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1 Introduction

The LHC has generated extensive amounts of data, and has made the Standard Model (SM)

paradigm-affirming discovery of the Higgs boson [1, 2]. Building on the already-impressive

performance of the machine, detectors, and experimental collaborations, the schedule calls

for an increase by more than an order of magnitude in the integrated luminosity available

for detailed investigation over the coming 10–15 years. This unprecedented quantity of

data at the highest energies we can probe will enable incredibly precise measurements that

will have unique sensitivity to new dynamics.

Sadly, the copious production of new particles, so broadly anticipated in the ramp-up

to the LHC, has failed to materialize. Current 2σ constraints on popular realizations of

new physics (NP) are already near or beyond the expected ultimate 5σ discovery reach

of the full 3 ab−1 dataset envisioned for the future of the LHC. Given this fact, it seems

unlikely that we will be able to directly produce and detect new fundamental particles at

the LHC.

A natural and intuitive response to this dual state of affairs, where we will be privileged

with incredibly precise measurements at the highest energy ever attained in a laboratory

experiment and yet unable to detect new particles directly in that data set, is to move

toward more model-independent means of interpreting the measurements we are nonethe-

less able to make. The canonical tool, used throughout the history of particle physics, for

understanding physics at scales well-separated from each other is Effective Field Theory

(EFT). The application of EFT techniques to the situation where we seem to understand

the basic structure of electroweak symmetry breaking based on the Higgs data has come to

be called the Standard Model Effective Field Theory, or SMEFT [3]. As long as whatever
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new physics we anticipate is heavy compared to the energy scales being probed and the

Higgs we’ve discovered plays the full role of Electroweak symmetry breaking, the SMEFT

provides a complete description of realizable outcomes and a uniform language for com-

paring data to arbitrary model hypotheses, including models which may yet be explicitly

formulated far in the future.

The crucial feature of the SMEFT that enables this model-independent reorganization

of effects is the perturbation series introduced in s
Λ2 , the ratio of the scale characterizing

the experiment
√
s to the new physics scale Λ. The combination of otherwise distinct

coupling orders in the NP interactions to instead partition by powers of mass suppression

is the primary feature of the EFT approach. This leads to a finite (albeit large) number

of leading-order operators, first properly enumerated and listed by [4]. With more recent

techniques, it is possible to count the number of independent operators at any given order in
1

Λ2 [5]; results indicate that the number of independent parameters (in a model-independent

treatment) grows very rapidly with the order of the expansion parameter, sharply limiting

our ability to perform such a model-agnostic analysis at beyond leading-order in the EFT

perturbation series; so far we lack the appropriate number of independent constraints on the

SMEFT already at leading order, so introducing more parameters which need constraining

will only make the problem worse.

However, our inability to consistently constrain all operators at dimension 8 (NLO in

the EFT perturbation expansion) does not justify assuming the existence of those operators

away. Just like any other calculation in perturbation theory, there can be no doubt that

errors remain from uncalculated terms in the series, and treating those theoretical errors

honestly and conservatively is essential to producing a result that accurately describes

what we have learned from our analysis. If we instead make aggressive assumptions about

the behavior of the theory at higher orders, for example neglecting these errors entirely,

we will produce “constraints” that are overly aggressive, and thus more complete models

will exist which violate our constraints while simultaneously being consistent with the data

from which they have been extracted, making those constraints effectively useless to the

HEP community.

One may attack the large dimensionality of the SMEFT coefficient space systemati-

cally by restricting the process under consideration. Drell-Yan dilepton production is of

particular interest at high energies because of the interplay with already impressive con-

straints available in pre-LHC data at lower energies from Z-pole and low-energy scattering

processes [6–11]. This is a particularly clean final state for study at the LHC, and the po-

tential impact on the SMEFT parameter space has been explored by many authors, with

different motivations and viewpoints [12–18]. In a recent study [19], one of us and col-

laborators explored the effect of theoretical uncertainties on the constraints that could be

derived from these processes, considering only operators which gave contributions growing

with energy. The constraints derived there were a bit weaker than those found by more

aggressive methods, as expected.

In this article, we expand the types of operators whose effect we consider to include

shift-type operators, which give signal effects that do not grow with energy like those previ-

ously studied. These operators are sometimes considered to have already been adequately
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constrained by Z-pole data to justify their exclusion from LHC analyses, but we will see

that their inclusion leads to quantitative changes to the LHC’s constraining power in this

expanded parameter space. With their inclusion, the LHC has sensitivity in this final state

to three distinct linear combinations of Wilson coefficients from the SMEFT; an additional

three directions in parameter space contributing to dilepton production are unable to be

constrained using LHC data alone.

In the next section, we will review the SMEFT formalism and explore the effect of

these shift-type operators on the LHC dilepton rate. In section 3 we will describe the

statistical framework of our study, including error estimates, and in section 4 we will apply

those methods to a search inspired by the ATLAS collaboration. In section 5 we discuss the

import of these results, how they revise our understanding of the LHC’s role in constraining

the SMEFT, and the ultimate future goals of the SMEFT program.

2 SMEFT formalism and operators relevant to dilepton production

In EFT, complex interactions involving particles whose mass is far above the dynamical

scale of an experiment are approximated by point like interactions (a canonical example

being Fermi’s theory of weak decay). This estimation exploits the smallness of a ratio of

scales, in which a perturbation expansion can be done. In the case of the SMEFT, a per-

turbation expansion in E2

Λ2 is the central feature, with Λ being the NP scale. This operates

under the assumption that the 125 GeV boson found by the LHC is the Standard Model

Higgs boson responsible for electroweak symmetry breaking, as indicated by all current

data. The full Standard Model symmetry and particle content is retained, but additional

operators corresponding to higher dimensional point-like interactions built entirely out of

Standard Model fields are introduced to parameterize unknown heavy NP. The SMEFT

Lagrangian can be written in the form:

LSMEFT = LSM + L(5) + L(6) + L(7) + L(8) + . . . (2.1)

Here LSM denotes the would-be SM Lagrangian, which consists of operators of dimension

d ≤ 4; note that the parameters in these interactions can be affected by SMEFT effects

in input measurements [6, 20]. The latter Lagrangian terms in eq. (2.1) then take the

following form:

L(i) =

Ni∑
k=1

C
(i)
k

Λi−4
Q

(i)
k . (2.2)

In this sum, C
(i)
k represents the appropriate Wilson coefficient and Q

(i)
k the associated

operator of dimension i. After significant effort, operator bases up to dimension 9 are

known [4, 21–31]; the dimension-5 contributions consist only of the operator responsible

for Majorana neutrino masses [21, 22], and we use the “Warsaw Basis” [4] of dimension-6

operators; for our analysis at O
(

1
Λ2

)
no operators of higher dimensionality are necessary.

There are two ways in which the SMEFT can impact dilepton production. Direct

SMEFT effects arise as a result of four-fermion operators, and lead to effects which grow

with collision energy relative to the SM amplitude. Shift effects, by contrast, arise from
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Shift Operators Direct Forward Operators Direct Backward Operators

QHWB ≡ H†τ IHW I
µνB

µν Q
(1)
lq ≡

(
l̄pγµlp

)
(q̄sγ

µqs) Qlu ≡
(
l̄pγµlp

)
(ūsγ

µus)

Q′ll ≡ (l̄pγµls)(l̄sγ
µlp) Q

(3)
lq ≡

(
l̄pγµτ

I lp
) (
q̄sγ

µτ Iqs
)

Qld ≡
(
l̄pγµlp

) (
d̄sγ

µds
)

QHd ≡ (H†i
←→
D µH)(d̄pγ

µdp) Qeu ≡ (ēpγµep) (ūsγ
µus) Qqe ≡ (q̄pγµqp) (ēsγ

µes)

QHu ≡ (H†i
←→
D µH)(ūpγ

µup) Qed ≡ (ēpγµep)
(
d̄sγ

µds
)

QHe ≡ (H†i
←→
D µH)(ēpγ

µep)

Q
(1)
Hl ≡ (H†i

←→
D µH)(l̄pγ

µlp)

Q
(3)
Hl ≡ (H†i

←→
D I
µH)(l̄pτ

Iγµlp)

Q
(1)
Hq ≡ (H†i

←→
D µH)(q̄pγ

µqp)

Q
(3)
Hq ≡ (H†i

←→
D I
µH)(q̄pτ

Iγµqp)

QHD ≡
(
H†DµH

)∗ (
H†DµH

)
Table 1. Table of operators contributing to dilepton production in the SMEFT, sorted into shift-

type operators and direct operators, which are further sorted by angular behavior. Note that

here we use the conventions of [4]; in particular, p, s are flavor indices, τ I is a Pauli matrix, and←→
D I
µ = τ IDµ −

←−
Dµτ

I .

redefinitions of would-be SM couplings due to SMEFT effects, either in the dilepton pro-

duction process itself or in some other process which is utilized as an input measurement

to define the Lagrangian parameters in terms of physical observables; these effects are pro-

portional to the SM amplitude, and thus do not grow with energy in the same way that

the direct contributions do.

In addition to these two different possible energy behaviors, there are also two possible

angular behaviors that arise due to SMEFT effects. In the case of direct contributions

the nature of these differences is most clear; there can be a preference for forward or

backward (negatively charged) lepton production in the hard scattering, which results from

angular momentum conservation for a given helicity structure. In the case of operators

which shift would-be SM couplings, couplings to both helicities of quarks and/or leptons

are generically altered, such that a shift operator must contribute to both forward- and

backward-preferential lepton production. We discuss the origins of these effects in greater

detail in appendix A.

Accounting for both energy and angular behaviors, there are four effects that we may

potentially observe and disentangle from one another. These effects are labeled as forward,

backward, shift-forward, and shift-backward. We define our forward and backward contri-

bution parameters from the Wilson coefficients C
(3)
lq and Clu, respectively, as exemplars of

the full linear combinations which give rise to their effects, originally calculated in [19],

cfwd = C
(3)
lq − 0.48Ceu − 0.33C

(1)
lq + 0.15Ced, (2.3)

cbwd = Clu + 0.81Cqe − 0.33Cld. (2.4)
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Figure 1. Examples of Template Fitting for CHd (left) and CHe (right) for high
√
s (upper row)

and Z-pole (lower row) samples. The region between 1.37 < |η| < 1.52 is excluded due to reduced

energy resolution in the ATLAS detector [32].

The shift operators, in addition to each being able to contribute to both forward and

backward scattering, suffer an additional complication relative to the direct contributions.

Unlike in the direct case, where the helicity structure is completely determined by the

operator itself, there can be different angular behavior that arises due to interference with

different SM graphs. Of course, the full physical effect is always due to the interference with

the full SM amplitude, but the different behavior with energy of photon versus Z-boson

graphs means that these differences are also physical, and can in principle be disentangled

by considering different regimes in
√
s.

Given this behavior, there are in total four distinct contributions that shift operators

can make to dilepton production; one enumeration would consider forward and backward

scattering due to interference with Z or photon SM graphs. While this may be the most

straightforward set of contributions to calculate, it is not the most straightforward to mea-

sure. We instead define our four linear combinations as forward and backward contributions

at high
√
s�MZ and at the Z pole.

Simulation of the direct-contribution exemplar operators was used to generate the

normalized particle pseudo-rapidity template distributions shown in figure 1, with blue for

cfwd and orange for cbwd. For each of the shift operators in each relevant M`` bin, we

performed a binary template fit, minimizing the bin-wise sum of square-differences relative

to α× cfwd + (1− α)× cbwd.
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Examples are provided for the operators CHd and CHe (green contours) in figure 1,

respectively with α = (1.92, 1.21) in the high M`` region and α = (0.32, 0.20) in the

Z-pole bin; the former exhibits interesting anti-correlation with the backward template,

whereas the latter is predominantly forward at high
√
s, and the difference in behavior

between the two energy regimes is very apparent. Note that the forward and backward

distributions themselves become less easily distinguished at lower energies; this results from

the fact that these events are less likely to probe the high momentum fraction region of the

parton distribution function (PDF), where the valence quark distributions best motivate

our definition of forward and backward.

From the resulting list of coefficients αi and the associated cross sections, we extracted

linear combinations of Wilson coefficients which will be constrained by LHC measurements

of forward and backward shift-type contributions to dilepton production, as follows:1

c
(shift)
fwd,hi =− 6.7CHd − 54CHD − 21CHe + 84C

(1)
Hl − 130C

(3)
Hl − 26C

(1)
Hq

+ 62C
(3)
Hq + 28CHu − 120CHWB + 110C ′ll, (2.5)

c
(shift)
bwd,hi = 3.9CHd + 6.8CHD + 4.6CHe − 16C

(1)
Hl + 10.C

(3)
Hl + 23C

(1)
Hq

− 7.3C
(3)
Hq − 21CHu + 5.3CHWB − 13C ′ll. (2.6)

c
(shift)
fwd,Z = − 4.4CHd − 49CHD − 21CHe + 72C

(1)
Hl − 120C

(3)
Hl − 2.4C

(1)
Hq

+ 59C
(3)
Hq + 11CHu − 110CHWB + 96C ′ll. (2.7)

c
(shift)
bwd,Z = − 0.53CHd − 1.6CHD − 4.9CHe + 2.9C

(1)
Hl − 3.6C

(3)
Hl + 0.83C

(1)
Hq

+ 4.4C
(3)
Hq + 0.96CHu + 1.2CHWB + 3.3C ′ll. (2.8)

These linear combinations, constructed through template fitting of pseudodata as de-

scribed above, are subject to some propagation of systematics in their coefficient values, e.g.

from PDF uncertainties. These uncertainties will not affect the sensitivity of an LHC search

to their effects, as the signal is defined by angular behavior and signal magnitude, and are

thus beyond the scope of this work. However, they will become an important consideration

upon the inclusion of results of this type into a global fit of the SMEFT parameter space,

where interpretation in terms of Wilson coefficient values necessitates the use of specific

linear combination coefficients. We reserve an exploration of these uncertainties and their

effects for future work.

We note that these linear combinations are importantly distinct from those which can

be probed in LEP data. This arises primarily from two features: the ability to measure

forward-backward behavior for light quarks, due to the quark-antiquark asymmetry of the

PDFs, and the differing sensitivity to up- and down-type quarks that also arises from

the PDFs. Neither of these distinctions is possible at LEP, where the hadronic particles

are in the final state, and only reconstructable as jets, with potential forward-backward

measurements only possible for short-lived particles with decays which tag the charge and

flavor of the initially produced quark, which makes measurements for light quark species of

1The normalization of these linear combinations is chosen to allow our exemplar functions to have unit

length in Wilson-coefficient space, assuming a trivial δij metric.
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these distinctions effectively impossible. Because of this difference in the orientation of our

constraints in Wilson coefficient space relative to those available in LEP data, we will be

able to constrain new parameter space with this data even if we cannot achieve the same

cleanliness of final states possible at a lepton collider.

Given these linear combinations, we must choose exemplar cases to simulate and then

constrain. Since every shift operator contributes to every behavior of interest, it is necessary

to use four operators simultaneously to construct distributions which correspond to the

four physically-distinct contributions of interest. We chose to construct those samples by

simultaneously simulating the effects of CHe, C
(3)
H` , C

′
`` and C

(1)
Hq. We will consistently label

these exemplars by the linear combination which they exemplify throughout the remainder

of the article. Note that, even as we have chosen linear combinations based on their

contributions to particular mass bins, we will consistently use the full M`` spectrum in our

measurements.

3 Statistical methods and error estimates

We use a straightforward χ2 goodness-of-fit test for statistical inference here, as we lack

the detailed information necessary to use more sophisticated tools. We will report as

constrained any point in parameter space where the signal model fails to be a good fit

at the 95% C.L. to the SM prediction. Note that this is a different procedure from the

∆χ2 test which would be used to estimate a parameter, and results in somewhat more

conservative bounds.

We explored the differences in these analysis strategies by using pseudo-data generated

by a Poisson distribution with the SM expectation as its mean in each bin. Testing the ∆χ2

approach against the straightforward χ2 goodness-of-fit test, we noted that the goodness-

of-fit test indeed only provides more conservative bounds, and further that even under

background fluctuations the ∆χ2 analysis never provided a bound outside that from the

χ2 approach used here. Thus, regions of parameter space which we claim to constrain

can reliably be expected to be constrained. Once data has been properly collected, a ∆χ2

analysis should also constrain some portion of the “allowed” region according to our current

analysis, but it is not possible to predict which a priori.

3.1 Treatment of errors in the SMEFT: general technique

As with any statistical examination, the essential element of the analysis is actually the

treatment of errors. Statistical errors for a binned fit are always purely Poisson, with

bin-by-bin variance of

σ2
stat = Nbg, (3.1)

where Nbg is the SM background prediction for the number of events in the given bin.

As we are beginning from a completed ATLAS search [32] as a template for our analysis,

we are able to normalize the systematic errors of our analysis to those reported by ATLAS.

Given the origin of many systematic errors from statistical measurements in control regions,

we imagine that these bounds will improve with the same functional behavior as statistical

– 7 –
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errors. However, these can never be fully eliminated, so we place a floor of 2% on the

relative error on any given bin’s content due to systematics.2 This gives us a systematic

variance contribution of

σ2
sys = max

(
σ2

sys,36

(
Lint

36 fb−1

)
, (0.02Nbg)2

)
, (3.2)

where σ2
sys,36 is the ATLAS reported error on 36 fb−1 of data.

The most novel error treatment we report follows the formalism originally developed

by [33] and applied to dilepton processes (studying only those contributions growing with

energy) in [19] in explicitly estimating the SMEFT contribution at O
(

1
Λ4

)
and treating

that as a theoretical error in our predictions, which derives no benefit from increased event

statistics.

Our estimate for the total SMEFT effect at next order in the EFT expansion is cal-

culated by taking the square of the O
(

1
Λ2

)
amplitude as a template for the generic size

of effects at O
(

1
Λ4

)
, scaling it by a factor to account for the additional N8 dimension-8

operators which will contribute.3 Importantly, we also allow this error term to act in an

uncorrelated way on the separate bins of the analysis; this allows us to use the quadratic-

in-dimension-6 term to get the characteristic size of the effects without assuming that the

correlations predicted by that calculation must remain true after the inclusion of dimension-

8 effects.

This treatment gives us a bin-by-bin variance estimate due to theoretical uncertain-

ties of

σ2
th =

∑
ops

(
c2

6Nd62 + g2
2c8

√
N8Nd8

)2
, (3.3)

where the sum runs over all relevant exemplar operators, c6 is the dimension-6 Wilson

coefficient in question, g2 is the SU(2) gauge coupling, Nd62 is the number of events in the

given bin predicted due to the quadratic dimension-6 operator effects, and

c8 =
√

1 + c2
6, (3.4)

Nd8 =
1

2

∑
F,B

Nd62 , (3.5)

are our assumed value for an average dimension-8 Wilson coefficient and the distribution we

use to simulate dimension-8 effects, carefully avoiding the assumption that their forward-

backward behavior is well-described by that of the dimension-6-squared distribution. Note

that this Wilson coefficient is perhaps a slightly aggressive choice, as the characteristic

size of c8 in the presence of a dimension-6 Wilson coefficient of c6 should, by dimensional

analysis and RGE considerations, actually be c8 ∼ c2
6; we adopt this slightly more aggres-

sive approach as a compromise value to offset the added freedom we give to the O
(

1
Λ4

)
distribution in treating it as uncorrelated between bins.

2Leptonic final states are particularly clean, motivating a fairly small choice of error floor here. A

different value for this floor would be appropriate for more intrinsically difficult-to-measure final states

than dileptons.
3This parameter of the analysis must be estimated; we take N8 = 20 throughout to be concrete, but

have confirmed that our predictions do not vary markedly with other choices.
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We assume that all of these errors are well-approximated by Gaussian distributions,

and further that all these sources of error are completely uncorrelated. Our total error for

a given bin then has the form

σ2
tot = σ2

stat + σ2
sys + σ2

th. (3.6)

3.2 Error treatment in this analysis: specific considerations

The above generic error treatments allow us to simply define a test statistic as

χ2 =
∑
bins

(Nexp −Nh)2

σ2
tot

, (3.7)

where Nh is the predicted number of events in a given bin for the hypothesis being tested.

In the absence of experimental data for the future detection reach projections derived

here, we assume that the experimental data is well-described by the SM background, and

thus our distribution can be simplified to give

χ2 =
∑
bins

N2
sig

σ2
tot

, (3.8)

where Nsig is the number of signal events predicted at O
(

1
Λ2

)
for a given point in parameter

space.

However, this treatment fails to exploit a useful feature of the distributions we’re

searching for in this case; the distinction between forward and backward contributions

can be recast as an asymmetry, which will be less affected by systematic errors than any

individual bin content.

Rather than simply binning in η`− and performing a brute-force fit, as described above,

we will fit instead two distributions simultaneously; the total cross section and the forward-

backward asymmetry

Afb ≡
NF −NB

NF +NB
, (3.9)

where NF,B is the number of events in a forward (backward) classification we will define

in detail in section 4, each as a function of M``. While the information content of these

two approaches, in terms of the number of terms in a χ2 sum, is identical, there is one

major advantage to the asymmetry construction: due to the highly symmetric nature of

our detectors at the LHC, the systematic errors on expected number of events are very

strongly correlated under a swapping of the momenta of `+ and `−.

Because of this correlation, these systematic errors amount to a single uncertainty in

the overall scale of both the numerator and denominator of eq. (3.9), and therefore cancels

out in the ratio.4 The errors in this asymmetry then can be written as

σ2
AFB

= 4
σ2
F,stat + σ2

F,th + σ2
B,stat + σ2

B,th

(NF,bg +NB,bg)2 , (3.10)

4Of course, this cancellation would not be exact; in our analysis we only need assume it is accurate to

the per-mille level to not materially impact our conclusions.
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where the systematic errors explicitly play no role in the case of the asymmetry variable.

Our test statistic then becomes

χ2 =
∑

M`` bins

(NF,sig +NB,sig)2

σ2
F,tot + σ2

B,tot

+
A2

FB,sig

σ2
AFB

, (3.11)

where

AFB,sig ≡ (1−AFB,bg)NF,sig − (1 +AFB,bg)NB,sig (3.12)

is the signal contribution to the forward-backward asymmetry, linearized in 1
Λ2 as required

for consistent treatment of the EFT perturbation series.

4 Searching in dileptons at the LHC

Our analysis begins with parton-level Monte Carlo events generated by MadGraph5 [34]

with the SMEFTsim package [35, 36], with both the renormalization and factorization

scales chosen dynamically to be the sum of the transverse energies of the produced leptons.

We also utilize Pythia8 [37] and Delphes [38] to shower, hadronize, and simulate the

detector response to our events. Our analysis was constructed and applied using the AEACuS

package [39].5

Our analysis is inspired by an ATLAS result [32] searching for new physics effects

in dilepton production in 36.1 fb−1 of data; we choose to follow their binning in dilepton

invariant massM`` to utilize their reported systematic errors. Our bin edges in M`` are thus:

(80, 120, 250, 400, 500, 700, 900, 1200, 1800, 3000, 6000) . (4.1)

A finer binning, or indeed an unbinned analysis, may be more natural at greater integrated

luminosities such as those we explore here, but we do not have access to reliable systematic

error treatments in that context, so we do not consider them further. For our initial event

selection cuts, we require exactly one same-flavor, opposite-sign lepton (e or µ) pair, each

of which has |η| < 2.47 (but avoiding the transition region 1.37 ≤ |η| ≤ 1.52 to maintain

designed energy resolution) and a transverse momentum of PT ≥ 10 GeV. We veto events

which contain a jet with |η| ≤ 2.5 and PT ≥ 30 GeV.

Following event selection, we bin in M`` as described above, and also bin events into

forward and backward categories. The forward bins are defined to contain all events where

the (negatively charged) lepton is more forward than the anti-lepton, i.e. |η`− | > |η`+ |. The

operator class labels of course do not guarantee that every event falls into the respective

bin (as seen explicitly in figure 1), but they do preferentially populate the associated bin,

e.g. samples generated using forward exemplars (whether direct or shift) preferentially, but

not exclusively, populate the forward bin as defined here. The strength of this preference

is affected by the parton distribution functions and grows with increasing M``, as the true

but unmeasurable partonic forward direction is more likely to coincide with this definition

5While this package was originally constructed to run on LHCO-format events, it has since been expanded

to construct LHCO-like files which are able to treat event-by-event weights consistently, which was essential

to this analysis.
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when one incoming parton has a larger fraction of the proton’s momentum, increasing the

likelihood that it is a valence quark.

The SM background normalization is adopted from the analysis in [32] to account for

the higher-order and detector effects included in that analysis. We retain the leading-order

forward-backward behavior taken from the MadGraph5, Pythia8, and Delphes Monte Carlo

chain out of necessity, as the angular behavior is not reported in [32]. Corrections to this

value due to higher order SM effects can be included without harming the sensitivity of our

analysis; these will shift our background expectation for the forward-backward behavior,

but not affect the size of the SMEFT effects nor the projected sensitivity of the analysis

to them. The normalization factor needed to agree with experimental background rates

is retained as a binwise “k-factor” to account for imperfections of our Monte Carlo chain,

most notably with respect to detector simulation; it remains of order 1 for dimuon events

in every bin of the analysis, with a greatest value of 2.5; the ATLAS result [32] reports

more dielectron events than dimuon events, in contrast to the Delphes default simulation,

so the “k-factor” for those gets a bit higher, up to 6.7.

To simulate our signal and error samples we utilize exemplar operators as discussed in

section 2, simulating each distribution one at a time and exploiting the linearity of our signal

function in Wilson coefficients to construct a complete signal hypothesis as a scaled sum of

the four samples we simulated. All signal and error distributions are scaled by the efficiency-

correcting “k-factor” found from the background construction, as the detector effects are

insensitive to the internal structure of the hard scattering process. Error distributions

are treated similarly to signal distributions; we assume that interferences between two

distinct exemplar distributions are not important to the description of the characteristic

error size and combine the error distributions linearly after applying the scaling described

in section 3 to each distribution individually. This non-interference assumption is perfectly

physical when applied to the interference between forward and backward distributions due

to the distinct helicities involved in the initial and final states of those scatterings; it is a

reasonable approximation in the case of interfering shift- and direct-type operators due to

their preferences for opposite ends of the M`` distribution.

Our high-energy shift signal functions require one additional element of care, as we find

it impossible to perfectly tune away contributions to the Z-pole bin through our template

fitting techniques. We therefore manually discard contributions to the lowest M`` bin from

those two signal distributions. Our error estimates are not subjected to this procedure,

as even a perfect tuning at O
(

1
Λ2

)
does not imply anything about cancellations at higher

orders in the SMEFT perturbation series.

Performing the statistical analysis as described in section 3, we find the regions of Wil-

son coefficient space which are constrained at 95% C.L. for various amounts of integrated

luminosity and show those curves in figure 2. We are unable to constrain either of the

high-energy shift directions using this data, so we display plots only for the remaining four

directions in Wilson coefficient space.

The direction of the most stringent constraint depends on the nature of the operators

under consideration. For direct, energy-growing contributions, the direction of most rapid

change in the cross section is generically best constrained, because there are so few events in
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Figure 2. Constraints on SMEFT parameter space arising from this analysis. All plots show

slices along the plane of vanishing Wilson coefficients not shown. The blue, orange, and green

curves correspond to the projected constraints based on performing this analysis using 100, 300,

and 3000 fb−1 of data.

the high-energy bins that the uncertainty on the forward-backward asymmetry in the data is

large. By contrast, for the Z-pole shift effects, the asymmetry is the sole source of constraint

because the background is very large; this allows a precise asymmetry measurement (where

we anticipate cancellation of systematic errors in our error treatment, as discussed in

section 3.2), but gives a very large statistical and systematic error on the total cross section.

This explains why only one particular combination of forward and backward contributions

is constrained by our data.

In figure 2a, we were able to get a closed and tight bound on the direct four-fermion

operator contributions; these bounds are actually slightly stronger than those in [19], due

to the inclusion of both electron and muon final states in the analysis. This indicates
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that the additional errors arising due to shift operators do not have significant impact on

constraints for energy-growing phenomena in this final state.6 The closure of the ellipse

in the elongated direction is due to the asymmetry construction; without the cancellation

of systematic errors this direction is very difficult to constrain, as it corresponds to an

unchanging total cross section and increasing theoretical errors.

In figure 2b we note that the constraint ellipse is oriented perfectly along the axes of

the plot, indicating that the two operators do not materially affect one another. This is due

to their primary effects being in bins on opposite ends of the M`` distribution. The most

clear impact of the systematic error cancellation here is the significant shrinking of the

ellipse in the vertical direction with added data; the outermost ellipse already corresponds

to constraints in the lowest M`` bin which, if constructed binwise rather than using AFB,

would be of order the systematic error floor of 2%, and thus would be impervious to

improvement with increased statistics.

Figure 2c is similarly aligned along the axes of the plot, but note that there is slightly

more interplay in the case of backward contributions than forward ones, due primarily to

the slightly smaller magnitude of the cross section in the direct backward case relative to

the forward case. Note also the differing normalization of the vertical axis with respect

to figure 2b; with HL-LHC luminosities the constraints eventually close in the vertical

direction, albeit still at quite large values. The impact of theoretical errors on this plot is

also clear in the re-emergence and/or widening of allowed region at notably larger Wilson

coefficients.

The constrained regions shown in figure 2d are due entirely to the forward-backward

asymmetry; significant impacts of changes in the total cross section would occur only at

Wilson coefficients of order thousands, clearly outside the range of applicability of the

EFT approach. In this plane it is clear that there is a direction which is unconstrained,

as there must be. The diagonal unconstrained direction corresponds to EFT effects which

change only the total cross section and not the forward-backward behavior of dilepton

events at the Z-pole. Once again, note that the allowed region widens significantly at large

Wilson coefficients due to the impact of theoretical uncertainties. Our bounds on Z-pole

shift contributions from the SMEFT are competitive with bounds arising from low-energy

precision data [9]. Projecting the precision data constraints into this plane is difficult, and

the interplay between theoretical errors at high and low energies is not yet fully understood,

but we have verified that some points which are allowed under the most restrictive methods

applied (with large caveats about their overly aggressive nature) in [9] are constrained by

these results already with just 100 fb−1 of data.

In figure 3 we have calculated the 1σ regions which result from our LHC measurements,

and overlaid the 1σ LEP allowed regions for a single operator at a time for all operators that

are relevant to this process. We have highlighted a few for particular discussion, but the

overall impression should be that the LHC results at high luminosity will add significant

information in this space. The one-at-a-time approach is needed here to constrain the

impact on the LHC data to the purely-shift space; allowing all operators would necessitate

6The generalizability of this result to other final states is far from obvious.
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Figure 3. 1σ constraints from our proposed LHC measurements in the same space as figure 2,

zoomed in on the SM-like point. 1σ constraints from LEP and other low-energy data as reported

in [9] are overlaid for each operator contributing to the LHC process, considered one-at-a-time.

Because of the linearity of the leading-order calculation, and the one-at-a-time operator approach,

these are straight lines of allowed points. Highlighted in red, green, purple, and blue are the

operators QHd, QHl1, QHWB , and QHe, respectively.

moving in a higher-dimensional slice of our parameter space, making visualization of the

impact much more difficult. Though these operators already impact both the Z-pole and

high-energy shift functions, the absence of meaningful constraint on the high-energy shifts

implies that the two-dimensional projection rendered here does fairly represent the expected

reach of LHC data.

Note that the LEP constraints on single operators, even those aligned very similarly in

our parameter space, do not trivially map in to one another, giving evidence of the differing

orientation in Wilson coefficient space of the LHC measurement with respect to the LEP

measurements. In fact, some very similarly-oriented bounds are nonetheless appreciably

shifted in the (c
(shift)
fwd,Z , c

(shift)
bwd,Z) plane relative to each other. The impact of LHC data on these

regions, still considering the operators one-at-a-time, is different for distinct operators. For

example, QHd (highlighted in red) is not appreciably more constrained by LHC data than

LEP, while other operators, notably including the S-parameter operator QHWB, would

be significantly constrained by high-luminosity LHC data, and in fact their constraints

are already slightly improved in the presence of an appropriate analysis of the currently

available ∼ 100 fb−1 of LHC data.
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5 Results and outlook

We have demonstrated that it is possible to derive bounds on both direct, four-fermion

operator contributions and shift-type operator contributions to dilepton production at the

LHC simultaneously. The simultaneous analysis does not significantly dilute the strength

of bounds on energy-growing four-fermion interactions as explored in [19] (and improved

on here by the inclusion of additional data in the form of muonic events), and the bound

on shift type operators from the LHC forward-backward asymmetry are competitive with

those arising from LEP and other lower-energy data. We note also that the particular linear

combinations of operators which contribute to forward and backward shift-type contribu-

tions at the LHC are distinct from those at LEP due to the parton distribution function

effects of the proton-proton initial state, making these constraints complementary to those

which can be derived from Z-pole studies.

This furthers the ultimate goal of developing sufficient observables, calculated consis-

tently in the SMEFT, to constrain a reasonably-defined parameter space of the theory, by

giving two new directions of constraint, corresponding to the SM parameter shift directions,

which are linearly independent from those bounded by previous measurements, and updat-

ing the constraints on direct four-fermion operator contributions to dilepton production at

the LHC. The eventual output of work in this vein must be a global fit of all available data

to the SMEFT which yields a region in Wilson-coefficient space that is ruled out by the

totality of measurements made, which will be of use in directing future model building and

experimental efforts towards the regions which are less constrained by the set of precision

measurements already made.

Producing those bounds in a way that is conservative enough to make them, at worst,

much more difficult to evade by creative model-building will lead to a tool of utility com-

parable to the output of the LEP Electroweak Working Group. Such a construction is

able to serve a first line of analysis for new models in comparing their effect on precisely-

measured SM processes to the data at multiple energy scales with minimal work on the

part of the model builder. Utilizing theory errors of the type employed here is central

to this becoming a broadly-used tool rather than a result which is of interest only to its

immediate practitioners.
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Note added. As this article was nearing completion, ref. [40] appeared. This search

utilizes significantly more data, but is essentially predicated on treating the O
(

1
Λ4

)
terms,

discussed here as a probe of theoretical uncertainties in the SMEFT, as part of the sig-

nal function. This choice renders the study much less usable than the previous [32] for

producing theoretically consistent bounds on the SMEFT.
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A Parton-level derivation of possible shift operator behaviors at O
(

1
Λ2

)
Additional SMEFT effects on dilepton production arise due to operators which alter the

extraction of the couplings of renormalizable operators from input measurements (such as

MZ , α,GF ) relative to their SM values; two such input schemes have been investigated in

detail [20]. These affect the dilepton rate by altering the couplings by terms proportional to
v2

Λ2 .7 However, due to the presence of the two Higgs vevs in this expression, these effects do

not grow with energy relative to the SM cross section in the same way that the four-fermion

operators do.

Given that these effects present themselves as numerical corrections to couplings in

purely-SM graphs, it is worth noting that there are two classes of graphs which contribute

to the Drell-Yan process in the SM: photon and Z boson s-channel exchange. The photon’s

properties are protected from correction in the SMEFT by the unbroken gauge symmetry,

so all of our corrections affect only the Z-exchange graph. Concretely, the parton-level

differential cross-section for pp→ e+e− can be written as:

dσ̂q

d cos θ̂
=

(
g4ŝ

4πc4
WNC((m2

Z − ŝ)2 + Γ2
Zm

2
Z)

){
F1(cos θ̂)GZq

1 + F2(cos θ̂)GZq
2

}
+

(
e2g2(ŝ−m2

Z)

16πc2
WNC((ŝ−m2

Z)2 + Γ2
Zm

2
Z)

){
F1(cos θ̂)GAq

1 + F2(cos θ̂)GAq
2

}
+

(
e4

32πNC ŝ

){
F1(cos θ̂)Q2

eQ
2
q

} (A.1)

where we defined the two spectra F1(z) = 1 + z2 and F2(z) = z. The distribution F2(z)

is anti-symmetric about θ = π/2, reflecting its contribution to the asymmetry in forward

and backward scattering processes. However, it integrates to zero for θ between 0 and π,

and therefore does not impact the total production cross-section. By contrast, F1(z) is

symmetric about θ = π/2, and always positive; it does not contribute to the asymmetry,

but does impact the total cross section. The forward and backward distributions studied

here correspond to the distributions F1 + 2F2 and F1 − 2F2, respectively.

The pure Z-exchange processes reference the SM coupling combinations GZq
1 = (a2

e +

v2
e)(a2

q + v2
q )/8 and GZq

2 = (aeveaqvq). The photon-Z interference graphs likewise feature

the products GAq
1 = (QeQqvevq) and GAq

2 = 2(QeQqaeaq). We express the effect of the

shifts induced by the SMEFT operators by introducing corrections to the combinations

GV q
i . They are:

GV q
i = G

V q(0)
i +

v2

Λ2
δGV q

i . (A.2)

Using the input parameters α̂EW = 1/137.035999074, ĜF = 1.1663787 · 10−5 GeV−2

and mZ = 91.1975 GeV, we can write the linear combinations of operators at order

7Note that we define shift effects to be all those which have this property; they do not all need to arise

due to the redefinition of SM parameters in terms of input measurements, though that is a common and

important source.
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v2/Λ2 as:

103 · δGZu
1 =− 1.3CHWB − 0.9CHD − 1.CHe + 1.3C(1)

Hl − 2.1C(3)
Hl − 1.4C(1)

Hq

+ 1.4C(3)
Hq + 0.6CHu + 1.7Cll

103 · δGZu
2 =− 5.9CHWB − 1.5CHD + 1.4CHe + 2.C(1)

Hl − 3.9C(3)
Hl − 0.8C(1)

Hq

+ 0.8C(3)
Hq − 0.3CHu + 2.9Cll

103 · δGZd
1 =− 1.3CHWB − 0.3CHd − 1.CHD − 1.3CHe + 1.7C(1)

Hl − 2.4C(3)
Hl

+ 1.7C(1)
Hq + 1.7C(3)

Hq + 2.Cll

103 · δGZd
2 =− 8.5CHWB + 0.2CHd − 2.2CHD + 2.4CHe + 3.2C(1)

Hl − 5.4C(3)
Hl

+ 1.C(1)
Hq + 1.C(3)

Hq + 4.3Cll

(A.3)

where we have factored a numerical coefficient 10−3 for readability. Due to the experimental

indistinguishability of jets initiated by up-type and down-type quarks at the LHC, only a

PDF-weighted sum of the shifts for those two types of quarks is measurable at the LHC.

This leaves two distinguishable distributions arising due to pure Z-exchange.

For the photon-Z interference cross-section, the shifts come with much larger coeffi-

cients. Most of this is however due to the normalization of the second term in eq. (A.1)

being different. To compare the shifts to the ones in eq. (A.3), we need to multiply them

with an additional factor of λ = ĉ2
W ŝ

2
W /4. Even then of course, they are only comparable

for ŝ� m2
Z . We then obtain:

103 ·λ· δGAu
1 =− 2.6CHWB − 0.6CHD + 0.8CHe + 0.8C(1)

Hl − 1.6C(3)
Hl − 0.3C(1)

Hq

+ 0.3C(3)
Hq − 0.3CHu + 1.2Cll

103 ·λ· δGAu
2 =− 1.7CHD − 3.5CHe + 3.5C(1)

Hl − 3.5C(3)
Hl − 3.5C(1)

Hq + 3.5C(3)
Hq + 3.5CHu + 3.5Cll

103 ·λ· δGAd
1 =− 1.9CHWB + 0.1CHd − 0.4CHD + 0.6CHe + 0.6C(1)

Hl − 1.1C(3)
Hl

+ 0.1C(1)
Hq + 0.1C(3)

Hq + 0.9Cll

103 ·λ· δGAd
2 =− 1.7CHd − 0.9CHD − 1.7CHe + 1.7C(1)

Hl − 1.7C(3)
Hl + 1.7C(1)

Hq + 1.7C(3)
Hq + 1.7Cll

(A.4)

The Wilson coefficients of these operators, evaluated at the scale µ = mZ , are tightly

constrained by electroweak precision tests.

The numerator (ŝ −m2
Z) in the photon-Z interference term suppresses action of the

associated operators near the Z-pole, where the pure Z-exchange processes experience

resonant enhancement. The two distinguishable linear combinations from pure Z-exchange

are thereby isolated in scattering measurements at this light scale. At high energy, (ŝ �
m2

Z), the two distinguishable operator combinations associated with photon-Z interference

also become important, and the prospect arises of experimentally disentangling effects

which are linear independent of those near the electroweak scale. In conjunction, four

distinct limits may be probed in all.
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