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Abstract  

A host of learning, memory, and decision-making processes form the individual’s response to 
threat, and may be disrupted in anxiety and post-trauma psychopathology. Here we review the 
neural computations of threat, from the first encounter with a dangerous situation, through 
learning, storing, and updating cues that predict it, to making decisions about the optimal course 
of action. The overview highlights the interconnected nature of these processes, and their reliance 
on shared neural and computational mechanisms. We propose an integrative approach to the 
study of threat-related processes, in which specific computations are studied across the various 
stages of threat experience, rather than in isolation. This approach can generate new insights 
about the evolution, diagnosis and treatment of threat-related psychopathology. 
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NEURAL COMPUTATIONS OF THREAT: LEARNING, MEMORY AND DECISION MAKING 

How does the brain compute threat? When facing danger, an organism is tasked with learning 
precursors of threat, remembering those precursors for extended periods and across contexts, 
and making optimal decisions under stress. Anxiety and trauma can impact each of these 
cognitive processes. Here we define threat as an organism, a thing, or a situation that is likely to 
inflict damage on an organism’s physical or mental wellbeing. We review the neural computations 
underlying adaptive and maladaptive threat learning, memory and decision making. Beginning 
with an encounter with a threatening situation, we follow the associations born out of this event, 
the elaboration of these associations, the formation and reformation of threat memories, and how 
threat experience shapes decision making (Figure 1). For each phase, we describe the neural 
computations performed on incoming, retrieved or projected information, and their manifestation 
in post-traumatic stress disorder (PTSD) and anxiety disorders. 

The juxtaposition of the various stages of threat experience highlights the interconnected nature 
of these processes, with common computations and overlapping neural regions (Figure 2; Box 
1). At the heart of this process are computations during ambiguous situations, where uncertainty 
could be reduced through information gathering, proactively anticipating consequences, and the 
retrieval and updating of relevant memories, for the purpose of making predictions and choices 
more accurate. We use the term ‘computation’ in accordance with Marr’s three levels [1], whereby 
the term refers to the goal of the computation and the logic by which it can be carried out. We 
argue that the different stages of threat experience share computational goals, and therefore the 
algorithmic and implementation levels could also overlap (Box 2). This set of computations ought 
to consist of the values of predictive cues, actions and outcomes, prediction error that drives 
learning, dynamically adjusted learning rates, and the uncertainty surrounding these estimations. 
These values could be learned through different policies such as trial and error or by learning 
about the structure of the environment.  

Although these computations are deployed throughout the threat experience, the information they 
process differs depending on the phase, be it the initial encounter, subsequent learning, memory 
retrieval, or decision making. This approach generates interesting predictions about how clusters 
of symptoms may organize, and proposes considerations for diagnosis and treatment, as the 
following sections elaborate. This overview suggests that rather than treating anxiety and PTSD 
as disorders of multiple distinct processes – heightened emotional reactivity, aberrant learning, 
impaired inhibition, over-generalization, hyper-avoidance, maladaptive memories, or biased 
decision-making – a unifying approach may prove more efficient. From a computational 
standpoint, anxiety and PTSD are disorders of neural prediction – the estimation of future threats.  



3 

 

 

Figure 1. The stages of threat experience. Experiencing a life-threatening event, in this case, 
an aversive emotional memory of a car explosion (panel A), may result in associative learning 
(panel B) where a neutral stimulus (the blue car) becomes threatening as it predicts danger 
(explosion). The learned association then competes with or influences new associations (panel 
C). For example, generalization of the association to other stimuli may occur (panel C top), or 
extinction learning (panel C bottom), where repeated exposure to blue cars diminishes the threat 
response. A more permanent way of diminishing the learned threat response is by modifying the 
original association through reconsolidation updating (panel D). A reminder cue may trigger the 
memory and destabilize it, requiring re-stabilization (reconsolidation) to return it to a stable state. 
In the course of destabilization, updates may occur in several ways, such as extinction (top), 
counterconditioning (middle, car associated with a positive outcome, such as a wedding), or 
sensorimotor interference (depicted here as a Tetris game). The new information these processes 
provide is incorporated into the memory (extinction, counterconditioning), or depletes neural 
resources of reconsolidation (sensorimotor interferences). Finally, threat learning interacts with 
processes of decision making and attitudes toward loss, risk and ambiguity (panel E). For 
example, when facing a choice between riding a car or a bicycle, threat-related processes may 
bias the choice toward the less threatening option. The depiction of the stages of threat 
experience (A-E) does not mean to indicate any sequential order or independence. The stages 
are intertwined throughout the threat experience.   
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THE STAGES OF THREAT EXPERIENCE 

The experience of imminent threat 

Encountering a life-threatening situation engages neural computations that consider information 
about the environment and the source or threat. These computations design defensive policies 
and select adaptive responses for execution. The threat imminence continuum model [2], which 
maps defensive behaviors onto levels of threat imminence (how far a predator is in time and 
space), provides a platform of prey-predator relations for assessing the neural circuits and 
computations for survival [3, 4]. In the first ‘safe’ stage, there is no threat, an encounter with a 
predator may occur in the distant future. Individuals may experience occasional anxiety, and flash 
forward toward possible future threats. Cognitive control and emotion regulation could keep this 
process in check. Next is the ‘pre-encounter threat’– the predator is not present, but may surface 
at any moment. Individuals may experience anticipatory anxiety and exhibit vigilance and 
preparatory behaviors. In the more dangerous ‘post-encounter threat’ the prey, not yet detected, 
observes the predator. This step generates encounter anxiety, involving close inspection and 
anticipation of the predator’s moves, strategic freezing to avoid detection and gather information, 
and avoidance estimation. Finally, the prey is under most extreme danger during the ‘circa-strike’ 
phase, when the predator is attacking. Within that attack mode, the predator could be distant 
enough to allow a feeling of fear and rapid thoughts examining the situation and assessing escape 
routes. Fight or flight ensues as the predator gets closer yet without contact. The final point of 
contact provokes hard-wired, fast, often poorly-executed reactions of freezing and panic [5]. 

A hierarchical neuroanatomical organization traces the threat imminence continuum. As the 
predator approaches, brain activity shifts from the prefrontal cortex (PFC) to midbrain. Two 
parallel paths support defensive approach and avoidance, originating from PFC areas through 
cingulate cortex areas, to hippocampus, amygdala, and hypothalamus, terminating on midbrain 
periaqueductal gray (PAG) and dorsal raphe nucleus [3]. Converging neuroanatomical and 
functional evidence across species, including rodents, non-human primates and humans, 
supports this organizational scheme, attributing feelings of anxiety and fear and cognitive 
regulation to higher order cortical areas, and freezing, escaping and panic to amygdala, 
hypothalamus and PAG, respectively [3, 6-8]. 

A proximal threat engages rapid, reflexive and narrowly targeted actions, and therefore has limited 
computational resources. Decisions during this phase likely rely on model-free computations, 
sustaining the repetition of previously reinforced actions. The more distal points of encounter allow 
time to assess the environment and consider alternative courses of action. It is plausible that, in 
addition to model-free responses, such threats also initiate model-based computations – the 
prospective anticipation of action consequences using a constructed map or a model. This 
computational policy favors accuracy and strategic planning [9, 10], and allows “offline” testing of 
potential courses of action using mental simulations. Computational methods such as Dyna [11] 
aim to identify the optimal policy for a particular situation, by simulating actions and their 
consequences within an internal model of the environment. The mental simulations provide data 
for training the model and improving predictions in the absence of actual threat experiences.  
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People that experienced a traumatic event and went on to develop post-traumatic stress, and 
people suffering from anxiety disorders (Box 2), often exhibit some of the same behaviors along 
the threat imminence continuum, albeit in an excessive manner and inappropriate contexts. For 
example, according to the DSM-5 [12], among the criteria for a PTSD diagnosis are hypervigilance 
and avoidance as in the anticipatory anxiety phase. Anxiety disorders are accompanied by 
frequent intermittent anxiety, involving rumination, worry and over-strategizing. This suggests that 
PTSD and anxiety disorders may involve deficient computations of spatiotemporal threat, 
particularly influencing the reliance on model-based planning during anticipatory and encounter 
anxiety. Consistent with this idea, high-trait anxiety affects escape decisions from a virtual 
predator, but only when the threat is distal, rather than imminent [13].  Other studies, in the domain 
of reward learning, demonstrate the vulnerability of model-based computations to stress [14], 
particularly in depression [15], and to lifetime stress [16] , as well as to self-reported intrusive 
thought [17], a symptom of generalized anxiety and PTSD. Additional research is required to 
examine how greater reliance on one system versus another relates to vulnerability or resilience 
to traumatic stress, and which clusters of symptoms correspond to these underlying behavioral 
policies.  

Beyond direct experience, individuals can also be impacted by second-hand, vicarious 
experience, by witnessing the experience of others or through verbal instructions (Box 2). This 
form of social behavior capitalizes on existing neural mechanisms of direct learning, in addition to 
processing of social information, and is evident across species [18-20]. Socially-formed 
associations can also shape subsequent decision making the same way direct learning does [21].  

Experiencing imminent threat may result in a cascade of (i) formation of threat associations; (ii) 
post-association learning; (iii) storing and updating of these associations; and (iv) decision-making 
under threat (Figure 1). It is possible that the particular processes occurring in the first stage 
would impact the four following processes. For example, a less imminent threat encounter might 
result in a weaker memory that is easier to extinguish; a highly stressful encounter with more 
imminent threat could produce a memory that is reconsolidation resistant; the degree of 
uncertainty during initial encounters might shape the flexible update of initial learning etc. The 
next sections examine the cascade of processes following initial threat learning.  

 

Backpropagation of threat 

The computational processes during imminent threat focus on the immediate needs and current 
environment of prey. But they also rely on prior learning, such as previously acquired 
associations, reinforced actions and learned models, called upon in the service of the moment. 
The merging of past and present experience yields new associations and updated models. In the 
simplest form, predation becomes associated with neutral stimuli in the environment. The threat 
of the predator backpropagates to the stimuli that predict it, a process known as Pavlovian 
conditioning [22, 23]. 
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Various learning models are used in this research, aiming to capture various types of information. 
Theories of associative learning, such as the Rescorla-Wagner (RW) and reinforcement learning 
models, envision that learning is driven by surprise, formalized as prediction error – the 
difference between the outcome expected and the outcome received. The predictive value of 
the stimulus - the level of threat that it predicts - changes proportionally to the magnitude of the 
error at a rate that is not in itself influenced by the learning [9, 24]. Overgeneralization of the 
learning to cues that were not associated with threat [25] may be a hallmark of anxiety disorders 
[26].  

The temporal difference model extends the RW model, allowing predictions of accumulated 
discounted future outcomes, rather than the immediate only [9]. Other theories, such as the 
Pearce-Hall model, focus on the predictive efficiency of the cue. Here, to learn cue-reinforcer 
associations, individuals track a quantity termed associability, which reflects the degree to which 
a cue has previously been accompanied by surprise (positive or negative prediction error). The 
associability of a cue gates the amount of future learning about that cue, depending on whether 
it has previously been a poor or a reliable predictor of an outcome. In this way, associability 
accelerates learning to cues whose predictions are poor and decelerates it when predictions 
become reliable [27].   

Several brain regions play a role in associative learning (Figure 2; Box 1). There is evidence for 
encoding of aversive prediction errors in activation patterns in the amygdala [28-31] and the 
striatum [32-34]. The striatal activation likely results from dopaminergic inputs from ventral 
tegmental area (VTA) [35, 36], although the evidence for striatal role in aversive prediction error 
may not be as strong as the evidence for its role in reward prediction error [37]. Both regions have 
also been implicated in tracking of associability [33, 34, 38, 39].  

An augmented ‘hybrid’ Rescorla-Wagner model controls learning rates dynamically based on the 
Pearce-Hall learning rule. In humans undergoing threat conditioning, measured by skin 
conductance response (SCR; a measure of autonomic nervous system activity), the hybrid model 
better captured cue-specific associabilities, over and above value expectations [39-41]. A study 
in combat veterans used the hybrid model to estimate the influence of prediction errors on cue-
specific associabilities in each learning trial [34]. These subject-specific parameters positively 
corresponded to PTSD symptoms (measured by CAPS, the Clinician Administered PTSD Scale). 
Thus, by assigning more weight to prediction errors, the more trauma-affected individuals 
exaggerated their adjustment to cues that did not predict what they had expected [34, 42]. 
Amygdala and striatal tracking of cue value throughout learning negatively corresponded to CAPS 
(less faithful neural representation of value related to worse diagnosis). Striatum tracking of 
associability negatively correlated with CPAS and partially mediated the positive relationship 
between prediction error weight and CAPS [34]. 

In parallel to the passive formation of cue-outcome Pavlovian associations, individuals can readily 
associate their actions with outcomes, a process termed instrumental (or operant) conditioning 
[43-45]. A classic example of instrumental conditioning in the context of threat is avoidance 
learning (Box 1), where an animal learns to prevent or minimize contact with an aversive 
outcome (such as electric shocks) or the stimuli that predict it [46]. Animal studies identify at least 
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two opposing pathways subserving active avoidance learning: a lateral amygdala – basal 
amygdala – nucleus accumbens pathway required for active avoidance; and a competing lateral 
amygdala – central amygdala – PAG pathway mediating freezing to conditioned stimuli. The 
infralimbic and prelimbic PFC subregions serve as the arbitrators, mediating the transition from 
reaction to action by suppressing freezing and facilitating avoidance [47, 48] (Box 1). Human 
studies are consistent with these findings, demonstrating the involvement of amygdala and 
striatum and their interactions with medial PFC [49-51].  

Avoidance by itself is an adaptive response to danger, but unwarranted and excessive avoidance 
is a hallmark of PTSD and anxiety disorders [47, 52]. Avoidance symptoms can be subdivided 
into passive and active. Passive avoidance is the lack of action (such as strategic freezing) 
whereas active avoidance involves emitting an action that circumvents the aversive outcome. The 
fact that active avoidance is a form of learning driven by the absence of the aversive reinforcer 
poses a challenge for learning theories. The psychologists O.H. Mowrer and Neal Miller provided 
a conceptual framework for active avoidance as a two-factor learning process, where threat is 
first acquired through Pavlovian conditioning, and then actions that reduce the conditioned threat 
are reinforced through instrumental conditioning [46, 53, 54]. Reinforcers of avoidance behavior 
include negative reinforcement by removing threat-associated cues or positive reinforcement by 
cues associated with safety  [47, 48, 55].  

In the context of both Pavlovian and instrumental conditioning, the models we have surveyed 
explain predictions of expected threat, but ignore uncertainty about these predictions (Box 3). 
Instead of point estimates, Bayesian learning models include estimates of prediction uncertainty 
that rule a dynamic learning rate [41, 56-58]. In stable environments, experiences from the distant 
past are informative for predicting the future, and transient changes should be largely ignored. 
Natural environments, however, are seldom stable; rather, unexpected uncertainty (Box 2) may 
arise, when the probabilistic structure of the environment changes abruptly [59-61]. When action-
outcome contingencies change (for example, the outcome probability substantially drops), only 
recent experiences should inform learning, to allow quick adaptation to the changing conditions. 
Indeed, human participants are able to incorporate estimates of unexpected uncertainty in their 
learning [62-64]. Individuals adjust their learning rate in response to variations in volatility – the 
frequency of changes in action-outcome contingencies (or the mean level of unexpected 
uncertainty; [65]), separately for potential rewards and punishments [66]. Pupil dilation and BOLD 
signals in Locus Coeruleus, which are indicators of arousal, reflect subjective estimates of 
unexpected uncertainty [63, 67]. Activity in the anterior cingulate cortex tracks subjective 
estimates of volatility, and reflects individual differences in learning rate [65].  Using a hierarchical 
Bayesian learning model, estimates of subjective uncertainty during a probabilistic choice task 
predicted subjective stress and arousal, exemplifying a tight link between stress responses and 
environmental uncertainty [68]. These studies suggest that conditioned threat responses do not 
simply correspond to the outcome prediction, but rather to the degree of uncertainty surrounding 
that prediction. 

Individuals with trait anxiety learn more from recent punishments, compared to healthy controls 
[69], but are slow to adapt their learning rates in response to changes in threat volatility, and show 
reduced pupil response to volatility [70]. Social contexts may exacerbate such reduced 
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adaptability [71]. Inappropriate adjustment to changes in probability structure may also lead to 
poor decision making, and contribute to increased symptoms if aversive outcomes are perceived 
as less predictable and less avoidable [70]. 

Overall, extant evidence suggests that aberrant neural computations of value, prediction error, 
associability and estimations of uncertainty, are related to anxiety and PTSD. The models 
described above capture two important facets of associative learning: reinforcement learning 
formalizes predictions of long-term accumulated outcomes; and Bayesian models, track 
uncertainty around learned associations. Models that merge the two computations have also been 
proposed  [57]. 

 

Figure 2. Neural basis of threat. Brain schema depicting working hypotheses, based on extant 
evidence, for brain regions and neural circuits involved in threat reactivity, learning, and decision 
making. Rather than different regions uniquely engaged in separate processes, review of the 
evidence suggests that most regions are engaged in more than one function, and that the 
concepts of learning, memory and decision making are difficult to isolate behaviorally and 
computationally. For example, regions typically involved in physiological reactivity such as the 
PAG, also contribute to the formation of Pavlovian association by providing a teaching signal to 
the amygdala. Regions typically assigned to associative learning, such as the amygdala, 
hippocampus and ventral striatum, are also involved in decision making. Regions often assumed 
a role in decision making (valuation and choice), such as the OFC, vmPFC, and dACC, PPC and 
lateral PFC are also involved in learning. The insula has been implicated in decision making, 
learning and reactivity. Together, these regions converge into a global network that conducts a 
similar set of computations across various phases of experience. The separate investigation of 
specific types of learning, memory and decision-making processes is thus not conducive for a 
comprehensive understanding of a unified global network. A refined approach would first define 
the computational problem, for example, how the brain predicts outcomes under uncertainty in a 
volatile environment given certain stimuli or actions; and then examine how each region in this 
global network contributes to these computations (e.g., informing value, tracking associability, 
computing prediction error). This process should then be iterated across the various stages of 
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threat experience (e.g., initial encounter, memory retrieval, decision making), as well as other 
domains such as reward. 

AMG, amygdala; BNST, bed nucleus of stria terminalis; dACC. dorsal anterior cingulate cortex; 
Hip, hippocampus; Hyp, hypothalamus, Ins, insula; PAG, periaqueductal gray; PFC, prefrontal 
cortex; ; dmPFC, dorsomedial PFC; dlPFC, dorsolateral PFC; vlPFC, ventrolateral PFC; OFC, 
orbitofrontal cortex; PCC, posterior cingulate cortex; PPC, posterior parietal cortex; SN, 
substantia nigra; VS, ventral striatum; VTA, ventral tegmental area. 

  

Flexible threat associations 

Following the encounter with danger, an individual will emit defensive responses triggered by the 
conditioned stimuli, but not for long. Eventually, for adaptive energy maintenance, those defensive 
responses will dissipate and new learning will take their place. The inappropriate lingering of 
learned defensive responses is part of a major PTSD symptom cluster in the DSM-V [72], defined 
as alteration in arousal and reactivity (e.g., hypervigilance), that began or worsened after the 
trauma. A prime mechanism that counteracts threat conditioning is extinction learning – the 
decline in responding to a stimulus that previously signaled danger, following repeated 
nonconsequential exposures [73]. Extinction can also be learned vicariously [74] or through 
imagination of the conditioned cues [75] by capitalizing on neural mechanisms of direct learning.  

Formalizing an associative learning model to describe extinction has been challenging. The 
Rescorla-Wagner model, for example, views extinction as unlearning of associative contingencies 
due to the omission of outcome; but this fails to account for the return of extinguished responses 
under various circumstances (e.g., spontaneous recovery, renewal, reinstatement). The Pearce-
Hall model, alternatively, classifies extinction as new learning where omission of the outcome in 
the presence of the conditioned stimulus creates a second association, such that threat and 
extinction associations compete for expression. However, it is possible that a mixed model, 
assuming cooperation between unlearning and new learning, best describes an individual’s 
internal representation [76]. The latent cause model [77] captures that cooperation: individuals 
update the associative weight between the stimulus and the outcome (i.e., unlearning) given small 
prediction errors, but infer that a second rule is likely in effect (i.e., new learning) given large 
prediction errors. In this way, an individual does not simply learn a single stimulus-outcome 
association, but rather parses experiences into latent causes, each with its own associative 
weight, thus constructing a structure of the environment. During extinction, unlearning would 
dominate over new learning by minimizing deviations from the individual’s expectations, such as 
transitioning from conditioning to extinction by gradually changing association strengths over time 
[78]. The model predicts that individuals who assume a single latent cause, and only update the 
initial threat memory, will show weaker recovery of the extinguished response. Individuals who 
form a new extinction memory, segmenting their experience into two latent causes, are more likely 
to show greater recovery from extinction [79].  
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How the brain implements structure learning is unclear. A possible circuit mechanism for structure 
learning might suggest that latent cause representations, possibly originating from the 
orbitofrontal cortex, activate hippocampal dentate gyrus cells, reflecting the likelihood of the active 
cause. The ventral tegmental area computes the discrepancy (i.e., prediction error) between the 
associative weights that the inferred cause predicts and the observed contingencies. The 
prediction error signal is then transmitted via dopaminergic projections to the amygdala and 
hippocampus, striatum and prefrontal cortex, thereby triggering memory updating or new learning 
– small prediction errors alter the associative weight of the inferred cause, whereas large 
prediction errors trigger neurogenesis of dentate gyrus granule cells to generate a new latent 
cause [80, 81].  

Beyond extinction, the power of the latent cause and other unifying models lies in their ability to 
explain a multitude of post-conditioning phenomena, such as generalization of the response to 
other stimuli, blocking learning to other stimuli, second-order conditioning, counterconditioning 
and more [57, 80, 82, 83]  thereby generalizing the Rescorla-Wagner model and addressing its 
explanatory limitations. Further model development is required to capture the effect of multiple 
extinction sessions, which may diverge into a separate circuit mechanism [84], and capture 
clinical therapeutic processes more faithfully [85]. Another consideration is the lingering impact of 
PTSD, which can last years and even decades. The longevity of the disorder is difficult to explain 
using current learning models, each capturing a sliver of the symptoms. A synergistic model, 
describing how multiple learning phenomena work together may explain the persistence of 
defensive motivational states [86, 87].  

 

Lifecyle of threat memory 

Aversive events serve as teaching signals instructing synaptic plasticity in the amygdala, resulting 
in threat memory storage (Box 1). Interventions such as amnesic agents (e.g., protein synthesis 
inhibitors) or electroconvulsive shock stimulation, interrupt consolidation, the stabilization period 
following the acquisition of a new memory. Once a memory has formed, however, it goes into a 
lifecycle of oscillations between periods of neural stability and instability (Figure 3). Memory 
reactivation and destabilization trigger those periods of instability, providing opportunities for 
modification. The same interventions that disrupt consolidation also interrupt – and therefore 
support the existence of – a destabilization period following reactivation of old memories. This 
phenomenological similarity inspired the term reconsolidation, referring to the active process 
necessary to restabilize a memory after it has been reactivated and destabilized [88, 89]. 

The instability period, when old memories resurface, presumably serves the purpose of 
incorporating new relevant information into the memory, instead of forming a new separate 
memory of present events [90, 91]. Experimental evidence supporting this theory introduced 
extinction learning following the reactivation of a conditioned threat stimulus, leading to long-term 
reduction in conditioned threat responses [92-96]. Another form of intervention used 
counterconditioning, which was demonstrated in the context of appetitive conditioning. Here, a 
drug-related conditioned stimulus was repeatedly paired with an aversive outcome (e.g., a 
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disgusting image) following reactivation [97, 98]. Other manners of non-invasive interferences 
could be effective, including those that deplete the neural resources needed for reconsolidation, 
such as extensive sensory motor tasks [99] (Figure 1). 

How is new learning following reactivation different from a standard associative learning session? 
Why would reactivation-extinction, for example, lead to a more permanent reduction of threat 
responses while standard extinction allows their return? The latent cause model, described 
above, offers a theoretical solution by formalizing the dynamic interplay between learning and 
memory [80]. Applying the latent cause theory to the case of post-retrieval memory modification 
stipulates that when a memory is retrieved, the brain assumes that the previously inferred cause 
(originally assigned to the remembered event) is once again active. This inference makes the 
memory eligible for updating because new information, now attributed to the original cause, 
merges and thus changes the original memory. For example, the associative weights of a cue-
outcome association will permanently decrease due to the merging of extinction learning; in other 
words, the memory has been updated and changed form. If the brain otherwise infers a new 
cause for the surprising event, a new memory will be formed. 

One of the parameters that nudges latent cause assignment, as featured in the model, is the 
duration of the reminder cue. Reminder duration can be conceptualized as the length of exposure 
or multiple repeated exposures with short gaps [80]. A brief exposure to the reminder favors 
assignment of the reminder to the initial threat learning cause. With longer reminder durations, 
prediction errors accrue, facilitating the inference of a new latent cause [100]. The model explains 
many of the boundary conditions of reconsolidation updating that have been observed in 
laboratory experiments, and makes testable predictions as to when a memory will or will not 
maintain its original form [80]. 

One of the most important goals of clinicians treating anxiety and PTSD is facilitating a change 
that is enduring in patients. Achieving enduring change that is not easily prone to relapse, 
conceivably requires three essential components: reactivating the problematic memories along 
with the emotions they elicit; altering those memories by having a corrective emotional experience 
during reconsolidation; and, building enduring semantic structures onto the updated memories, 
by implementing new behaviors and ways of engagement with the world [101, 102]. Indeed, some 
forms of therapy, such as coherence therapy, are built on the principles of memory reconsolidation 
and are designed to maximally optimize this process [103-105]. 
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Figure 3. Lifecycle of threat memory. Memory encoding is the strengthening of neural 
connections through long-term synaptic restructuring; a process occurring when different regions 
co-activate. A memory trace, or engram, is therefore not a physical entity like a stored object, but 
rather the disposition of neural circuits to fire upon triggering by a certain reminder. During 
reactivation, a memory becomes active when the engram ensemble fires. Reactivated memory is 
eligible for retrieval, behavioral expression, and/or destabilization. This means that memories that 
are retrieved and expressed are not necessarily destabilized, and that destabilization can even 
occur covertly without behavioral expression. Destabilization involves a cascade of cellular and 
molecular processes (such as protein degradation) that instigate the transition of the engram from 
a stable to an unstable state. At this point, the memory becomes susceptible to modification. 
Among the computational principles that govern destabilization is trace dominance: a memory will 
be more malleable to amnestic manipulations to the extent that it has control over behavior at the 
time of treatment. Prediction error is one of the parameters that influence trace dominance and 
facilitates destabilization. Memory restabilization (reconsolidation) requires protein synthesis 
among other cellular/molecular events. Successful reconsolidation restabilizes the ensemble and 
restores the memory into its inactive state. Manipulations that interrupt reconsolidation 
(pharmacological agents, behavioral interference, memory enhancers) will reroute the memory 
toward erasure, strengthening, weakening, or updating. A memory that has not been erased may 
cycle into another sequence of reactivation, destabilization and reconsolidation. LTM, long-term 
memory. 
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Decision making under threat 

When a threat is detected or remembered, a rapid decision-making process ensues, resulting in 
an approach (e.g., attack) or avoid reaction. Long after the imminent threat has dissipated, 
decisions about cues that predict threat likely share some of the mechanisms with those initial 
choices. These decisions may be adaptive (e.g., approaching a threat that could be overcome; 
avoiding a real threat or a cue that predicts it) or maladaptive (e.g., avoiding a threat that could 
be overcome).  

The decisions that individuals make depend on their available courses of action, the potential 
outcomes of each action, and the likelihood of each outcome. Common models of choice posit 
that decision makers integrate the various properties of each option to compute its idiosyncratic 
subjective value, and then choose the most valuable option [106]. Although this may seem 
straightforward, we do not fully understand how these computations are implemented in the brain. 
We do know that activation patterns in a network of multiple brain areas reflect subjective values 
that are inferred from behavior (Figure 2). Activity in two areas in particular, the ventromedial 
prefrontal cortex (vmPFC) and the ventral striatum, is consistent with encoding subjective values 
across different categories and under varying conditions [107, 108]. Other putative value regions 
include more dorsal regions of the medial prefrontal cortex [107, 109], the orbitofrontal cortex 
(OFC, [110, 111]), the posterior cingulate cortex (PCC, [112], and the posterior parietal cortex 
(PPC,[113]). 

While it is likely that activity in these areas encodes the value of potential rewards, the evidence 
for value encoding of punishments, or threats, is less robust. Some neuroimaging studies in 
humans report overlapping representations of positive and negative values [113-115]. Other 
studies describe distinct representations of rewards and punishments in different brain areas, with 
more medial representations of reward value, and more lateral representations of the value of 
punishments [116-118]. Single-unit studies in animals also report both distinct [35, 119] and 
overlapping [120] representations of rewards and punishments in dopaminergic midbrain, 
habenula, and medial prefrontal cortex. In addition, some brain areas, including the vmPFC, OFC 
and PPC, encode aversive values in a monotonic manner (with decreasing activation for more 
aversive values), whereas other areas encode value in a u-shaped manner, with high activation 
for both high rewards and high punishments, consistent with salience representation. The 
salience network includes the ventral striatum, dorsal anterior cingulate cortex, anterior insula, 
temporoparietal junction [107, 110, 113, 121], and the amygdala [122, 123]. Thus, the ventral 
striatum is the only region exhibiting both monotonic and u-shaped representations of value, 
indicating a dual role for this structure in encoding value and salience [36, 107, 110, 121]. Whether 
the brain first signals the stimulus’ salience (how important it is), to orient attention, and then 
determines its valence (positive or negative), or whether value is computed first, with salience 
information (its absolute value) extracted later, or in parallel, is an open question. 

The likelihoods for potential outcomes are an important factor affecting the subjective value of 
available options. For example, a 10% chance of sustaining an injury is not as bad as a 50% 
chance of sustaining the same injury. Only seldom, however, are these likelihoods completely 
known – a type of uncertainty known as risk or “irreducible uncertainty”. In most cases, likelihoods 
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cannot be precisely estimated; rather, there is some ambiguity or “estimation uncertainty” around 
those likelihoods (Box 3). Repeated sampling of the environment and experiencing various 
outcomes can reduce ambiguity. Subjective values are influenced not just by the objective levels 
of risk and ambiguity around potential outcomes, but also by an individual’s subjective perception 
of risk and ambiguity and their attitudes towards these sources of uncertainty. Since risk and 
ambiguity attitudes are only weakly correlated across individuals, they likely involve somewhat 
separate cognitive mechanisms (Box 4). 

How potential outcomes and their likelihood estimates are integrated in the brain is not completely 
clear. The integrated subjective value, reflecting an individual’s uncertainty attitudes, is encoded, 
as expected, in the valuation network [109, 124, 125]. There is also ample evidence that 
uncertainty is reflected by neural activity in several brain areas, including ventral striatum [126-
131], PPC [132-134], anterior insula [127, 131, 132, 135, 136], the lateral OFC and ventrolateral 
PFC [127, 129, 133, 136, 137], and the ACC [138]. Some of these studies highlight potential 
differences between neural activation patterns encoding risk and ambiguity [130, 133, 137]. 
Activity in PPC [133, 134, 137] as well as PPC’s structure [139, 140] reflect individual risk 
attitudes. In some studies, activity in vlPFC reflects ambiguity attitudes and not risk attitudes [130, 
133, 137], but other studies report correlation with risk attitudes [129, 138]; and a study in lesion 
patients also implicates vlPFC in processing both risk and ambiguity [141]. Finally, the structural 
and functional connectivity of the amygdala is associated with individual risk attitudes [142]. Taken 
together, while there is abundant evidence for multiple representations of uncertainty in the brain, 
the underlying neural substrates of those representations, and whether different types of 
uncertainty are represented separately, is yet unclear.     

In addition to the integration of outcomes with their likelihoods, the decision-maker also needs to 
integrate the values of potential rewards and punishments. For example, using the car (Figure 1) 
will be fast and convenient, but will also bring back memories of the aversive event. The weight 
given to potential gains, compared to potential losses (akin to threats) – or the degree of loss 
aversion [143] – varies substantially across individuals, and serves as another source for 
individual differences in decision making. In humans, subjective value representations in the 
vmPFC and ventral striatum  integrate over potential appetitive and aversive outcomes of 
available options [114, 144], and reflect the individual’s degree of loss aversion, as estimated 
from their choice behavior [114]. Research in animals also implicates the amygdala in value 
integration. While activity of amygdala neurons reflects the value of both potential rewards and 
potential punishments [145], lesion studies in rats suggest that basolateral amygdala (BLA) has 
a specific role in integrating rewards with punishments. BLA lesion led to increased choices of 
large rewards accompanied by potential punishments, but did not impair sensitivity to the potential 
punishments [146]. Optogenetic inhibition of BLA during the simultaneous receipt of reward and 
punishment also increased risk taking, but inhibition during the deliberation phase had an opposite 
effect [147], suggesting a heterogeneous role for the amygdala in value integration, which may 
rely on the orchestrated activity of separate neuronal populations. Interestingly, unpredictable 
outcomes - even in the absence of interaction with motivational value - lead to sustained activity 
in the amygdala, in both humans and mice [148].  
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Thus, decision making as a whole, integrates outcomes and their likelihoods, expected rewards 
and punishment and their weights (loss aversion), various sources of uncertainty (irreducible or 
risk, and reducible or ambiguity), and the individual’s attitudes toward uncertainty (risk and 
ambiguity aversion). The decision maker then needs to compare the integrated values of different 
options in order to reach a choice – how this is done is a subject of ongoing research. It is possible 
that integrated values are compared downstream of value computations [149], or that the choice 
process is an inherent part of iterative value computations [150, 151].  

Following a traumatic event, changes in any of the computations of valuation and decision-making 
may be observed [128]. In rodents, there is some evidence for malleability of valence encoding. 
During acute stress, the presentation of  rewards induces punishment-like responses in the lateral 
habenula (that is, a switch from the typical decreased firing rate into increased firing rate), 
consistent with a shift from value to salience encoding [152]. A different type of response shift 
occurs in the nucleus accumbens, where neurons switch their preference from rewards to 
punishments in a stressful environment [153]. 

In combat veterans suffering from PTSD, the ventral striatum appears to shift from value to 
salience encoding [154]. These individuals also exhibit enhanced aversion to ambiguity around 
potential losses in a simple monetary choice task, compared to combat veterans who did not 
develop PTSD [155]. And, in a trauma-exposed community sample, self-reported intolerance of 
uncertainty correlated with the severity of PTSD symptoms [156]. The evidence from animal 
research suggests causality, i.e., that at least some of the changes in computations of valuation 
and decision making in humans may result from the trauma. However, it is also possible that 
those observed differences reflect predisposition for developing PTSD, which preceded the 
traumatic events. Abnormally enhanced intolerance of uncertainty may constitute a 
transdiagnostic factor across anxiety disorders [157], given that anxiety-related pathologies, 
including obsessive compulsive disorder (OCD) [158], generalized anxiety disorder (GAD) [159], 
and social anxiety [160] also evince increased intolerance of uncertainty. 

The intolerance of uncertainty observed when anxious individuals and those with trauma-related 
psychopathology make choices, likely affects how they learn. An intriguing question is to what 
extent variations in uncertainty attitudes shape learning about threats. For example, in Pavlovian 
and instrumental conditioning, outcomes are used to reduce ambiguity about the probabilistic 
structure of the environment. Ambiguity aversion may hinder learning, because the individual will 
make effort to avoid the ambiguous situation; alternatively, it may strengthen acquisition, if the 
individual will be increasingly motivated to reduce the level of ambiguity. Similarly, extinction, 
generalization, relearning and other post-association processes all require the individual to cope 
with varying levels of uncertainty. Whether the individual’s approach to uncertainty in the context 
of decision making also underlies their handling of uncertainty in the course of learning is an open 
question.  
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CONCLUDING REMARKS 

A common method of investigation segments threat experience into separate stages and 
processes, studying and diagnosing them independently. In reality, however, learning, memory 
and decision making never occur in isolation and are constantly intertwined. Formalizing first 
principles may capture the basic computational processes that are a common thread, while 
considering the stages of threat experience as the settings for these computations. 

As described in the sections above, a fine-grained look at the initial encounter with imminent threat 
reveals a series of computations involving predictions about the outcomes of environmental cues 
and actions in an uncertain environment. New cue-outcome and action-outcome associations – 
arising via accumulated trial and error or models of the environment – are stored in memory, 
guiding future behaviors. Newly formed associations will go on to compete with, or facilitate, other 
associations, which together will adjust the individual’s behavior to a changing environment. The 
post-association phase further involves additional computations that segment the stream of 
experience into distinct clusters, or hidden causes. This type of computation plays a major role 
upon retrieval of learned associations, as it determines whether a certain memory will be updated 
or remain unchanged, essentially arbitrating between new learning and unlearning. Finally, 
choices based on learned associations incorporate estimations of uncertainty to predict and 
optimize future outcomes.  

PTSD and anxiety disorders may be linked to aberrant computations at any stage of threat 
processing [161]. Improper computations may be specific to threat or extend to other domains, 
such as reward processing or social interactions. Improper computations may also be limited to 
a particular processing stage (e.g., learning) or shared by several stages (e.g., learning and 
decision making). For example, the increased adjustment to surprising cues in PTSD may be 
specific to threat learning, or reflect a general learning deficiency, which is also at play when 
learning about rewards. The intertwined nature of the various cognitive processes, the overlap in 
their neural circuits, and the likely contribution of interactions between these processes to mental 
disorders, also reinforce the significance of studying whole-brain computations and connectivity 
patterns [162]. 

To decipher the neural mechanisms of disorders such as PTSD, and to translate insights into the 
clinic (Box 5), comprehensive approaches across domains and processes should be employed. 
Throughout the stages of threat experience, an individual confronts two core computational 
problems: making predictions about long-term accumulated outcomes, and tracking uncertainty 
in the environment. These computations are first employed in the initial assessment of the threat; 
next, in the use of cues and actions to confront it, and to appropriately update memories in the 
aftermath, and finally in the decisions shaped by this experience. To mimic this in the laboratory, 
we could identify and track a specific set of computations (for example, computation of estimation 
uncertainty, or ambiguity), and examine it during tasks of learning, memory and decision making, 
under threat as well as reward experience. This approach could identify whether dysfunction lies 
within the computation itself and is domain general, or within a specific domain, possibly due to 
disruptions in incoming and processing of a specific type of information. Such approaches, in 
conjunction with longitudinal designs [163] are likely to generate new insights about threat 
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computations in the healthy brain, and about disruptions in these computations in disease (see 
Outstanding Questions). 

  

Box 1. The neural mechanisms of threat detection and modification 

Innate and learned threats processes are distinguishable in the brain. The neural circuits of innate 
threats can be described by three main functional units: a detection unit subserved by sensory 
systems that gather sensory information signaling the presence of threat; an integration unit 
where sensory information converges, directing the recruitment of downstream structures that 
produce the adaptive response, with the integration occurring at the level of the amygdala and 
hypothalamus; and an output unit comprised of brain stem structures, including the 
periaqueductal gray, directly producing adaptive physiological and behavioral responses to the 
threatening stimuli [7, 164]. The experience of innate threat instructs a learning process that forms 
a memory of the threatening event.  

The neural mechanisms of threat acquisition, extinction, and other forms of threat modulation 
(Box Fig. 1), are centered around the routing of information to and from the amygdala and within 
amygdala nuclei [165]. During threat conditioning, sensory inputs arrive to the amygdala either 
through a thalamo-cortico-amygdala pathway, or a direct thalamo-amygdala pathway. Those 
sensory inputs, signaling the neutral (to-be-conditioned) stimulus and the aversive outcome, 
converge onto neurons in the lateral amygdala (LA). The stimulus-outcome convergence induces 
long-term potentiation of stimulus input synapses, such that when the stimulus later appears 
alone, its input will sufficiently drive LA outputs, triggering the threat response. Within the 
amygdala, the LA relays information directly to the central nucleus (CeA) or via the basal nucleus. 
There is also evidence that the basal/lateral nuclei (BLA) and CeA process information in parallel 
and not only serially [155]. The CeA is the major output structure of the amygdala. CeA projections 
to the hypothalamus, periaqueductal gray (PAG) and other regions, mediate the behavioral and 
physiological threat response (freezing, change in heart rate and blood pressure, and release of 
stress hormones) [23, 166-169]. 

LA neurons’ aversive responses correspond to prediction error encoding, because these cells 
respond strongly to unexpected aversive outcomes, but reduce their firing when the outcomes 
are predicted by conditioned stimuli. The prediction error signal is created by an amygdala-PAG 
feedback circuit. A conditioned stimulus recruits the CeA to activate a specific population of PAG 
neurons, which in turn inhibits aversive signaling before it reaches the LA, thereby resetting threat 
learning levels and controlling conditioned threat behaviors [29, 170-172]. 

Along the borders of the BLA and CE lay islands of inhibitory (GABAergic) neurons. These are 
the intercalated cell masses (ITC) that exert inhibitory control over the amygdala, as part of an 
‘off switch’ system. The major amygdala nuclei further divide into internal partitions. For example, 
the CeA divides into lateral and medial parcels. The lateral part of the CeA continuously inhibits 
the medial part, keeping amygdala’s output under control. BLA overturns this effect by projecting 
to the lateral CeA via ITC cells. The medial CeA, consequently, now free of inhibition, enables the 
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threat response [173, 174]. In addition to the threat responsive population of ‘on’ cells in the 
amygdala, there are also ‘off’ cells that are responsive to stimuli that signal extinction, as well as 
BLA to nucleus accumbens projecting neurons that signal reward [123, 175, 176].  

Amygdala threat responses are short-lived: they last only a few hundred milliseconds and therefore 
cannot be responsible for the stimulus-evoked sustained threat response, which typically lasts at least 
a few seconds. In rodents, the dorsal part of the medial PFC, the prelimbic PFC, is the region that 
maintains and prolongs threat responses. The adjacent infralimbic PFC mediates the diminution 
of the threat response seen following extinction [177-180]. The putative human homologues of 
these regions are dorsal anterior cingulate cortex (dACC) and ventromedial PFC (vmPFC), 
respectively [181]. Retrieval of extinction memory involves potentiated inhibitory circuits in BLA 
and increased medial PFC output to amygdala [173, 175, 182]. Inputs from the hippocampus, 
insula and the thalamus, among other regions, further modulate the amygdala’s threat response 
[177, 178, 183]. 

Regions of the PFC arbitrate between freezing and avoidance responses. The prelimbic gates 
the impact of BLA inputs to ventral striatum during avoidance [48]. BLA projections to ventral 
striatum, and prelimbic PFC projections to BLA, both facilitate avoidance; whereas prelimbic PFC 
projections to ventral striatum diminish avoidance [184]. The infralimbic PFC suppresses freezing 
mediate by amygdala’s CE [185]. The retrieval of avoidance memory relies on prelimbic PFC 
projections to BLA [44], and avoidance extinction relies on projections from the infralimbic PFC to 
BLA and ventral striatum [186]. Consistent with these findings, research in humans showed that 
the degree to which amygdala and striatum were synchronized with regions in the medial PFC 
during avoidance learning predicted avoidance success [46]. Striatal activation differentiated 
between participants that exerted control over conditioned stimuli versus those that did not, and 
corresponded to diminished return of threat responses [50, 51, 187]. Theoretical formulations 
suggest that individuals’ estimates of agency based on past experience with controllable and 
uncontrollable outcomes, adaptively calibrates their proactive or reactive behavioral strategies 
[188].  
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Box Figure 1. The neurocircuitry of threat learning and modification. A schematic 
representation of the inputs into the amygdala, information transfer within the amygdala, and 
amygdala outputs, and their putative functional role in threat learning and regulation. B, basal 
amygdala; LA, lateral amygdala; CE, central amygdala; dACC, dorsal anterior cingulate cortex; 
vmPFC, ventromedial prefrontal cortex; PL, prelimbic prefrontal cortex; IL, infralimbic prefrontal 
cortex; CS, conditioned stimulus; US, unconditioned stimulus.   

 

Box 2. PTSD and anxiety 

Post-traumatic stress disorder (PTSD) was first introduced as a diagnosis in 1980, in the third 
edition of the American Psychiatric Association’s (APA) Diagnostic and Statistical Manual of 
Mental Disorders (DSM-III). The initial definition attracted controversy and was revised over the 
years [189]. The most substantial conceptual change occurred in the latest DSM-5, with the 
removal of PTSD from the category of anxiety disorders [190]. Instead, the disorder was placed 
in a new diagnostic category named “Trauma and Stressor-related Disorders.” This new 
categorization is unique among psychiatric disorders: while all other DSM diagnostic categories 
are conceptually grouped by symptom characteristics, this is the only category that requires an 
exposure to a stressful event as a precondition. 

Accordingly, most fundamental to the nosology of PTSD is criterion A -- exposure to a traumatic 
event. The definition of trauma includes actual or threatened death, serious injury, or sexual 
violence [72]. This specific definition indicates that not all stressful events (e.g., psychological 
stressors like losing a job or a divorce) qualify as trauma. Exposure to trauma, according to 
criterion A, consists of not only direct personal exposure, but also witnessing trauma to others, or 
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indirectly experiencing trauma through a traumatic experience of a close individual. The 
assessment of PTSD symptoms is valid only if criterion A is met. The symptoms must begin or 
worsen following the traumatic event, without assuming any causal or etiological inference. The 
symptom groups are: intrusions, avoidance, negative alterations in cognition and mood, and 
alterations in arousal and reactivity. This new organization emphasizes avoidance, now making it 
a requirement in order to meet diagnostic criteria for PTSD.  

One reason for the separation of PTSD from anxiety is the ample evidence that PTSD involves 
emotions outside the range of fear and anxiety (such as anger, guilt, or shame). To be diagnosed 
with an anxiety disorder, a person must experience fear or anxiety that are out of proportion and 
impair normal function. Fear refers to an emotional response to an immediate threat, often 
triggering a fight or flight reaction. Anxiety is more diffused, referring to the anticipation of a future 
threat, typically manifested in muscle tension and avoidance behaviors.  

The neural correlates of PTSD and anxiety largely involve structural and functional aberrations in 
amygdala, prefrontal cortex and hippocampus. PTSD patients exhibit exaggerated amygdala 
reactions to negative and trauma-related stimuli, hypoactivation of the vmPFC, and impaired 
hippocampal-dependent context learning, as well as neuroendocrine dysregulation [191]. Animal 
models differentiate neural circuits underlying response to immediate present threat versus 
uncertain threats (i.e., anxiety). Uncertain threats (for example, unpredictable shocks) engage the 
bed nucleus of stria terminalis (BNST), which mediates the transfer of information between the 
amygdala and ventral striatum, and modulates defensive reactions [192].  

The first line of defense against PTSD is prolonged exposure therapy [193, 194] – the repeated 
exposure to trauma-related cues – leading to desensitization (akin to laboratory procedures of 
extinction). The treatment is ineffective in about 20-30% of patients, and approximately 20% fail 
to complete the full course of treatment. There is little empirical evidence to support 
pharmacological treatments for PTSD [195, 196], which are typically selective serotonin reuptake 
inhibitors. The development of novel effective treatments is desperately needed. Possible 
directions consider drug-assisted behavioral therapy [197], reconsolidation-based 
pharmacological and behavioral treatments [198-200], a synergistic approach combining multiple 
behavioral and neural processes [76, 87] and the temporal progression of treatment [84]. 

 

Box 3. Types of uncertainty 

Learning and decisions about threats involve multiple forms of uncertainty. The learning literature 
distinguishes between expected and unexpected uncertainty [201]. 

Expected uncertainty – also known as irreducible uncertainty [60, 202] - arises from the 
probabilistic nature of outcomes in a familiar environment. In the laboratory, expected uncertainty 
occurs when outcome probabilities are fixed and well learned (for example when each cue 
presentation is associated with an 80% chance for an electric shock). While the outcomes 
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themselves are uncertain (shock or no shock), their variance is expected, and, assuming a stable 
environment, these outcomes do not provide useful information, and should not drive learning. 

Before learning is well established, the lack of experience gives rise to estimation uncertainty [60, 
203] – uncertainty about the probabilistic structure of the environment. This type of uncertainty 
can be reduced with additional evidence, and signals how much learning is required. In the 
economics literature, irreducible uncertainty and estimation uncertainty are termed ‘risk’ and 
‘ambiguity’ respectively (Box 4).  

Unexpected uncertainty arises when expectations about the statistical structure of the 
environment are violated (for example, if the shock probability abruptly drops to 20%). 
Determining that the uncertainty is unexpected, rather than part of the stochastic nature of the 
stable environment, is challenging [59]. Expected uncertainty can provide a baseline for the level 
of uncertainty against which surprising events should be compared [61], considering the learner’s 
belief about the world [204]. Changes in the probabilistic structure of the environment, for example 
in a volatile environment, should lead to increased learning rate, such that predictions rely more 
on recent events. Normative statistical models, such as Bayesian models, and their 
approximations, provide accurate predictions for behavior [56, 60, 62, 65], but include complex 
computations, and it is not clear how these computations are implemented by the brain [61]. One 
model, synaptic metaplasticity (the ability to change synaptic states without measurable changes 
in synaptic efficacy), was proposed as a biologically plausible mechanism for adjusting learning 
rates based on unexpected uncertainty [205].  

  

Box 4. Attitudes towards risk and ambiguity 

Since most decisions are made under partly ambiguous conditions - where likelihood estimates 
exist, but are not precise – the individual’s behavior under uncertainty is modulated both by their 
risk attitude and by their ambiguity attitude [206]. To estimate these attitudes in the laboratory, 
researchers employ simple tasks in which participants are required to make a series of choices 
between various uncertain and certain options. To elicit risk preferences, the choices are between 
options whose outcomes and outcome probabilities are fully known (e.g. 50% chance to win $10), 
where one option is “riskier” and the other is “safer” [207]. A risky option is one that offers a small 
probability for a high reward; a safe option would offer a smaller reward, but at a higher probability. 
For example, a 50% chance to win $10 offers $5 on average, but at a higher risk compared to a 
sure bet of $5. A risk-averse individual would prefer options that offer smaller amounts at higher 
probabilities, over ones that offer higher amounts at lower probabilities, even if the expected value 
(the product of the probability and amount) of the latter is higher. A risk-seeking individual would 
show an opposite preference. 

Most people tend to be risk averse when making choices between moderate potential monetary 
gains [208, 209]. There is high variability across individuals, however, in the degree of risk 
aversion, and a minority of people exhibit risk neutrality (i.e. they choose based on the expected 
value alone) or even risk seeking [210]. This is important, because it means that individual risk 
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attitudes may be associated with particular personality traits or psychopathological symptoms. 
The picture is a bit more complex, however, because preferences change when the choice is 
between losses, rather than gains. Here too, there is wide variability in individual preferences, but 
most people tend to exhibit risk seeking, rather than risk aversion. For example, in a choice 
between losing $8 for sure and taking a 50% chance of losing $20, many are likely to take the 
risk [208]. Importantly, an individual’s attitude towards risk in the gain domain, does not predict 
their attitude to risk in the domain of losses (Box Fig. 1) [209, 210], suggesting that these are two 
separate characteristics, that may be differentially associated with personality traits and clinical 
symptoms.  

To elicit ambiguity attitudes, participants are also asked to make choices when some (or all) of 
the information about outcome probabilities is withheld. Ambiguity aversion is commonly observed 
when the choice is between potential gains [211-213]. In the domain of losses, there is some 
evidence for reduced ambiguity aversion, or even no effect of ambiguity [210 , 214]. Importantly, 
risk and ambiguity attitudes are only weakly, if at all, correlated across individuals (Box Fig. 1) 
[124, 133, 141, 210, 215, 216]  suggesting that they rely on cognitive mechanisms that are at 
least partly separable. The individual’s behavior when making choices between potential gains 
also does not predict their choices between potential losses. This means that there is likely no 
single unified trait of “uncertainty attitude”. Rather, it seems that how the individual copes with 
uncertainty is a complex process, affected by several attitudes, which are largely independent. 

A question of ongoing research is to what extent risk and ambiguity attitudes elicited in the 
laboratory reflect behavior outside of the laboratory [217]. While there is some evidence for 
consistent risk attitudes across domains [125, 218], task specifics may affect estimates of these 
attitudes [219, 220] (although this may arise from changes in the perceived risk, rather than the 
attitude towards risk [221]). It is also not clear to what extent risk and ambiguity attitudes are 
stable across time (i.e. reflect a personality trait) and to what extent they reflect state variables, 
although it is possible that risk attitudes are more stable, and ambiguity attitudes more transient 
[216].     
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Box Figure 1. Risk and ambiguity attitudes in the gain and loss domain comprise four 
largely independent decision characteristics. Data reanalyzed from [186]. N = 99 participants 
from the general population between the ages of 12 and 77. 

  

Box 5. From algorithms to feelings 

In this review, we have approached threat experience as a computational process involving 
sensory and internal inputs computed into a behavioral output. Where should we place the 
subjective feeling of fear within this framework? The felt quality of emotion, the feeling of threat, 
is a conscious mental state. This creates a gap that is difficult to fill, between what we can 
measure and the conscious experience [222]. A class of theories approaches consciousness by 
differentiating first order representations – mental representations of our situation or states in the 
world (e.g., visual perception, threat) – which could be either cortical or subcortical 
representations, versus higher-order representations, which are representations of other 
representations, often attributed to the function of cortical regions [223]. From this perceptive, our 
review of the evidence suggests that threat computations belong to the category of first-order 
representations, involving not only a subcortical defensive circuitry but also computations of value, 
state, uncertainty, volatility and more, occurring non-consciously and engaging multiple frontal 
and parietal cortical regions. By contract, the feeling of fear belongs to higher-order 
representations, engaging other circuits and integrating several processes, including non-
conscious memories, pre-existing schemas, and mental models [224, 225]. Considering fear as 
a representation or output of a more basic computational operation, inspired calls for revisiting 
our terminology to reflect the subject of investigation: using ‘threat’ to describe the inner working 
of defensive survival circuits, and ‘fear’ as a category of conscious experience [226]. 
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Conscious, verbal, descriptions of emotions in terms of their valence and arousal resonate with 
non-conscious computations of utility and vigor [191, 227, 228], but there are no specific 
computations that map onto the conscious experience of fear. Nevertheless, conscious 
experience may influence decisions and shape the output of neural computations. For example, 
informing individuals about aversive contingencies influenced activation in the striatum and OFC 
to feedback-driven learning. Amygdala responses resisted verbal warnings and changed only 
when individuals had direct experience of the relationships between cues and outcomes [229]. 
Remembered feelings could influence the arbitration of choices by creating an anticipation about 
how one might feel upon incurring an outcome [230, 231]. Moods can bias the perceptions of 
outcomes and sway decisions. For example, a negative outcome would be perceived as worse 
when one is in a bad mood. Moods could be formalized as the cumulative impact of differences 
between actual and expected outcomes (i.e., a running average of recent prediction errors). By 
reflecting the momentum of an outcome in a particular environment, mood helps an individual to 
account for the statistics of the environment. This could be beneficial for steering away from an 
environment that induces bad mood, for example, since the magnitude and frequency of negative 
surprise increasingly grow [232]. 

Understanding the distinction between the feeling of fear and the neural computations of threat, 
can inform our approach to PTSD and anxiety disorders. Identifying from which level do symptoms 
arise can advise pharmacological and behavioral treatment. The interactions between feelings 
and emotions could refine the assessment of aberrant behaviors as well as facilitate treatment 
[192]. 
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GLOSSARY 

· Ambiguity: a type of uncertainty in which likelihoods for potential outcomes are not 
precisely known, equivalent to estimation uncertainty. 

· Associability: the degree to which a cue has previously been accompanied by a 
surprising outcome. Can be used to gate the learning rate in models of reinforcement 
learning. 

· Avoidance learning: learning a response to evade aversive outcomes or the stimuli that 
predict them. 

· Consolidation: a period in which a newly acquired memory is stabilized. 
· Counterconditioning: pairing a threat-conditioned stimulus with a rewarding outcome to 

weaken a learned association. 
· Destabilization: the shift of a reactivated memory into an unstable state, making it 

susceptible to change. 
· Extinction learning: repeated presentations of a previously conditioned stimulus, in the 

absence of the associated outcome, result in temporary decline of memory expression. 
· Instrumental conditioning: learning to associate actions with aversive or appetitive 

outcomes. 
· Loss aversion: the relative weight that the decision maker assigns to losses compared 

to gains. 
· Model-based computations: learning algorithms that rely on internal models of the 

environment, including action-state transition probabilities. 
· Model-free computations: learning algorithms that learn the expected value of actions 

or stimuli based on sampling and direct experience of outcomes. 
· Pavlovian conditioning: learning to associate stimuli with aversive or appetitive 

outcomes. 
· Prediction error: the difference between the obtained and expected outcomes, used to 

drive learning in reinforcement-learning models. 
· Predictive value: in the context of models of aversive learning, the degree of threat 

predicted by a cue. 
· Reactivation: exposure to memory reminders, which may lead to destabilization of the 

neural representation of the memory. 
· Reconsolidation: the process of restabilization a destabilized memory, updating it with 

new information. Disruption of the reconsolidation process may result in memory 
impairment. 

· Risk: a type of uncertainty in which likelihoods for potential outcomes are fully known. In 
the context of learning, this is also known as expected or irreducible uncertainty. 

· Subjective value: the utility of an option to the decision maker, integrating over all of the 
option’s properties, including potential outcomes and their likelihoods, as subjectively 
perceived by the decision maker. 

· Threat imminence continuum: mapping of defensive behaviors into stages of threat, 
ranging from a ‘safe’ stage (no threat) to the most extreme ‘circa-strike’ stage (an attack 
takes place). 
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· Unexpected uncertainty: a surprising change in the probabilistic structure of the 
environment. 

· Volatility: frequency of changes in probabilistic structure of the environment. Learning 
rate should be higher in volatile, compared to stable, environments.   
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Highlights 
 

• The response to threat consists of multiple learning, memory and decision-making 
processes. 
 

• These processes may be disrupted in anxiety and trauma-related disorders. 
 

• We describe five stages of processing: experience of imminent threat; formation of threat 
associations; post-association learning; storing and updating of these associations; and 
decision-making under threat. 
 

• These stages rely on overlapping computations and shared neural circuits. 
 

• We propose that to reach a fundamental understanding of anxiety and trauma-related 
disorders, these processes should be studied together, rather than in isolation. 

 



Outstanding questions 

• What explains the lingering effects of PTSD? Current learning models cannot explain the 
longevity of the disorder. A comprehensive model encompassing multiple learning, 
memory and decision-making features may be needed. 

• To what extent are model-based, versus model-free, computations involved in the 
development and maintenance of post-trauma and anxiety symptomatology? 

• How are value computations in the brain used to generate choice? Subjective values of 
threats, as well as rewards, are encoded in a network of brain areas, but whether and how 
these values are compared to produce choice is not clear. 

• What is the relationship between neural representations of value and salience? Are they 
computed in parallel, or is one estimated first and then used to calculate the other? 

• Are the neural mechanisms that encode uncertainty shared across learning, memory and 
decision-making processes, as well as across both threats and rewards?  

• To what extent do aberrant computations confer variability to traumatic stress and anxiety 
and to what extent do they result from stressful experiences?  
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