Research 21: Spatial, Temporal, and Multimedia Data |

SIGMOD ’20, June 14-19, 2020, Portland, OR, USA

MIRIS: Fast Object Track Queries in Video

Favyen Bastani, Songtao He, Arjun Balasingam
Karthik Gopalakrishnan, Mohammad Alizadeh, Hari Balakrishnan

Michael Cafarella, Tim Kraska, Sam Madden

Massachusetts Institute of Technology
{favyen,songtao,arjunvb karthikg,alizadeh,hari,michjc,kraska,madden}@csail.mit.edu

ABSTRACT

Video databases that enable queries with object-track predi-
cates are useful in many applications. Such queries include
selecting objects that move from one region of the camera
frame to another (e.g., finding cars that turn right through
a junction) and selecting objects with certain speeds (e.g.,
finding animals that stop to drink water from a lake). Process-
ing such predicates efficiently is challenging because they
involve the movement of an object over several video frames.
We propose a novel query-driven tracking approach that in-
tegrates query processing with object tracking to efficiently
process object track queries and address the computational
complexity of object detection methods. By processing video
at low framerates when possible, but increasing the framer-
ate when needed to ensure high-accuracy on a query, our
approach substantially speeds up query execution. We have
implemented query-driven tracking in MIRIS, a video query
processor, and compare MIRIS against four baselines on a
diverse dataset consisting of five sources of video and nine
distinct queries. We find that, at the same accuracy, MIRIS
accelerates video query processing by 9x on average over the
IOU tracker, an overlap-based tracking-by-detection method
used in existing video database systems.

ACM Reference Format:

Favyen Bastani, Songtao He, Arjun Balasingam, Karthik Gopalakr-
ishnan, Mohammad Alizadeh, Hari Balakrishnan, and Michael Ca-
farella, Tim Kraska, Sam Madden. 2020. MIRIS: Fast Object Track
Queries in Video. In Proceedings of the 2020 ACM SIGMOD Inter-
national Conference on Management of Data (SIGMOD’20), June

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’20, June 14-19, 2020, Portland, OR, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-6735-6/20/06. .. $15.00
https://doi.org/10.1145/3318464.3389692

1907

Figure 1: An example track over three video frames.

14-19, 2020, Portland, OR, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/lO.l145/3318464.3389692

1 INTRODUCTION

Automated analysis of video data has become crucial to
an ever-expanding range of applications, from traffic plan-
ning [20] to autonomous vehicle development [8]. A common
class of video analysis involves queries over object tracks,
which are sequences of object detections corresponding to
the same object instance (Figure 1). These queries select in-
stances of a particular object category (e.g., cars, traffic signs,
animals) through predicates on their trajectories over the
segments of video in which they appear. As an example, an
autonomous vehicle engineer debugging anomalous driving
behavior under particular conditions may wish to query pre-
viously collected video data to select segments where those
conditions appeared. Such a query likely applies a predicate
over object tracks; e.g., selecting video where pedestrians
walk in front of the car involves a predicate on pedestrian
tracks that pass from one side of the camera frame to the
other.

In general, object track queries may apply complex predi-
cates, including joins that involve predicates over multiple
temporally overlapping tracks. For example, we may express
the task of identifying situations where a car passes a cyclist
at high speed and close proximity with the query:

SELECT car, cyclist FROM (PROCESS inputVideo

PRODUCE car, cyclist USING objDetector)

WHERE Speed(car) > 30 km/h

AND Angle(car, cyclist) < 10 deg

AND MinDistance(car, cyclist) < 1 m

This query first applies object detection and object track-
ing to derive tracks of cars and cyclists in the video dataset.
It includes three user-defined function (UDF) predicates to
verify that the car is moving at high speed, the car and cyclist

https://doi.org/10.1145/3318464.3389692
https://doi.org/10.1145/3318464.3389692

Research 21: Spatial, Temporal, and Multimedia Data |

are traveling in the same direction, and that they pass within
one meter of each other.

Video analytics databases such as DeepLens [14] and
Rekall [9] execute these queries by applying object detection
and tracking over the entire video, and then selecting the
tracks that satisfy the query predicates. However, executing
the deep neural networks used in object detection is highly
compute-intensive. On the $10,000 NVIDIA Tesla V100 GPU,
the YOLOV3 object detector [18] can process 960 X 540 video
frames at 30 frames per second (fps). Thus, applying object
detection on every frame in large video datasets is expensive—
processing one month of video captured at 10 fps from 100
cameras (72K hours of video) would cost over $70,000 on
Amazon Web Services (AWS) today (using a p3.2xlarge AWS
instance type at $3.06/hr for 24,000 instance-hours).

Recently, several video query processing engines have
been proposed to accelerate the execution of video analytics
queries by addressing the GPU-intensiveness of object de-
tection. Broadly, these engines, which include NoScope [13],
probabilistic predicates [16], Blazelt [12], and SVQ [21], train
lightweight, specialized machine learning models to approx-
imate the result of a predicate over individual video frames
or sequences of frames. If the lightweight model is confi-
dent that a segment of video does not contain any object
instances that satisfy the predicate, the query processor skips
expensive object detector execution over the video segment.

These optimizations are effective for processing queries
with only per-frame predicates, such as identifying video
frames containing at least one bus and one car. However, two
issues limit their applicability to object track queries. First,
oftentimes, object instances that satisfy the query predicate
appear in almost every frame, e.g. when finding cars that turn
through a junction. Since expensive object detectors must
be executed for each positive result from the lightweight
model to confirm the predicate output, the lightweight model
does not offer a substantial speedup. Second, object track
queries inherently involve sequences of video, since predi-
cates operate on the trajectories of objects through the cam-
era frame. Although we can train a lightweight model to
input entire segments of video, we will show that in practice
this approach yields models with low accuracy (and thus low
speedups). Thus, even after applying these optimizations,
existing systems must still apply expensive object detectors
on almost every video frame to process object track queries.

Rather than accelerate query execution through light-
weight approximations of query predicates, we propose opti-
mizing execution speed on a different dimension: the framer-
ate at which we sample video during query execution. If we
can accurately track objects and evaluate query predicates
while sampling video at a framerate lower than the original
capture rate (e.g., sampling at 1 fps instead of 25 fps), then we
can substantially reduce the overall cost of executing object

1908

SIGMOD ’20, June 14-19, 2020, Portland, OR, USA

track queries. In practice, though, determining the minimum
sampling framerate at which we can still compute accurate
query outputs is challenging, as it may vary significantly be-
tween different video segments. For the car-passing-cyclist
query above, a low sampling framerate may be suitable dur-
ing periods of light traffic, when robustly tracking a small
number of cars and cyclists is straightforward. In medium
traffic, though, high object densities result in uncertainty
in computed object tracks, and we may need to increase
the sampling framerate to reduce uncertainty. On the other
hand, in heavy traffic, despite the same issue of uncertainty,
because traffic speeds are low, we may be confident that no
cars travel at speeds high enough to satisfy the first query
predicate, and thus return to a low sampling framerate.

To address this challenge, we propose a novel optimization,
query-driven tracking, that integrates query processing and
object tracking to select a variable video sampling framerate
that minimizes object detector workload while maintain-
ing accurate query outputs. We begin query execution by
applying object detection and object tracking at a reduced
framerate over the video to obtain object tracks. Due to the
low sampling framerate, some tracks contain uncertainty
where the tracking algorithm is not confident that it has
correctly associated a sequence of detections. If we were to
perform object tracking agnostic of query processing, we
would immediately address this uncertainty by sampling ad-
ditional video frames at a higher framerate. In our integrated
execution approach, we minimize the additional sampling
required by ignoring uncertainty when we are confident that
the affected tracks do not satisfy the query predicate.

However, even after resolving uncertainty in the computed
tracks, because low-framerate tracking produces coarse-
grained tracks where consecutive detections along the track
may be seconds apart, the query predicate may not evaluate
correctly over the tracks. If, for example, a query seeks in-
stances of hard braking before a traffic light, we may miss
a hard braking event when sampling video at 0.25 fps (4
seconds/frame) if a car stops within 2 seconds. As with
uncertainty in object tracking, we must process additional
frames until we are confident that tracks have sufficiently
fine-grained detections for accurate predicate evaluation.
We develop a filtering-refinement approach that first prunes
tracks that we are confident do not satisfy the predicate, and
then refines the remaining tracks by collecting additional
object detections along the tracks in a targeted manner.

Our approach exposes several parameters, including the
minimum sampling framerate and selections of filtering and
refinement methods, to generalize to a wide range of ob-
ject track queries. We develop a novel query planner that
selects these parameters for a specific query with the objec-
tive of maximizing query execution speed while satisfying a
user-specified accuracy bound. Our query planner estimates

Research 21: Spatial, Temporal, and Multimedia Data |

accuracy by evaluating an execution plan over pre-processed
segments of video where we have already applied object de-
tection and object tracking at the full video framerate.

In summary, our contributions are:

e We develop a novel query-driven tracking optimiza-
tion that integrates query processing into the object
tracker to minimize the number of video frames pro-
cessed when executing object track queries. Our ap-
proach exposes several parameters, such as filtering
and refinement methods, that can be chosen to opti-
mize execution for a wide range of queries.

We propose a query planning algorithm that auto-
matically selects these parameters for each query by
estimating cost over pre-processed segments of video.
We implement our approach in the MIRIS video query
processor, and evaluate it on 9 distinct object track
queries over 5 diverse datasets. We find that, at the
same accuracy, MIRIS accelerates query execution by
9x on average over the overlap tracking-by-detection
method [4] used in existing video database systems
such as Blazelt [12] and Rekall [9]. The MIRIS source
code is available at https://github.com/favyen/miris.

2 RELATED WORK

Several systems have recently been proposed for processing
queries over large volumes of video data. NoScope [13] ap-
plies a cascaded detection approach to quickly identify video
frames containing instances of a specific object type, e.g.,
frames containing a car. It first applies weak classifiers in-
cluding image differencing and shallow convolutional neural
networks (CNNs) on each frame, and only applies expensive
but high-accuracy deep CNNs on frames where the weak
classifiers have low confidence. Blazelt [12] and SVQ [21] ex-
tend the use of shallow CNNs for a variety of other per-frame
predicates by combining specialized CNN training with ap-
proximate query processing techniques. For instance, these
systems may process a query seeking the average number
of cars that appear in video frames by training a lightweight
CNN to output a car count on each frame.

However, while existing work on video query optimiza-
tion support queries involving aggregation over entire videos,
they focus on predicates that can be evaluated over individual
frames. Although probabilistic predicates [16] extends spe-
cialized classifiers for predicates over sequences of frames,
we will show in our evaluation that this approach is not
effective for most object track queries. Additionally, prior
optimization approaches do not accelerate queries where in-
stances of the object type of interest appear in every frame.

Indeed, this gap has prompted the development of new
video query processors such as Rekall [9] that simply assume
that object detections are available in every video frame in

1909

SIGMOD ’20, June 14-19, 2020, Portland, OR, USA

order to provide query languages that are sufficiently ex-
pressive for practical applications. Although these systems
enable a substantially wider range of applications, they re-
quire executing object detection models over all video data
being queried, which is costly for large video datasets.

Approaches for resource-efficient object detection and
tracking have also been studied outside of the video query
processing context. Several approaches apply correlation fil-
ters to efficiently track individual objects over video given
the object’s position in an initial frame [11, 17]. Deep Feature
Flow [23] proposes speeding up object detection in video by
applying a deep CNN on key frames (e.g., one in ten frames),
and using a lightweight FlowNet [5] CNN to propogate de-
tection outputs across intermediate frames. As we will show
in our evaluation, because these methods are query-agnostic,
they offer a poor tradeoff between speed and accuracy for
processing object track queries.

3 OVERVIEW

In this section, we provide an overview of MIRIS and its
query execution process.

3.1 Queries

MIRIS provides a declarative interface for querying video
data to select object tracks of a certain category (e.g., car,
pedestrian, animal) that satisfy user-defined predicates. An
object track A = (dl.kll, cee dfn") is a sequence of temporally-
ordered object detections that correspond to the same ob-
ject over the segment of video in which the object is vis-
ible in the camera frame. Each object detection dij in the
track specifies a bounding box in the (k;)-th video frame,
dlkl’ = (xl.]j_j , yi’ , wﬁ’ , hi’), where (xl{j_j , yi’) is the center of the
bounding box and (wllj’ , hi’) is its width and height.

A predicate P produces a boolean output given one or more
tracks (A4, . .., Am). Queries that select individual tracks con-
sist of boolean combinations of geometric predicates over
the position and speed of a track. For example, a query that
selects car tracks that rapidly decelerate before a traffic junc-
tion would include a predicate that computes the acceleration
over a track and thresholds the maximum deceleration.

Queries may also select tuples of object tracks satisfy-
ing predicates over multiple temporally overlapping tracks
(joins). The car-passing-cyclist example in the introduction
applies two predicates over both the car and cyclist tracks re-
quiring that the two tracks be traveling in the same direction
and pass within 1 m of each other.

In general, queries in MIRIS may employ arbitrary UDF
predicates over one or more tracks. To ensure applicability to
a wide range of object track queries, our query-driven track-
ing algorithm does not assume knowledge of the predicate

https://github.com/favyen/miris

Research 21: Spatial, Temporal, and Multimedia Data |

formulation — instead, we train a machine learning model to
predict whether a given coarse track satisfies a predicate P
based on its boolean outputs over tracks in a pre-processed
segment of video, and use this and other models to make
decisions in our optimizations during query execution.

3.2 Pre-processing

When MIRIS ingests new video, it first pre-processes the
video to collect known, accurate object tracks that our
query planner will use as training and validation data to
select optimal query-driven tracking parameters. During
pre-processing, we first randomly sample N video segments
(each segment containing multiple frames) of duration T
uniformly over the video dataset. In each sampled segment,
we execute an object detection model (YOLOv3 [18]) and
object tracking algorithm (the IOU algorithm [4]) at the full
framerate to compute object tracks that the system assumes
are correct. We split the sampled video segments so that
half are used as training data and half as validation data. We
denote the set of tracks in the training segment as Siy,in, and
the set in the validation segment as Sy,j.

Larger N and T entails pre-processing more video, but
yield more accurate query planning decisions, which in turn
speeds up query execution by enabling the planner to apply
more aggressive optimizations. In practice, we find that dif-
ferent choices of N, T lead to similar tradeoffs across different
queries and video data; e.g., N = 24, T = 5min is effective
for the queries we consider in Section 7. Nevertheless, if
planning produces an execution plan with a cost estimate
that is slower than the user desires, MIRIS can return to the
pre-processing phase and sample additional video segments.

MIRIS targets queries over large datasets with thousands
of hours of video, so pre-processing time is negligible. Addi-
tionally, MIRIS only pre-processes each video dataset once.

When executing queries involving rare events that cannot
be expressed as a conjunction of multiple more common
predicates, there may be zero or only a few instances of tracks
satisfying the query predicate in the pre-processed segment
of video. This limits the optimizations that the planner can
apply. For these queries, we begin query execution at a slower
unoptimized speed, and the user re-executes the planner after
sufficient video has been processed.

3.3 Query Processing

When a user runs a query, MIRIS first plans query execution
by selecting parameters, including the minimum sampling
framerate at which we will execute object tracking and com-
binations of filtering and refinement methods. The objective
during planning is to minimize expected query execution
time under a user-specified accuracy bound (e.g, 99%). We

1910

SIGMOD ’20, June 14-19, 2020, Portland, OR, USA

detail planning in Section 5. Once planning completes, we
execute the selected query plan over the entire video dataset.
We detail query execution in the next section.

4 QUERY-DRIVEN TRACKING

MIRIS integrates query processing and object tracking to
substantially boost query execution speed by varying the
sampling framerate over the video dataset. In segments of
video where we can accurately track objects and evaluate
the query predicate while processing video at a reduced
framerate, we do so. In other video segments, though, we
may process additional video frames at a higher framerate to
resolve uncertainty in object tracking decisions or to ensure
that predicates can be accurately evaluated over the coarse
tracks produced by low-framerate object tracking.

Our query-driven tracking approach operates in four
stages: tracking, filtering, uncertainty resolution, and refine-
ment. We summarize these stages in Figure 2.

Tracking. Initially, we track objects at a minimum sam-
pling framerate selected by the query planner. We develop
a graph neural network (GNN) tracking model that inputs
visual and spatial features describing object detections across
two consecutive frames, and outputs the probability that each
pair of detections are the same object. When the GNN has
low confidence in a matching decision, and cannot decide be-
tween multiple potential matchings of detections, it produces
a group C of candidate nondeterministic tracks corresponding
to all of the matchings between detections in consecutive
frames that the GNN believes are plausible. These are rep-
resented as orange edges in Figure 2. Only a subset of the
nondeterministic tracks are correct. High-confidence tracks
that do not involve any uncertain matching decisions form
their own groups C (e.g., C; in the figure).

The remaining stages process tracks group-by-group.

Filtering prunes candidate tracks in a group C that we are
confident will not satisfy the query predicate P. It outputs a
set filter(C) containing only tracks in C that may satisfy P.
If filter(C) is empty, we can immediately stop processing C
and return to tracking, since we are confident that none of
the tracks in C will appear in the query outputs.

Uncertainty resolution addresses the remaining nonde-
terministic tracks in filter(C). It resolves uncertain matching
decisions by recursively processing additional video frames
around each such decision to determine which of the non-
deterministic matchings are correct. This procedure yields
a subset resolve(C) C filter(C) of deterministic tracks con-
sisting of each track in filter(C) that we find corresponds
to correct matching decisions.

Refinement. Finally, we must evaluate whether each
track in resolve(C) satisfies P. However, since detections in

Research 21: Spatial, Temporal, and Multimedia Data | SIGMOD ’20, June 14-19, 2020, Portland, OR, USA

| Tracking C. Filtering Uncertainty Resolution

: G . e c, ” 0-0-0-0-0

/

B e I z o-0-0-0-0 o0 0000

! @ | NND(A,)=12

* ‘ | | RNNGA)=07 (Keep) 1 3
Refinement

L -0-0-0 -l -l
NND(A,)=48 (Prune) ,/ l

ly @ @ g.; RNN(A,)=0.1 Uyl oy Iy iy Uy

Terminal

Vertices Association Graph

Figure 2: Our four-stage query-driven tracking approach. Orange dashed edges result from uncertain matching
decisions, and yield multiple nondeterministic tracks, which are resolved during uncertainty resolution. Refine-
ment identifies segments of tracks (red edges) that require additional detections for accurate predicate evaluation,
and processes intermediate video frames in those segments.

Table 1: Summary of the notation in our approach.

f A video sampling frequency
I The k-th video frame
df An object detection in frame Iy
pl{i ; Likelihood that dl’F and dj].ﬁf are the same object
Strains Sval Tracks computed in the pre-processed segments
P(S) Subset of tracks in S that satisfy a predicate P
C A group of nondeterministic tracks
filter(C) Tracks in C retained through filtering (x, y, w, h) (x, y, w, h)
resolve(C) Subset of deterministic tracks in filter(C) <m|
Or Uncertainty threshold at sampling frequency f . y, v, h) (eee00 ©0000) Y, w, h)
) AL 90000) (X’C:Iy’ w.h) | "f
Figure 3: We match detections between two consecu-
tive video frames sampled at low framerate by solv-
these tracks may be seconds apart, P may not evaluate cor- ing a bipartite matching problem between detections
rectly over the coarse tracks. Thus, before evaluating P, we across the frames through the CNN and GNN model.

refine the tracks by processing additional video frames along
the track that we determine are needed to evaluate the predi-
cate accurately, and extending candidate tracks in resolve(C)

4.1 Tracking

with detections computed in these additional frames. After Accurate object tracking depends on robustly matching ob-
refinement, we evaluate P over the refined tracks and output ject detections that pertain to the same object instance be-
each track where P is true. tween consecutive video frames. This is generally formu-

We summarize the notation that we use in this section lated as a bipartite matching problem, with object detections
in Table 1. Below, we first detail the tracking, filtering, un- from the first frame on one side of the bipartite graph, and
certainty resolution, and refinement stages for object track detections from the second frame on the other side. Sup-
queries that select individual tracks satisfying a predicate P. pose that we have applied an object detector on two video
In these stages, we present several alternative methods for frames Iy and I, where f is a maximum video sampling
filtering and refining tracks; methods that work best for a frequency selected during planning, e.g. if f = 2 then we
particular query are automatically chosen by the optimizer, skip every other frame and thereby halve the original video
described in Section 5. capture framerate. Then, we obtain two sets of detections,

1911

Research 21: Spatial, Temporal, and Multimedia Data |

D* = {dX,...,d%} and D¥*f = (D' .. 457} Bach de-
tection is a bounding box d¥ = (x¥, y*, w¥, h¥) in frame Iy.
We define a directed bipartite graph G = (V, E) where each
vertex on the left side corresponds to a detection df € DF,
and each vertex on the right side corresponds to a detection
dfﬁf € DF*f . We assume that any two detections across the
two frames may correspond to the same object instance; thus,
the bipartite graph is densely connected. Then, the matching
problem is to select the set of edges E* C E that connect
detections of the same object instance between I and I¥*f,
Note that it is possible that some detections in either frame
may not match with any detection in the other frame, since
objects may leave or enter the camera’s field of view. Thus,
we include terminal vertices d(’)C and d(]; *f on either side of the

bipartite graph. A detection df that left the camera frame
should be matched to d{; +f ,and a detection djl.ﬁf that entered

the camera frame should be matched to d(])c .

Unsupervised tracking-by-detection methods such as
IOU [4] and SORT [3] select edges in G based on bound-
ing box overlap — intuitively, pairs of detections (dl(< , djl.ﬁf)
with high overlap more likely correspond to the same object
than pairs with little or no overlap. However, these methods
fail when tracking at reduced framerates (high f), since de-
tections of the same object seconds apart may not overlap at

all.

4.1.1 Basic GNN Model. Thus, we instead solve the match-
ing problem by applying a machine learning model trained to
associate detections of the same object. Specifically, we use
a hybrid model consisting of a convolutional neural network
(CNN) and a graph neural network (GNN) [6]. We show the
model architecture in Figure 3. For each object detection dl{‘,
the CNN inputs the region of Iy corresponding to the detec-
tion bounding box, and computes a vector of visual features
fl.k. The GNN operates on G, and at each vertex dlIF , inputs
both the visual features fik and a 4D spatial feature vector
(xf , yf s wl{‘ s hf.c). The GNN reasons about both visual and spa-
tial features through a series of graph convolutional layers,
and outputs a probability pf.“, ; that each edge (df, d]].Hf) in
the graph is a correct match. The outputs include the proba-
bility pf.i o that df left the camera frame, and the probability

p(’i ; that dJI.CJrf is a new object track. We train the GNN over
pre-processed segments of video where we have computed
object tracks accurately by examining every video frame;
the GNN model is trained just once per object category.

4.1.2 Integrating object tracking and query processing. Were
we to apply this model at the full video framerate (f = 1), we
would compute object tracks from the edgewise probabilities
through the Hungarian assignment method, which, given a
cost at each edge (1 - p;" ;). computes a bipartite matching

1912

SIGMOD ’20, June 14-19, 2020, Portland, OR, USA

5700

[} Intermediate Frame: |/,

MMP(v) = 0.28
Suppose Q,, = 0.7
Q,,MMP(v) =0.20 < 0.25

Figure 4: When matching the car on the left with ver-
tices in 5712, the GNN assigns high probabilities to two
edges: one indicates that the car exited the camera
frame, and one connects to the correct car. We resolve
the uncertainty by examining the intermediate frame.

that minimizes total cost. (The terminal vertices dé‘ and dg +f

must be specially handled to compute accurate assignments.)
However, when applying the model at reduced framerates,
this method yields occasional tracking errors where detec-
tions of distinct objects are incorrectly matched because the
model has low confidence over several plausible matchings.

Instead, when the output probabilities indicate that the
model has low confidence, we can examine an intermediate
video frame Iif/, halfway between I and I s to resolve
the uncertain matching decisions — the model should have
higher confidence when matching video frames at higher
framerates, and thereby yield greater accuracy. We define the
maximum matching probability MMP(v) of a vertex v in the
bipartite graph G as the maximum probability over edges inci-
dent to v; for example, if v = dlk, then MMP(dlk) = max; pf’j.
Given a framerate-specific probability threshold 0 < Qf < 1,
we define the matching output graph between Iy and Ii, s as
a subgraph G C G containing all of the vertices in G, but only
including an edge (dlk, djl.”f) ifpf.ij > QfMMP(dg‘). Thus, we
include in G not only the edges with highest probabilities
computed through the GNN, but also any edge with an out-
put probability that is within a factor Qf to these highest
probabilities. We say that an edge (u, v) in the matching out-
put graph G is nondeterministic if u has multiple outgoing
edges or v has multiple incoming edges. These cases indicate
that there is at least one other detection that matches to u
or v with probability close to the highest confidence match-
ing; thus, nondeterministic edges correspond to uncertain
matching decisions, where multiple matchings are plausible.

We show an example uncertain matching decision and
corresponding GNN outputs in Figure 4. The GNN initially

Research 21: Spatial, Temporal, and Multimedia Data |

assigns high probabilities to two edges, but the uncertainty
is resolved after processing an intermediate video frame.
To keep track of candidate tracks and uncertain matchings,
we build an association graph H by concatenating matching
output graphs across a series of frames Iy, Ir, I, Each
vertex in H is a detection dlk or a terminal vertex d(])‘, and an

edge connects (d~, d]].ﬁf) if the edge appears in the matching
output graph for (I, Iy, r). We show an example association
graph in Figure 2. When we process additional video frames
during object tracking, H grows to the bottom.

Candidate tracks are represented as paths in H that be-
gin and end at terminal vertices. If a candidate includes any
nondeterministic edge, we say that the candidate is a non-
deterministic track, since we can only know whether the
track is correct by processing intermediate video frames.
Similarly, a deterministic track is a path that contains no
nondeterministic edges.

The filtering, uncertainty resolution, and refinement
stages process groups of candidate tracks that share uncer-
tain matching decisions. These groups are connected compo-
nents in H. After applying object tracking through a video
frame I, we identify each connected component C in H that
contains no vertex corresponding with I, i.e., C contains
only candidate tracks that terminate on or before I;_ £ Thus,
tracking over further video frames will not modify C. We
remove C from H and pass it to the next three stages for
further processing,.

4.2 Filtering

Filtering operates on a connected component C of the asso-
ciation graph H produced by tracking. Pruning candidate
tracks in C that we are confident will not satisfy P boosts
query execution speed by reducing the number of additional
video frames that must be processed during uncertainty res-
olution and refinement.

In our approach, we assume that the predicate formulation
is unknown; however, filtering is challenging even when the
formulation of P is known. Consider the example of filtering
the red track in Figure 5 for a query that selects tracks that
start in the left, blue region and end in the right, orange
region. Given only the regions, we cannot determine with
confidence whether the red track satisfies P. However, when
we consider tracks from the pre-processed segment that we
know satisfy P, it appears likely that the red track does not
satisfy P, since it is dissimilar from the known tracks.

Thus, we develop two methods, a Nearest Neighbor Dis-
tance method and a Recurrent Neural Network (RNN), that
adapt existing techniques for our filtering task. Both methods
use tracks from pre-processing known to satisfy P to predict
whether a candidate track during query execution satisfies P.
We denote the pre-processed tracks as Siyain, and the subset

1913

SIGMOD ’20, June 14-19, 2020, Portland, OR, USA

—
=

Figure 5: Illustration of the difficulty of filtering. A
query selects tracks that start in the left, blue region
and end in the right, orange region. Top: we cannot
determine whether to prune the red track. Bottom:
by comparing it to tracks seen during pre-processing
(grey), we can prune with greater confidence.

that satisfy P as P(Syain) C Strain- Nearest Neighbor Distance
is an unsupervised method that leverages a distance function
between tracks and is effective when there are few tracks in
P(Strain)- The RNN filter applies a recurrent neural network
for the prediction task, and provides improved prediction
accuracy over a wider range of predicates when many tracks
are available for training. We use a lightweight RNN model
that inputs a small set of spatial features, and so we find that
it is effective when trained on as few as 40 positive example
tracks and converges within three minutes of training.
Both filters output a real number prediction indicating the
filter’s confidence that a track satisfies P. Our planner will se-
lect a combination of filtering methods {Fi, ..., F,} to apply
on tracks in each connected component C, and correspond-
ing pruning thresholds {Ti, ..., T,}. The optimal parame-
ters are query-dependent, so the planner chooses the best
methods and thresholds for each query. Then, during query
execution, we prune a candidate track A if the prediction of
any filtering method falls below the corresponding thresh-
old, i.e,, Fi(A) < T;. (Planning may also select zero filters,
in which case no candidates are pruned.) Filtering outputs
a set of candidates filter(C) containing each track A such
that (F1(A) > T1) A ... A (Fu(A) > Ty). If filter(C) is empty,
we stop processing C and return to tracking. Otherwise, we
pass filter(C) to uncertainty resolution and refinement.

4.2.1 Nearest Neighbor Distance Filter. Intuitively, tracks
that satisfy P should be more similar to each other than tracks
that don’t satisfy P. The Nearest Neighbor Distance (NND)
filter builds on this intuition by leveraging a path distance
function, i.e., a distance that can be computed between two
tracks. Let D be the chosen distance function.

Research 21: Spatial, Temporal, and Multimedia Data |

We use P(Sirain), the set of tracks computed in training
segments satisfying P, as example tracks that satisfy the
predicate. Then, NND predicts whether a coarse track A
produced during query execution satisfies P based on the
distance from A to its nearest neighbor in P(St;4i,). Formally,
NND(A) = min D(A, B). Thus, we expect that NND(A)

BeP(Sirain

is lower for tracks that satisfy P and higher for tracks that
do not satisfy P. We use -NND(A) as the filter prediction.

We implement the track distance function D with an ap-
proximation for the discrete Frechet distance [7] suitable
for comparing a coarse track A = (a, ..., a,) with a fine-
grained track B = (by, .. ., b,). We first find the closest detec-
tion by, to a1, and compute the Euclidean distance d; from a;
to b;,. Then, for a,, we find the closest detection b;, such that
ip > i1, and compute the distance d;. We compute distances
for the remaining detections in A similarly, and compute
D(A, B) as the average of dy, . . ., d,. This distance function
accounts for the direction of the track (the distance between
a track and its reversal will be high), is efficient to compute,
and does not make assumptions about the position of the
coarse track A between the sampled detections.

4.2.2 RNN Filter. The RNN filter applies machine learning
to remain effective across a wider range of predicate types.
Rather than make assumptions about the predicate, as we
did in the NND filter for shape-based predicates, we train a
lightweight recurrent neural network (RNN) to determine
whether a track satisfies the predicate given the bounding
boxes associated with detections along the track.

We use an RNN model consisting of an LSTM cell with 32
hidden state nodes. The RNN inputs a sequence of features
from a coarse track: for each detection in the track, it inputs
the 2D position, width, and height of the bounding box. We
pass the last output of the RNN through an additional fully
connected layer and sigmoid activation, and train the RNN
with cross entropy loss, where tracks that do not satisfy P
are labeled 0 while tracks that satisfy P are labeled 1.

We use Strain as training data for the RNN. Tracks B € Srain
are accurate and fine-grained since they were computed dur-
ing pre-processing by tracking objects at the full video fram-
erate. During query execution, though, filtering will evaluate
coarse tracks where detections are f frames apart. Thus, to
effectively train the RNN on tracks similar to those we will
see during execution, we define a function coarsify(B) that
produces from B a coarse track by randomly pruning detec-
tions from B. Specifically, given a track B = (djkll, cees djl.cn"),
we select a random integer r € [0, f), and produce a subse-
quence track B’ containing each detection djl.i_" in B only if k;
mod r = 0. Then, for each B € Siiy, we derive a training
example where the RNN input is coarsify(B) and the label is
P(B), which may not equal P(coarsify(B)).

1914

SIGMOD ’20, June 14-19, 2020, Portland, OR, USA

During query execution, the RNN filter prediction is the
probability output by the RNN given a candidate track A.

4.3 Uncertainty Resolution

Rather than perform uncertainty resolution after filtering, a
naive approach is to process the intermediate video frame
Ir+f/2 immediately after observing a matching output graph
between I; and Ix,s with nondeterministic edges. Process-
ing I r/2 may allow us to eliminate nondeterministic edges
since the GNN should be more robust when matching detec-
tions between video frames that are only f/2 frames apart.
However, oftentimes, uncertain matching decisions have no
impact on the query outputs. For example, if a query seeks
cars that rapidly decelerate (hard braking), then we do not
need to address uncertainty in a group of nondeterministic
tracks that all go through a traffic junction without slowing.
Thus, processing additional video frames each time an un-
certain matching decision is encountered wastes resources,
especially for selective queries.

Instead, we lazily resolve uncertainty: we process a group
C of candidate tracks sharing uncertain matching decisions
only after each track in C has terminated, and only after we
have pruned tracks that we are confident do not satisfy the
predicate during filtering. Then, we only apply uncertainty
resolution on groups C where filter(C) is non-empty.

Uncertainty resolution processes C by deriving from
filter(C) a set of deterministic tracks resolve(C) that corre-
spond to correct matching decisions. We resolve all uncertain
matching decisions that impact at least one nondeterministic
track in filter(C) by processing additional video around the
uncertain decision at higher framerates.

Uncertainty resolution considers each vertex d ll that falls
along some track in filter(C). If df has multiple incoming
edges, we address the uncertainty by applying the object
detection model on I;_r/;, and associating detections using
the CNN+GNN model between (I;_f,I;_r/2) and between
(Ii=f /2, I1). We then update C to reflect the matching graphs
output by the model. First, we eliminate edges in C that
connect detections between I;_¢ and I;. We then insert into
C any edges from the bipartite matching graphs that are
incident on a detection df_f or df in C. We perform a similar
process for vertices df with multiple outgoing edges.

Recall that nondeterministic edges arose at a vertex v be-
cause the probability along multiple edges incident on v
exceeded Qr - MMP(v) for Qr < 1. At the doubled framerate
processed above, where sampled video frames are only f/2
frames apart, we may set Qr/, = 1 during planning so that
all edges are guaranteed to be deterministic. But, if Qr/, < 1,
then we may need to recursively process additional video
frames at even higher framerates since the matching model
may have low confidence (according to the parameter Qr ;)

Research 21: Spatial, Temporal, and Multimedia Data |

7, o
-4

Figure 6: Prefix-Suffix refinement performs binary
search to identify the first and last detections pertain-
ing to a track. Here, we show the prefix search process.

®

me
é.@.

-

oI l=Il— -
©

when matching (I;_¢, I;_f/2) or (I /2, I). This recursive pro-
cedure is guaranteed to terminate since Q; = 1, as we cannot
sample frames faster than the video capture rate.

Once the procedure completes, since there are no nonde-
terministic edges remaining, C is transformed into a set of
connected components, where each component is a determin-
istic track. We compute resolve(C) by re-applying filtering
methods over these tracks.

4.4 Refinement

Refinement collects detections at a finer temporal granular-
ity along tracks in resolve(C) until we are confident that P
will evaluate correctly over the refined tracks. In general,
there are two factors that may cause P to evaluate incor-
rectly over a coarse track. First, P may depend on missing
portions of the coarse track before its first detection and
after its last detection. In this situation, we must examine
video frames preceding and succeeding the coarse track to
extend the track in both directions. Second, when evaluating
a predicate on a coarse track, we perform linear interpolation
between successive detections along the track. If the actual
track deviates substantially from the interpolated detections,
we must examine additional video frames in between the
sampled detections to mitigate the interpolation error.

Thus, we develop refinement methods to target each of
these situations. Given a coarse track, these methods select
additional video frames for processing. As with filtering, our
planner will select an optimal combination of refinement
methods for a particular query. Then, on each selected frame
I, we run the object detector to obtain detections D¥, and
then use the GNN tracking model to associate new detections
with coarse tracks in resolve(C). Finally, we evaluate P over
each of the refined tracks. If P evaluates true, we include the
track in the query outputs.

4.4.1 Prefix-Suffix. This method targets the first situation
discussed above, where we must extend a coarse track with
additional prefix and suffix detections. We identify the first

1915

SIGMOD ’20, June 14-19, 2020, Portland, OR, USA

and last detections associated with the track using a binary
search procedure, which we illustrate in Figure 6.
Prefix-Suffix refinement uses a single parameter, a mini-
mum sampling frequency fmin, selected during planning. fiin
constrains the level at which we stop the binary search. Dur-
ing evaluation, we only consider frame [} if k mod fi, = 0.

4.4.2 Acceleration. This method targets the second situa-
tion, where intermediate detections derived through linear
interpolation have high error. Intuitively, linear interpolation
likely yields high error along segments of the track where the
object has high acceleration. Thus, for each triplet of consec-
utive detections (d;_1, d;, di+1), we compute the acceleration
accel(i) = (dj+1—di)—(d; —d;i—1). We refine high-acceleration
segments of the track — if accel(i) exceeds a threshold Tecel,
we examine additional video frames to capture additional de-
tections between d;_; and d;, and between d; and d;,, until
the maximum acceleration between any pair of consecutive
detections along the track is less than Tyccel.

4.4.3 RNN Methods. As in filtering, we develop RNN-based
refinement methods corresponding to the Prefix-Suffix and
Acceleration methods. When we have enough tracks in the
pre-processed segments for training the RNNs, and when
there are consistent patterns in when refinement is needed,
these methods can reduce the overall refinement cost by
selecting video frames in a more targeted manner.

RNN-Prefix-Suffix trains an RNN to predict whether a
coarse track requires additional prefix and suffix detections.
We provide the RNN with the same inputs as in Section 4.2.2,
but train it to output two probabilities, one for the prefix
and one for the suffix. If these predictions are lower than a
threshold, we do not explore the prefix or suffix.

RNN-Interp-Error trains an RNN to estimate the maxi-
mum error between linearly interpolated detections and the
correct positions on each segment of the coarse track. Unlike
our other RNN models, here we use an RNN that outputs an
error prediction on each step. We refine by exploring addi-
tional intermediate video frames along each segment where
the RNN error prediction exceeds a threshold.

5 PLANNING

Given a query, our query planner selects the minimal sam-
pling framerate at which we initially execute object tracking,
along with a combination of filtering methods, the Qr pa-
rameters that control when we consider a matching output
graph to contain uncertainty, and a combination of refine-
ment methods. The planning objective is to select parameters
that minimize the number of video frames over which we
must apply the object detector while satisfying user-specified
accuracy guarantees. Specifically, users provide an accuracy
bound « (e.g., @ = 99%) requiring that the accuracy of fast

Research 21: Spatial, Temporal, and Multimedia Data |

query-driven tracking be within a percent of the accuracy
of tracking at full-framerate.

Our planner considers exponentially increasing minimal
sampling framerates, and greedily selects filtering, uncer-
tainty resolution, and refinement parameters for each fram-
erate. Then, we execute the query using the sampling fram-
erate and corresponding parameters that yield the highest
execution speed while providing accuracy above a. Through-
out our planner, we use the training and validation segment
tracks Sirain and Sy, computed during pre-processing to eval-
uate the performance of different parameter choices.

Below, we first introduce our approach to select filter-
ing, uncertainty resolution, and refinement parameters for
a particular sampling framerate. We then detail the over-
all planning process that considers and evaluates plans at
exponentially increasing framerates.

5.1 Filtering

Planning for filtering involves selecting a set of filter methods
{Fy,..., F,}, along with pruning thresholds for each method
{T1, ..., Ty}, for a given sampling frequency f. During query
execution, we prune a track A if its prediction under any of
the selected methods falls below the corresponding threshold,
i.e, F;(A) < T;. We may also select zero methods, in which
case we perform no candidate pruning.

We evaluate selections of methods and thresholds based
on their precision and recall over the validation tracks Sy.
Let coarsify(Sy,) be a set derived from Sy, by randomly
coarsifying each track (defined in Section 4.2.2). Then, for a
particular combination of methods {Fy, ..., F,}, let Sgjter =
{B | B € coarsify(Sya), F1(B) > Ty A...AF,(B) > T, } be the
subset of coarsified validation tracks that pass filtering. We
define filtering precision as lsﬁ““—:lrsiall and recall as W

The search objective is to find the methods and thresholds
that yield highest filtering precision with recall at least .
For a given set of methods {Fi, . . ., F, }, we select thresholds
using a simple brute force algorithm. For each method, we
select m = 100 candidate thresholds that evenly divide the
method’s predictions for tracks in coarsify(Sy,). We then
enumerate each of the m” threshold combinations, and select
the combination with highest precision and recall at least
a. We repeat the threshold search for each combination of
filter methods. Although the execution time is exponential
in the number of methods, in practice we only implement
two filter methods, and we find that the search completes in
only 4 sec with three methods and 1,000 tracks since filter
predictions can be pre-computed and cached.

5.2 Uncertainty Resolution

We now describe how to set the parameters Qr, Qr/2, . . ., Q1
used during uncertainty resolution. At a high level, we set

1916

SIGMOD ’20, June 14-19, 2020, Portland, OR, USA

«® 0.0
® 10— -9 @
Q o \Qd> C

<
MaxQ(e,) = 0.75 MaxQ(e,) = 0.5

MaxQ(A) = min(0.75, 0.5) = 0.5

Figure 7: Uncertainty planning to select the Oy param-
eter at some sampling frequency. Here, we compute
MaxQ for one track. Blue, bold edges show the path of
the track through the probability graph, while orange,
dashed edges represent cases where the GNN assigns
a higher probability to an incorrect edge.

these thresholds sufficiently small so that a percent of tracks
in Sy, known to satisfy P are tracked correctly.

We first execute GNN matching over the pre-processed
segments of video to derive an association graph H at each
sampling frequency f. Rather than pruning low-confidence
edges in H as we would during query execution, we assume
Qf = 1 during tracking so that no edges are pruned; addi-
tionally, we annotate each edge in H with the GNN output
probability. Then, for each track B € P(Sy,1) known to satisfy
the predicate, we follow the edges corresponding to the track

Pk
for each edge e = (df‘, df+f) along B. MaxQ(e) is the largest
setting of Qr that would correctly retain the edge during
the tracking process; for most edges, MaxQ(e) = 1 since the
GNN model usually outputs the maximum probability along
correct edges. We define MaxQ(B) to be the minimum over
the MaxQ(e) values of edges along the track. We show an
example of computing MaxQ(B) in Figure 7.

Finally, we set Qr to the a-th percentile MaxQ(B) value
over all of the tracks in P(Sya1). This ensures that a percent of
object instances that appear in the query outputs are tracked
correctly during query execution.

through H, and compute the fraction MaxQ(e) =

5.3 Refinement

During planning we select up to two refinement methods,
one for capturing prefix and suffix detections (Prefix-Suffix
or RNN-Prefix-Suffix) and one for capturing intermediate
detections (Acceleration or RNN-Interp-Error). Each method
uses one or more thresholds to decide when to terminate
refinement.

We compute thresholds for one or two refinement methods
using an algorithm similar to Section 5.1. After determining
thresholds for each combination of refinement methods, we

Research 21: Spatial, Temporal, and Multimedia Data |

select the combination that yields query accuracy at least
a while requiring processing of the fewest additional video
frames. Filtering and uncertainty threshold parameters are
decided prior to refinement planning. Thus, we compute the
number of additional video frames that a combination of
refinement methods examines by applying filtering, uncer-
tainty resolution, and refinement over the validation video.

5.4 Planning Algorithm

Our overall planning algorithm initially sets the maximum
sampling frequency f = 1, and iteratively doubles f. For
each value of f, we select filtering, uncertainty resolution,
and refinement parameters using the approaches discussed
above. We pick the setting of f and corresponding execution
plan that requires sampling the fewest video frames during
tracking, uncertainty resolution, and refinement over the val-
idation segments. For repeated queries over the same dataset,
we account for frames over which we already computed ob-
ject detections that can be reused.

To minimize planning time, we never consider frequencies
f that exceed half the length of the shortest track in Syain U
Sval — such sampling frequencies always yield ineffective
query plans, since tracking would either miss tracks entirely
or only capture one detection for some tracks.

Planning is fast because we use cached object detection
outputs over the pre-processed video segments to evaluate
all enumerated execution plans.

6 JOIN QUERIES

Above, we have detailed our approach for queries that se-
lect individual tracks. Join queries that select multiple tracks
may include both predicates Py, ..., P, that evaluate indi-
vidual tracks and a join predicate Pjoin evaluating a tuple
of tracks Aj,...,A,. When processing such queries, we
begin by independently computing the association graph
through tracking for each output column A; in the query.
This yields sequences of groups of nondeterministic tracks,
Sl = <c1,1, C1,29 ey >, Sz = <C2’1, .. .>, We first apply fil-
tering independently in each sequence S; for the individual
track predicates P;. Then, we select tuples (Cy i, ... Co 4y, - - -)
of temporally overlapping groups of tracks among the se-
quences, with C;;, € S;, and apply filtering for Pjoin on
each tuple; here, we use simple extensions of our NND and
RNN filters for multi-track predicates. Finally, we apply un-
certainty resolution and refinement as before on individual
components Cj ;; that appear in at least one tuple.

7 EVALUATION
7.1 Dataset

We built a diverse dataset of video data, object track queries,
and hand-labeled query outputs to evaluate MIRIS. Our

1917

SIGMOD ’20, June 14-19, 2020, Portland, OR, USA

dataset includes five sources of video data, which we denote
as BDD, UAV, Tokyo, Warsaw, and Resort. These sources are:

e BDD — the Berkeley DeepDrive dataset [22], consist-
ing of 1,100 hours of video from dashboard cameras
on motor vehicles.

e UAV — two hours of video we captured from a UAV
hovering above a traffic junction.

o Tokyo, Warsaw — 60 hours of video from fixed cameras
at traffic junctions in Tokyo and Warsaw, respectively.

e Resort — 60 hours of video from a fixed camera pointed
towards a pedestrian walkway outside of a resort hotel.

We manually labeled bounding boxes around objects in
one to four hundred video frames in each data source (ex-
cept BDD, since BDD includes labels), and trained several
YOLOV3 [18] object detection models to input video at vari-
able resolutions and output detections. We detect cars in UAV,
Tokyo, and Warsaw, and pedestrians in BDD and Resort, at
30% confidence threshold, which we empirically find yields
the best overall query accuracy.

We formulate five distinct queries over object tracks that
each pertain to a subset of the video sources:

Turning movement count (Q1, Q2, Q3). In the UAV (Q1), Tokyo
(Q2), and Warsaw (Q3) videos, we identify cars that traverse
the traffic junction along a particular turning direction. These
queries apply predicates of the same form, requiring the first
detection in a track to be contained in a region of the camera
frame corresponding to a particular source road, and the last
detection to fall on a particular destination road.

Pedestrians crossing in front (Q4). Q4 identifies tracks of pedes-
trians in BDD who cross directly in front of the vehicle on
which the camera is mounted, from one side of the vehicle to
the other (left to right or right to left). This query may be exe-
cuted by a data analyst investigating anomalous automonous
vehicle behavior in certain situations.

Car stopped in crosswalk (Q5). In the Tokyo video, we observe
several instances where a vehicle stops in the middle of a
crosswalk, either because the traffic light just turned red or
to pick-up or drop-off passengers. Q5 selects car tracks that
stop for fifteen or more seconds on a crosswalk.

Joggers (Q6). Q6 identifies joggers in the Resort video by se-
lecting tracks with average speed exceeding a threshold. We
empirically set this threshold to 15 pixel/sec by comparing
tracks of two joggers against tracks of walking pedestrians.
Variations of this query could be useful to distinguish the
frequencies of different activities in various urban locations.

Hard braking (Q7). A traffic planner interested in improving
traffic safety may wish to identify instances of hard braking
around a junction. Q7 selects car tracks from Warsaw that
decelerate from 8 m/s to less than 1 m/s within three seconds.

Research 21: Spatial, Temporal, and Multimedia Data |

Turn on red (Q8). Traffic planners may also be interested in
identifying instances where cars turn on a red light for safety
analysis. Q8 selects car tracks from the Warsaw dataset that
turn right on red. The traffic light is not visible in the video,
so we determine the light state based on cars that go straight
through the junction — we use a join query that selects
triplets of car tracks (Atwm, Apred> Asucc) such that A, turns
right from west to south, while Apreq and Agyec go straight
through the junction from north to south, and Ap,cq precedes
Ajurn While Agyee succeeds Apyrn.

Straight on red (Q9). Similar to Q8, Q9 selects cars from Tokyo
that go straight through the junction on a red light at least
four seconds before and after the light turned green. In this
dataset, the traffic light is visible, so we simply select tuples
(Aturns, Ared), Where Ay is a car that travels south-to-north
through the junction, and Ay.q is the track of a red traffic
light that controls traffic along the north-south direction.

7.2 Baselines

We compare MIRIS against four baselines: Overlap, PP, KCF,
and FlowNet. Overlap implements a standard multi-object
tracking algorithm, IOU, that computes object tracks by as-
sociating object detections between frames based on over-
lap [3, 4]. This approach is used in video query systems such
as Blazelt [12] and Rekall [9], and achieves state-of-the-art
accuracy when object track annotations are not available [4].

PP implements the Deep Neural Network (DNN) classi-
fier in probabilistic predicates [16]. We train the DNN to
classify whether 5-second segments of video contain any ob-
ject instances that satisfy the query predicate. During query
execution, we skip segments of video that the DNN has
high confidence contain no relevant object instances. The
PP baseline is also similar to specialized NNs in Blazelt [12]
and approximate filters in SVQ [21].

KCF applies kernelized correlation filters [11], an unsuper-
vised tracking algorithm that tracks an object across video
given its position in an initial frame. KCF is extremely ef-
ficient as it does not require object detections, but exhibits
lower accuracy than tracking-by-detection approaches like
Overlap. In our implementation, we apply the object detector
on key frames at a variable frequency (e.g., once per second),
and use KCF to track objects through intermediate frames.

FlowNets [5] are convolutional neural networks trained
to estimate optical flow (displacement of objects between
frames) that have been successfully applied in fast object de-
tection approaches such as Deep Feature Flow [23] to update
detection bounding boxes across sequences of frames. This
baseline applies a FlowNet to associate detections between
two consecutive frames based on the optical flow output.

1918

SIGMOD ’20, June 14-19, 2020, Portland, OR, USA

7.3 Metrics

For queries Q1-Q8, we hand-label a 50-minute segment of
video with the expected query outputs. To measure track-
ing accuracy, we compare the tracks produced by an object
tracking approach with the hand-labeled tracks in terms of
precision and recall. Let match be the number of correct
tracks, fp be the number of output tracks that do not appear
in the hand-labeled set (false positives), and fn be the num-
ber of hand-labeled tracks that were missed. Then, precision
and recall are defined as:

match

recision = ———
P match + fp

We measure accuracy in terms of a single F1 score com-
puted as the harmonic mean of precision and recall. We
match output tracks with our hand-labeled tracks based on
counts in each two-minute segment of video: if there are
¢ output tracks in one two-minute segment, and ¢* is our
hand-labeled count for the segment, then the segment con-
tributes min(c, ¢*) matches, max(0, c — ¢*) false positives, and
max(0, ¢* — c) false negatives.

7.4 Results

We first evaluate the approaches in terms of the speed-
accuracy tradeoff that they provide for Q1-Q8 over the 50-
minute video segments where we have hand-labeled query
outputs. We measure speed on an NVIDIA Tesla V100 GPU
in terms of the video-to-processing-time ratio, i.e., the num-
ber of video seconds that each approach processes in one
GPU-second. Here, we focus on expensive GPU operations
since CPU-bound operations in MIRIS and the baselines can
be heavily optimized and parallelized. Additionally, we con-
sider only query execution time and exclude pre-processing
and planning time; our approach targets queries over large
datasets with thousands of hours of video, and phases in
MIRIS prior to query execution would be negligible on such
datasets. We perform a separate experiment in Section 7.6
with Q9 where we consider the end-to-end query process-
ing runtimes, including video decoding, pre-processing, and
planning.

Figure 8 shows results for the four baselines, our GNN
tracking algorithm without filtering, uncertainty resolution,
and refinement (denoted GNN), and our full query-driven
tracking approach (denoted MIRIS). We show curves over
varying sampling framerates: 10 fps, 5 fps, 2.5 fps, 1.25 fps,
0.8 fps, 0.6 fps, 0.4 fps, 0.3 fps, and 0.2 fps. For MIRIS, we also
vary the query-driver tracking parameters corresponding
to different settings of the accuracy bound «. Points higher
and to the right represent better performing algorithms. For
each query, we fix the input video resolution by using the
resolution that yields the highest accuracy for Overlap at 10

Research 21: Spatial, Temporal, and Multimedia Data |

140
g 120 % 0
2100 £ 40
bd b
© 80]
7] ‘w30
g 60 g
=4 <4
< 40 e
=} =]
5 ; 10%
S * >
0
0.5 0.6 0.7 0.8 0.9 1 0.7 075 0.8 085 09 0.9

F1 Score (Q1: UAV - Turn Count) F1 Score (Q2: Tokyo - Turn Count)

10

0
03 04 05 06 07 08 09 1

F1 Score (Q5: Tokyo - Stopped in Crosswalk)

R —
0

0.7 075 0.8 0.85 0.9 0.95
F1 Score (Q6: Resort - Joggers)

80 45
o 70 o 40 \
K K
£ 50 £ 30
I 2 2
0 73
<] o
& 5 15
2 20 \ 2 10
(=] o
() ()
o =l
S >

=% Overlap === KCF FlowNet

Video-to-processing-time ratio

Video-to-processing-time ratio

1

PP

SIGMOD ’20, June 14-19, 2020, Portland, OR, USA

60 25
50 2 50
©
40 E
& 15
(=
30 2
8 10
20 g
g 5
10 8
g
0 0
05 06 07 08 09 1 03 04 05 06 07 08 09 1
F1 Score (Q3: Warsaw - Turn Count) F1 Score (Q4: BDD - Pedestrian Crossing)
40 50
35 e ® \
< 40
30 °
g 35
25 T 30
c
20 2 25
15 g 20
e 15
10 :
. 2 10
5 ==K g s
>
0 0
05 06 07 08 09 1 05 06 07 08 09 1

F1 Score (Q7: Warsaw - Hard Braking) F1 Score (Q8: Warsaw - Turn on Red)

=@ GNN (our method) === MIRIS (our method)

Figure 8: Speed-accuracy curves for MIRIS and the four baseline approaches over Q1-Q8.

fps. We test the following resolutions: 1920 % 1080, 1460 X 820,
960 X 540, 736 X 414, 640 X 360, and 576 X 324.

We highlight the accuracy of tracks computed by Over-
lap at the full video framerate with asterisks. This accuracy,
which compares output tracks against hand-labeled tracks, is
poor for certain queries (especially Q4 and Q5) because Over-
lap makes errors when it encounters intersecting objects and
other challenging scenarios. Since we train our approach on
tracks computed by Overlap in the pre-processed segments,
this accuracy also represents a soft bound on the maximum
accuracy of GNN and MIRIS, along with the other baselines.

Even without query-driven tracking, our GNN low-
framerate tracking approach provides a substantial speedup
over the other baselines on almost every query. Whereas
Overlap, KCF, and FlowNet suffer reduced accuracy as the
sampling framerate is reduced below 5-10 fps, GNN tracking
generally remains accurate at 1-2 fps.

Still, at sampling framerates below 1 fps, GNN tracking
accuracy suffers due to an increasing number of incorrect
matching decisions, and increasingly coarse tracks over
which the query predicates do not correctly evaluate. Thus,
for every query but Q5, MIRIS provides an additional speedup
through query-driven tracking: by pruning tracks that MIRIS
is confident do not satisfy the query, and then applying un-
certainty resolution and refinement on the remaining tracks,
the system is able to further accelerate query execution. The
speedup of MIRIS over GNN is particularly high for selective
queries such as Q6-Q8.

1919

PP performs comparably to Overlap for most queries be-
cause the DNN filter is unable to eliminate a significant
number of video frames. In Q1-Q3, the DNN filter fails be-
cause the object instances selected by the query appear in
virtually every video frame. In Q4-Q7, although relatively
few segments of video contain relevant object instances, the
DNN filter is ineffective because the differences between
relevant frames and irrelevant frames are subtle, and there
is not enough training data for the neural network to learn
these subtle patterns. For instance, in Q6, joggers occupy
a very small portion of a busy pedestrian walkway, and in
order to differentiate frames containing joggers, the DNN
would need to learn to track pedestrian speeds over its se-
quence of input frames and threshold the maximum speed.
PP performs well in Q8 by skipping frames where the density
of cars indicates that the traffic light is green.

KCF and FlowNet generally do not perform well, and on
several queries, they do not appear in the chart because their
highest accuracy is low and far to the left. We find that KCF
frequently fails to accurately track objects due to partial
occlusion, varying object sizes, and lighting changes. The
FlowNet model performs well in some queries (Q1-Q3, Q6),
but even for these queries, it yields a lower speed-accuracy
tradeoff than GNN because it learns to track objects in an
indirect way (through optical flow).

Research 21: Spatial, Temporal, and Multimedia Data |

20
o 18
3 16 1
i
e 14 1
8 12 ~
z 10 /
= 8 v
2 6 — s = e =
g 4 TRt W
gL 2
S 0

05 05 06 065 07 075 08 08 09 09 1
F1 Score (Q2: Tokyo - Turn Count)
Mask R-CNN « « == == =« YOLOV3 = = = = = SSD

Figure 9: Speedup of MIRIS over Overlap on Q2 with
YOLO, Mask R-CNN, and SSD object detectors.

Table 2: End-to-end performance of Overlap, GNN,
and MIRIS on Q9 over 60 hours of video in the Tokyo
dataset. We estimate dollar cost assuming execution
over 72K hours of video.

‘ Method ‘ Pre-proc ‘ Plan ‘ Exec ‘ Cost ‘ F1 ‘
Overlap | 0 min Omin | 2106 min | $129K | 100%
GNN 0 min Omin | 175min | $11K | 67%
MIRIS 58 min 11 min | 220 min | $13K | 100%

7.5 Object Detection Algorithms

Other work on video query systems [12, 23] often employ
Mask R-CNN [10] or SSD [15] instead of YOLO. We show that
MIRIS offers substantial cost savings across different object
detectors by comparing the speedup of MIRIS over Overlap
on Q2 with varying detectors in Figure 9. We use TensorFlow
implementations of Mask R-CNN and SSD [1, 2], and the
Darknet YOLO library [19]. We configure YOLOv3 and Mask
R-CNN to input 960540 images, whereas SSD inputs resized
512 x 512 frames due to limitations in the available network
model. MIRIS consistently provides a 12-14x speedup over
Overlap at the highest achievable accuracy.

7.6 End-to-end Performance

In Section 7.4, we focused on the execution time of GPU-
intensive operations. Here, we evaluate the end-to-end per-
formance of Overlap, GNN, and MIRIS on executing Q9 over
the full 60-hour Tokyo dataset, including pre-processing,
planning, and video decoding. We use a 48-thread machine
with one NVIDIA Tesla V100 GPU. We fix the video reso-
lution at 960 X 540 and, for Overlap, we fix the sampling
framerate at 10 fps. Since hand-labeling query outputs over
the entire dataset is too time-consuming, we use tracks com-
puted by Overlap as “ground truth”. Note that in reality the
methods make mistakes, as shown in Figure 8. However, we
do verify that the 6 tracks identified by Overlap for Q9 are

1920

SIGMOD ’20, June 14-19, 2020, Portland, OR, USA

=~ _
N =

L

M

Figure 10: Example car and red light that satisfy Q9.

correct instances where cars pass the junction on a red light;
we show one example in Figure 10.

We show the results in Table 2. MIRIS executes the query
with maximum sampling frequency f = 16 (0.6 fps), and
we use this parameter for GNN as well. Although GNN re-
duces query execution time 12-fold without requiring pre-
processing or planning, it only achieves an F1 score of 67%.
On the other hand, including pre-processing and planning
time, MIRIS yields 100% accuracy with a 7x speedup. In
MIRIS, RNN training dominates planning time. MIRIS ex-
ecution includes 95 minutes for video decoding, 85 minutes
for object detection, 10 minutes for GNN inference, and 30
minutes for filtering, refinement, and uncertainty resolution
(primarily capturing additional object detections). Training
times for YOLO (24 hr) and the GNN model (4 hr), which are
performed only once per video source, are not included.

We also show the estimated dollar cost to execute Q9
over a hypothetical larger 72K-hour video dataset on AWS.
This dataset size corresponds to video captured from 100
cameras over one month. On large datasets, pre-processing
and planning costs are negligible. In this scenario, MIRIS
achieves a massive 10X cost reduction from $129K to $13K.

8 CONCLUSION

MIRIS accelerates the execution of object track queries by 9x
on average by integrating query processing into the object
tracker. By resolving uncertainty and refining tracks with
finer-grained detections only when needed for a query, MIRIS
reduces the number of video frames that must be processed.
MIRIS broadens the types of queries that can be optimized
by video query processors, which are becoming crucial as
video is captured in ever-increasing volumes.

Research 21: Spatial, Temporal, and Multimedia Data |

REFERENCES

[1] Waleed Abdulla. 2017. Mask R-CNN on Keras and TensorFlow. https:
//github.com/matterport/Mask_RCNN.
Paul Balanca. 2017. Single Shot MultiBox Detector in TensorFlow.
https://github.com/balancap/SSD-Tensorflow.
Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and Ben Upcroft.
2016. Simple Online and Realtime Tracking. In IEEE International
Conference on Image Processing (ICIP). IEEE, 3464-3468.
Erik Bochinski, Tobias Senst, and Thomas Sikora. 2018. Extending
IOU Based Multi-Object Tracking by Visual Information. In IEEE Inter-
national Conference on Advanced Video and Signal Based Surveillance
(AVSS). IEEE, 1-6.
Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner
Hazirbas, Vladimir Golkov, Patrick Van Der Smagt, Daniel Cremers,
and Thomas Brox. 2015. FlowNet: Learning Optical Flow with Con-
volutional Networks. In IEEE International Conference on Computer
Vision (ICCV). 2758-2766.
David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bom-
barell, Timothy Hirzel, Alan Aspuru-Guzik, and Ryan P Adams. 2015.
Convolutional Networks on Graphs for Learning Molecular Finger-
prints. In Advances in Neural Information Processing Systems (NeurIPS).
2224-2232.
Thomas Eiter and Heikki Mannila. 1994. Computing Discrete Fréchet
Distance. Technical Report. TU Wien.
Lex Fridman, Daniel E Brown, Michael Glazer, William Angell, Spencer
Dodd, Benedikt Jenik, Jack Terwilliger, Aleksandr Patsekin, Julia
Kindelsberger, Li Ding, et al. 2019. MIT Advanced Vehicle Technology
Study: Large-Scale Naturalistic Driving Study of Driver Behavior and
Interaction with Automation. IEEE Access 7 (2019), 102021-102038.
Daniel Fu, Will Crichton, James Hong, Xinwei Yao, Haotian Zhang,
Anh Truong, Avanika Narayan, Maneesh Agrawala, Christopher Re,
and Kayvon Fatahalian. 2019. Rekall: Specifying Video Events using
Compositions of Spatiotemporal Labels. Technical Report. Stanford
University.
Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. 2017.
Mask R-CNN. In IEEE International Conference on Computer Vision
(ICCV). 2961-2969.
[11] Jodo F Henriques, Rui Caseiro, Pedro Martins, and Jorge Batista. 2014.
High-Speed Tracking with Kernelized Correlation Filters. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 37, 3 (2014), 583-596.

(2]
(3]

—
=)
—

(10]

1921

SIGMOD ’20, June 14-19, 2020, Portland, OR, USA

[12] Daniel Kang, Peter Bailis, and Matei Zaharia. 2019. Challenges and
Opportunities in DNN-Based Video Analytics: A Demonstration of the
Blazelt Video Query Engine. In Conference on Innovative Data Systems
Research (CIDR).

[13] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei
Zaharia. 2017. NoScope: Optimizing Neural Network Queries over
Video at Scale. In Proceedings of the VLDB Endowment.

[14] Sanjay Krishnan, Adam Dziedzic, and Aaron J Elmore. 2019. DeepLens:

Towards a Visual Data Management System. In Conference on Innova-

tive Data Systems Research (CIDR).

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott

Reed, Cheng-Yang Fu, and Alexander C Berg. 2016. SSD: Single Shot

MultiBox Detector. In European Conference on Computer Vision (ECCV).

Springer, 21-37.

Yao Lu, Aakanksha Chowdhery, Srikanth Kandula, and Surajit Chaud-

huri. 2018. Accelerating Machine Learning Inference with Probabilistic

Predicates. In International Conference on Management of Data (SIG-

MOD). ACM, 1493-1508.

Alan Lukezic, Tomas Vojir, Luka Cehovin Zajc, Jiri Matas, and Matej

Kristan. 2017. Discriminative Correlation Filter with Channel and

Spatial Reliability. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 6309-6318.

[18] Joseph Redmon and Ali Farhadi. 2018. YOLOv3: An Incremental Im-
provement. Technical Report. University of Washington.

[19] Joseph Chet Redmon. 2015. Darknet CNN Library. https://github.com/

pjreddie/darknet.

Mohammad Shokrolah Shirazi and Brendan Tran Morris. 2016. Vision-

Based Turning Movement Monitoring: Count, Speed & Waiting Time

Estimation. IEEE Intelligent Transportation Systems Magazine 8, 1

(2016), 23-34.

Toannis Xarchakos and Nick Koudas. 2019. SVQ: Streaming Video

Queries. In International Conference on Management of Data (SIGMOD).

ACM.

Huazhe Xu, Yang Gao, Fisher Yu, and Trevor Darrell. 2017. End-to-

end Learning of Driving Models from Large-scale Video Datasets. In

IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

2174-2182.

Xizhou Zhu, Yuwen Xiong, Jifeng Dai, Lu Yuan, and Yichen Wei. 2017.

Deep Feature Flow for Video Recognition. In IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR). 2349-2358.

[15]

[16]

[17]

[20]

[21]

[22]

[23]

https://github.com/matterport/Mask_RCNN
https://github.com/matterport/Mask_RCNN
https://github.com/balancap/SSD-Tensorflow
https://github.com/pjreddie/darknet
https://github.com/pjreddie/darknet

	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	3.1 Queries
	3.2 Pre-processing
	3.3 Query Processing

	4 Query-driven Tracking
	4.1 Tracking
	4.2 Filtering
	4.3 Uncertainty Resolution
	4.4 Refinement

	5 Planning
	5.1 Filtering
	5.2 Uncertainty Resolution
	5.3 Refinement
	5.4 Planning Algorithm

	6 Join Queries
	7 Evaluation
	7.1 Dataset
	7.2 Baselines
	7.3 Metrics
	7.4 Results
	7.5 Object Detection Algorithms
	7.6 End-to-end Performance

	8 Conclusion
	References

