
Draft version April 16, 2021
Typeset using LATEX twocolumn style in AASTeX63

Robust Assessment of Clustering Methods for Fast Radio Transient Candidates

Kshitij Aggarwal,1, 2 Sarah Burke-Spolaor,1, 2, 3 Casey J. Law,4 Geoffrey C. Bower,5 Bryan J. Butler,6

Paul B. Demorest,6 T. Joseph W. Lazio,7 Justin Linford,6 Jessica Sydnor,1, 2 and Reshma Anna Thomas1, 2

1West Virginia University, Department of Physics and Astronomy, P. O. Box 6315, Morgantown, WV, USA
2Center for Gravitational Waves and Cosmology, West Virginia University, Chestnut Ridge Research Building, Morgantown, WV, USA

3CIFAR Azrieli Global Scholars program, CIFAR, Toronto, Canada
4Cahill Center for Astronomy and Astrophysics, MC 249-17 California Institute of Technology, Pasadena, CA 91125, USA

5Academia Sinica Institute of Astronomy and Astrophysics, 645 N. A’ohoku Place, Hilo, HI 96720, USA
6National Radio Astronomy Observatory, Socorro, NM, 87801, USA

7Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr, M/S 67-201, Pasadena, CA 91109 USA

(Received January 1, 2018; Revised January 7, 2018; Accepted April 16, 2021)

Submitted to ApJ

ABSTRACT

Fast radio transient search algorithms identify signals of interest by iterating and applying a thresh-

old on a set of matched filters. These filters are defined by properties of the transient such as time and

dispersion. A real transient can trigger hundreds of search trials, each of which has to be post-processed

for visualization and classification tasks. In this paper, we have explored a range of unsupervised clus-

tering algorithms to cluster these redundant candidate detections. We demonstrate this for Realfast,

the commensal fast transient search system at the Very Large Array. We use four features for cluster-

ing: sky position (l, m), time and dispersion measure (DM). We develop a custom performance metric

that makes sure that the candidates are clustered into a small number of pure clusters, i.e, clusters with

either astrophysical or noise candidates. We then use this performance metric to compare eight differ-

ent clustering algorithms. We show that using sky location along with DM/time improves clustering

performance by ∼10% as compared to the traditional DM/time-based clustering. Therefore, positional

information should be used during clustering if it can be made available. We conduct several tests to

compare the performance and generalisability of clustering algorithms to other transient datasets and

propose a strategy that can be used to choose an algorithm. Our performance metric and clustering

strategy can be easily extended to different single-pulse search pipelines and other astronomy and

non-astronomy-based applications.

Keywords: Clustering(1908) — Random Forests(1935) — Radio transient sources(2008) — Radio inter-

ferometry(1346) — Extragalactic radio sources(508) — Radio bursts(1339) — Very Large

Array(1766)

1. INTRODUCTION

One of the significant difficulties when seeking fast-

transient radio signals is the load of candidates that re-

sults from a transient search: it is common for a search

algorithm to return millions to billions of candidates

from a survey, only a few of which end up being gen-

Corresponding author: Kshitij Aggarwal

ka0064@mix.wvu.edu

uine (the rest being thermal noise and radio-frequency

interference—RFI). Even one bright event, whether as-

trophysical or artificial, can generate many hundreds of

separate candidates. This is because search algorithms

iterate over a set of matched filters and identify tran-

sients that exceed the detection threshold. Clustering

algorithms to account for this effect are of dire impor-

tance to any radio transient search pipeline. A rigorous

study of an effective clustering algorithm for fast-radio-

transient searches is the primary purpose of the study

reported here.

ar
X

iv
:2

10
4.

07
04

6v
1 

 [
as

tr
o-

ph
.I

M
] 

 1
4 

A
pr

 2
02

1

http://orcid.org/0000-0002-2059-0525
http://orcid.org/0000-0003-4052-7838
http://orcid.org/0000-0002-4119-9963
http://orcid.org/0000-0003-4056-9982
http://orcid.org/0000-0002-5344-820X
http://orcid.org/0000-0002-6664-965X
http://orcid.org/0000-0002-3873-5497
http://orcid.org/0000-0002-3360-9299
http://orcid.org/0000-0001-8057-0633
mailto: ka0064@mix.wvu.edu


2 Aggarwal et al.

To understand this paper’s context, it is important

to review the main procedural components of a typical

search for fast radio transients. The term “fast” here

specifically refers to transients for which the dispersion

delay, caused by astrophysical plasma, is non-negligible

and must be accounted for to optimize search sensitiv-

ity. The tenuous plasma that fills the space between

stars, around galaxies, between galaxies, and elsewhere

can have a strong influence on radio signals. The most

prominent influence they have is inducing a frequency-

dependent pulse sweep caused by a frequency-dependent

refractive index of cold astrophysical plasma (Lorimer

& Kramer 2004). The magnitude of this dispersive time

delay for a pulse is quantified by the dispersion measure

(DM).

When searching for a radio transient, neither its dis-

persion measure nor width (i.e., duration) are known.

Therefore, one must search over a range of DMs and

widths to carry out a full-sensitivity search. DM val-

ues at which to search are chosen by considering the

expected decline in signal-to-noise (S/N) ratio, due

to pulse broadening, at the adjacent DMs (Cordes &

McLaughlin 2003; Levin 2012). To summarise, a stan-

dard fast-transient-search pipeline dedisperses the data

at various trial DMs, averaging all the frequencies to

obtain a one-dimensional time series, followed by convo-

lution using boxcar filters of various widths. Candidate

pulses are identified by searching for peaks above a pre-

decided threshold, with the S/N of a candidate deter-

mined from an estimate of the signal strength with re-

spect to the standard deviation within the region defined

by the boxcar filter width. Dedispersing at an incorrect

DM, or using a boxcar filter of incorrect width, would

reduce the S/N of the pulse. As previously noted, any

event can lead to multiple candidates being detected by

the search pipeline if the S/N remains above the thresh-

old at the incorrect DM or boxcar width.

This process can lead to a substantial number of re-

dundant candidates caused by a single event. Clustering

is performed on these candidates to automatically com-

bine such events at the end of the search pipeline. Some

algorithms that are currently in common use are friends

of friends (FoF) and DBSCAN (Ester et al. 1996; Deneva

et al. 2009; Barsdell 2012). However, few clustering al-

gorithms have been rigorously tested.

Throughout this work, our primary motivation was to

identify the optimal clustering algorithm for single-pulse

searches, in particular in searches for fast radio bursts

(FRBs). FRBs are bright, millisecond-duration bursts

of energy of extragalactic origin (Lorimer et al. 2007).

Over 150 such sources have been seen so far (Petroff

et al. 2016), and many radio telescopes worldwide (both

single-dish and interferometric) are now or will soon

be outfitted with specialized hardware and software to

carry out FRB searches.

The Realfast system at Very Large Array (VLA) is

one such commensal fast transient search system (Law

et al. 2018). It is currently the only real-time coherent-

imaging interferometric search system, although because

of the importance of precise FRB localization, a number

of similar systems are in operation, commissioning, or

planning phases (Kocz et al. 2019; Bannister et al. 2019;

Michilli et al. 2020; Leung et al. 2021). Realfast forms

thousands of de-dispersed images every second to search

for pulses in the image plane and can localize every FRB

it detects to arcsecond precision (Law et al. 2018).

The prototype Realfast system was used for the first

localization of an FRB (Chatterjee et al. 2017). In its

first year of commensal observation at L (1-2 GHz), S

(2-4 GHz) and C-band (4-8 GHz), Realfast detected

5 FRBs (Aggarwal et al. in prep; Bhandari et al. in

prep; Tendulkar et al. in prep; Law et al. 2020; Ag-

garwal et al. 2020). The Realfast pipeline focuses

on searching for transients at multiple DMs and trial

widths, each of which is then post-processed. A total in-

tensity (Stokes I) image is formed for each trial DM and

width. Point sources in these images with S/N greater

than a pre-set threshold trigger the detection pipeline.

The data corresponding to each candidate are then saved

to disk and is classified using a Deep Learning based

classifier (Agarwal et al. 2020). Visualizations that show

the radio image, spectrogram, spectra, and profile of the

candidate are then generated. These visualizations also

consist of other relevant candidate parameters: signal to

noise ratio (S/N), DM, width, relative sky position with

respect to the pointing center, scan number, etc., and

are used for follow-up inspection.

In this work, we use Realfast data as a test-case

to explore and compare candidate-clustering techniques.

We also generalize our results to apply to single-dish

telescopes, which do not have spatial (sky-location) in-

formation to use in a clustering algorithm. This paper

is laid out as follows: In §2 we provide a more detailed

motivation for the need for clustering and a discussion

of clustering methodologies. §3 describes the data used

for testing the algorithm, followed by methods explained

in §4. The results of the analysis are presented in §5,

followed by discussion and conclusion in §6 and §7, re-

spectively.

2. CLUSTERING

As mentioned previously, clustering is implemented

between the search and the candidate processing steps

of the pipeline. In the Realfast system, after cluster-



Clustering Analysis 3

ing, we choose the maximum S/N candidate from each

cluster, and only those are analyzed in the candidate

processing step. We also consider all the unclustered

candidates as individual clusters of size one and pass

them onward for processing.

In this section, we discuss the need to use clustering

in the context of a single pulse search pipeline. Further,

we use the following terminology throughout this paper:

• Event: The actual physical occurrence of an as-

trophysical transient (e. g., FRB, pulsar) or Radio

Frequency Interference (RFI).

• Candidate: A single detection reported by a search

pipeline. It typically consists of a set of properties

(sky location, DM, time, etc). Candidates may be

random thermal noise or associated with an event.

Multiple candidates can be associated to a single

event.

• Observation: A set of candidates generated after

the search pipeline is run on some data. It can be

real or simulated and can have candidates associ-

ated with FRB or RFI or both.

• Dataset: A set of observations.

• Cluster: A group of candidates (or members) with

the same labels assigned by a clustering algorithm.

• Member: Candidates within a cluster.

• True Labels: Each member of a cluster is associ-

ated with an event. We refer to this event as the

true label of that member.

• Real/FRB/Transient: Event, cluster, or member

associated with an astrophysical transient.

• RFI: Event, cluster, or member that is not astro-

physical.

2.1. Expected number of candidates from a single

astrophysical event

As explained in the previous section, following search

parameters are reported for each candidate detected by

the Realfast search pipeline: DM, time of occurrence

of the candidate, relative sky position with respect to the

pointing center (l, m), S/N, and width. Moreover, for

each event, the pipeline can return multiple candidates

at nearby (incorrect) values of DM, width, and time.

The observed S/N of a candidate detected at a trial

DM, width, sky location is given by (assuming no other

losses, etc.)

S/Nobserved = S/Noptimal.Fwidthloss.Fbeamloss.FDMloss

(1)

where S/Noptimal is the S/N of the candidate when

there is no loss. Fwidthloss is the loss due to incorrect

boxcar width (Cordes & McLaughlin 2003), Fbeamloss is

the loss due to position of candidate within the primary

beam of the telescope, and FDMloss is the loss due to

incorrect DM value (Levin 2012, §2.3).

Using this equation, we can calculate the number of

candidates that will trigger a single pulse search sys-

tem for an astrophysical event. For instance, we assume

a VLA L-band (1–2 GHz) configuration with 256 fre-

quency channels and a time resolution of 5 ms, and that

Realfast system is used to search for transients. We

then search for DMs from 0 pc cm−3 to 3000 pc cm−3

and set Fdmloss = 0.95, i.e, up to a maximum of 5%

loss in sensitivity between DM trials. Using this, and

assuming an intrinsic pulse width of 30 ms, we can com-

pute the DM array (Levin 2012, §2.3). We also assume

tscatt = 0 as it is line-of-sight dependent and is typi-

cally small. We set our boxcar search widths to 5 ms,

10 ms, 20 ms, and 40 ms and S/N detection threshold

at 8. Figure 1 shows the number of candidates detected

with respect to input S/N of the transient for two dif-

ferent values of transient DMs and widths. Here, we

have also assumed that the candidate is at the center

of the beam, therefore the Fbeamloss is 1. This figure

clearly shows that the number of candidates detected

by the pipeline can be large even for one event. This

can overwhelm the real-time systems that are respon-

sible for post-processing these candidates and writing

their data to disk, hence motivating the use of cluster-

ing algorithms.

2.2. Unsupervised Clustering

In this paper, we have taken the approach of unsu-

pervised clustering. Here we briefly discuss unsuper-

vised clustering and some of its caveats. Unsupervised

clustering is the method used to find meaningful clus-

ters from an unlabeled dataset, i.e., a priori information

about number of clusters and the true cluster assigned

for each candidate is not known (Jain et al. 1999). This

is in contrast to supervised clustering for which this in-

formation is available. In this analysis, we do not know

the clustering information of the candidates, therefore

we opted for unsupervised clustering.

Unsupervised clustering is typically done by estimat-

ing the “distance” or “similarity” between different can-

didates, with the aim that candidates with low “dis-

tance” might be similar and belong to the same clus-

ter. The clustering algorithms we discuss in this paper

use standard search pipeline features, without any ex-

pensive pre-processing, and can find reliable clusters in

real-time. In some cases, physically meaningful relations



4 Aggarwal et al.

20 40 60 80 100

S/N

0

200

400

600

800

N
u

m
b

er
o
f

C
a
n

d
id

a
te

s

10
m

s,
10

0c
m
−3 pc

1ms, 100cm
−3 pc

10ms, 1000cm
−3pc

1ms, 1000cm
−3pc

Figure 1. The number of candidates generated by a single
pulse search pipeline for events with varying S/N. Different
colors represent different intrinsic widths of the transient,
and different line styles show different DMs. Observing and
search configuration similar to that of Realfast at L-band
was chosen (Sampling time: 5 ms, Number of frequency chan-
nels: 256, Bandwidth: 1 GHz, DM range: 0 to 3,000pc cm−3,
Boxcar widths: [5 ms, 10 ms, 20 ms, 40 ms], S/N thresh-
old: 8). See Section 2.1 for more details.

between features could also be computed to enhance

clustering performance, however we do not employ these

here (Pang et al. 2018, §3.2).

The caveat to this approach is that unsupervised clus-

tering techniques can be harder than supervised meth-

ods to tune for specific datasets. Also, due to the lack

of true labels, it is difficult to evaluate the clustering

performance. We discuss the above caveats further in

Section 4.

2.3. Clustering RFI

Strong RFI events can also overwhelm the real-time

pipelines by generating a large number of candidates,

sometimes at all DM trials. Even though we use mul-
tiple filtration techniques to mitigate RFI, some signals

still reach the pipeline’s clustering step. Narrow-band

RFI can lead to many candidates at all DMs in the DM

grid (and, because of the resulting time shift of the peak,

corresponding time bins). In some cases, the RFI ap-

pears as a strong localized source in the radio image

and hence is present as a dense cluster of points in the

image plane (for instance, this can happen with a suffi-

ciently high-altitude satellite). Therefore, we can lever-

age the clustering algorithm to cluster those thousands

of triggers into one cluster, reducing the computational

load by orders of magnitude. As it is not feasible to

manually label RFI examples into multiple clusters, we

cannot evaluate clustering algorithms’ performance on

identifying separate RFI clusters. Instead, we only es-

timate clustering performance on FRB clusters. This is

further discussed in Section 4.3.

3. DATA

Here we describe the details of our dataset and the fea-

tures we used for clustering. We used Realfast data

to generate a dataset containing representative RFI,

and used simulated FRBs to generate a dataset with

representative candidates. We then combined the two

datasets and applied four different pre-processing tech-

niques (downsampling and normalization) on the fea-

tures of the candidates to simulate 250 observations,

consisting of candidates from both real and RFI events.

3.1. Feature Selection for Clustering

As mentioned in Section 1, the pipeline reports a set

of measured parameters for each candidate that satisfies

the S/N threshold criterion. For our clustering analysis,

we cluster based on DM, time (as is the standard with

most past FRB searches), and sky position (with rela-

tive direction cosines represented by l and m as angular

distances from the observation’s pointing center) of the

candidates.

Candidates associated with an FRB event are ex-

pected to be densely located in l and m, as the FRB orig-

inates from a specific location in the sky. They would

also show an expected S/N decrease in adjacent DM

and time values (see Section 2.1) and would be closer

for those parameters. On the other hand, RFI is ran-

domly spread across this parameter space, but strong

RFI can show a trend in DM and time if detected at

multiple DMs.

3.2. RFI database

In this analysis, we used data from various commen-

sal and commissioning observations of Realfast system

(project codes: 19A-242, 20A-330, 19B-223, 20A-163)

in which the standard Realfast pipeline detected only

RFI candidates. This data spans a range of array con-

figurations and other observing and search parameters

(frequency, bandwidth, image pixel size, etc.). To create

candidates representative of the real-time pipeline, we

re-ran the Realfast transient search on this data with

the pipeline using default search parameters (Law et al.

2018, 2020). As clustering performance is expected to

be sensitive to the RFI environment, we selectively chose

datasets with a variety of RFI types. These datasets are

representative of the broad range of RFI we have seen

at VLA and therefore form a robust sample of RFI for

our analysis. This procedure was used to generate RFI

candidates from 13 observations, with a few to ∼ 6000

candidates each. We manually verified that all these

candidates were RFI and saved parameters relevant for

clustering for each candidate (§3.1). We will refer to this

as the RFI dataset.



Clustering Analysis 5

Table 1. Parameter distributions of simulated FRBs

Parameter Distribution Range/Values

S/N Uniform 10, 40

DM (pc cm−3) Uniform 10, max search dma

Width (ms) Uniform 1, 40 (ms)

Frequency Uniform L, S, C, X

Array configuration Uniform A, B, C, Db

Sky position (l, m) Uniform -fov/2, fov/2c

amax search dm is the maximum DM searched for a given
configuration

bMaximum baseline lengths for the four configurations (A,
B, C, D) are 36.4 km, 11.1 km, 3.4 km, 1.03 km.

c fov is the field of view at the randomly chosen frequency.

3.3. Simulating and Injecting FRBs

We also generated a dataset of “real” candidates, rep-

resenting our signals of interest. This was done by gen-

erating simulated data (with standard radiometer noise

for different array configurations, observing, and search

parameters) and injecting simulated transients. The dis-

tribution of parameters used for injecting transients is

given in Table 1. We searched this simulated data using

Realfast system with real-time search configuration

to generate candidates. We saved the relevant param-

eters of all the candidates, and manually verified them

to make sure that each candidate corresponds to the in-

jected transient. We discarded any observation with less

than four candidates. This procedure was used to gen-

erate real candidates from 114 simulated observations

(with one transient injected in each observation). We

will refer to this as the FRB dataset.

3.4. Test Dataset

To evaluate the performance of various clustering

methods (described in Section 4.1), we generated a test

dataset. We used this dataset to compare the perfor-

mance of different pre-processing techniques, and also

during hyperparameter tuning (see Section 4.2).

The test dataset consists of multiple observations,

each containing some RFI candidates and some FRB

candidates. We enforce that each observation has one

transient event, and so all FRB candidates in an obser-

vation would be associated to that single event. There-

fore, a perfect clustering algorithm should form only one

FRB cluster per observation. To generate such an ob-

servation, we randomly chose one observation each from

the RFI and FRB dataset pool. We then randomly se-

lect X% of RFI candidates (where X is sampled from

a uniform distribution between 20-100) from the RFI

observation, all the FRB candidates from the FRB ob-

servation, and concatenate their features. We then ran-

domise the order of the examples. This creates a set

consisting of both RFI and FRB candidates. All ob-

servations with less than 10 total number of candidates

were discarded. Using this process, we created 250 ob-

servations containing RFI and FRB candidates, which

formed our test dataset.

3.5. Pre-processing

Pre-processing is the procedure that takes the event

features and converts them into indexed parameter

ranges such that all the parameters will be equally

weighted in terms of their importance in the clustering.

As explained in Section 3.1, we use DM, time, l and m

as features for clustering. Therefore, for each candidate

in each observation of our database, we save these four

parameters along with the image S/N of the candidate.

After clustering, we use S/N to decide the representative

candidate from each cluster. We convert the absolute

value of DM to an index based on its index in the DM

array for each candidate. Similarly, we also convert the

time value (in seconds) to an index, based on the sam-

ple number corresponding to that time from the start

of that processing segment. We also convert l and m

(which is the offset of the candidate from primary beam

center) to corresponding pixel values, using the synthe-

sized beam size. Therefore, we convert all the features

to corresponding indices. This is necessary as otherwise,

different scales of different features might bias the dis-

tance estimates required in clustering.

The transient events we are interested in appear as a

point source in the sky. Therefore, all the candidates

from that transient should constitute a small range of

l and m index values. We downsampled the l and m

values of all the candidates to increase the sky density

of candidates, which might enhance the clustering per-

formance. We tried downsampling factors of 1, 2 and

4 (henceforth referred to as DS1, DS2 and DS4 respec-

tively). Although we have scaled all the features to their

corresponding indices, we also evaluated clustering per-

formance on standardized data (i.e, with zero mean and

unit variance, hereafter referred to as Norm). Through-

out the paper, we report the performance of all the algo-

rithms on all these different pre-processing techniques.

We also try to determine the pre-processing technique

which leads to the best clustering performance.

4. METHODS

4.1. Clustering Algorithms



6 Aggarwal et al.

We compare eight algorithms to cluster our test

dataset: K-means, Mean Shift, Affinity Propagation,

Agglomerative Clustering, DBSCAN, Optics, HDB-

SCAN, and Birch. For all except HDBSCAN, we use the

implementation of these algorithms in scikit-learn

(Pedregosa et al. 2011; Buitinck et al. 2013). We use the

python implementation of HDBSCAN by McInnes et al.

(2017). We briefly discuss the details of these algorithms

and their hyperparameters in Appendix A. We refer the

reader to the respective papers and scikit-learn doc-

umentation for more details.

4.2. Hyperparameter Tuning

Each clustering algorithm has several input parame-

ters that can be used to control the algorithm’s clus-

tering process and speed. These input parameters are

called hyperparameters. Some algorithms are very sensi-

tive to the choice of these hyperparameters while others

are robust to a range of hyperparameters. Our aim is

to find the hyperparameters for each algorithm, which

leads to the best clustering performance (called opti-

mal hyperparameters). The following three techniques

are typically used to obtain the optimal hyperparam-

eters: brute force grid search, random sampling, and

Bayesian optimization. Grid search involves generating

a grid of points covering the whole parameter space uni-

formly. The performance metric is then calculated on

all the grid points, and the hyperparameter combina-

tion with the maximum value of the metric is chosen.

In random sampling, the hyperparameter combinations

are randomly chosen from a distribution of parameters.

Bayesian optimization uses Bayesian techniques to parse

the parameter space and obtain the optimal hyperpa-

rameter combination.

Random sampling has been shown to be better than

brute force grid search (Bergstra & Bengio 2012). This

is because, in most cases, only a few hyper-parameters

really matter, the importance of which changes with dif-

ferent datasets. This makes grid search a poor choice

for searching for hyper-parameters for different datasets.

Therefore, we opted to use random sampling. Also, be-

cause our parameter space is not very large, we decided

not to use Bayesian optimization. Appendix B shows the

ranges and various possible values of different hyperpa-

rameters that were tried for each algorithm. Whereever

necessary, we used a random state of 1996 in the algo-

rithms for reproducibility.

4.3. Performance Metric

The general idea of using a performance metric is to

have a common reference point to rank the effective-

ness of clustering algorithms (and their hyperparame-

ters). The one with the maximum value of the metric

has the best general performance.

Critical to this idea is a clear statement of our goals.

Our primary measurable goals with clustering are the

following:

1. Avoid missing a genuine event due to clus-

tering. This can happen due to over-aggressive

clustering that identifies FRB candidates as false

members of an RFI cluster. As only the highest

S/N member from each cluster is processed fur-

ther, assigning FRB members to RFI clusters will

lead to FRB candidate not passing further in the

pipeline. This can happen if there are RFI candi-

dates with S/N higher than that of the FRB can-

didates.

2. Each event of interest should be singly iden-

tified. All candidates from one FRB event should

be clustered into one cluster, rather than many

small separate clusters representing a single event

of interest. This is to minimize the number of

candidates that are passed to the pipeline for post-

processing and classification.

To represent these goals, we have developed the follow-

ing metric. A higher value of the metric is favourable.

We use homogeneity, completeness, v-measure and recall

to calculate the metric (hereafter referred to as score).

In the following, an FRB cluster is defined as a cluster

containing one or more FRB candidates, obtained af-

ter clustering. In the following discussion, we follow the

terminology defined in Section 2.

4.3.1. Homogeneity

Homogeneity is the measure of purity of the clusters

with respect to true labels, i.e it estimates if each cluster
contains only members of a single class (i.e either FRB

or RFI). We calculate homogeneity for each observation

in the test dataset. As we are primarily interested in

performance on FRB candidates, and as RFI can be

clustered into multiple clusters (for which we don’t have

true information), we define homogeneity only for FRB

clusters in the observation. For each FRB cluster, we

calculate the ratio of the number of FRB candidates

in that cluster to total number of candidates in that

cluster. Homogeneity (h) is the weighted average of all

these ratios, weighing them by the number of candidates

in the cluster. Hence,

h =
1

NT

∑
i

ni
FRB

niT
niT

=
1

NT

∑
i

ni
FRB

(2)



Clustering Analysis 7

where i represents the ith FRB cluster, and the sum is

over all the FRB clusters. ni
FRB

is the number of FRBs

in the ith FRB cluster, niT is the total number of candi-

dates in that cluster. NT =
∑

i n
i
T is the total number

of candidates in all FRB clusters. h can be between 0

(when all FRB candidates are left unclustered) and 1

(when all FRB clusters contain only FRB candidates).

4.3.2. Completeness

Completeness is used to estimate if all members of

a given class are assigned to the same cluster. We

calculate completeness for each observation in the test

dataset. We define completeness for FRB clusters, and

a high completeness score will minimize the number of

clusters the FRB candidates are clustered to. For each

FRB cluster, we calculate the ratio of the number of

FRB candidates in that cluster to the total number

of FRB candidates. Completeness (c) is equal to the

weighted average of all these ratios, weighing them by

the number of candidates in the cluster1. Hence,

c =
1

NT

∑
i

ni
FRB

N
FRB

niT (3)

where i represents ith FRB cluster, and the sum is

over all the FRB clusters. ni
FRB

is the number of FRBs

in ith FRB cluster, N
FRB

is the total number of FRB

candidates in that observation. NT =
∑

i n
i
T is the total

number of candidates in all FRB clusters. c will be

very small if all FRB candidates are assigned different

clusters, and 1 when all FRB candidates are clustered

into one cluster.

4.3.3. V-measure

V-measure is the harmonic mean between homogene-

ity and completeness. This is used as we want all the

clusters to be pure and favor minimum number of clus-

ters. Therefore, we want to maximize both homogeneity

and completeness. V-measure (v) will be 1 when both h

and c are 1 and will be 0 if either of those is 0. Hence,

v =
2hc

h+ c
(4)

We calculate h, c, v for each observation in the test

dataset and take a weighted average of all v ’s (weighting

by the total number of candidates in that observation)

to get an estimate of V-measure for the whole dataset

(V ).

1 We include unclustered candidates as a single cluster in this case,
while unclustered candidates were ignored while calculating ho-
mogeneity.

4.3.4. Recall

Recall is the fraction of FRBs that are recovered after

clustering. After clustering, only the candidates with

maximum S/N in each cluster are processed further in

the pipeline. Therefore, if the clustering algorithm clus-

ters FRB candidates together with high S/N RFI can-

didates, then the FRB will not be recovered from that

cluster and might be missed. Therefore, recall (R) is

defined as the ratio of the number of observations in

the dataset for which FRB was recovered to the total

number of observations in the dataset.

4.3.5. Score

Score is defined as the product of recall (R) and total

V-measure (V ).

Score = R× V (5)

We use this score to compare the clustering perfor-

mance of different algorithms and find the optimal hy-

perparameters for each clustering algorithm.

4.4. Advantages of this metric

We have defined the above metric with respect to FRB

and RFI clusters, but it can be easily generalized to

any application with goals generally similar to those

laid out in Section 4.3. This metric ensures that the

information in relevant clusters is not missed by over-

aggressive clustering while still minimizing the number

of clusters formed. There are some advantages of this

metric over other clustering metrics available in the lit-

erature (for a detailed comparison using a similar metric

see Rosenberg & Hirschberg 2007): 1) It is independent

of the clustering algorithm, size of the dataset, number

of classes, and clusters. 2) It can appropriately use one

(or more) base class (here FRB) to evaluate the cluster-

ing performance with respect to true labels, considering

all data points of the relevant class. 3) Using homo-

geneity and completeness, V-measure gives importance

to both pure clusters and minimum number of clusters.

4) By adequately weighting individual metrics, it is pos-

sible to concisely evaluate the clustering performance

across multiple examples, in the form of a simple num-

ber (score).

5. RESULTS

5.1. Optimal Hyperparameters

We show the maximum score obtained for each algo-

rithm after hyperparameter search in Figure 2. Hence-

forth in this paper, we will refer to these hyperparam-

eters as “optimal hyperparameters”. This figure shows

that Mean Shift has the maximum score, out of all the



8 Aggarwal et al.

DS1 DS2 DS4 Norm

Pre-Processing

Affinity Propagation

Agglomerative

Birch

DBSCAN

HDBSCAN

KMeans

Mean Shift

Optics

0.911 0.898 0.882 0.930

0.994 0.988 0.978 0.986

0.994 0.989 0.989 0.997

0.997 0.997 0.997 1.000

0.979 0.940 0.963 0.970

0.993 0.987 0.978 0.986

1.000 1.000 1.000 0.998

0.997 0.997 0.997 1.000

0.90

0.92

0.94

0.96

0.98

S
co

re

Figure 2. Maximum score obtained after random hyper-
parameter search (at the optimal hyperparameters) for each
algorithm and pre-processing combination. Optimal hyper-
parameters for each case are given in Table 2. DS refers to
downsampling applied to l and m indices. Norm refers to
normalization of the four features (see Section 3.5)

eight algorithms. Table 2 shows these optimal hyperpa-

rameters for each algorithm.

Figure 3 shows the distributions of scores at various

hyperparameter values, for each combination of algo-

rithm and pre-processing. Although not crucial to hy-

perparameter selection, the distribution of scores gives

an insight into the robustness of the algorithm to the

choice of input hyperparameters. In some cases, the

scores vary between the full range of 0 and 1, while

in others, the distribution is very narrow around high

scores. The algorithms for which the score distributions

peak around a high value should be more robust to the

input hyperparameters than those for which the peak is

at a middle or even low value of score. In the latter case,

only a small range of hyperparameters would lead to a

high score.

5.2. Effect of data processing

As mentioned in Section 3.5, we also repeated the

above experiment after pre-processing the data in two

ways: downsampling the l and m indices and data nor-

malization. We show the results for this in Figures 2 and

3. As can be seen from Figure 2, there is no clear trend of

clustering performance for different pre-processing cases.

We also note that the shape of the score distribution

remains the same across different downsampling factors

for a given algorithm. This indicates that downsampling

doesn’t have a significant contribution to the clustering

performance.

5.3. Evaluating performance on clean data

So far, we have evaluated the performance of cluster-

ing algorithms on data with real RFI candidates along

with simulated FRB candidates. This, as stated ear-

lier, was a reasonable approximation of the candidates

from real observations. Usually, in the case of a real

transient, the pipeline only gets triggered at candidates

from real transient, and no RFI is seen (either because of

the amplitude of real transient or because low-level RFI

is flagged). Therefore, here we report the performance

of these clustering algorithms (at the optimal hyperpa-

rameters) on a dataset containing candidates only from

a real event and no RFI. This is done to test the general-

isability of these clustering algorithms on data without

RFI. This would also serve as an independent test on

unseen datasets for which the hyperparameters of the

algorithms weren’t tuned.

5.3.1. Completeness on Clean data

We use the same procedure as described in Section 3.3,

to generate a dataset of 100 observations with candi-

dates from one simulated FRB each. We randomly chose

the parameters of the simulated FRBs and observing

configurations, as explained earlier and discarded any

observation with less than ten candidates.

We use completeness (see Section 4.3) to report the

clustering performance on this dataset. As there is no

RFI candidate in this dataset, homogeneity would al-

ways be one and therefore is not a useful metric in this

case. Here, a perfect clustering algorithm should gener-

ate just one cluster per observation for which complete-

ness would be maximum, declining as the number of

clusters increase. The overall completeness for a dataset

is the average of all the completeness values from 100 ob-

servations, each weighted by the number of candidates

in the observation.

Figure 4 shows the overall completeness score of each

algorithm. DBSCAN, HDBSCAN, Mean Shift and Op-

tics have the highest completeness score. It is to be

noted that the completeness score of these four algo-

rithms was worse when the data was pre-processed to

zero mean and unit standard deviation (i.e Norm). On

the contrary, downsampling the image features did not

show any significant effect (with a notable exception of

DS4 for HDBSCAN).

5.4. Benchmarking



Clustering Analysis 9

Table 2. Optimal hyperparameters obtained for different algorithm and pre-processing combinations.

Algorithm Hyperparameter DS1 DS2 DS4 Norm

Affinity Propagation affinity euclidean euclidean euclidean euclidean

random state 1996 1996 1996 1996

damping 0.974 0.965 0.985 0.881

preference -884 -222 -219 -202

Agglomerative n clusters 5 7 6 3

affinity euclidean manhattan euclidean euclidean

compute full tree auto auto auto auto

linkage ward average ward ward

Birch n clusters 5.000 7.000 6.000 10.000

threshold 0.341 0.876 0.676 0.957

branching factor 13.000 56.000 85.000 77.000

DBSCAN min samples 2 2 2 2

eps 14.163 14.726 14.615 1.082

metric chebyshev chebyshev chebyshev cityblock

algorithm auto auto auto auto

leaf size 23 21 35 38

HDBSCAN min samples 5 5 5 5

metric euclidean euclidean euclidean cityblock

min cluster size 2 3 2 9

cluster selection method eom eom eom eom

allow single cluster True True False True

KMeans algorithm full elkan full auto

n clusters 5 6 6 3

n init 13 15 28 26

random state 1996 1996 1996 1996

Mean Shift bandwidth 16.416 32.750 19.350 1.229

bin seeding True False True True

cluster all True True True True

Optics min samples 2 2 2 2

eps 14.782 14.376 14.551 1.095

metric minkowski chebyshev minkowski cityblock

min cluster size 8 6 6 8

p 14.672 - 11.009 -

cluster method dbscan dbscan dbscan dbscan

xi - - - -

We evaluated the clustering speed of all clustering al-

gorithms at their optimal hyperparameters. To do this,

we generated an observation with a varying number of

candidates consisting of random values for the four fea-

tures. We then ran all the clustering algorithms on those

observations and recorded the time taken for just the

clustering step. We did this test with optimal hyperpa-

rameters obtained for all four pre-processing cases. As

the clustering speed is primarily dependent on the num-

ber of candidates to be clustered, we didn’t use real data

for this test. We show the result of this test in Figure 5.

The time taken did not vary significantly with parame-

ters from different pre-processing cases, so we only show

results using optimal hyperparameters for DS1 in this fig-

ure. DBSCAN and HDBSCAN are the fastest of these

algorithms, while Affinity Propagation, Mean Shift, and

Optics are the slowest, by at least an order of magnitude.



10 Aggarwal et al.

0.0

0.5

1.0

S
co

re
Affinity Propagation Agglomerative Birch

0.0

0.5

1.0

S
co

re

DBSCAN HDBSCAN

DS1 DS2 DS4 Norm

Pre-processing

KMeans

DS1 DS2 DS4 Norm

Pre-processing

0.0

0.5

1.0

S
co

re

Mean Shift

DS1 DS2 DS4 Norm

Pre-processing

Optics

Figure 3. Violin plots of score vs. pre-processing for different clustering algorithms. Each violin plot shows the distribution
of scores obtained at various hyperparameters evaluated during random hyperparameter search. Different sub-figures represent
different algorithms (Sections 4.2, 5.1). DS refers to downsampling applied to l and m indices. Norm refers to normalization of
the four features (see Section 3.5).

6. DISCUSSION

6.1. Feature Importance

It is worth understanding the impact of feature selec-

tion on our outcome, as some features are expected to

be more important than the others (Guyon et al. 2005;

Dash & Liu 2000). We use a Random Forest classifier

(Breiman 2001), implemented in scikit-learn, to esti-

mate the relative feature importance of the four features,

(DM, time, l, m), in determining accurate clusters.

We used the test dataset (see Sec. 3.4) without any

pre-processing, containing candidates from 250 obser-

vations (hereafter we refer to this data as DS1). We

knew the true labels (RFI and FRB) for each candi-

date in those 250 observations. For each observation,

we trained a Random Forest classifier (at the default

input parameters) using all the candidates in that ob-

servation. From the trained classifier, we then used

feature importances to obtain the relative feature

importance of each of the four features. This attribute of

the Random Forest classifier calculates Gini importance

(Breiman 2001) for each feature, which is representative

of the importance of feature during classification. We re-

peated this for all the observations in our test dataset.

To estimate the total feature importance, we averaged

all the importance for each feature weighing each by the

number of candidates in that observation. The total im-

portance obtained is shown in Figure 6. As can be seen

from this figure, l and m (sky position indices of the

candidate) contribute much more towards classification

than the DM and Time indices of the candidates.

A caveat to this simplistic analysis is that classifica-

tion of all candidates into two classes, FRB and RFI, is

not the same as clustering them into multiple clusters.

The two cases would have been similar if all the RFI

candidates could be assigned to a single cluster, which

is not true. Therefore, even though this analysis shows

that sky position contributes much more to classifica-

tion, we suspect that the relative contribution of DM

and Time for the clustering task would be higher than

what is obtained here.



Clustering Analysis 11

DS1 DS2 DS4 Norm

Pre-Processing

Affinity Propagation

Agglomerative

Birch

DBSCAN

HDBSCAN

KMeans

Mean Shift

Optics

0.560 0.422 0.987 0.629

0.249 0.257 0.211 0.443

0.258 0.202 0.233 0.276

0.999 0.999 0.999 0.518

0.930 0.833 0.444 0.314

0.238 0.201 0.201 0.425

0.995 0.999 0.996 0.429

0.999 0.999 0.999 0.519

0.30

0.45

0.60

0.75

0.90

C
om

p
le

te
n

es
s

Figure 4. Completeness of different algorithms on clean
data i.e without any RFI candidate (Section 5.3). High com-
pleteness score is better and would imply that the FRB can-
didates are clustered in a minimum number of clusters for
each of the 100 observations. Each algorithm was evalu-
ated at its optimal hyperparameters (Table 2). DS refers to
downsampling applied to l and m indices. Norm refers to
normalization of the four features (see Section 3.5).

6.2. What if I only use DM and time for clustering?

In Realfast system, we search for transients on the

radio image. Therefore, for each candidate we get DM,

Time, l and m information. But in many experiments,

typically the ones using a single dish telescope or the

ones not performing an image-based transient search,

only DM and time information is available for each de-

tected candidate. Therefore, in those cases, only DM

and time can be used to cluster the candidates together.

We tested the clustering performance using only DM

and time to cluster the observations in our test dataset.

We used the optimal hyperparameters (listed in Table 2)

on the test dataset to evaluate this for all pre-processing

cases. We also tested the clustering performance using

only l and m indices to cluster our test dataset. As dis-

cussed in the previous section, the relative importance of

sky positions is much higher than that of DM and time

for a classification task. Therefore, clustering using only

sky positions should give better scores than using just

DM and time.

We show the results of these two tests in Figure 7

along with the scores when all four features are used for

clustering. We only show scores for one pre-processing

D
B

S
C

A
N

H
D

B
S

C
A

N

A
gg

lo
m

er
a
ti

ve

K
M

ea
n

s

B
ir

ch

M
ea

n
S

h
if

t

O
p

ti
cs

A
ffi

n
it

y
P

ro
p

ag
a
ti

o
n

10−4

10−2

100

102

T
im

e
(s

)

Ncands=10

Ncands=100

Ncands=1000

Ncands=10000

Figure 5. Time taken to cluster (in seconds) for each al-
gorithm at their optimal hyperparameters. Different colors
represent input data with different number of candidates.
Results are shown only at optimal hyperparameters for DS1.
DBSCAN and HDBSCAN are much faster than algorithms
like Mean Shift and Affinity Propagation (Section 5.4).

l m DM Time

Features

0.0

0.1

0.2

0.3

0.4

Im
p

or
ta

n
ce

Figure 6. Importance of each feature, determined by train-
ing a Random Forest classifier to classify each observation
into RFI and FRB. We trained the classifier individually on
all observations in the test dataset and took a weighted aver-
age of the individual feature importance to obtain the above
plot. l and m contribute much more towards classification
than DM and Time (Section 6.1).

case (DS1), as results with other pre-processing tech-

niques were also similar. As can be seen from this fig-

ure, scores obtained using just sky positions (red curve)

or DM and Time (blue curve) follow each other closely.

Using sky positions shows minor improvement in score



12 Aggarwal et al.

for most of the algorithms. Using all four features, as

expected, gives the highest score that is ∼ 10% better

than the other two cases.

This test highlights the importance of using sky po-

sitions along with the standard DM-time features to

identify clusters of candidates originating from the same

event. Therefore, if the sky position information is avail-

able for a candidate, it should also be used while clus-

tering in the pipeline. With more and more interferom-

eters (like ASKAP and DSA-110) implementing a Re-

alfast like search for transients on radio images in the

future, it would be useful for them to incorporate sky

position information to cluster candidates in their re-

spective pipelines.

As careful readers would have noticed, a caveat to this

test is that in clustering with two parameters, we didn’t

do a hyperparameter search to obtain the optimal hy-

perparameters that maximize the score using those two

features. Instead, we used the hyperparameters that

were optimal when four features were used. A full hy-

perparameter search using two parameters might lead

to a different set of parameters that might improve the

score further. But even with this simple test, it can be

noted that only using sky positions for clustering gives

an improvement in score in almost all cases.

We have demonstrated in this and the previous section

that sky positions are overall more important for clus-

tering than DM and Time. This could be because RFI

candidates are more likely to span a wide range of time

and DM values, which might overlap with those of FRB

candidates, while they are still localized in the radio im-

age. Therefore, it is less likely (though still possible)

for RFI to be very close to an FRB in the radio image.

Similarly, RFI may be highly variable in frequency/time

space, whereas in a radio image even unfocused (near-

field) RFI will show up as contiguous streaks or other

similarly structured patterns in images. Regardless of

the reason for this, however,, we have demonstrated here

that when possible, sky positions should be used for clus-

tering candidates.

6.3. But which algorithm should I use?

There are several considerations when deciding what

algorithm to use based on the comparative analysis we

have presented here.

• Maximum Score: As discussed in Section 4.3,

we want the clustering algorithm to meet our

application-specific goals; of not missing a genuine

event and singly identifying FRB candidates. Our

performance metric (called score) maximizes when

these goals are met. Therefore, we could search for

a set of optimal hyperparameters for each cluster-

A
ffi

n
it

y
P

ro
p

a
ga

ti
o
n

A
g
g
lo

m
er

at
iv

e

B
ir

ch

D
B

S
C

A
N

H
D

B
S

C
A

N

K
M

ea
n

s

M
ea

n
S

h
if

t

O
p

ti
cs

0.7

0.8

0.9

1.0

S
co

re

Using only Sky Positions

Using only DM and Time

Using all four

Figure 7. Score vs. algorithms for two feature cluster-
ing. Different colors represent different sets of features used
to perform the clustering. We evaluated the scores on the
test dataset. Results with DS1 pre-processing are shown here
(Section 6.2).

ing algorithm, that gives the maximum score. All

algorithms, except Affinity Propagation, have an

optimal score above 0.95 (Figure 2).

• Generalisable: The clustering algorithm needs

to generalize to various types of data it can en-

counter in the pipeline. By testing the algo-

rithms and optimal hyperparameters obtained in

the previous step on an independent dataset, one

could quantify the algorithms’ generalisability. To

be more application-specific, we tested this on a

dataset with observations containing candidates

only from a real event, without any RFI, and com-

puted the completeness as the performance met-

ric. Only four algorithms, DBSCAN, HDBSCAN,

Mean Shift, and Optics gave completeness above

0.9 in this test (Figure 4).

• Speed: Finally, the clustering algorithm would

only have a limited amount of time to cluster can-

didates. Therefore, even for a large number of

candidates, it should not exceed the limited time

constraint. In our specific application for Real-

fast, clustering is performed on candidates gener-

ated from small segments of data that are tens of

seconds long. Based on the other pipeline steps,

clustering shouldn’t take longer than a few sec-

onds. The number of candidates detected by the



Clustering Analysis 13

search step typically varies between a few to thou-

sands of candidates for a segment. Based on these

requirements DBSCAN, HDBSCAN, Agglomera-

tive, and K-means can be used (Figure 5).

As an example using the Realfast system, selecting

the algorithms using the above three steps, we conclude

that either DBSCAN or HDBSCAN can be used for

clustering Realfast data. Based on the results in Fig-

ures 4 and 7 we can further infer that DBSCAN is bet-

ter than HDBSCAN. As reported earlier, we didn’t no-

tice any improvement by using different pre-processing

techniques, therefore no pre-processing is favored (Fig-

ure 2). A similar procedure can also be used to choose

the clustering algorithm for any other single-pulse search

pipeline or even for a more general clustering applica-

tion.

7. CONCLUSIONS

In this paper, we have compared eight different unsu-

pervised algorithms to cluster candidates generated by

single-pulse search pipelines. We have also analyzed the

effects of various pre-processing techniques on the data.

We used real RFI from Realfast system and simu-

lated FRB candidates to test different algorithms. We

have developed a performance metric to quantify clus-

tering performance. This metric makes sure that FRBs

are not missed due to overaggressive clustering while

still minimizing the number of clusters formed. Using

a random hyperparameter search, we obtained optimal

hyperparameters, which maximizes this metric for differ-

ent algorithms. We test all the algorithms with optimal

hyperparameters on an independent dataset consisting

of only FRB candidates to evaluate the generalisability

of different algorithms. We also estimated the average

clustering time for various algorithms on a dataset of

varying sizes. Finally, we have proposed a strategy that

can be used to choose a clustering algorithm, using var-

ious tests mentioned earlier. We apply this strategy to

obtain a clustering algorithm appropriate for Realfast

system. This strategy can also be used at other single-

pulse search systems to obtain the optimal clustering al-

gorithm. Our strategy is generic enough to be used for

other clustering applications. Our performance metric

can also be used in other clustering applications where

clustering information for only one cluster of interest is

available, out of an unknown number of true clusters.

We have also demonstrated that using spatial features

for clustering improves the clustering performance com-

pared to the traditional approach of just using DM and

time features. All the scripts used in this analysis are

openly available in a Github repository2.

ACKNOWLEDGEMENTS

K.A. would like to thank Shalabh Singh for useful

discussions regarding the performance metric. K.A.

and S.B.S acknowledge support from NSF grant AAG-

1714897. SBS is a CIFAR Azrieli Global Scholar in

the Gravity and the Extreme Universe program. Part

of this research was carried out at the Jet Propulsion

Laboratory, California Institute of Technology, under a

contract with the National Aeronautics and Space Ad-

ministration. The NANOGrav project receives support

from National Science Foundation (NSF) Physics Fron-

tiers Center award number 1430284. The National Ra-

dio Astronomy Observatory is a facility of the National

Science Foundation operated under cooperative agree-

ment by Associated Universities, Inc.

Facilities: EVLA

Software: numpy (Harris et al. 2020), matplotlib

(Hunter 2007), pandas (pandas development team 2020;

Wes McKinney 2010), scikit-learn (Pedregosa et al. 2011;

Buitinck et al. 2013), hdbscan (Campello et al. 2015), rf-

pipe (Law 2017)

REFERENCES

Agarwal, D., Aggarwal, K., Burke-Spolaor, S., Lorimer,

D. R., & Garver-Daniels, N. 2020, MNRAS, 497, 1661,

doi: 10.1093/mnras/staa1856

Aggarwal, K., Law, C. J., Burke-Spolaor, S., et al. 2020,

Research Notes of the American Astronomical Society, 4,

94, doi: 10.3847/2515-5172/ab9f33

2 https://github.com/KshitijAggarwal/rfclustering

Ankerst, M., Breunig, M. M., Kriegel, H.-P., & Sander, J.

1999, in Proceedings of the 1999 ACM SIGMOD

International Conference on Management of Data,

SIGMOD ’99 (New York, NY, USA: Association for

Computing Machinery), 49–60,

doi: 10.1145/304182.304187

Bannister, K. W., Deller, A. T., Phillips, C., et al. 2019,

Science, doi: 10.1126/science.aaw5903

Barsdell, B. R. 2012, PhD thesis, Swinburne University of

Technology

http://doi.org/10.1093/mnras/staa1856
http://doi.org/10.3847/2515-5172/ab9f33
https://github.com/KshitijAggarwal/rfclustering
http://doi.org/10.1145/304182.304187
http://doi.org/10.1126/science.aaw5903


14 Aggarwal et al.

Bergstra, J., & Bengio, Y. 2012, J. Mach. Learn. Res., 13,

281–305

Breiman, L. 2001, Mach. Learn., 45, 5–32,

doi: 10.1023/A:1010933404324

Buitinck, L., Louppe, G., Blondel, M., et al. 2013, in

ECML PKDD Workshop: Languages for Data Mining

and Machine Learning, 108–122

Campello, R. J. G. B., Moulavi, D., Zimek, A., & Sander,

J. 2015, ACM Trans. Knowl. Discov. Data, 10,

doi: 10.1145/2733381

Chatterjee, S., Law, C. J., Wharton, R. S., et al. 2017,

Nature, 541, 58, doi: 10.1038/nature20797

Comaniciu, D., & Meer, P. 2002, IEEE Transactions on

Pattern Analysis and Machine Intelligence, 24, 603

Cordes, J. M., & McLaughlin, M. A. 2003, ApJ, 596, 1142,

doi: 10.1086/378231

Dash, M., & Liu, H. 2000, in Proceedings of the 4th

Pacific-Asia Conference on Knowledge Discovery and

Data Mining, Current Issues and New Applications,

PADKK ’00 (Berlin, Heidelberg: Springer-Verlag),

110–121

Deneva, J. S., Cordes, J. M., McLaughlin, M. A., et al.

2009, ApJ, 703, 2259,

doi: 10.1088/0004-637X/703/2/2259

Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. 1996, in

Proceedings of the Second International Conference on

Knowledge Discovery and Data Mining, KDD’96 (AAAI

Press), 226–231

Franti, P., Virmajoki, O., & Hautamaki, V. 2006, IEEE

Transactions on Pattern Analysis and Machine

Intelligence, 28, 1875

Frey, B. J., & Dueck, D. 2007, Science, 315, 972,

doi: 10.1126/science.1136800

Guyon, I., Gunn, S., Ben-Hur, A., & Dror, G. 2005, in

Advances in Neural Information Processing Systems, ed.

L. Saul, Y. Weiss, & L. Bottou, Vol. 17 (MIT Press),

545–552. https://proceedings.neurips.cc/paper/2004/

file/5e751896e527c862bf67251a474b3819-Paper.pdf

Harris, C. R., Millman, K. J., van der Walt, S. J., et al.

2020, Nature, 585, 357, doi: 10.1038/s41586-020-2649-2

Hunter, J. D. 2007, Computing in Science & Engineering, 9,

90, doi: 10.1109/MCSE.2007.55

Jain, A. K., Murty, M. N., & Flynn, P. J. 1999, ACM

Comput. Surv., 31, 264–323, doi: 10.1145/331499.331504

Kocz, J., Ravi, V., Catha, M., et al. 2019, MNRAS, 489,

919, doi: 10.1093/mnras/stz2219

Law, C. J. 2017, rfpipe: Radio interferometric transient

search pipeline. http://ascl.net/1710.002

Law, C. J., Bower, G. C., Burke-Spolaor, S., et al. 2018,

ApJS, 236, 8, doi: 10.3847/1538-4365/aab77b

Law, C. J., Butler, B. J., Prochaska, J. X., et al. 2020, ApJ,

899, 161, doi: 10.3847/1538-4357/aba4ac

Leung, C., Mena-Parra, J., Masui, K., et al. 2021, AJ, 161,

81, doi: 10.3847/1538-3881/abd174

Levin, L. 2012, PhD thesis, Swinburne University of

Technology

Lorimer, D. R., Bailes, M., McLaughlin, M. A., Narkevic,

D. J., & Crawford, F. 2007, Science, 318, 777,

doi: 10.1126/science.1147532

Lorimer, D. R., & Kramer, M. 2004, Handbook of Pulsar

Astronomy, Vol. 4

Macqueen, J. 1967, in In 5-th Berkeley Symposium on

Mathematical Statistics and Probability, 281–297

McInnes, L., & Healy, J. 2017, in Data Mining Workshops

(ICDMW), 2017 IEEE International Conference on,

IEEE, 33–42

McInnes, L., Healy, J., & Astels, S. 2017, The Journal of

Open Source Software, 2, 205

Michilli, D., Masui, K. W., Mckinven, R., et al. 2020, arXiv

e-prints, arXiv:2010.06748.

https://arxiv.org/abs/2010.06748

pandas development team, T. 2020, pandas-dev/pandas:

Pandas, latest, Zenodo, doi: 10.5281/zenodo.3509134

Pang, D., Goseva-Popstojanova, K., Devine, T., &

McLaughlin, M. 2018, MNRAS, 480, 3302,

doi: 10.1093/mnras/sty1992

Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2011,

Journal of Machine Learning Research, 12, 2825

Petroff, E., Barr, E. D., Jameson, A., et al. 2016, PASA, 33,

e045, doi: 10.1017/pasa.2016.35

Rosenberg, A., & Hirschberg, J. 2007, in Proceedings of the

2007 Joint Conference on Empirical Methods in Natural

Language Processing and Computational Natural

Language Learning (EMNLP-CoNLL) (Prague, Czech

Republic: Association for Computational Linguistics),

410–420. https://www.aclweb.org/anthology/D07-1043

Wes McKinney. 2010, in Proceedings of the 9th Python in

Science Conference, ed. Stéfan van der Walt & Jarrod

Millman, 56 – 61, doi: 10.25080/Majora-92bf1922-00a

Zhang, T., Ramakrishnan, R., & Livny, M. 1996, in

Proceedings of the 1996 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’96 (New

York, NY, USA: Association for Computing Machinery),

103–114, doi: 10.1145/233269.233324

http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1145/2733381
http://doi.org/10.1038/nature20797
http://doi.org/10.1086/378231
http://doi.org/10.1088/0004-637X/703/2/2259
http://doi.org/10.1126/science.1136800
https://proceedings.neurips.cc/paper/2004/file/5e751896e527c862bf67251a474b3819-Paper.pdf
https://proceedings.neurips.cc/paper/2004/file/5e751896e527c862bf67251a474b3819-Paper.pdf
http://doi.org/10.1038/s41586-020-2649-2
http://doi.org/10.1109/MCSE.2007.55
http://doi.org/10.1145/331499.331504
http://doi.org/10.1093/mnras/stz2219
http://ascl.net/1710.002
http://doi.org/10.3847/1538-4365/aab77b
http://doi.org/10.3847/1538-4357/aba4ac
http://doi.org/10.3847/1538-3881/abd174
http://doi.org/10.1126/science.1147532
https://arxiv.org/abs/2010.06748
http://doi.org/10.5281/zenodo.3509134
http://doi.org/10.1093/mnras/sty1992
http://doi.org/10.1017/pasa.2016.35
https://www.aclweb.org/anthology/D07-1043
http://doi.org/10.25080/Majora-92bf1922-00a
http://doi.org/10.1145/233269.233324


Clustering Analysis 15

APPENDIX

A. CLUSTERING ALGORITHMS

Here we give a brief overview of all the clustering algorithms used in this analysis and some details and potential

advantages/disadvantages of each algorithm for our clustering application.

A.1. K-means

K-means (Macqueen 1967) algorithm is one of the most widely used clustering algorithms. Given an input number

of clusters, the algorithm randomly initializes centroids for each cluster. Each example is then assigned a cluster based

on the distance from that centroid. A new centroid is then computed for each cluster, and all examples are reassigned

to the new centroids. This process is repeated till a convergence criterion is met. The main challenges with K-means

are that it is not good at identifying non-spherical clusters and requires the number of clusters as input, both of which

limit its ability to generalize on different datasets.

A.2. Mean Shift

Mean Shift (Comaniciu & Meer 2002) is a centroid based algorithm. The algorithm assumes that the data is drawn

from an underlying probability density function and tries to estimate it using Kernel Density Estimation. Then, it

calculates a centroid for each data point using the kernel and iteratively updates the centroid using a mean shift-

vector. At convergence, the centroid will be placed at the nearest highest density peak of the density function. The

same process is repeated for each data point, and the data points which lead to the same high-density peaks are then

assigned to the same cluster. The only hyperparameter here is the bandwidth of the kernel. Mean Shift is not highly

scalable as it requires multiple nearest neighbor searches.

A.3. Affinity Propagation

Affinity Propagation (Frey & Dueck 2007) is based on the concept of “message passing” between data points. It

tries to find “exemplars”, i.e, members that are representative of clusters.

It starts by calculating a similarity matrix, which can be defined as the negative squared distance between two data

points. The diagonal of this matrix is set to a constant, called “preference”, which is an input hyperparameter. Pref-

erence determines how likely a particular data point would be to become an exemplar. The algorithm then calculates

three matrices, called Responsibility, Availability, and Criterion Matrix. These matrices are updated iteratively till a

convergence criterion is met, and then clusters are assigned based on the information in Criterion Matrix. The details

of the algorithm are given in Frey & Dueck (2007). Affinity Propagation’s advantage is that it doesn’t require the

number of clusters as input, but the algorithm is computationally complex and can be slow on large datasets.

A.4. Agglomerative clustering

Agglomerative clustering (Franti et al. 2006) is a type of hierarchical clustering. Hierarchical clustering algorithms

start with each example being a different cluster and then merge the ones that are closer until there is only one cluster.

Therefore, they can form a hierarchy of clusters (at various distances), which is represented as a tree. A linkage

criterion (see Section 5.1 of Jain et al. 1999) is used to decide the merge strategy. To determine the clusters from this

cluster hierarchy, one has to choose a level or a cut in the tree. As was the case with K-means, the main challenge

with this algorithm is to choose the number of clusters.

A.5. DBSCAN

Density Based Spatial Clustering of Applications with Noise, or DBSCAN (Ester et al. 1996), is a density-based

clustering algorithm. It assumes that clusters lie in dense regions. It primarily requires two input hyperparameters:

a density threshold (MinPts) of a core point and a radius (ε) of its neighborhood. A point that has at least MinPts

adjacent points in its ε neighborhood is considered a core point. Core points and their neighborhood are considered

dense regions that form clusters, and overlapping dense regions are merged into a single cluster. Any point that is

neither a core point nor falls within the neighborhood of a core point is classified as noise. It doesn’t require the

number of clusters as input, although the clustering output is very sensitive to other input parameters.



16 Aggarwal et al.

A.6. Optics

Ordering Points To Identify the Clustering Structure or Optics (Ankerst et al. 1999), is a density-based clustering

algorithm. Similar to DBSCAN, Optics requires two hyperparameters: ε and MinPts, although ε is not necessary.

It uses the following distances: core distance (minimum radius required to classify a given point as core point) and

reachability distance (calculated by comparing the distance between two core points and their core distances) to order

points. The reachability distance for points in a cluster would be low. The Optics algorithm builds a reachability

graph, which assigns each sample a reachability distance. A post-processing procedure is applied to the reachability

plot to determine clusters. This procedure can be very sensitive to the input parameters. An advantage of Optics is

that it can find clusters of varying density. Like other density-based algorithms, Optics doesn’t require the number of

clusters as input and can also find non-spherical clusters.

A.7. HDBSCAN

Hierarchical Density Based Spatial Clustering of Applications with Noise or HDBSCAN (Campello et al. 2015;

McInnes et al. 2017; McInnes & Healy 2017), is very similar to Optics, i.e., it takes the approach of DBSCAN but

extends it by varying the values of ε. It forms a hierarchical tree that shows the clustering output. By parsing through

the tree, going from one large cluster to many smaller clusters, HDBSCAN constructs a tree with persistent clusters

based on its only hyperparameter: minimum cluster size. It then uses a stability criterion to extract the final clusters

from the cluster tree. Like Optics, HDBSCAN can also form clusters of varying density and do not require the number

of clusters as input.

A.8. Birch

Balanced Iterative Reducing and Clustering using Hierarchies or Birch (Zhang et al. 1996) is a hierarchical clustering

algorithm used typically on very large datasets. It is local, which means that the clustering decision is made without

scanning all data points and existing clusters. It uses a Clustering Feature (or CF) which consists of summary of

statistics for a given sub-cluster. CF is used to calculate the distance between two sub-clusters. It creates a CF Tree

consisting of these CFs. The Birch algorithm has two hyperparameters: branching factor and threshold; the former

limits the number of CFs in a node of CFT, while the latter limits the distance for a new sample to be a part of

an existing CF. The terminal nodes of a CFT are then clustered using another clustering algorithm to obtain final

clusters.

B. PARAMETER RANGES FOR HYPERPARAMETER TUNING



Clustering Analysis 17

Table 3. Hyperparameter ranges explored for different clustering algorithms using random sam-
pling. Random uniform sampling was used to sample hyperparameters for all the parameter
ranges/values.

Algorithm Hyperparameter Range/Values

Affinity Propagation affinity euclidean

random state 1996

damping 0.5, 1

preference -1000, -200

Agglomerative n clusters 2, 10

affinity euclidean, manhattan, cosine

compute full tree auto

linkage complete, average, single, warda

Birch n clusters 2, 10

threshold 0.1, 20

branching factor 10, 100

DBSCAN min samples 2, 10

eps 0.5, 15

metric euclidean, chebyshev, cityblock,

manhattan, canberra, hammingb

algorithm auto

leaf size 20, 40

HDBSCAN min samples 2, 5

metric euclidean, chebyshev, cityblock,

manhattan, canberra, hamming

min cluster size 2, 10

cluster selection method eom, leaf

allow single cluster True, False

KMeans algorithm auto, full, elkan

n clusters 2, 10

n init 10, 30

random state 1996

Mean Shift bandwidth 10, 40c

bin seeding True, False

cluster all True, False

Optics min samples 2, 10

eps 0.5, 15

metric minkowski, euclidean, chebyshev, canberra,

cityblock, manhattan, hammingb

min cluster size 2, 10

p 1, 15d

cluster method dbscan, xie

xi 0, 1

award only works with euclidean affinity

b eps range of 0.1 to 1 was used with hamming metric, and a range of 0.1 to 4 was used with
canberra metric

cbandwidth of 1 to 10 was used for normalised pre-processing case

dp was used only with minkowski metric

eValue of eps was used only with dbscan method, and value of xi was used when xi was selected
as cluster method


	1 Introduction
	2 Clustering
	2.1 Expected number of candidates from a single astrophysical event
	2.2 Unsupervised Clustering
	2.3 Clustering RFI

	3 Data
	3.1 Feature Selection for Clustering
	3.2 RFI database
	3.3 Simulating and Injecting FRBs
	3.4 Test Dataset
	3.5 Pre-processing

	4 Methods
	4.1 Clustering Algorithms
	4.2 Hyperparameter Tuning
	4.3 Performance Metric
	4.3.1 Homogeneity
	4.3.2 Completeness
	4.3.3 V-measure
	4.3.4 Recall
	4.3.5 Score

	4.4 Advantages of this metric

	5 Results
	5.1 Optimal Hyperparameters
	5.2 Effect of data processing
	5.3 Evaluating performance on clean data
	5.3.1 Completeness on Clean data

	5.4 Benchmarking

	6 Discussion
	6.1 Feature Importance
	6.2 What if I only use DM and time for clustering?
	6.3 But which algorithm should I use?

	7 Conclusions
	A Clustering Algorithms
	A.1 K-means
	A.2 Mean Shift
	A.3 Affinity Propagation
	A.4 Agglomerative clustering
	A.5 DBSCAN
	A.6 Optics
	A.7 HDBSCAN
	A.8 Birch

	B Parameter Ranges for Hyperparameter tuning

