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Small molecule transporters (SMTs) in the ABC and SLC families are
important players in disposition of diverse endo- and xenobiotics. Interactions
of environmental chemicals with these transporters were first postulated in
the 1990s, and since validated in numerous in vitro and in vivo scenarios.
Recent results on the co-crystal structure of ABCB1 with the flame-retardant
BDE-100 demonstrate that a diverse range of man-made and natural toxic
molecules, hereafter termed transporter-interfering chemicals (TICs), can
directly bind to SMTs and interfere with their function. TIC-binding modes
mimic those of substrates, inhibitors, modulators, inducers, and possibly stim-
ulants through direct and allosteric mechanisms. Similarly, the effects could
directly or indirectly agonize, antagonize or perhaps even prime the SMT sys-
tem to alter transport function. Importantly, TICs are distinguished from
drugs and pharmaceuticals that interact with transporters in that exposure is
unintended and inherently variant. Here, we review the molecular mechanisms
of environmental chemical interaction with SMTs, the methodological consid-
erations for their evaluation, and the future directions for TIC discovery.
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coordinating cell behavior [1-8]. The major trans-
porters responsible for these molecular movements are
members of the ATP-binding cassette (ABC) and
solute carrier (SLC) families (Fig. 1). These small

Introduction-Evolution and function
of the small molecule transporter
system

Selective transport of diverse small molecules across
the plasma membrane is central to intercellular com-
munication and the interaction of organisms with their
environment. These molecules include toxic xenobiotics
in the environment, such as the byproducts of micro-
bial metabolism, like secondary bile acids and short
chain fatty acids, and/or endobiotics such as the
diverse signal molecules including uric acid, prosta-
glandins, and cyclic nucleotides, necessary for

Abbreviations

molecule transporters (SMTs) are expressed at envi-
ronmental barriers such as the epithelial cells lining
the gut, where they can export toxic compounds for
excretion [9,10]. They are also highly expressed in stem
cells and embryos [11-17].

In humans, there are more than 800 transporters,
including 393 SLC and 81 ABC-type transporter pro-
teins [18]. Seven, comprised of two ABC-type (ABCBI1
and ABCG2) and five SLC (OATI1, OAT3, OCT2,

ABC, ATP-binding cassette; DDI, drug—drug interaction; IMV, inverted membrane vesicle; MDR, multidrug resistance; SLC, solute carrier;

SMT, small molecule transporters; TIC, transporter-interfering chemicals.
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Fig. 1. Subcellular localizations of ABC- and SLC-type SMTs in 10 different biological barriers. Apical and basolateral membrane localization
of ABC and SLC transporters in the indicated cell type. The anticipated direction of substrate and co-substrate flow are marked with arrows.
Tight junctions are displayed as a group of three black bars in each cell type. (A) Blood-brain barrier and blood-cerebrospinal fluid barrier
[20,201,217-225]. (B) Blood-intestine barrier [10,20,201,225-228]. (C) Blood-milk barrier in mammary glands [229-231]. (D) Blood-bile
barrier in the liver [20,201,225,232-236]. (E) Blood-urine barrier in the kidney [20,201,237-240]. (F) Blood-air barrier in lung epithelial and
endothelial cells [241-244]. (G) Blood-heart barrier [245-248]. (H) Blood-placenta barrier [73,225,249-254]. (I) Blood-testis barrier [255-260].
(J) Blood-retinal barrier in the eye [225,261-264]. Note that the common names for SLC-type transporters are used and the HUGO
nomenclature for ABC-type transporters (https://www.genenames.org).

OATPIBI, and OATPI1B3) transporters, are already
known to be of major importance in clinical drug
interactions and relevance to toxicity [9]. The list has
been growing to include additional transporters of
emerging importance, including the multidrug and
toxin extrusion transporters (MATEs), multidrug resis-
tance-associated proteins (MRPs), and the bile salt
export pump BSEP (ABCBI11) [19,20].

Among the key features of many of these proteins is
a broad substrate specificity—sometimes termed
‘polyspecificity’—that enables the interaction of a

single transporter with numerous substrates [21-24].
As a result of this substrate promiscuity, SMTs also
interact with the panoply of anthropogenic small mole-
cule pollutants to which humans and other organisms
are exposed. Indeed, the idea that environmental
chemicals interact with transporters was demonstrated
almost 30 years ago [25,26] and later elaborated on in
numerous studies using purified proteins, model organ-
isms, and cell lines [14,27-35]. The results pointed to a
diverse range of ligands including pesticides, flame
retardants, oil hydrocarbons, stain repellents, personal
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care products (PCPs), and numerous other ubiquitous
environmental chemicals. Importantly, as these chemi-
cals are regularly detected in the environment, humans
and wildlife are continuously exposed.

These chemicals pose a possible threat to health
through their potential to interfere with the functioning
of the SMT system. While there is a large and growing
literature on the interaction of transporters with envi-
ronmental chemicals, the mechanisms of interaction and
the implications considered remain limited.

In analogy to treatment of multidrug resistant can-
cers with drug transporter inhibitors, most of the previ-
ous studies examined the role of environmental
chemicals as competitive inhibitors that limit detoxifica-
tion capabilities of organisms, thereby acting as
‘chemosensitizers’ [26,36,37]. However, as we will elabo-
rate upon in this review, emerging structural and func-
tional studies of transporters reveal that the interactions
of chemicals with drug transporters can be complex,
due to the existence of multiple ligand binding sites in
these proteins and additional allosteric interactions
[38,39]. Indeed, modern drug discovery and develop-
ment efforts already seek to evaluate and validate trans-
porter  substrates, inhibitors, or noninteracting
compounds in the context of various confounding fac-
tors, including the type of assay system, physicochemi-
cal properties of the test compound, and mixture effects
on the overall transport Kinetics [40—46].

Here, we posit that the interactions of ‘drug’ trans-
porters with environmental chemicals are likely to be
more intricate than simply dose-dependent inhibition
of transporter function. A number of additional effects
including stimulation, partial inhibition, and/or inter-
ference with transporter-mediated signaling could lead
to a range of adverse effects including unanticipated
drug interactions and developmental defects through
physiological disruptions. We discuss the potentially
unanticipated mechanisms and implications of trans-
porter-interfering chemicals (TICs).

Identity of transporter-interfering
chemicals

TICs—more than just inhibitors

Considering the promiscuity of SMTs for their ligands,
it is not surprising that there are a diverse range of
natural and anthropogenic chemicals that interact with
these transporters (Table 1). Several terms have been
used to describe TICs in the prior literature, perhaps
most frequently with authors referring to them as
transporter ‘inhibitors’ or ‘chemosensitizers’. However,
as will be elaborated upon in this review, this partially

S. C. T. Nicklisch & A. Hamdoun

reflects the fact that most assays to study these envi-
ronmental chemicals are best suited to revealing inhibi-
tory interactions. As has been shown in numerous
structural studies [21,47-52], many of the key SMTs,
such as ABCBI have large binding pockets capable of
binding the same ligand in different locations or even
multiple different ligands simultaneously, leading to
nonmonotonic dose-response relationships of trans-
porters with their ligands [53-56].

Transporter inhibition and ATPase stimulation can
be properties of the same compound. For example, the
potent ABCBI transporter stimulators, verapamil and
nicardipine, can also act as inhibitors to uncouple the
ATP-dependent translocation mechanism at high con-
centrations [47]. Other compounds have been shown to
be both substrate and inhibitor for drug transporters,
including zearalenone and tariquidar for ABCG2
[48,49]. Similarly, the pesticide methoxychlor has been
shown to both stimulate and inhibit P-glycoprotein
activity [30,32]. Likewise, progesterone and verapamil
can bind to high affinity sites in P-glycoprotein to
stimulate ATPase activity at low concentrations and
inhibit at higher concentrations by binding to a low
affinity site [38]. Interestingly, this nonmonotonic con-
centration dependence of effect may be analogous to
what is seen in several endocrine disrupting com-
pounds [50,51], and would suggest that TICs may have
different effects on organisms depending on the con-
centration encountered.

In addition, since real-world exposures typically
involve multiple ligands, TICs can interact with multi-
ple independent binding sites that can be simultane-
ously occupied by inhibitors and substrates [52].
Depending on substrate and inhibitor affinities for
each of those sites, transport of a substrate could be
only partially inhibited when the inhibitor binds to the
primary sites, while the secondary sites could still
transport the substrate. As such, chemicals can interact
with SMTs as single compounds or in concert to alter
transport function. Understanding the molecular
mechanisms and effects of drug mixtures on transport
has long been a goal in clinical pharmacology, yet
methods to clearly discriminate effects of more than
two compounds remain challenging [57-59].

Transporter-interfering chemicals and their
conserved modes of interaction

Given what is known about these diverse modes of
ligand interaction with transporters, a broader defini-
tion of the TICs is proposed here. Known TICs
include a wide range of persistent legacy and emerging
compounds and as such are ubiquitous in the
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environment, meaning that virtually all humans and
wildlife are exposed. Exposure to TICs is uninten-
tional, and environmental or dietary preferences can
have a large impact on the overall chemical intake
[60-72]. Effects of TICs will be dependent on both the
dynamic regulation of the SMT system during devel-
opment [13,14,73-76], and the modulated transporter
activities due to polymorphism in specific ethnic popu-
lations [77,78].

Many environmental chemicals have known molecu-
lar interactions with the drug transporters (Table 1).
We defined as inhibitors, compounds that competi-
tively or noncompetitively inhibits ATPase activity or
the direct transport of a probe substrate across a mem-
brane. Substrates are defined as compounds that have
been directly transported across a membrane in an
assay system. Inducers are compounds that induce the
expression of a transporter. And weak interactors are
compounds that have been shown to be either weak
inhibitors or substrates of transporters in a given
assay. A more detailed definition of TIC modes of
interaction with transporter can be found in the Glos-
sary (Box 1).

To date, only a few studies exist that test multi-com-
pound mixture interactions on drug transporters
[30,31,79,80]. Super-additive (synergistic) effects of bin-
ary combinations of pesticides have been shown for
inhibiting ABCBI1 [31] and an SLC drug transporter
[79]. For instance, a mixture of the two pesticides fena-
miphos and phosmet showed synergistic and additive
effects on OCT2 transporter inhibition over a wide
range of concentrations (0.38-26.85 pm). Similarly, the
binary combination of the pesticide diazinon together
with either the drug verapamil or the pesticides phosa-
lone, endosulfan, and propiconazole always showed
synergistic inhibition of P-glycoprotein-mediated cal-
cein-AM transport. Both additive and synergistic
effects of TICs effectively reduce the concentration
needed of a single compound to interfere with trans-
port function.

Interestingly, while those listed transporter interac-
tions have been evaluated using different assay systems
and drug transporters from different organisms, some
interactions are conserved across assays. For instance,
the insecticide endosulfan has been shown to inhibit
human, hamster and mussel ABCB1 when tested for
inhibition of transport or ATPase activity in gills, sta-
bly transfected cell lines and as purified membrane
fraction [28,31,81-84]. Similarly, the antiparasitic com-
pound ivermectin has been shown to be transported
by human, canine, and mouse ABCBI1 using knock-
out mouse models and whole cell monolayer assays
[82,85-87].

Environmental chemicals disrupt transporter function

Environmental levels of TICs

A major route of human exposure to TICs is through
consumption of contaminated food. Large-scale assess-
ments of food contaminants have continuously detected
elevated levels of several persistent TICs such as poly-
brominated flame retardants (PBDEs) and polychlori-
nated biphenyls (PCBs) were detected in dairy, meat,
and fish [62,67,69,70]. Lipid normalized levels of a sin-
gle flame retardant and TIC, BDE-47, were 58.9
nanomolar in sardines [88] and as high as 175 nanomo-
lar in tuna [62]. Importantly, the cumulative lipid-based
concentrations of the 10 most potent TICs were as high
as 3.3 um, while all pollutants were 12.7 pum, respec-
tively [62]. Similarly, the same persistent pollutants can
be detected at high concentrations in human blood and
urine [89,90] and breast milk [91-93]. For instance, the
flame retardants BDE-47 and BDE-99 had lipid-based
concentrations in US mothers’ milk up to 559 nanomo-
lar and 197 nanomolar [92]. For the organochlorine
pesticide and TIC, p,p’-DDE, concentrations of up to
314 uv have been reported in breast milk fat from
South African women [93].

Another possibility is that TICs could act indirectly
on upstream regulators like the nuclear receptors
AhR, PXR, or CAR to reduce transporter expression
and further facilitate the retention of TICs and other
persistent compounds [94-99]. However, recent studies
have shown that while the transporters may not be
able to eliminate these chemicals, TICs are nonetheless
able to bind and interfere with transporter function.
Notably, the brominated flame-retardant and TIC,
BDE-100, was shown to tightly bind to the ligand
binding sites in ABCBI and to inhibit the function in
mice and humans [30]. The binding occurs at evolu-
tionarily conserved residues, indicating the potential
for effects in a wide range of organisms (Fig. 2).

As we will discuss further below, TICs could also act
in concert with other drugs and food ingredients, and
both a continuous assessment of levels of environmental
chemicals in food and a detailed analysis of their addi-
tive and uper-additive effects is necessary to provide
appropriate dietary and food safety guidelines [100].

Mechanisms and approaches for
evaluating TIC interactions

The categorization of environmental chemicals as TICs
requires careful consideration. Unlike analytical chem-
istry with its ‘gold standard’ approved chromatography
and mass spectrometry methods, there is no single assay
for each TIC effect. Importantly, the choice of assay
will influence the investigators’ ability to discern TIC
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Box 1. Glossary—Modes and effects of environmental chemical interactions with SMTs

Types of environmental chemical interactions

Inducers. Compounds that upregulate SMT function at the level of expression.

Inhibitors. Compounds that bind to SMTs and inhibit transporter activity and function.

Modulators. Compounds that bind to orthosteric or allosteric sites in SMTs without being transported and
alter the specificity toward inhibitors or substrates.

Stimulators. Compounds that bind and activate SMTs but do not necessarily get transported. ABC trans-
porter activation in absence of transport can be determined using ATPase assays.

Substrates. Compounds that bind to SMTs and get transported.

Weak interactors. Compounds that are not recognized or weakly interact with SMTs and do not alter trans-
porter activity or function.

Molecular mechanisms and interactions

Additive interactions. Concerted binding of two or more compounds to SMTs modulates transporter func-
tion equal to the sum of the compounds’ separate effects.

Allosteric interaction. Compounds that bind to SMTs at sites distinct from the ligand binding site(s) and
modulate transporter function.

Antagonistic interaction. Concerted binding of two or more compounds to SMTs negates or modulates
transporter function to a lesser degree than the sum of each individual effect.

Cooperative interaction. Binding of compound(s) to one site in SMTs influences the interaction of the same
or different compound(s) at another functional site.

Orthosteric interaction. Compounds that bind to functional site(s) in SMTs and modulate function by com-
petitive interactions with other ligands.

Synergistic interaction. Concerted binding of two or more compounds to SMTs modulates function to a
higher degree than the sum of each individual effect.

Cellular and organismal effects

Chemical defense priming. Continuous exposure to xenobiotics alters SMT function by inducing transient or
permanent, compensatory upregulation at the physiological, transcriptional or epigenetic level.
Chemosensitization. Interaction of compound(s) with SMTs increases sensitivity of a cell or organism
toward a (toxic) substrate.

Endogenous substrate competition. Interaction of compound(s) with SMTs that interferes with physiological
substrate transport and cellular homeostasis.

Energy depletion. Increase in cellular energy (e.g., ATP) consumption due to constant exposure to com-
pounds that activate SMTs.

Futile cycling. Ineffective transport of (high permeability) compounds that immediately re-enter mem-
branes/cells for another transport cycle.

Signaling interference. Interactions of compounds with SMTs disrupt cell signaling and/or signal transduc-
tion.

effects. To date, multiple in vitro and in vivo assays
have been used to determine the nature of drug TICs
[30,101,102]. However, many of the assays used in the
field of TICs are best suited for discovery of inhibitors.

For SLC-type transporters, the majority of assays is
determining the (competitive) inhibition of intracellular
accumulation of a reference substrate by a test
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compound [79,103]. For ABC-type transporters, TIC
interactions are often determined indirectly by inhibi-
tion of the prestimulated ATPase activity [84,104].
Alternatively, competitive uptake inhibition of reference
compounds into membrane vesicles or competitive
efflux inhibition and transport across cell monolayers
have been employed.
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Human ABCB1
Mouse ABCB1a
Chicken ABCB1

LLIYASYALAFWYGTTLVLSGEYSIGQVLTVFFSVLIGAFSVGQASPSI EAFANARGAAYEI FKI IDNKPSIDS 377
LLIYASYALAFWYGTSLVISKEYSIGQVLTVFFSVLIGAFSVGQASPNI EAFANARGAAYEVFKI IDNKPSIDS 373
LLIYASYALAFWYGTTLILANEYSIGNVLTVFFSVLIGAFSIGQTAPSI EAFANARGAAYAIFNIIDNEPEIDS 385

Clawed frog ABCB1 LMIYAAYSLAFWYGTTLI IDGGYTIGSVLTVFFAVIIGAFAVGQTSPNI EAFANARGAAYTIFNIIDNQPKIDS 387

Zebrafish ABCB4

Human ABCB1
Mouse ABCB1a
Chicken ABCB1

FMIYMSYALAFWYGSTLILGGEYTIGMLLTIFFAVLIGAFGLGQTSPNIQTFSSARGAAHKVFQI IDHEPKINS 382

PVSFWRIMKLNLTEWPYFVVGVFCAI INGGLQPAFAI I FSKI IGVFTRIDDPETKRQNSNLFSLLFLALGIISF 767
PASFWRILKLNSTEWPYFVVGIFCAI INGGLQPAFSVI FSKVVGVFTNGGPPETQRQNSNLFSLLFLILGIISF 763
PVSFLKLMKLNKNEWPYFVAGTFCAIVNGALQPAFSVIFSEI IGIFSETDQ- KVLREKSNLYSLLFLALGI ISF 775

Clawed frog ABCB1 PVSFFKVMKLNKPEWPYFVVGVICAMINGATQPAFAI I FSRI IGVFA- - GPVSQMRSESSMYSLLFLALGGVSF 775

Zebrafish ABCB4

Human ABCB1
Mouse ABCB1a
Chicken ABCB1

NVSFLTVLKLNYPEWPYMVVGILCATINGGMQPAFAVIFSKI IAVFAEPDQ- NLVRQRCDLYSLLFAGIGVLSF 765

KAHIFGITFSFTQAMMYFSYAGCFR- FGAYLVAHKLMSFEDVLLVFSAVVFGAMAVGQVSSFAPDYAKAK I SAA 1006
KAHVFGITFSFTQAMMYFSYAACFR- FGAYLVTQQLMTFENVLLVFSAIVFGAMAVGQVSSFAPDYAKATVSAS 1002
KAHI FGFCFSLSQAMMFFTYAGCFR- FGAYLVVNGHI EYKTVFLVFSAVVFGAMALGQTSSFAPDYAKAK I SAA 1014

Clawed frog ABCB1T KAHLHGLTYGLSQAHHVLCLCWVFSVLGAYLVVEGLMKLDEVFLVSSAIVLGAMALGQTSSFAPDYTKAMI SAA 1015

Zebrafish ABCB4

KAHVFGLTFSFSQAMIYFAYAGCFK- FGSWL I EQKLMTFEGVFLVI SAVVYGAMAVGEANSFTPNYAKAKMSAS 1004

Fig. 2. Similar residues in vertebrate ABCB1 interact with pharmaceutical inhibitors and the TIC and flame-retardant BDE-100. The Venn
diagram displays all residues in mouse ABCB1a that interact with flame-retardant BDE-100 and known inhibitors verapamil, QZ59-SSS and
QZ59-RRR according to [104] and [21]. Residues marked with an asterisk represent the ‘lower’ binding site of QZ59-SSS. Residues marked
in red are assumed to be involved in inhibition of ATP hydrolysis and transport function according to [200]. The amino acid alignment shows
that 11 (marked in blue and red) of the 15 residues interacting with BDE-100 are conserved across model vertebrate species.

Strengths and limitations of current methods
and assays to evaluate TICs

Interactions of small molecule drugs with SMTs have
been a major focus of pharmaceutical and toxicologi-
cal sciences over the past four decades. A wide array
of in vitro and in vivo assays to evaluate those interac-
tions have been developed since then to quantify
ATPase activity in a variety of assay systems [37,105—
109] or to determine (competitive) transport inhibition

[93-98], bidirectional transport across cell monolayers
[40,110,111] or the binding affinities (Table 2) of dif-
ferent drugs and small molecules to the transporters
[112-115]. Some of the most prominent assays have
sparked commercial interest and are readily available
as purified protein kits, membrane fractions or drug
transporter-expressing cell lines.

In these assays, ABC transporter inhibition is often
measured indirectly by competitively inhibiting the
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efflux or uptake of a fluorescent or radiolabeled sub-
strate or directly by ATPase stimulation or inhibition
with a model drug compound. Arguably, the three
most common assays to measure and quantify TICs
with drug transporters are ATPase, unidirectional
vesicular transport and bidirectional cell monolayer
assays (i.e., transwell assays).

ATPase assays

ATPase assays were first developed for small soluble
ATPases [116] and later applied to determine the activ-
ity of ABC drug transporters [117]. These assays offered
the advantage of using the liberated orthophosphate
from ATP hydrolysis as an indirect reporter for ATPase
stimulation and hence activation of the transporters.
Initial drug transporter purification attempts focused on
plasma membrane preparations of drug-resistant cancer
cell lines [118] and large-scale protein production has
been traditionally performed heterologously in bacterial
and yeast systems [119,120]. Sophisticated methods have
been developed over the years, determining the ATPase
activity in drug transporter expressing cell lines, lipid
vesicles, membrane patches, artificial membranes, and
with  purified and detergent-solubilized protein
[37,106,108,121,122]. It is commonly accepted that sub-
strate translocation requires both ATP binding and
hydrolysis [122—124], enabling the development of fluo-
rescent and colorimetric assays to stoichiometrically
relate Pi liberation to transporter activation. ATPase
assays can be conducted in activation mode by measur-
ing phosphate liberation with the drug alone or in inhi-
bition mode by prestimulating the ATPase activity with
a model stimulator and following the ‘knock-off’ kinet-
ics by inhibitory test compounds. Interactions of drugs
with ABCBI in an ATPase assay have been character-
ized with solubilized protein, reconstituted protein, and
heterologous and homologous expressed protein
(Table 2). In those cases, ATPase activity was measured
prestimulated with different ratios and types of stimula-
tor or nonstimulated (basal activity).

A wide range of factors can introduce variation into
the results of ATPase assays. In some cases, it is not
known if the basal activity has been properly sub-
tracted from the final values due to lack of experimen-
tal details. Another confounding factor is the type of
protein concentration assay used to calculate the speci-
fic ATPase activity of each protein. Another major
factor is the use of different detergents and lipids to
purify and reconstitute P-gp and other drug trans-
porters. Some authors had to ‘activate’ P-gp with a
lipid/deterrent mixture to become fully amenable for
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drug interaction assays [125]. Furthermore, the amount
of ATP and reducing agent (DTT, BME) can vary
dramatically. Buffer type, ions, and capacity have also
not been standardized and assay pH can range from
pH 7.0-8.0 [104,126-128]. Depending on the pKa of
the TIC, the assay pH can influence both overall
charge and membrane permeability of a given com-
pound tested. Finally, the assay temperature and time
course will affect overall kinetics and parameters. A
decrease in assay temperature from 37 to 25 °C has
been previously shown to decrease ATPase activity
[129], while an increase in the assay temperature above
37 °C could inactivate the transporter [130].

It is important to note that these ATPase assays
have some common limitations. First, they favor dis-
covery of inhibitory effects [30,31,81,83,84,131],
thereby skewing our potential understanding of TIC
effects. Second, in a solubilized protein ATPase assay,
the protein conformation does not resemble the native
conformation in a membrane environment, and instead
allows access to ATPase and other protein domains
typically embedded in the membrane. Such non-native
conformational changes could influence transporter
kinetics [132]. Finally, low permeability compounds
that typically cannot cross the membrane in an in vivo
system, can interact with the ligand binding sites in a
solubilized SMT and be falsely identified as TICs.

By measuring ATPase activity of SMTs in a mem-
brane environment, the active conformation can be
preserved and nonspecific binding to protein domains
otherwise embedded in the membrane can be pre-
vented. In this case, clear knowledge of apical or baso-
lateral localization of the transporter under study and
the tissue geometry are necessary to decide whether
the compound would be able to interact with the
transporter under physiological conditions.

Vesicular transport assays

Vesicular transport assays can be divided into two
main systems: artificial (proteo-) liposomes and
inverted membrane vesicles (IMVs) made from living
cells. One of the first preparations of inverted mem-
branes was done with human red blood cells [133].
The unique feature of these vesicles for the analysis of
drug efflux transporters is the fact that most of the cell
membranes overexpressing the transporter of interest
will get inverted during the preparation. This inside-
out orientation of the ABC drug transporters allows
access to the ATPase domains and ligand binding sites
to study uptake of substrates into the enclosed vesicles.
The uptake of fluorescently or radiolabeled control
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Table 2. List of common in vitro and in vivo assays to determine interactions of small molecules with transporters. The table summarizes
the current arsenal of biochemical, biophysical and cell-based assays that have been developed to interrogate drug and environmental
chemical affinity and potency toward SMTs. Assays according to [13,21,54,101,104,117,122,146,157,164,165,176,279,287-325]. 6-AlIPP-
forskolin, 6-O-[[2-[3-(4-azido-3-[125lliodophenyl)propionamidolethyllcarba-myllforskolin; COL, colchicine; DOX, Doxorubicin, E2178G, 17p-
Estradiol 17B-p-glucuronide; IAAP, lodoarylazidoprazosin; MIANS, 2-(4’-maleimidylanilino)naphthalene-6-sulfonic acid; PheoA, Pheophorbide A;
QUI,  Quinidine;  sNBDL-CSA,  [N-e-(4-nitrobenzofurazan-7-yl)-o-Lys8]  cyclosporin ~ A;  SR101, Sulforhodamine  101; TPP+,

Tetraphenylphosphonium; VBL, vinblastine; VCR, vincristine; VER, Verapamil.

Assay type

Assay system

Species: transporter(s)

Reporter molecule

Original references

ATPase Assays

Competitive dye
transport assays

(unidirectional
accumulation)

IMVs in KB-V1 and KB-3-1
Proteoliposomes (protein from
CHFCs)

Membrane Nanodiscs
Styrene-maleic acid lipid particles
(SMALPs)

Isolated membranes (from Sf9
cells)

Amphipols

Purified protein (protein from
CHRCb)

Invertebrate embryos
(Strongylocentrotus purpuratus)
BEWO (choriocarcinoma)

Huh-7 (human hepatocellular
carcinoma)

Hela cells (Henrietta Lacks
cervical cancer)

K562 cells (human bone marrow
chronic myelogenous leukemia)

A431 cells (human skin
epidermoid carcinoma)

CHO K1 (Chinese Hamster
Ovary)

AB49 (human lung carcinoma)

HL-60/MX1 (human acute
promyelocytic leukemia)
HCT-8 and HCT-15 (human
ileocecal colorectal carcinoma)
HepG2 cells (human liver
hepatocellular carcinoma)
NIH/3T3 murine fibroblasts

PLHC-1/dox cell lines
(Poeciliopsis Lucida
hepatocellular carcinoma)

MDCK-II (Madin-Darby canine
kidney strain Il cells)

NCI-H441 (human lung
adenocarcinoma)

KB-V1 and KB-3-1 cells (Cervix
carcinoma - Hela derivative)

Renal proximal tubules

Human: ABCB1
Hamster: ABCB1

Human: ABCB1
Human: ABCB1, ABCC1,
ABCC4, ABCG2; Mouse:

ABCC7 (CFTR)
Human: ABCB1

Mouse: ABCB1a (MDR3);
Human: ABCB1
Hamster: ABCB1

Sea urchin: ABCB1
Human: ABCB1, ABCC1
Human: ABCB1, ABCC1,
ABCG2

Human: ABCB1

Human: ABCB1, ABCG2
Human: ABCB1, ABCG2
Hamster: ABCB1, ABCC1,
ABCG2

Human: ABCB1, ABCC1,
ABCG2

Human: ABCB1, ABCCT1,
ABCG2

Human: ABCB1, ABCC1
Human: ABCB1

Human: ABCB1

Clearfin Livebearer: ABCB1

Human: ABCB1

Human: ABCB1

Human: ABCB1

Killifish: ABCB1

VBL
COL

Nicardipine
MIANS, Estrone
sulfate, PheoA

VER, VBL, 5
Fluorouracil,
Trifluoperazine

N/A

VER, VBL, COL,
Nifedipine,
Daunomycin

Rhodamine

CAM, VBL,
Fluorescein
Rho123, Hoechst
33342

Rho123, CAM

Hoechst 33342,
DyeCycle Violet
Hoechst 33342,
DyeCycle Violet
CAM, eFluxx-ID,
CMFDA, PheoA
eFluxx-ID, CMFDA,
PheoA, DIOC2(3)
CAM, eFluxx-ID,
PheoA

CAM, eFluxx-ID,
CMFDA, DiOC2(3)
Rho123

CAM

CAM, Rho123

CAM
Rho123
CAM

NBDL-CSA

Horio et al. [122]
Sharom et al. [286]

Ritchie et al. [287]
Gulati et al. [288]

Sarkadi et al. [117]

Lee et al. [289], Alam et al.
[325]

Doige et al. [290]

Toomey and Epel [291]
Utoguchi et al. [292]
Jouan et al. [293]

Sauna et al [294]

Nerada et al. [168]

Nerada et al. [168]
Lebedeva et al. [295]
Lebedeva et al. [295]
Lebedeva et al. [295]
Lebedeva et al. [295]
Shabbir et al. [278]
Homolya et al. [165], Hollo
et al. [164]

Zaja et al. [101], Caminada
et al. [296]

Gannon et al. [297]
Salomon et al. [299]

Ansbro et al. [299]

Schramm et al. [300]
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Table 2. (Continued).
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Assay type

Assay system

Species: transporter(s)

Reporter molecule

Original references

Monolayer assay
(bidirectional
transport)

Cytotoxicity
assays

Fluorescence
anisotropy/
polarization

Drug binding
affinity

Biochemical
assays (binding
sites)

Brain capillaries

Caco-2 (Caucasian Colon
Carcinoma)

LLC-PK1 (Epithelial-like pig
kidney cell line)

MDCK-II (Madin-Darby canine
kidney strain 11)

IPEC-J2 (Pig lleum Epithelial
cells)

Calu-3 (Human lung
adenocarcinoma)

hCMEC/D3 (brain microvascular
epithelial cell line)

CR1R12 (CHO subline)

2-cell embryos (S. purpuratus)
Functional complementation
(Saccharomyces cerevisiae)
Competitive growth inhibition
(Saccharomyces cerevisiae)
Proteoliposomes

Purified protein
Purified protein

Purified protein

Purified protein

Surface plasmon resonance
(SPR)
FRET analysis in Hek293T

Intrinsic Trp fluorescence
quenching in CH®B30 (CHO
derivative)

Site-directed fluorescence
labeling & quenching in CHFB30

Photo-affinity labeling in KB-3-1
(HelLa derivative)

Cys & thiol reactive labeling in
HEK293 cells

Nucleotide trapping assays in
CR1R12 (CHO derivative)
Radioligand binding in CH®B30
(CHO derivative)

Rat: ABCB1a/b

ABCB1, ABCG2, MRP2

Human: ABCB1

Human: ABCB1

Human: ABCB1

Human: ABCB1

Human: ABCB1

Hamster: ABCB1

Sea urchin: MRP-like

Yeast: Human ABCB1

Yeast: Mouse ABCB1a (MDRS3)
Mycobacterium tuberculosis:
TBsmr

Escherichia coli: EmrE

Lactobacillus lactis: LmrP

Escherichia coli. AcrB

Staphylococcus aureus: MepA

Human: ABCB1

Human: ABCC1

Hamster: ABCB1

Hamster: ABCB1

Human: ABCB1

Human: ABCB1

Hamster: ABCB1

Hamster: ABCB1

NBDL-CSA,
BODIPY-Prazosin,
SR101

VBL

DOX, Rho123, QUI,
VER
Rho123

Digoxin, VER,
Citalopram, VBL,
VCR

CAM, Rho123

eFLUXX-ID Gold

COL
VBL
Valinomycin

DOX

Ethidium bromide,
TPP+

Ethidium bromide,
TPP+

Propidium and
ethidium dyes
Rho6G, Ethidium,
Proflavine,
Ciprofloxacin

Acriflavine, Rho6G,
Ethidium

MRK16, UIC2 mAB

E217BG, ATP,
Vanadate

Tryptophan

MIANS label

Azidopine, IAAP, 6-
AlPP-forskolin
Dibromobimane,
MTS-VER
Vanadate

VBL, XR9576

Hartz et al. [301]

Hunter et al. [302]
Van Der Sandt et al. [157],
Riede et al. [159]

Haemmerle et al. [303]

Saaby et al. [304]

Hamilton et al. [305]
Noack et al. [306]

Aller et al [21]

Hamdoun et al. [13]
Kuchler and Thorner [307]
Nicklisch et al. [30], Jeong
et al. [308]

Basting et al. [309]

Chen et al. [310]

Schaedler and Veen [311]

Su et al. [312]

Banchs et al. [313]

Ritchie et al. [314], Chen
et al. [315]
Osa-Andrews et al [316],

Iram et al [317], Swartz et al

[318]
Liu et al [319]

Liu and Sharom [320]

Bruggemann et al. [321],
Greenberger [322]

Loo and Clarke [323], Loo
and Clarke [324]
Urbatsch and Senior et al.
[125]

Martin et al. [54]
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substrates and test compounds can then be determined
using LC/GC mass spectrometry or by fluorescent
microscopy, flow cytometry, or spectrophotometry.

Proteoliposomes are a type of artificial lipid vesicle,
where the protein of interest gets reconstituted into
preformed liposomes, often made from total mem-
brane extracts of Escherichia coli or yeast, chicken
eggs, or pig total brain. One of the first membrane
protein reconstitutions was carried out with bacteri-
orhodopsin in chicken egg phospholipids [134,135]. A
key advantage of proteoliposomal systems are the
almost unlimited types of natural or synthetic lipids
available that can be combined to form unilamellar
and multilamellar vesicles of any size [136-138]. Func-
tional reconstitution and correct orientation of mem-
brane proteins in liposomes depends on numerous
factors, including protein stability, lipid quality, and
detergent suitability, and usually requires rigorous
optimization [139-141]. Using proteoliposomes, the
effects of lipid type, charge and size, buffer conditions
and protein composition on the interactions of TICs
with SMTs can be conveniently evaluated and com-
pared.

To preserve proper mammalian protein folding and
posttranslational modification for structural and
kinetic analysis, drug transporters are often expressed
in insect cells [142-145] or human cell lines [146-149]
to form inside-out vesicles. Such vesicles provide a
native membrane environment in the absence of cyto-
plasmic proteins and enzymes that could interfere with
the assay. Using these IMVs, the effects of TICs on
SMTs embedded in a natural cell membrane can be
evaluated on two dimensions in the same system: the
stimulation or inhibition of ATPase activity and the
actual transport of TIC substrates into the vesicle
lumen [150-153].

A potential drawback is that vesicle-based assays do
not perform well with highly permeable chemicals
since they likely cross the membrane by simple diffu-
sion. This in turn would overestimate the actual
uptake of compounds into the vesicles and possibly
promote a futile cycle when highly hydrophobic com-
pounds rapidly re-enter the lipid environment for
another transport cycle [154-156]. In this case, the use
of control membrane vesicles that lack the transporter
under study should be used to estimate and subtract
false positive transport values.

Transwell monolayer assays

Transwell assays measure transcellular transport across
polarized epithelial or endothelial cell monolayer
expressing the transporter of interest. The transwell

Environmental chemicals disrupt transporter function

assay is considered the gold standard for assessing
drug transport and drug permeability [9]. The bidirec-
tional transport of a substrate across a polarized cell
layer can be measured by adding the test substrate to
the apical (upper) or basolateral (lower) chamber and
quantifying the compounds in the opposite chambers
using GC or LC mass spectrometry. The derived drug
permeability coefficient (Papp) and the efflux ratios
(Pappg-to-a» Pappa-io-) can provide a wealth of infor-
mation, including directionality of drug transport, the
involved drug transporters, the specificity of substrates,
inhibitors and modulators, and the prediction of drug
permeability. The three most commonly used cell
monolayers are formed from human Caco-2 cells, dog
MDCK-II cells, and pig LLC-PK1 cells, the latter two
cell lines expressing nonhuman endogenous trans-
porters and often used to express human isoforms of
transporters [40,157]. The same type of cell lines is also
used in unidirectional fluorescent substrate transport
assays with stably transfected transporters [158,159].

Both of these assays have important limitations to
consider. For instance, when transfecting the common
cell lines LLC and MDCK-IT with the studied drug
transporter genes, these cells show markedly lower
expression of the endogenous transporters versus wild-
type cells, leading to underestimation of substrate
transport in transfected cells [160]. The differences in
background transporter expression levels in these cells
has also been suggested to be responsible for the high
variability of ICsy values for ABCBI inhibitors
[161,162]. Furthermore, in order to measure efflux by
an apically localized transporter, the compound needs
to first cross the basolateral membrane (either by
another transporter, or by passive diffusion). Since low
permeability compounds cannot cross the basolateral
membrane in a polarized cell system in the absence of
a suitable uptake transporter, the compound cannot
interact with the efflux transporter.

Limitations of fluorescent dye assays include the
availability, specificity, and dynamic range of sub-
strates to measure (competitive) inhibition of drug
transporters in cells. While numerous fluorescent small
molecules are transported by ABC and SLC trans-
porters [163], very few have proven as robust as cal-
cein-AM pioneered by Homolya et al. in the early
1990s [164,165]. Reasons for this are many and include
the high basal permeability of some substrates, low
quantum yield of the fluorophores, intracellular com-
partmentation, and fluorescence quenching [158].
Another challenge for dye uptake assay is the fact that
numerous cell level studies have shown that there is
considerable overlap in fluorescent substrates among
transporters [158,163,166] and it may depend on the
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cellular background whether a given fluorescent com-
pounds can be a specific reporter for a monitored
transporter activity. However, a handful of fluorescent
substrates, along with specific inhibitors, have been
useful for understanding the three key drug trans-
porters ABCB1, ABCCI1, and ABCG?2, over the past
20 years [158,167,168].

Evaluating molecular interactions of TICs

While the detailed molecular mechanism underlying TIC
bioaccumulation is still unknown, the interactions of
those chemicals with small molecule uptake and efflux
transporters at epithelial barriers have been suggested to
be a key step in entering the body via systemic circula-
tion. Hydrophobic TICs could either inhibit ABC-type
drug efflux systems to promote their passive transport
into cells or—by mimicking beneficial nutrient structures
—bind with higher affinity to a SLC-type nutrient and
metabolite uptake system, or both.

To begin to understand how TICs can interact with
SMTs and how to best evaluate those interactions,
multiple molecular interactions and binding sites
within the transporter and its immediate membrane
environment have to be considered. Similar to drug
interactions with receptors and transporters, such
interactions can be broadly divided into inhibitory or
stimulatory effects. Inhibitory effects can be further
discriminated based on the binding location. For
instance, orthosteric compounds bind in the ligand
binding site of a transporter and can competitively
inhibit its function. The inhibition of verapamil-stimu-
lated ATPase activity by cyclosporine A is a well-
known example of competitive ABCBI inhibition
[38,52,169,170]. However, hydrophobic TICs could
also bind specifically or nonspecifically within the
hydrophobic parts of the membrane spanning domains
to cause transporter inhibition. Such noncompetitive
inhibition can occur either at a defined allosteric site
or a nonspecific site within the SMT. For instance, the
drugs daunorubicin, colchicine and vinblastine are
known to allosterically inhibit verapamil-stimulated
ABCB1 ATPase activity [38]. Allosteric noncompeti-
tive inhibition has also been shown for the ABCBI-
mediated multidrug resistance (MDR) reversal agent
XR9576 (tariquidar) [47,171]. Tariquidar and the acri-
done carboxamide derivative GF120918 (elacridar) are
also a competitive inhibitor for drug efflux transporter
ABCG?2 but do not inhibit ABCCI [49,172,173].

Noncompetitive inhibition of ABC-type transporters
can also occur by interfering with ATP binding [174].
TICs could act directly at the two ATPase domains
(i.e., NBDs) of these ABC transporters, inhibiting both
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ATPase activity and drug binding capacity [175-177].
A less explored option for TICs to disrupt MRP-type
transporters would be noncompetitive inhibition of the
GSH binding site in these transporters [178—182]. Sev-
eral drugs, including vincristine and daunorubicin, crit-
ically depend on GSH binding and/or co-transport to
be effectively eliminated [183,184].

A different kind of allosteric effect on the SMT
activity regulation is the influence by its local mem-
brane environment and in particular cholesterol inter-
actions [132,185,186]. Early experiments with ABCBI1
showed that the ATPase activity was not stimulated
by the canonical drug substrates vinblastine, colchi-
cine, or daunomycin when reconstituted in E. coli
lipids versus sheep brain or bovine liver extracts
[118,125]. Similarly, the photo-affinity labeling of
ABCBI using the substrate [*H]azidopine was
increased when increasing amounts of cholesterol were
incorporated into liposomes [187]. In contrast, in cell
lines expressing human ABCBI, the addition of choles-
terol inhibited the efflux of daunorubicin [188].

This has several implications of TICs. First in an anal-
ogous way, long-chain, lipid-like TICs could change the
immediate membrane environment of drug transporters,
thereby changing transporter activity. Such noncompeti-
tive inhibition of ABCBIl-mediated Rhodamine B efflux
from mussel gills has been shown for synthetic perfluoro-
chemicals that have high structural resemblance to fatty
acids [189]. Second, the native lipid environment could
affect assay results [132].

Finally, stimulatory effects of compounds can be
exerted on the SMTs when binding to a modulatory site.
A special case of these stimulatory effects are positively
cooperative interactions between two or more com-
pounds that either bind at overlapping or different mod-
ulatory sites within the SMT [58]. Such cooperative
stimulation is a versatile and noninvasive mechanism to
transiently modulate transporter activity and current clin-
ical efforts focus on the discovery and development of
modulating small molecules [174,190,191]. For instance,
prolonged ABC transporter stimulation could be costly
in terms of dramatically increasing the ATP usage of a
(cancerous) cell and ultimately trigger apoptosis
[154,192,193].

A more standardized set of assays is needed to
probe for transporter- and possibly organism-specific
evaluation of their modes of interaction due to known
variations in drug transporter substrate recognition
and differences in protein stability across species [194—
197]. Since interaction of TICs with SMTs can occur
at different ligand binding sites, the use of multiple ref-
erence probes with different binding sites could help to
capture unknown TIC interactions. Finally, since real-
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world exposures to environmental chemicals typically
involve multiple compounds, the standardized assay
criteria have to be expanded to probe for additive,
synergistic, and antagonistic effects of chemical mix-
tures.

Insights from structural biology

To fully elucidate the intricate network of intramolecu-
lar interactions of environmental chemicals with SMT
proteins, a detailed knowledge of protein structure and
dynamics is essential. Until recently, the exact mode of
SMT transport inhibition by environmental chemicals
was unknown. The co-crystal structure of mouse
ABCBI in complex with the flame-retardant BDE-100
revealed for the first time, that TICs can specifically
bind within the ligand binding site of the transporter
and inhibit its function [30]. In general, to be able to
successfully resolve a transporter-ligand co-crystal
structure, a transporter has to bind its ligand with high
affinity and specificity (i.e., high level of occupancy)
and in a stable conformation for crystal packing
[198,199]. Thus, the co-crystal reveals that binding of
the flame retardant to specific sites in the ligand bind-
ing pocket of ABCBI could be responsible for compet-
itive inhibition observed in the corresponding ATPase
and yeast growth inhibiting assays.

When comparing the residues in mouse ABCBI that
have been shown to interact with BDE-100 and other
known ABCBI inhibitors, the flame-retardant shares
the critical aromatic residue phenylalanine 724 (F728
in human ABCBI1) with all three other inhibitors
(Fig. 2). It has been shown recently for the human
ABCBI1 transporter that the aromatic residue pairs
F728-Y310 and F978-Y953 can form important hydro-
gen bonds with the third-generation inhibitors zosuqui-
dar, elacridar, and tariquidar, which in turn mediates
the inhibition of ATP hydrolysis and transport func-
tion [200]. One of those corresponding residue pairs in
mouse ABCBI1 is F724-Y306, which has been shown
to interact with BDE-100 in the crystal structure
(Fig. 2). Hence, inhibition of ATP hydrolysis could be
the major mode of action for TICs to interfere with
ABCBI function and possibly other ABC transporter.
Interestingly, nine additional residues interacting with
BDE-100 in mouse ABCBI are conserved in five
model vertebrates, indicating a structural basis for pre-
dicting TIC interactions across species.

Conclusions and future directions

Nearly 45 years ago, the first multidrug transporter, P-
glycoprotein (ABCBI1), was identified and shown to

Environmental chemicals disrupt transporter function

increase drug resistance in cancer cells. Since then, a
race for the detailed elucidation of its structure, func-
tion and molecular mechanism of ligand interactions
has started and fueled academic, governmental, and
industrial efforts to identify the common pharma-
cophore to develop transporter inhibitors or therapeu-
tic drugs that are not recognized by these types of
MDR efflux pumps. Pharmacological studies on
ABCBI1 and other drug transporters have done
pioneering work for a basic understanding of its drug
recognition and interactions. Multiple ‘generations’ of
synthetic and natural inhibitors and substrates have
been synthesized or identified, but a clear understand-
ing of how small molecules are recognized and interact
with these types of transporters is still mysterious.

Given the scale of the environmental chemical prob-
lem, high-throughput assays to determine interactions of
the multitude of emerging environmental chemicals with
SMTs are urgently needed. More importantly, SMT
interactions with chemical mixtures, representing real-
world combinations of drugs, food ingredients, and
chemicals, have to be tested to predict individual and
combined chemical uptake and disposition in humans.
Existing TIC data have been collected through a wide
variety of in vitro assays and approaches, and there is
urgent need to standardize the conditions for establishing
environmental chemicals as TICs. Some of the key crite-
ria for the establishment of such standardized methods
would include assay accuracy, specificity, and repro-
ducibility, both between measurements and analysts in
the same laboratory and when performed in different
laboratories. The International Transporter Consortium
(ITC) has been pioneering such in vitro assay standard-
ization with clinically important transporters for identify-
ing drug-drug interactions (DDIs) that may inform
clinical studies in drug development [9,20,201]. A similar
approach could be applied to TICs so as to identify and
predict possible adverse drug-TIC and TIC-TIC interac-
tions with SMTs. The results of these approaches could
also serve as guidelines for the design of environmental
chemicals that do not interfere with the SMT system and
are better eliminated from the body [202,203].

An alternative and emerging approach to narrow
down drug and chemical candidates to test for trans-
porter interactions in the wet laboratory is the combina-
tion of in vitro or in vivo assays and in silico analysis.
Such data-driven, predictive approaches that combine
computational methods with pharmacokinetic and expo-
some data sets are essential for developing a holistic
understanding of transporter interactions with drugs and
xenobiotics. The main advantages of these in silico tools
are the ability to rapidly analyze large data sets, to prior-
itize chemicals, to develop predictive models, and to
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guide the selection for pharmacokinetic and toxicokinetic
laboratory analysis [51,204,205]. Together with recent
advances in the application of machine learning algo-
rithms combined with network analysis tools in biologi-
cal science [206-211], in silico tools could prove valuable
for predicting and deciphering novel DDIs, drug—food
interactions, and drug-environmental chemical interac-
tions with SMTs. The ultimate goal would be to use
in silico analysis as a high throughput, noninvasive
SMT : chemical interaction tool to identify SMT interac-
tions with small molecules and to predict chemical accu-
mulation potential and chemical toxicities in humans
and other organisms.

Finally, to better understand and validate the organis-
mal effects of TIC:SMT interactions, including cell sig-
naling  disruption and  chemosensitization,  the
development of animal knock-out models is necessary.
Emerging model systems should include food organisms
across multiple trophic levels to investigate the role of
SMT disruption in environmental chemical bioaccumula-
tion, trophic transfer and ultimately (dietary) exposures
to humans [62,212-216]. Collectively, these advances in
TIC research are likely to help us better predict how
environmental chemicals bioaccumulate and how they
cause harm to humans and wildlife.
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