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Dynamics of quantum Hall interfaces
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A quantum Hall (QH) interface is different from an ordinary QH edge, as the latter has its location determined
by the confining potential, while the former can be unpinned and behave like a free string. In this paper, we
demonstrate this difference by studying three different interfaces formed by (i) the Laughlin state and the
vacuum, (ii) the Pfaffian state and the vacuum, and (iii) the Pfaffian and the anti-Pfaffian states. We find that
stringlike interfaces propagating freely in the QH system lead to very different dynamical properties from edges.
This qualitative difference gives rise to fascinating physics and suggests a different direction for future research
on QH physics. We also discuss briefly possible analogies between QH interfaces and concepts in string theory.
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I. INTRODUCTION

Edge (and more generally, surface) states of quantum Hall
(QH) and other topological states of matter provide a window
to peek into the bulk topological properties of the system via
the principle of bulk/edge correspondence [1]. More gener-
ally, an edge can be viewed as a special case of an interface
between two different phases of matter, namely one of the
two phases is a vacuum. Recently, interfaces between dif-
ferent QH phases have been attracting considerable attention
[2–17]. While there is much similarity between edge and
interface states, the latter is considerably richer because its
physics depends on the topological properties of both phases.
Nevertheless, the theoretical framework used thus far in their
descriptions is the same.

The main purpose of the present paper is to address the
important qualitative difference between edges and interfaces
and explore its consequences. For a QH edge, its location is
usually determined by the confining potential that holds the
electrons to form a QH liquid. This potential also determines
the edge state spectrum and other static and dynamical prop-
erties of the edge [18]. The situation becomes very different
for interfaces. To illustrate this point, consider magnetic do-
mains of an Ising ferromagnet, in which the domain walls
are the analogs of our interfaces. Due to the degeneracy of
the two polarizations, the domain walls are free to move.
While in reality the interfaces may be pinned by disorder or
other extrinsic perturbations, there is no analog of the edge
confining potential in the idealized limit. In such a limit,
the interface becomes an extended stringlike object free to
move in the (2 + 1)-dimensional space time [19]. Similarly,
different QH phases may be realized in different regions of
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the sample. A prominent example of strong current interest is
the fractional QH state at filling factor ν = 5/2 in GaAs het-
erostructures [20,21], where the leading candidates, Pfaffian
and anti-Pfaffian states, are exactly degenerate in the ideal-
ized limit (where particle-hole asymmetry and other extrinsic
effects are absent). In this limit pinning effects of the domain
walls disappear, and they are more appropriately described as
stringlike interfaces. On one hand, the low-energy physics of
the system is still governed by area-preserving deformations
of the QH liquid [22,23], which are also known as edge waves
[24]. On the other hand, the stringlike nature of the interface
significantly alters the spectra of the excitations and gives
rise to fascinating physics. We believe the stringlike nature
of interfaces can play a fundamental role in understanding
certain QH states. This viewpoint motivates our work.

In this paper, we study theoretically and numerically the
low-energy excitation spectra of three different QH interfaces.
In Sec. II, we consider an interface between the Laughlin state
at the filling factor ν = 1/m and the vacuum. This simple
setup allows us to revisit the physics of edge waves. We high-
light the qualitative difference between low-energy excitations
between free interfaces and pinned edges. In the special case
of m = 1, we provide a detailed analytic calculation of the
effective string tension and compare it with our numerical
results. Then, we discuss in Sec. III the interface between the
Pfaffian (also known as Moore-Read) state and the vacuum.
Interestingly, we find that the energy scales of different types
of excitations show an opposite hierarchy as compared to the
low-energy spectrum of a pinned Pfaffian edge. Furthermore,
we provide a theoretical analysis of the interface between
Pfaffian and anti-Pfaffian states in Sec. IV. The understanding
of this interface can be a crucial step to reveal the underlying
nature of the ν = 5/2 fractional QH state. Specifically, we
point out a more suitable description of the interface and
clarify its difference from the usual description of pinned
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FIG. 1. Illustration of a quantum Hall droplet (left panel) in the
ground state and in the presence of edge excitations, which can
be understood as a distortion of its boundary (or edge wave) that
preserves the area of the droplet (right panel).

domains in existing literature. Finally, we summarize our
work in Sec. V and outline briefly the possible analogies
between QH interfaces and different concepts in string theory.
Some technical details of calculation are given in the two
appendices.

II. INTERFACE BETWEEN LAUGHLIN STATE
AND VACUUM

A. Low-energy effective theory

Let us start with the simple interface that separates a
Laughlin state at filling factor ν = 1/m and the vacuum [25].
When m > 1 is odd (even), the Laughlin state describes frac-
tional QH state of fermions (bosons) in the lowest Landau
level. The Lagrangian describing the interface takes the form

L = L0 − H, (1)

where the Hamiltonian H is nonuniversal and distinguishes
between an edge and an interface. Meanwhile,

L0 = − m

4π

∫
dx(∂tφ∂xφ) (2)

is a topological term [26]. Here, x labels the coordinate along
the edge or interface, and φ(x, t ) is the chiral (right-moving)
bosonic field. The physical meaning of φ(x, t ) is determined
by

ρ(x) = ρ0u(x) = ∂xφ

2π
, (3)

with u(x) being the local distortion of the position of the
edge/interface as illustrated in Fig. 1. The corresponding 1D
electron density variation along the edge/interface is denoted
as ρ(x) [1]. We also use ρ0 = ν/(2π�2) to denote the 2D elec-
tron density at Landau level filling factor ν, where � = √

1/eB
is the magnetic length with h̄ = c = 1.

We briefly review the edge excitations of the Laughlin state
here. The ν = 1/m QH liquid is formed by filling regions of
low potential, which determines the shape and in particular
the location of the edge [1]. The energy cost of the distortion
of edge comes from the potential energy cost. It takes the form

He = ρ0

2

∫
dxE (x)u2(x), (4)

where E (x) is the (local) electric field at the edge that confines
the electrons. Note that the electron charge is set to unity.
For translational or rotational invariant edges, E is a constant.

Quantizing He using Eq. (2) leads to the familiar linearly
dispersing chiral boson edge mode [26].

Now, let us consider a physically very different case where
the ν = 1/m droplet is formed spontaneously due to attractive
electron-electron interaction. Instead of filling some potential
landscape, we now assume there is no external potential. In
this case, the edge is more appropriately understood as the
interface between the ν = 1/m QH phase and the ν = 0 phase
(or vacuum). Since this is a one-dimensional object, we will
also refer to it as a string for reasons that will become clear
soon. Different from edges, the energetics of the stringlike
interface is no longer determined by Eq. (4). Instead, it is set
by the surface energy [27] which depends on the total length
of the string [28],

Hs = σ

2

∫
dx(∂xu)

2. (5)

The symbol σ labels the effective string tension or surface
energy density. Quantizing Hs (see Appendix A) gives rise to
a chiral bosonic interface mode with a cubic dispersion:

ω(k) = σ

2πmρ2
0

k3 = σm(2π�)�3k3. (6)

B. String tension for ν = 1 integer QH interface

The value of σ can be determined from the finite-size
correction in the ground state energy of the QH liquid. For
a general Laughlin state at ν = 1/m, such an analytic calcula-
tion turns out to be challenging. The interface simplifies into
an integer QH interface in the special case of m = 1. Here,
we consider this simple (yet important) case and model the
attractive electron-electron interaction by a single Haldane
pseudopotential [1],

V = V1
∑
i< j

P l=1
i, j , (7)

with V1 < 0. The operator P l=1
i, j projects the many-body wave

function to the state, in which the two particles i and j have a
relative angular momentum one [29]. It may be impractical to
realize a single-order Haldane pseudopotential and attractive
interaction between electrons in strongly correlated electronic
systems. At the same time, dilute ultracold atomic gases in
rapidly rotating traps (in the lowest Landau level regime)
provide a feasible platform to realize such an attractive in-
teraction [30]. In particular, the interaction in an ultracold
one-component Fermi gas is dominated by the p-wave scatter-
ing, with all other components being strongly suppressed [31].
In the lowest Landau level regime, this interaction translates
into the V1 pseudopotential [32]. The p-wave interaction is
usually very weak but becomes more significant in dipolar
gases [33] and favors the formation of QH states [34–37].
Furthermore, the technique of Feshbach resonance enables
one to tune the p-wave scattering length between atoms and
hence their interaction [38,39]. It also enables one to tune
the scattering length to a negative value and realize an attrac-
tive interaction. Given the high tunability, it is hopeful that
the ν = 1 and other interfaces can be realized in cold atom
systems.
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Suppose the QH droplet has N electrons, then the unnor-
malized many-body wave function is [1]


(z1, · · · , zN ) =
∏
i< j

(zi − z j ) exp

[
−

N∑
i=1

|zi|2
4�2

]
. (8)

In principle, one may calculate 〈V 〉 for any value of N from
Eqs. (7) and (8), but the calculation is not straightforward.
Using an alternative approach, we are able to evaluate 〈V 〉
analytically (see Appendix B) and obtain

〈V 〉 = NV1
2

[
4 − 1

4N−2

(2N − 1)!

(N − 1)!N!

]
. (9)

To study the finite-size correction in 〈V 〉, we examine the
asymptotic behavior of 〈V 〉 as N → ∞. By applying the Stir-
ling’s approximation, one obtains

〈V 〉 = 2NV1 − 4V1√
π

√
N + O

(
1√
N

)
. (10)

The first term is the result in the thermodynamic limit,
which is negative when V1 < 0. It supports the spontaneous
formation of the ν = 1 QH liquid due to the attractive
electron-electron interaction. Meanwhile, the second term is
positive and corresponds to the surface energy in the finite
size system. The boundary effect is reflected in the

√
N de-

pendence. For a disk-shaped QH droplet at ν = 1, its area
is 2Nπ�2 and the corresponding circumference is

√
8Nπ�.

Since the surface energy is proportional to the total length of
the boundary due to the stringlike behavior, the effective string
tension σ is

σ (
√
8Nπ�) = 4|V1|

√
N√

π
. (11)

Finally, we obtain

σ =
(
2

π

)3/2 |V1|
2�

. (12)

From the above result and Eq. (6), we determine the dispersion
of the bosonic mode in the ν = 1 interface,

ω(k) =
√

8

π
|V1|�3k3. (13)

The same dispersion was derived from hydrodynamic theory
[27] and theW1+∞ algebra [40]. From the dispersion, the re-
sult of σ in Eq. (12) was also deduced in Ref. [27], but most of
the details of the calculation were skipped there. Our analytic
calculation fills the gap and confirms the result. In ordinary
edges the string tension is subdominant to the confining poten-
tial, which gives rise to a linear edge mode. Nonetheless, the
string tension dominates the energetics of stringlike interfaces
and leads to the interface mode with a cubic dispersion. This
qualitative difference between interface and edge excitations
may be probed by measuring the low-temperature specific
heat c(T ). Notice that T stands for temperature. Specifically,
one expects c(T ) ∼ T 1/3 in an interface instead of a linear-T
dependence in an edge.
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FIG. 2. Ground state energy of the ν = 1 integer QH interface as
a function of electron number N . An attractive two-body interaction
between electrons is included by setting V1 = −1 in Eq. (7). Here,
we fit the numerical data with the equation, 〈V 〉 = −2.0003N +
2.265

√
N − 0.08815. The result agrees with Eq. (10) very well.

C. Numerical studies for the ν = 1 integer QH interface

Although previous numerical work has confirmed the ex-
istence of nonlinear excitations from edge deformations [41],
it remains desirable to verify the predicted value of the string
tension. Motivated by this, we perform exact diagonalization
to obtain the ground state energy and the low-energy exci-
tation spectrum of the ν = 1 integer QH interface. In the
simulation, we set the two-body interaction in the form of
Eq. (7) with V1 = −1. We consider the QH liquid in a disk-
shaped geometry. The numerical results for the ground state
energy when the system has N = 85–99 electrons are plotted
in Fig. 2. First, we find that the numerical values agree with
the analytic expression in Eq. (9). Also, we can fit the data
very well by the expression 〈V 〉 ≈ −2.0003N + 2.266

√
N −

0.08815 as shown in the figure. Since both the coefficients
of the N and

√
N terms are very close to 2V1 and −4V1/

√
π ,

respectively, the asymptotic form of 〈V 〉 in Eq. (10) is verified.
In addition, we check the cubic dispersion for the bosonic

interface mode in Eq. (6). Since we are considering a disk-
shaped geometry and applying the symmetric gauge, angular
momentum M is the good quantum number to label different
electron orbitals. Hence, we need to relate the change in linear
momentum δk and the change in angular momentum �M of
the system before we can discuss the excitation spectrum of
the interface. For the ν = 1 integer QH liquid in the ground
state, it has a radius R0 = √

2N� and a total angular momen-
tum M0 = N (N − 1)/2. For the sake of mimicking a smooth
edge, the excitations in angular momentum subspace M =
M0 + �M need at least N + �M orbitals. As a result, the
radius of the QH liquid is increased to R = √

2(N + �M )�.
The value of δk can be determined from δM as

δk 	 R − R0

�2
	 �M√

2N

1

�
. (14)

Note that the relation only holds in the limit �M 
 N . In our
numerical simulation, �M = 0–7, and the number of elec-
trons in the system ranged from N = 40–99. Hence, Eq. (14)
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FIG. 3. The energy dispersion of the ν = 1 integer QH interface
with an attractive two-body interaction. Here, the system sizes range
from 40 to 99 electrons. The change in energy �E (in units of e2/ε�)
is plotted as a function of the additional momentum δk. The inset
shows a log-log plot of the results in the small δk region. We have
collapsed our numerical results of the highest energy branch obtained
from different system sizes into a single curve. Such curve is fit to the
theoretical results, Eqs. (6) and (12). For comparison, we also fit the
same set of data to another curve with an adjustable coefficient 0.894.

is justified. We will use it to determine δk in the following
discussion.

By considering systems with N = 40–99 electrons, we
plot the low-energy excitation spectrum of the interface as a
function of δk in Fig. 3. Similar to the lowest energy branch
in FQH edges [42,43], here we find the highest excitation
energies for each momentum of different systems collapse to
a single curve; they correspond to the edge wave spectrum
in our case. In the figure, �E = E − E0 where E0 given by
Eq. (9) stands for the ground state energy of the system. Here,
�E is measured in units of e2/ε�, with ε being the dielectric
constant of the system. From the figure, we find a zero energy
mode in the lowest energy branch independent of the system
size. This trivial mode comes from the center of mass motion.
Importantly, we find that �E in the highest energy branch fits
reasonably well to the dispersion relation ω(k) = (

√
8/π )k3.

The inset of Fig. 3 highlights numerical results in the small
δk region. Our numerical result verifies the cubic dispersion
of the bosonic interface mode. It also verifies the effective
string tension obtained from analytic calculation. Meanwhile,
we found no signature of linearly dispersing bosonic modes,
which clearly demonstrate the important qualitative difference
between edge and interface excitations.

III. INTERFACE BETWEEN THE PFAFFIAN STATE
AND VACUUM

A. Theoretical considerations

The previous section has set the stage for us to consider
other (more) interesting interfaces. Here, we consider the
interface between the Pfaffian (Moore-Read) state [44] and
the vacuum. The Pfaffian state is well known for hosting non-
Abelian anyons which may be useful in topological quantum

computation [45]. It has a ground state wave function [44],


MR(z1, z2, · · · , zN )

= Pf

(
1

zi − z j

) ∏
1�i< j�N

(zi − z j )
m exp

[
−

N∑
i

|zi|2
4

]
,

(15)

for a general filling factor ν = 1/m. Here, the notation Pf
stands for the Pfaffian of the antisymmetric matrix with ma-
trix elements Ai j = 1/(zi − z j ). Physically, this Pfaffian factor
comes from the Bardeen-Cooper-Schreiffer pairing of com-
posite fermions in the chiral p+ ip channel [46]. Such a
pairing leads to an additional Majorana fermion mode coprop-
agating with the chiral bosonic mode along the interface [47].
The Pfaffian interface is still described by the Lagrangian in
Eq. (1) with L0 given by [47]:

L0 =
∫

dx
(
− m

4π
∂tφ∂xφ − iψ∂tψ

)
. (16)

Here, ψ (x, t ) denotes the chiral Majorana fermion mode.
Different from Laughlin states, the Pfaffian state provides a
possible description of the QH state of fermions (bosons)
when m is even (odd). Besides the famous case m = 2, pre-
vious work has suggested that the Pfaffian state of bosons at
ν = 1 may be realized in cold atom systems [48–53]. This
state is the exact zero-energy ground state of the three-body
interaction,

H3B = V3B
∑
i< j<k

δ(ri − r j )δ(r j − rk ). (17)

In a real sample, H3B can be a consequence of the Landau-
level mixing effect.

In addition to H3B, we assume there is an attractive two-
body interaction between the bosons, so that a Pfaffian droplet
can be formed spontaneously. As a simple example, we con-
sider the Haldane pseudopotential,

V = V0
∑
i< j

P l=0
i, j , (18)

with V0 < 0. It is expected that the bosonic mode φ still
satisfies a cubic dispersion since its excitations still originate
from deforming the interface. Although we have not obtained
an analytic result of the string tension for the Pfaffian inter-
face, it should be different from Eq. (12). For the additional
Majorana fermion mode, it gives rise to fermionic excitations
of the interface. Importantly, such excitations do not come
from the deformation of interface. Instead, they come from
the breaking of Cooper pairs of composite fermions [47]. It is
reasonable to guess the fermionic and bosonic interface modes
have different dispersions and energetics. As we are going to
demonstrate, such an intriguing feature is indeed validated by
our numerical results. Note that the above feature should also
exist in a Pfaffian interface with m > 1.

B. Numerical studies of the ν = 1 Pfaffian interface

We assume each low-energy excitation of the interface can
be described by a collection of bosonic and fermionic exci-
tations and their convolution. For the bosonic excitation with
an integer angular momentum lb, its energy is εb(lb). Such a
bosonic mode can be occupied by nb(lb) bosons. Similarly, we
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TABLE I. Possible configurations of �M ranging from 0 to 5. Here, we classify the configurations as pure bosonic mode (nf = 0), pure
fermionic mode (nb = 0), and the convoluted mode (nb �= 0, nf �= 0). The corresponding numbers of different configurations for each �M
(counting number) are listed in the rightmost column.

�M Bosonic mode configurations Counting number

0 0 1
1 1 1
2 2, 1+1 2
3 3, 2+1, 1+1+1 3
4 4, 3+1, 2+2, 2+1+1, 1+1+1+1 5
5 5, 4+1, 3+2, 3+1+1, 2+2+1, 2+1+1+1, 1+1+1+1+1 7

�M Fermionic mode configurations Counting number
0 null null
1 null null
2 1

2 + 3
2 1

3 1
2 + 5

2 1
4 1

2 + 7
2 ,

3
2 + 5

2 2
5 1

2 + 9
2 ,

3
2 + 7

2 2

�M Convoluted mode configurations Counting number
0 null null
1 null null
2 null null
3 1 + 1

2 + 3
2 1

4 2 + 1
2 + 3

2 , 1 + 1 + 1
2 + 3

2 , 1 + 1
2 + 5

2 3
5 3 + 1

2 + 3
2 , 2 + 1 + 1

2 + 3
2 , 1 + 1 + 1 + 1

2 + 3
2 , 2 + 1

2 + 5
2 , 1 + 1 + 1

2 + 5
2 , 1 + 1

2 + 7
2 , 1 + 3

2 + 5
2 7

denote the energy of a fermionic excitation as ε f (l f ), which
has a half-integer angular momentum l f . Different from nb(lb)
which can be any non-negative integer, each fermionic mode
can only accommodate n f (l f ) = 0, 1 fermion due to the Pauli
exclusion principle. Note that the total fermion occupation
number

∑
l f
n f (l f ) must be even. It is because an even number

of Majorana fermions are produced by breaking Cooper pairs
of composite fermions. Based on the above description, the
energy of a low-energy excitation of the Pfaffian interface is
given by

�E =
∑
lb

nb(lb)εb(lb) +
∑
l f

n f (l f )ε f (l f ). (19)

�E = E − E0 carries the same physical meaning as in the
previous case. Furthermore, the change in total angular mo-
mentum of the system from M0 is

�M =
∑
lb

nb(lb)lb +
∑
l f

n f (l f )l f . (20)

Here,M0 = N (N − 2)/2 is the total angular momentum of the
ground state of the Pfaffian droplet with N bosons. Since our
simulation is limited to �M = 0–5, low-energy excitations
obtained from the simulation can be associated to any one of
the possible configurations listed in Table I.

We perform exact diagonalization to study numerically the
excitation spectrum of the Pfaffian interface. In the simulation,
we set H3B = 2π2�4

∑
i< j<k δ(ri − r j )δ(r j − rk ). The prefac-

tor 2π2�4 is chosen to ensure the three-body pseudopotential
is properly normalized. For the attractive two-body interac-
tion, we set V0 = −1 in Eq. (18). The mixed Hamiltonian that
we diagonalize takes the form

H = H2B(V0) + λH3B. (21)

The parameter λ is set to a very large number (essentially infi-
nite) so that the Pfaffian state becomes energetically favorable.

Let us first focus on the results from the system with
N = 10 bosons in a total number of 14 possible orbitals.
After diagonalizing the mixed Hamiltonian H , we obtained
the energy spectrum as shown in Fig. 4. Specifically, the
numerical results of �E for different excited states are shown
as red solid lines in the figure. When we count the total
number of excitations at each value of �M, we obtain the
sequence 1, 1, 3, 5, 10, 16. This result agrees with the total
counting numbers in Table I by including all three types of
excitations. It is desirable to analyze the spectrum in more
detail and classify each excitation as pure bosonic, or pure
fermionic, or the convoluted type. We follow the analysis
in Ref. [54] closely and apply Eq. (19) to fit our numerical
results of�E . The results from the analysis are also illustrated
in Fig. 4, next to the numerical results. Similar to the case
of Pfaffian edge, we find that the energy spectrum of the
Pfaffian interface also separates into two sections. This sep-
aration occurs at around �E = 0.4e2/εl . For the low-energy
section with �E < 0.4e2/εl , those excitations are identified
as pure bosonic. In other words, only the bosonic interface
mode φ is excited due to the deformation of the interface.
One may also count the numbers of such low-energy states
for each value of �M. This gives 1, 1, 2, 3, 5, 7, which match
precisely the counting numbers for pure bosonic modes in
Table I. Since there is no confining potential of the QH liquid,
it costs zero energy to excite the center of mass mode. Thus,
we have εb(lb = 1) = 0. For the high-energy section with
�E > 0.4e2/ε�, the excitations are either pure fermionic or
the convoluted type. More specifically, we discover the pure
fermionic excitations have the highest energy scale, whereas
the convoluted type of excitations have their energy scale in
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FIG. 4. Low-energy excitations �E (�M ) from exact diagonal-
ization of the mixed Hamiltonian in Eq. (21). Here, we included N =
10 bosons and 14 orbitals in the simulation. Fitting the numerical
results with Eq. (19) classifies different excited states of the interface
as having only bosonic excitations, or only fermionic excitations,
or a mixture of both excitations. These are labeled by blue dashed
bars, green dot-dash bars, and black dotted bars, respectively. For a
better visualization, we transverse all the fitted bars to the right by
�M = 0.5. The numbers on thicker bars represent the degeneracy
of the degenerate states and the unlabelled ones are nondegenerate
states.

between the pure fermionic and the pure bosonic excitations.
It is very striking to point out that this hierarchy of energy
scales is opposite the one in the Pfaffian edge (for fermions in
the half-filled Landau level) pinned by a confining potential
[42,43,54]. There, the highest energy scale is occupied by pure
bosonic modes, whereas the pure fermionic modes have the
lowest energy scale. We will get back to this point later.

To have a better understanding of the energetics, we in-
vestigate the energy dispersions of the low-energy excitations
in the ν = 1 Pfaffian interface. The mixed Hamiltonian in
Eq. (21) for systems with 6, 8, and 10 bosons were diag-
onalized. Using Eq. (14), we convert �M into δk and plot
the numerical results of �E (δk) with different system sizes
in Fig. 5. A numerical fitting reveals the highest branch of
the pure bosonic excitations (originating from the bosonic
interface mode) still satisfies a cubic dispersion. This is also
illustrated in the same figure. Consistent with our theoretical
prediction, the dispersion is not identical to the one in ν = 1
integer QH interface of electrons. In the present case, we ob-
tain the fitting curve as ωb(δk) ≈ 0.15δk3. This result allows
us to predict the effective string tension of the ν = 1 Pfaffian
interface:

σMR ≈ 0.15

2π

|V0|
�

, (22)

where the linear dependence inV0/� is deduced from a simple
dimensional analysis. In contrast to the bosonic excitations,
our numerical data show that pure fermionic excitations (orig-
inating from the Majorana fermion mode along the interface)
satisfy a linear dispersion. We obtain the corresponding best
fit line as ω f (δk) ≈ 0.98δk. A simple dimensional analysis
suggests that the speed of the fermion mode v f ∼ |V0|� (with

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 0  0.3  0.6  0.9  1.2  1.5

ΔE
(e
2
/ε
l)

δk

N   6
N   8
N 10

0.15095δk3

0.982667δk

FIG. 5. The energy dispersion of the ν = 1 Pfaffian interface
with an attractive two-body interaction and a large repulsive three-
body interaction. Numerical results for system sizes N = 6, 8, 10
are marked by squares, circles, and triangles, respectively. Different
energy states are classified as having pure fermionic (blue filled
points), pure bosonic (red filled points), and convoluted (purple open
points) excitations. Data points in the lower energy branches are
recognized as pure bosonic mode with the fitting function ω(δk) =
0.150953 · δk3. The top branches of the higher energy section are
fermionic mode with a linear fitting ω(δk) = 0.98266 · δk. Note that
the linear momentum is determined from δk = �M/

√
2N�. See the

main text for more details.

h̄ = 1). However, a detailed theory to explain the energetics
is still lacking, going back to the hierarchy of energy scales
in different types of excitations. Since we focus on the low-
energy excitations at small δk, the cubic dispersion of the
bosonic interface mode strongly reduces its energy compared
to the fermionic mode. It is not surprising that a crossover
between these two energy scales may occur at a larger value
of δk, which has not been reached by our simulation.

IV. INTERFACE BETWEEN PFAFFIAN
AND ANTI-PFAFFIAN STATES

In this section, we provide a theoretical analysis of the
interface between the Pfaffian and the anti-Pfaffian (APf)
states [4,55]. The APf state is the particle-hole conjugate of
the Pfaffian state [56,57], which was introduced as another
candidate to describe the fractional QH state at ν = 5/2 in
GaAs heterostructures [20,21]. However, neither of them can
explain all existing experimental results in a natural way.
Motivated by this, Wan and Yang introduced an intermediate
state, which consists of alternating Pfaffian and APf stripes in
the bulk of a realistic sample [4]. This idea was later modified
to explain the “unexpected” result from thermal Hall conduc-
tance experiment [58]. In particular, mesoscopic puddles of
Pfaffian and APf domains can form in the bulk of a realistic
sample due to the presence of disorder [5–7]. This proposal
has been substantiated by a recent work, which pointed out
that the formation of Pfaffian-APf domain walls may be en-
ergetically favorable in realistic samples [9]. In the idealized
limit of vanishing Landau-level mixing effect and no disorder-
mediated density modulation, the APf and Pfaffian states are
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(a) (b)

FIG. 6. (a) The original modes in the Pfaffian and anti-Pfaffian
edges. (b) The resulting modes in the Pfaffian-anti-Pfaffian interface
due to a relevant electron-pair tunneling across the edges. See the
main text for the details of each mode.

exactly degenerate [56,57]. These symmetry-breaking effects
must exist in realistic samples, but they can be rather small.
The domain walls are still free to propagate rather than being
strongly pinned in the sample. In this scenario, it is more
appropriate to view the domain wall as a stringlike interface.

Here, we follow Refs. [4,55] and give a brief review of the
Pfaffian-APf interface. At the interface, the Pfaffian and APf
edges have opposite chiralities, which are described by the
Lagrangian [47,56,57],

L =
∫

dx

(
− 2

4π
∂tφp∂xφp − iψp∂tψp

)

+
∫

dx

(
1

4π
∂tφl∂xφl − 2

4π
∂tφa∂xφa − iψa∂tψa

)

− H. (23)

The first line describes the Pfaffian edge which has a bosonic
mode φp and a Majorana fermion mode ψp. The second line
describes the APf edge that contains two counterpropagating
bosonic modes φl and φa and a Majorana fermion mode ψa.
Finally, the Hamiltonian H describes the interaction between
different edge modes, which eventually determines the struc-
ture of the interface. By including electron-pair tunneling
between the edges, the two charge modes φl and φr = φp + φa

are gapped. In the presence of strong Coulomb interaction,
the tunneling process is relevant in the renormalization group
sense. As a result, the remaining gapless modes at the inter-
face are the neutral bosonic mode φn = φp − φa, and the pair
of Majorana fermion modes, ψp and ψa. The topological term
describing the interface modes is [4,55]

L0 =
∫

dx

(
− 1

4π
∂tφn∂xφn − iψp∂tψp − iψa∂tψa

)
. (24)

In Fig. 6, different modes in the original Pfaffian and APf
edges and the resulting interface are illustrated.

Now, it is important for us to emphasize the difference
between Eq. (24) and another common description in the
existing literature. It has been pointed out that there are four
copropagating Majorana fermions at the Pfaffian-APf domain
wall. Depending on how they are localized, different phases
can be realized in the bulk and at the edge of the system
[5–7]. This four-Majorana picture is a natural description for
pinned domains by disorder, which are usually assumed in the
existing literature. Naively, one may recover this description
by fermionizing φn into two Majorana fermions that have

the same chirality as ψp and ψa. However, our following
discussion suggests that Eq. (24) turns out to be a more natural
description of the Pfaffian-APf interface.

First, we show that φn satisfies a cubic dispersion due to
the distortion of the stringlike interface. Since φn = φp − φa,
we deduce its energy dispersion starting from

ρ1/2up(x) = up(x)

4π�2
= ∂xφp

2π
, (25)

ρ1/2ua(x) = ua(x)

4π�2
= ∂xφa

2π
. (26)

Here, ρ1/2 = (1/2)/(2π�2) is the electron density in a half-
filled Landau level. The symbols up(x) and ua(x) denote the
local distortions of the positions of the original ν = 1/2 edges
in the Pfaffian and anti-Pfaffian edges, respectively. The sur-
face energy of the interface is

Hs = σ

2

∫
[∂xup(x) − ∂xua(x)]

2 dx. (27)

Combining Eqs. (25) and (26), we can write Hs as

Hs = σ

2

(
1

2πρ1/2

)2 ∫
dx

(
∂2
x φn

)2
=H0 + σ

(2πρ1/2)2
∑
k>0

k4φn,kφ
†
n,k . (28)

In the second equality, we have expanded φn(x) in the plane-
wave basis with Fourier modes φn,k . Using the commutation
relation [φn,k, φ

†
n,k′ ] = (2π/k′)δk,k′ , we obtain the energy dis-

persion for the interface mode φn:

ωn(k) = σ

2πρ2
1/2

k3 = σ (8π�)�3k3. (29)

Due to the above cubic dispersion relation, it is unnatural to
fermionize φn into two Majorana fermions. Thus, the four-
fermion picture is not the most suitable description of a
stringlike interface. Based on a density matrix renormalization
group calculation, the domain wall tension of the interface was
estimated as σ ≈ (2.2 × 10−3)e2/ε�2 in Ref. [9]. This value
is consistent with Ref. [8]. Hence, we predict the dispersion
for φn as ωn(k) ≈ (5.5 × 10−2)(e2/ε�)�3k3.

Next, we expect both ψp and ψa would satisfy linear dis-
persions. In a general scenario, we do not see any natural
reason for having a symmetry between ψp and ψa. Therefore,
they have different speeds, and their linear energy dispersions
are not identical. In addition, we believe the excitations with
the lowest energy scale are still pure bosonic excitations.
Since the interface has three different gapless modes, it is not
surprising that its spectrum can be quite complicated. Never-
theless, we believe all our predictions here can be checked in
future numerical work. In our opinion, such a checking will
be a crucial step to understand the nature of the Pfaffian-APf
domain wall and hence the underlying nature of the ν = 5/2
fractional QH state in a real sample.

V. SUMMARY AND OUTLOOK: MORE GENERAL
INTERFACES AND EDGE AS A D-BRANE

To summarize our work, we have studied three different
QH interfaces to highlight the qualitative differences between
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interfaces and edges. In ordinary QH edges, they are pinned
by confining potentials. On the other hand, the interfaces are
stringlike and free to propagate in the system. Such an inter-
face forms when the QH liquid is held together by attractive
interaction between particles. Despite the fact that both the
low-energy excitations of pinned edges and interfaces are
edge waves (area-preserving deformation of the QH liquid),
we showed that the bosonic interface mode satisfies a cubic
dispersion instead of the ubiquitous linear dispersion in edge
excitations. Our work shows that these excitations dominate
the low-energy physics of interfaces. This qualitative feature
may be probed in a low-temperature specific heat measure-
ment, which is expected to show c(T ) ∼ T 1/3.

In the simple case with a ν = 1 integer QH state held by an
attractive Haldane pseudopotential V1 < 0, we have derived
analytically the effective string tension of the interface. Our
numerical results confirm the theoretically predicted value
σ = (2/π )3/2|V1|/2�. The cubic dispersion of the bosonic
interface mode has also been verified by our numerical results.
Furthermore, we have studied numerically the low-energy
spectrum of the Pfaffian (Moore-Read) interface for bosons
at ν = 1, which is formed by including the two-body Haldane
pseudopotentialV0 < 0 and a large repulsive three-body inter-
action. Based on the numerical results, we made a prediction
to the string tension of the interface as (0.15/2π )|V0|/�. The
presence of the fermionic interface mode complicates the
spectrum but also makes it more interesting. By identifying
the nature of different excited states, we discovered the excita-
tions with the lowest energy scale correspond to pure bosonic
excitations, whereas the high energy scale is occupied by pure
fermionic excitations whose dispersion remains linear. Such a
hierarchy of energy scales is opposite to the one in a Pfaffian
edge [42,54].

Simple as they may be, much of our considerations also
apply to interfaces between different QH liquids, as long as
they are not pinned. This principle motivated us to consider
the interface between Pfaffian and anti-Pfaffian (APf) states.
Recent studies assumed the interfaces are pinned by disorder
potential [5–7], except for Ref. [4] which suggested the spon-
taneous formation of alternating Pfaffian and anti-Pfaffian
stripes, and corresponding interfaces. When the interaction
between different interfaces is ignored, the Pfaffian-APf inter-
face should demonstrate similar features of the two simpler
interfaces discussed above. In particular, we argue that the
neutral bosonic mode satisfies a cubic dispersion, whereas the
two Majorana fermion modes satisfy different linear disper-
sions. Based on the recent results of the domain wall tension
[8,9], we have predicted the cubic dispersion as ωn(k) = αk3

with α ≈ (5.5 × 10−2)(e2�2/ε). Such a nonlinear dispersion
suggests that one should not fermionize the neutral bosonic
mode into two Majorana fermions. Thus, the interface modes
should not be described as four copropagating Majorana
fermions. In fact, the picture of having one bosonic and two
Majorana fermion modes has been proposed in Refs. [4,55].
We hope our predictions can be verified in future numerical
simulations.

Finally, it is tempting to make analogy between quantum
Hall interfaces and different concepts in string theory. From
the nature of the interface modes, the Laughlin and Pfaffian
interfaces behave like bosonic string and superstring [59], re-

FIG. 7. Illustration of open strings (red lines) attached to a quan-
tum Hall edge (black circle) determined by confining potential.
Regions shaded with different colors are in different quantum Hall
phases. The edge plays a role very similar to a D-brane in string
theory.

spectively. In this paper, the interfaces we have considered can
only form closed strings. In more generic cases where an edge
(determined by confining potential) is also present, more fea-
tures can be observed. For example, the presence of the edge
allows one to include open strings by anchoring the interface
on the edge as demonstrated in Fig. 7. In this sense, the edge
plays a role like a D-brane [60] (more specifically a D1-brane
since the edge is one dimensional) in string theory. It is known
that the phase of the D-brane is sensitive to the state of the
open strings [60]. In the quantum Hall analogy, there is much
interest and debate on the relation between the interfaces and
edge state in the ν = 5/2 fractional QH state [4–9]. It will be
very interesting to pursue the analogy deeper and seek the pos-
sibility of using quantum Hall systems to study different ab-
stract concepts in string theory. We believe the present paper
provides a interesting perspective on this fascinating physics.
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APPENDIX A: DERIVATION OF THE CUBIC DISPERSION
FOR BOSONIC INTERFACE MODE

In this Appendix, we derive the cubic dispersion of the
bosonic interface mode. We start by writing φ(x) in the plane-
wave basis:

φ(x) =
∑
k

1√
L
eikxφk . (A1)

Here, L denotes the length of the interface. Since φ(x) is a
real field, the Fourier mode φk satisfies φ−k = φ

†
k . A direct
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substitution of Eq. (A1) in Eq. (5) gives

Hs = H0 + σ

(2πρ0)2
∑
k>0

k4φ†
kφk, (A2)

where H0 is a constant. For simplicity, we set H0 = 0 in the
following discussion. Recall that any excited state with a lin-
ear momentum k is generated by φ

†
k |vac〉, where the vacuum

state |vac〉 satisfies φk|vac〉 = 0 for all k > 0. Acting Hs on
the excited state, one gets

σ

(2πρ0)2
∑
q>0

q4φ†
qφq(φ

†
k |vac〉)

= σ

(2πρ0)2
∑
q>0

q4φ†
q

[
2π

mk
δq,k + φ

†
kφq

]
|vac〉

= σ

2πmρ2
0

k3(φ†
k |vac〉). (A3)

Note that we have used the commutation relation [φk, φ
†
k′ ] =

(2π/mk′)δk,k′ [18] in the above calculation. From Eq. (A3),
we derive the cubic dispersion in Eq. (6) in the main text.

APPENDIX B: CALCULATION OF 〈V 〉 FOR THE ν = 1
INTEGER QH INTERFACE

Instead of using Eqs. (7) and (8), we evaluate the correla-
tion function,

g(z1, z2) = N (N − 1)

ρ2
0

∫
dz3 · · · dzN |
|2∫
dz1 · · · dzN |
|2 . (B1)

For N being finite, it is remarkable that g(z1, z2) still has a
closed form:

g(z1, z2) = �(N, |z1|2/2�2)
(N − 1)!

�(N, |z2|2/2�2)
(N − 1)!

−�(N, z̄1z2/2�2)

(N − 1)!

�(N, z1z̄2/2�2)

(N − 1)!
e−|z1−z2|2/2�2 .

(B2)

Here, �(N, x) denotes the upper incomplete Gamma function.
Having g(z1, z2) in hand, a more useful expression for the in-
teraction in Eq. (7) is the real space representation formulated
by Trugman and Kivelson [61]:

VTK = (4π�2)V1L1
( − �2∇2

r

)
δ2(r). (B3)

The function L1(x) stands for the first-order Laguerre poly-
nomial, whereas r = |z2 − z1| denotes the separation between
the two particles. When z1 = z2, g(z1, z2) vanishes. Thus, one
has

〈V 〉 = ρ2
0

2

∫
(4π�4)V1δ

2(r)∇2
r g(z1, z2) dz1dz2. (B4)

From the above discussion, it suffices to fix z1 and expand
g(z1, z2) up to r2 to determine 〈V 〉. To be specific, only the
term proportional to r2 matters. We obtain the corresponding
term

g(x, r) = r2

2�2
f (N, x) + other terms. (B5)

In the above equation, we have introduced the dimensionless
variable x = |z1|2/2�2. Furthermore, the dimensionless func-
tion f (N, x) is defined as

f (N, x)

= [�(N, x)]2 − x2N−1e−2x + (xN − NxN−1)�(N, x)e−x

[(N − 1)!]2
.

(B6)

Then, we arrive at

〈V 〉 = 2V1

∫ ∞

0
f (N, x) dx. (B7)

The above integral can be computed analytically and leads to
Eq. (9) in the main text.
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