORITHM

In this section, we discuss how to solve the optimization prob-
lem defined in (1) for general f. As the objective function is
a complicated non-convex function of p(u|y), we only expect
to find the local maximal point. One possible approach is to
apply the gradient ascent (GA) algorithm, which faces several
challenges such as proper step size, computation complex-
ity, convergence speed and the quality of the local optimal
point found etc. To overcome these challenges, we propose
a new method motivated by the information bottleneck meth-
ods [20], which transforms the maximization over single ar-
gument to an alternative maximization problem over multiple
arguments. We first find three arguments and show that the
objective function is concave with respect to each argument.
Then based on these properties, we develop an iterative algo-
rithm to find the local maxima.

We first have the following lemma that facilitates further
analysis.

Lemma 1.

I(S;U) = I(S;Y)

Z Py
By Lemma 1, the function defined in (1) can be written as

Flp(slu), p(u), pluly)] = I(S;Y) + BEy,ud(y, u)]
—ZP p(uly) Dz [p(sly) || p(sfu)].

As the result, the objective function defined in (1) can be

viewed as a functional on p(uly), p(u),p(s|u). By using
Lemma 1, we have the following lemma.

p(uly) Dz [p(sly) || p(sfu)].

Lemma 2. Suppose that f is a strictly concave function.
Then for given p(slu), p(u), Flp(s|u), p(u),p(uly)] is



concave in p(uly). Similarly, for given p(s|u), p(uly) ,
Flp(slu), p(u), p(u|y)] is concave in p(u). For given p(uly),
p(u), Flp(s|u), p(u), p(uly)] is concave in p(s|u).

Lemma 3. For a strictly concave function f(-), if lim f'(t)
t——+oo

< o0, then Flp(uly)] is bounded from above.

Suppose that f(-) is a strictly concave function and

, 1i£rn f'(t) < oo, by Lemma 2, the original optimization
—+00

problem can be converted to

max max max f[p(5|u),p(u)7p(u|y)]~
p(slu) p(w) p(uly)

subject to Zp(u|y) =1,Vye),

> p(u) =1,
Zp(3|u) =1,Vu e Y. 3)

We can now exploit the structural property of the objec-
tive function F[p(s|u), p(u), p(uly)] presented in Lemma 2 to
iteratively find a solution. In particular, given p;(u), p:(s|u)
and p;(uly) obtained in iteration ¢, we obtain p;i1(u),
pry1(s|u) and pyyq(uly) for iteration ¢ + 1 one by one.

In the first step, given p:(s|u), p:(u), we obtain ps11 (u|y)
by solving the optimization problem

Flpe(slu), pe(u), p(uly)]; ©)

max

p(uly)
which is concave as shown in Lemma 2. We denote the solu-
tion obtained as

pey1(uly) = g(pe(w), pr1(slu)), %)

whose form depends on the choice of f(-) used. For many f’s
that are widely used, ¢(-) has a closed form expression. We
will provide such examples in Section 4.

In the second step, we obtain p;;1 (u) by Bayesian rule

P (w) = > pra(uly)p(y)- (©)

Finally, after obtaining p;y;(uly) and p;11(u), we can
obtain p;41(s|u) by solving

max

p(slu) Flp(sw), pey1(w), pey1(uly)],

which again is a concave optimization problem as shown in
Lemma 2. In fact, we can show that for any f(-), this opti-
mization problem has a simple closed form solution

>y Pev1(uly)p(s, y).

7
pera () @

pr+1(slu) =

‘We now intuitively explain the reason for applying such it-
erative process. Since the objective function (4) is maximized

in (5), the update (5) increases the function value F. Similarly
update (7) increases the function value F. Furthermore, by
Lemma 3, the objective function F is upper-bounded. Hence,
the proposed iterative process can find a local maxima.

The algorithm is summarized in Algorithm 1. We note

Algorithm 1 Design the optimal privacy-preserving mapping
Input:
Prior distribution p(s) and conditional distribution p(y|s).
Trade-off parameter 3.
Converge parameter e.
Output:
A mapping p(uly) fromY € Yto U € U.
Initialization:
Randomly initiate p(u|y) and calculate p(u), p(s|u) by (6)
and (7).
while difference< e do
update p(uly), p(u), p(su) by (5)(6)(7)
calculate difference
return p(uly)

b

that the updates are computed element-wise, and hence these
updates can be computed efficiently, regardless of the alpha-
bet size. Furthermore, we do not need to choose the step size.

4. EXAMPLES

We now apply the framework to different privacy measures
by choosing different f.

In the first example, we consider f(z) = log(x). As
shown in Section 2, the privacy measure is then the mutual
information. The update equation for p(u|y) has been shown
to have the following closed form solution in [20],

pev1(uly) = Z]zg(/qf)ﬁ) exp(—BDkr[p(sly) || pe(s|u)]),

with Z(y,8) = >, p(u) exp(=FDrrlp(sly) || pelslu)])
being the normalization function.

In the second example, we consider the following strictly
convex function

f(z) = zlog

2z
+ log

z+1 ®)

z+1

This choice leads to the Jensen-Shannon divergence [21]:

Eyuld(y,w)] = = > p(y)TS[p(uly), p(w)].

It is easy to check that the condition in Lemma 3 is satis-
fied for this choice of f.

The update equation for p(u|y) in (5) has the closed form
solution

pe(w)
exp{5 Dk r[p(s]y) || pe(slu)] + p(y)} =17

Per(uly) =



probability

Fig. 1. Conditional distribution p(y|s)

in which p(y) is determined by the normalization condition
> uPt+1(uly) = 1. We can further show that there always
exists a unique p(y) that satisfies this condition.
In the third example, consider the function
1-2z
= — 9
fla) = 5. ©)

which leads to the Le Cam divergence [22] as the privacy
measure,

Eyuld(y,u)] = =>_ p(y)LC[p(uly) || p(w)]-

For this choice of f, again, the update g(-) has a closed form

Drcrlp(sly) || pe(su)] +v(y)

1
2

1

m+muw>=pmo{[ﬂ

—1},

in which v(y) can be uniquely determined from the normal-
ization equation ), py1(uly) = 1.

5. NUMERICAL RESULT

In this section, we provide numerical results to show that the
methods proposed here converges much faster than GA, and
the local maxima found by our methods has much better qual-
ity than the one found by GA.

In our experiment, we set the prior distribution p, =
{3,%. %} and let |Y| = 10,[U| = 11. The conditional dis-
tributions p(y|s) under each s are shown in Fig. 5. Under
this setup, we will perform both Algorithm 1 and GA to find
the optimal transition mapping p(uly) that maximizes the
functional defined in (1) using different f.

We first set f as in (8), which means we use Jensen-
Shannon divergence as the privacy metric. The initial map-
ping p(uly) is obtained by selecting random numbers con-
forming to uniform distribution and normalizing them. After
applying Algorithm 1, we plot the relationship between the
function value and iteration in Fig 2. For comparison pur-
pose, we also plot the corresponding figure for GA in Fig. 3.
From these figures, we can see that Algorithm 1 converges
after 10 iterations. On the other hand, even after 8000 itera-
tions, the value of the objective function found by GA is very
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Fig. 3. Convergence process of GA (JS divergence)

far away from that value found by Algorithm 1. In the second
example, we set f as in (9), which corresponds to the Le Cam
divergence as discussed in Section 4. We again compare Al-
gorithm 1 and GA. The results are shown in Table 1. From the
table, we can see that the local maximum value found by our
method is larger than the one found by GA. Moreover, since
the objective function is quite complex in p(u|y), it is hard to
find a proper step size for the GA algorithm while there is no
need to do so in our algorithm.

Methods Convergent value
Algorithm 1 -6.697e-14
Gradient ascent(a = 0.05) -0.251
Gradient ascent(a = 0.07) -0.245
Gradient ascent(a = 0.1) -0.317
Gradient ascent(a = 0.15) -0.235

Table 1. Convergence results comparison

6. CONCLUSION

We have proposed a general framework to design privacy-
preserving mapping to achieve privacy-accuracy trade-off in
the inference as services scenarios. We have formulated an
optimization problem to find the optimal mapping. We have
discussed the structure of the formulated problem and de-
signed an iterative method to solve this complicated optimiza-
tion problem. We have provided numerical results showing
that this method has better performance than GA in the con-
vergence speed, solution quality and algorithm stability.
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