
B. Valiron, S. Mansfield, P. Arrighi and P. Panangaden

(Eds.): Quantum Physics and Logic 2020 (QPL’20)

EPTCS 340, 2021, pp. 291–302, doi:10.4204/EPTCS.340.15

© Kartik Singhal & John Reppy

This work is licensed under the

Creative Commons Attribution License.

Quantum Hoare Type Theory: Extended Abstract

Kartik Singhal John Reppy

University of Chicago

{ks, jhr}@cs.uchicago.edu

As quantum computers become real, it is high time we come up with effective techniques that help

programmers write correct quantum programs. In classical computing, formal verification and sound

static type systems prevent several classes of bugs from being introduced. There is a need for sim-

ilar techniques in the quantum regime. Inspired by Hoare Type Theory [NMB08] in the classical

paradigm, we propose Quantum Hoare Types by extending the Quantum IO Monad [AG09] by in-

dexing it with pre- and postconditions that serve as program specifications. In this paper, we intro-

duce Quantum Hoare Type Theory (QHTT), present its syntax and typing rules, and demonstrate its

effectiveness with the help of examples.

QHTT has the potential to be a unified system for programming, specifying, and reasoning about

quantum programs. This is a work in progress.1

1 Introduction

It is difficult to reason about the correctness of quantum programs. Sound static type systems help prevent

a huge class of bugs from occurring but since the realm of quantum programming is still new there is not

a lot of consensus on what kind of types make the most sense. Further, it is unclear how much they help

programmers reason about the semantic properties associated with the quantum algorithms that they are

implementing.

Recent work [HM18, HM19] as part of EPiQC2 has identified several classes of bugs in quantum

programs and proposed approaches to tackle them. The technique that holds the most promise is assertion

checking using preconditions and postconditions. But assertions are usually checked dynamically during

runtime, which can be wasteful of precious quantum computing or simulation resources.

As programming languages researchers, we think it will be better to encode such assertions into a

static type system both for formal verification and to aid the programmers in writing correct programs

from the start. Inspired by the use of Hoare triples in the verification of imperative programs and building

on the idea of Hoare Type Theory (HTT) for classical programming languages [NMB08], we extend the

Quantum IO Monad interface [AG09] and propose Quantum Hoare Type Theory aimed at enabling both

sound static type checking and formal verification of quantum programs.

The main idea is that instead of just indexing the QIO monad type with the type of computation result,

we can also index it with preconditions and postconditions so as to integrate Hoare-style reasoning into

the type system itself. The resulting Quantum Hoare Type, {P}x:A{Q}, specifies the preconditions, P,

that hold on the quantum state before execution; the result, x, and its type, A; and, the postconditions,

Q, that are true for the quantum state after successful execution. In this way the effectful quantum

fragment of the program is effectively encapsulated inside the Quantum Hoare monad. Our theory, like

HTT, allows the usual equational reasoning for the pure classical fragments of the program and uses

syntax-directed type checking for generating strongest postconditions for the quantum fragment.

1An updated report is available [Sin20] at the time of this publication.
2EPiQC: Enabling Practical-Scale Quantum Computation: https://epiqc.cs.uchicago.edu

292 Quantum Hoare Type Theory

This paper is organized as follows. We discuss some related work and background in the next section,

§2; specifically, Hoare Type Theory in the classical setting (§2.1) and then the Quantum IO Monad

interface (§2.2). Then we introduce our contributions in merging these ideas together for specification

and enforcement of useful semantic properties in section §3 along with its syntax (§3.1), typing rules

(§3.2) and, some examples (§3.3). Finally, we conclude and share ideas for future work in the final

section (§4).

2 Related Work and Background

Previous work, such as Proto-Quipper [Ros15, RS17] and QWire [PRZ17, RPZ18, Ran18], utilize a

linear type system and dependent types to enforce a small subset of semantic properties, such as the

no-cloning restriction and whether a unitary gate is of the right dimension. These advances in quantum

type systems, although helpful, still fall short in encoding and enforcing even more useful properties that

one would like to be able to express for the purpose of verification.

Our approach builds upon previous work in reasoning about quantum programs such as Quantum

Weakest Preconditions [DP06] and Quantum Hoare Logic [Yin12] in the spirit of Hoare [Hoa69] and

Dijkstra [Dij76] but attempts to bring those reasoning techniques into the type system. The hope is that

programmers will be able to encode some of the semantic properties that they expect of their programs as

specifications in their code and type checking will ensure correctness of some of those properties. In the

classical setting, Hoare Type Theory [NMB08] accomplishes exactly this goal. Our attempt is to merge

these ideas for the quantum realm.

In the rest of this section, we provide background on the core ideas from existing literature that form

the foundation for our work — Hoare Type Theory (HTT) and the Quantum IO Monad interface. We

assume background in basics of quantum computing and refer the reader to Nielsen’s excellent series of

essays [MN19] for a first introduction and to the standard textbook [NC10] for advanced material.

2.1 Hoare Type Theory

A Hoare type, ∆.Ψ.{P} x : A {Q}, encodes preconditions and postconditions in the same spirit as Hoare

triples to allow both specification and verification of effectful classical programs. It can be read as ‘for a

stateful computation executed in a heap that satisfies precondition P, return a value of type A in a heap

that satisfies postcondition Q.’ The contexts, ∆ and Ψ, contain the variables and heap variables that may

appear in both P and Q. In this presentation, we will omit the contexts in the Hoare type when they

are unneeded. We show an example to demonstrate the expressiveness of a Hoare type — the alloc

primitive from HTT [NMB08]:

alloc : ∀α .Πx : α .{emp} y : nat {y 7→α x}

This type specifies that alloc is a polymorphic function that takes as input a variable, x, of any

simple type, α , that is executed in an empty heap (meaning it does not affect existing heap), returns a

new location bound by a fresh variable, y, of type nat and initializes it with the supplied value x of type

α .

Type checking in HTT involves generation of strongest postconditions at each step of the program.

Verification is a two-step process: the first phase does basic type checking and verification condition

generation which is decidable, the second phase needs to show the validity of the generated verification

Kartik Singhal & John Reppy 293

conditions, which can be undecidable. This second phase can be deferred to an automated theorem

prover.

We provide more details when we introduce QHTT in section §3. An accessible introduction to

Hoare Type Theory is available in the lecture notes by Perconti [Per12].

2.2 Quantum IO Monad

The Quantum IO (QIO) monad [AG09] is a purely functional interface for quantum programming that

provides a separation between the unitary (reversible) and non-unitary (irreversible) fragments of quan-

tum computation. It provides isolation of quantum effects inside a monad similar to what we need to

provide in our Quantum Hoare monad.

QIO interface was developed as a library for the Haskell programming language but its design was

influenced [Gre10] by the category FQC of finite quantum computations (where computations are inter-

preted as superoperators) as explored by the authors in previous work [GA08]. This is the most we will

say about the relation of QIO monad to category theory in this paper.

Here we discuss the relevant bits from the QIO interface. QIO provides a type for referring to qubits,

Qbit; a type for unitary operations, U; and, the QIO type operator which is a monad indexed by the result

of the quantum computation. The primitive quantum operations defined using the QIO monad below

(Haskell syntax) are:

mkQbit :: Bool → QIO Qbit -- initialization

applyU :: U → QIO () -- apply a unitary to quantum state

measQbit :: Qbit → QIO Bool -- measurement

Further, U is defined as a monoid with neutral element, mempty, and operation, mappend, that encodes

reversible operations on quantum state. The core unitary primitives that we will need are:

rot :: Qbit → ((Bool, Bool) → C) → U

cond :: Qbit → (Bool → U) → U

rot takes a qubit and a two-by-two complex-valued unitary matrix (represented as a function from

the matrix indices to C) and lets one define arbitrary rotation on a single qubit. rot can then be used

to define standard gates such as the Hadamard, H, and the Pauli gates, X, Y and Z. cond is the unitary

conditional that is used to perform branching unitary operations. For the present paper, we use a simpler

conditional, ifQ, that is defined as follows:

ifQ :: Qbit → U → U

ifQ q u = cond q (λx → if x then u else mempty)

That is, ifQ acts as the standard control operator in the quantum circuit model that runs its second

argument based on the truth value of its first argument. Then, it is easy to define controlled gates such as

CNOT with the expression ifQ q1 (X q2) .

Quantum state in the QIO interface is modeled as a normalized vector that stores pairs representing

complex amplitudes associated with each basis state (represented as a map from Qbit to Bool types). The

operations defined over the vector class ensure that the quantum state is kept normalized throughout.

QIO further ensures that the monoidal structure of unitary operations lets one run a unitary operation

over the complete quantum state. We elide details here and refer the reader to [AG09] for more.

294 Quantum Hoare Type Theory

Types A,B,C ::= 1 | Bool |Qbit | U | Pure | A⊗B |Πx:A.B | ∆.Ψ.{P}x:A{Q}

Assertions P,Q,R ::= ⊤ | ⊥ | P∧Q | P∨Q | P⊃Q | ¬P | ∃x:A.P | ∀x:A.P |
∃h:heap .P | ∀h:heap .P | IdA(M,N) | HId(H,G) |
indom(H,M)

Q. Heaps H,G ::= h | empty | upd(H,M,N)

Elim terms K,L ::= x | KM |M : A

Intro terms M,N,O ::= K | () | λx.M | doE | true | false

Q. Commands c ::= mkQbitM | measQbitM | applyUM | ifM thenN elseO

Computations E,F ::= returnM | x← K;E | x⇐ c;E | x =A M;E

Variable context ∆ ::= · | x : A,∆

Q. Heap context Ψ ::= · | h,Ψ
Assertion context Γ ::= · | P,Γ

Figure 1: Syntax of Quantum Hoare Type Theory

3 Quantum Hoare Type Theory

In this section, we introduce the Quantum Hoare Type inspired by the QIO monad and its type theory

(QHTT) by replacing the classical effectful portion of Hoare Type Theory with quantum effects. The

core idea is to encapsulate any quantum effect inside a monadic Quantum Hoare type, ∆.Ψ.{P}x:A{Q},
and formalize reasoning of quantum effects using strongest postconditions in a similar fashion as HTT

in the classical setting.

The next two sections discuss the syntax and typing of QHTT. The last section show examples written

in QHTT.

3.1 Syntax

Figure 1 shows the syntax of Quantum Hoare Type Theory. Our presentation closely follows that of

HTT [NMB08].

Types We include primitive types for unit, booleans, qubits and unitary operations, and a type Pure

for representing pure quantum state vectors (complex valued vectors in Hilbert space); these correspond

to similar types in the QIO work. There are also type constructors for pairs, dependent functions and the

Hoare type from HTT.

Assertions Apart from the usual first order logic, we have assertions for reasoning about propositional

equality of terms, IdA(M,N), and heaps, HId(H,G).
As done in HTT, some common convenience assertions can be defined using the base primitives.

Particularly, emp denotes that the current heap, say h, is empty, that is, HId(h, empty). M 7→ N repre-

sents the only mapping in the (singleton) heap. M →֒ N says that looking up M in the heap returns N

which can be more explicitly written as seleq(H,M,N).

Kartik Singhal & John Reppy 295

Quantum State We use the terms quantum state and quantum heaps interchangeably throughout. A

quantum heap is a partial function from qubits (that can in turn be thought of as locations, represented

using natural numbers) to at most one quantum state vector.

For the purpose of the type theory, heaps are functional, so that, for example, upd (H,M,N) returns

a new heap after updating heap H at location M with N.

Terms The terms are divided into introduction and elimination sorts for the purpose of bidirectional

typechecking like in HTT.

The pure fragment allows higher-order functions while the impure (effectful) fragment is encapsu-

lated within the monadic do E construct and supports a simple imperative quantum language inspired by

QIO constructs. It is worth noting that do E represents suspended computation and is considered pure.

Quantum Commands These are the quantum-specific effectful commands from QIO for initialization,

unitary application and measurement of qubits. We also support classical control using the if M then

N else O construct similar to HTT.

Computations The computations are the usual monadic return and three sequencing operations that

bind their result to a variable similar to HTT. The first, x← K, executes a suspended computation (such

as applying a function that includes a do E in its body); the second, x⇐ c executes a primitive command

c; and the last, x =A M, is just syntactic sugar for let-binding.

Contexts Contexts are modelled exactly the same way as in HTT. The only difference is that instead

of classical heaps, we have quantum heaps.

3.2 Typing Rules

In this section, we provide some details about type checking in HTT and how it is different in the quantum

case.

3.2.1 Judgments

We explain the main judgments used in HTT that are required to understand the typing rules in the next

section. The type system is designed to be bidirectional and syntax directed and hence includes separate

judgments for intro and elim terms. We are able to use them unchanged for QHTT. A recent survey

provides accessible introduction to bidirectional typing [DK19].

The type checking process also involves generating canonical forms for each term. A canonical form

in HTT means a beta-normal (containing no beta-redexes) and eta-long (all intro terms are eta-expanded)

form. We elide much detail here.

As usual, elim terms synthesize types (⇒) and intro terms are checked against the given type (⇐).

Canonical forms are always synthesized. For the pure fragment:

∆ ⊢ K⇒A[N ′] Elim term K has type A and canonical form N ′

∆ ⊢M⇐A[M′] Intro term M has type A and canonical form M′

Note that the blue colored ⇐ symbol we use in the typing rules lives in a different syntactic category

from the⇐ symbol used in the syntax (fig. 1) that binds the output of primitive commands.

296 Quantum Hoare Type Theory

The judgments for computations involve synthesizing the strongest postconditions and checking

whether a given postcondition applies:

∆;P ⊢ E⇒x : A.Q[E ′] Computation E with precondition P has strongest postcondition Q

and returns value x of type A. Its canonical form is E ′.

∆;P ⊢ E⇐x : A.Q[E ′] Computation E with precondition P has postcondition Q

and returns value x of type A. Its canonical form is E ′.

Even though, we have shown the full forms of these judgments above, we will omit the canonical

forms while presenting typing rules in the next section as they crowd the rules and do not affect the

insight to be gained from them.

Finally, the judgment ∆;Ψ;Γ1 =⇒Γ2 encodes the sequent calculus for the assertion logic. Recall that

∆, Ψ, and Γ denote the variable context, the quantum heap context and the assertion context, respectively.

The type system includes rules for primitive effectful commands and those for structuring compo-

sition such as monadic unit and bind. We reuse most of the HTT rules except those for primitives for

quantum effects that need to specify the strongest postconditions for each primitive, we discuss that next.

3.2.2 Strongest Postconditions

Here we show the strongest postconditions for the primitive quantum commands of QHTT encoded in

their typing rules. Given a quantum command for initialization, unitary application or measurement, its

strongest postcondition is an assertion that most precisely captures the relationship between the initial

state and the modified state after the execution. These rules along with the consq (consequent) rule of

HTT (that ensures weakening of the given strongest postcondition to an arbitrary postcondition) work

together to ensure composition of verification.

We need to use the relational composition connective from HTT (P ◦Q) that captures how heap

evolves with computation. It basically reads: Q holds of the current heap which is obtained after modifi-

cation of a prior heap for which P holds.

We also use HTT’s difference operator (⊸) below that captures changes to only the interesting

fragment of the heap without modifying the rest of the heap.

We can now state some typing rules:

Initialization x⇐ mkQbitM;E

∆ ⊢M⇐Bool ∆,x : Qbit;P◦ (x 7→ state(M)) ⊢ E⇒y : B.Q

∆;P ⊢ x⇐ mkQbitM;E⇒y : B.(∃x : Qbit.Q)

where x is fresh and state is a function that translates a classical representation of quantum state (such

as boolean here) to the equivalent quantum state vector.

Initialization can only be performed for a term M that can be type checked as a Bool. Then, we

look at the rest of the computation, E , in a context that adds x of type Qbit under a precondition that

extends the previous precondition, P, with the strongest postcondition for initialization, that is, the newly

bound variable x points to the representation of a new qubit state; this should synthesize the strongest

postcondition (with respect to the expanded precondition in the context), Q, for E .

To avoid dangling variables, we need to existentially quantify x in the postcondition, Q, of the con-

clusion.

Kartik Singhal & John Reppy 297

Measurement x⇐ measQbitM;E

∆ ⊢M⇐Qbit ∆;Ψ;P =⇒ (M →֒ −) ∆,x : Bool;P◦ ((M 7→ −)⊸ emp) ⊢ E⇒y : B.Q

∆;P ⊢ x⇐ measQbitM;E⇒y : B.(∃x : Bool.Q)

The measurement rule can be read in a similar way as the previous rule. But in measurement, we

need to additionally prove that the verification condition (written as a sequent), the precondition P implies

that the qubit M is allocated, holds in the heap context Ψ. The strongest postcondition here is that the

fragment of heap that only refers to location M becomes empty.

As may be apparent, initialization is analogous to alloc and measurement to dealloc and lookup

primitives of HTT. We are working out precise details for unitary application, but at a high-level, they

involve ensuring that the given unitary term actually represents a unitary matrix and updating the quantum

state with the result of unitary application. This involves incorporating the monoidal structure of unitaries

into our theory (as is done in QIO). This step also involves generating verification conditions that cannot

be checked during this first phase of typechecking. We are also considering more tractable alternatives

such as the sum-over-paths action semantics [Amy18] based on the Feynman path integral formulation.3

3.3 Sample programs

In this section, we show some simple examples from the QIO work [AG09] translated in our language

and annotated with their program specifications using their Quantum Hoare types. An observation is that

translating the programs was a very simple process except for coming up with the right specifications for

the programs. We provide some commentary on assertions specified for these programs.

At the end of this section, we show a sample verification using QHTT for Bell pair generation.

Hello Quantum World

hqw : {emp} r : Bool {emp ∧ Id(r, false)}

= do q ⇐ mkQbit false;

measQbit q

In this trivial program where we initialize a new qubit with false and then immediately measure

it, we assert that the result is equal to false. The complete specification also implicitly says that the

existing quantum state is not affected in any way as both the pre- and postcondition include the emp

assertion.

Coin Toss

rnd : {emp} r : Bool {emp}

= do q ⇐ mkQbit false;

applyU (H q);

measQbit q

In the case of quantum coin toss, the result can be in either of its two boolean values false or true,

hence, we need not specify any special postcondition as type checking the result will be sufficient for

correctness.

3We ended up taking a different approach in subsequent work [Sin20].

298 Quantum Hoare Type Theory

Testing Bell Pair

testBell : {emp} (a, b) : (Bool, Bool) {emp ∧ Id(a, b)} -- a,b ∈ {true, false}

= do qa ⇐ mkQbit false;

applyU (H qa);

qb ⇐ mkQbit false;

applyU (ifQ qa (X qb));

(measQbit qa, measQbit qb)

Here, we are asserting that the returned booleans a and b hold the same value, which is what we

expect from the first Bell state prepared in this program.

Verification We would like to describe how QHTT lets us verify the correctness of the above program

based on the specification provided as the type of the function. For illustration, we show the assertions

annotated as comments as we step through the testBell program below. We have elided specific details

about unitary application as they are still being worked out.

testBell : {emp} (a, b) : (Bool, Bool) {emp ∧ Id(a, b)}

-- P0: emp

= do qa ⇐ mkQbit false;

-- P1: P0 ◦ (qa 7→ |0〉)
applyU (H qa);

-- P2: P1 ◦ ((qa 7→ |0〉) ⊸ (qa 7→ |+〉))
qb ⇐ mkQbit false;

-- P3: P2 ◦ (qb 7→ |0〉)
applyU (ifQ qa (X qb));

-- P4: P3 ◦ ((qa 7→ |+〉, qb 7→ |0〉) ⊸ (qa, qb) 7→ |Φ+〉)
(measQbit qa, measQbit qb)

-- P5: P4 ◦ ((qa 7→ -) ⊸ emp) ◦ ((qb 7→ -) ⊸ emp)

In the assertion P2, we show that only the portion of the quantum state referred to by the applyU

command is affected. Similarly, in P4 we see that only the relevant portion of the heap containing

the control and target qubits used in the CNOT operation are affected. In this case, we also needed

to combine the two qubit state as they are now entangled. The last assertion, P5, merely encodes the

strongest postcondition for measurement for each of the two qubits.

Finally, the consq rule of HTT ensures that the assertion P5 leads to the specified postcondition in

the type of the program.

We show some two more examples in the appendix for a modular version of Bell pair generation

(Appendix A) that shows use of higher-order features of QHTT and another for teleportation protocol

(Appendix B). Both of these involve specifying assertions over quantum state whose theory we still need

to work out.

4 Conclusions and Future Work

In this paper, we have described our ongoing work on Quantum Hoare Type Theory, which modifies HTT

for quantum computing using ideas from the Quantum IO monad work. This approach has the potential

to be a unified system for programming, specification, and reasoning about quantum programs. This is

active work in progress and more details will be available in a forthcoming technical report [Sin20].

There are several avenues of future work to explore:

Kartik Singhal & John Reppy 299

Mechanization There are multiple implementations of HTT in Coq such as Ynot [NMS+08]. We are

similarly working on mechanizing QHTT in Coq for higher assurance of the usefulness and soundness

of our theory. This will also enable us to extract verified circuits in a lower level quantum language such

as OpenQASM for execution on real machines.

Quantum Assertion Logic An obvious need is to come up with an assertion logic similar to Separation

Logic [Rey02] for quantum computing so as to be able to reason about only the interesting portions of

the quantum state while still ensuring correctness of non-local effects such as entanglement. Various

Quantum Hoare Logics that exist [Yin12] currently do not support frame rules that provide Separation

Logic its power.4

Linearity Peter Selinger and collaborators have recently proposed a linear dependent typed version

of Proto-Quipper (dubbed Proto-Quipper-D) [Sel20, FKS20]. It is an interesting challenge to reconcile

linearity in our theory based on their proposal.

Circuits as Arrows Further, Proto-Quipper treats quantum circuits as first class citizens of the lan-

guage. We would like to explore modifying our theory to treat Quantum Hoare types as arrows instead

of as monads as was suggested by Vizzotto et al [VAS06]. It makes sense from the perspective of se-

quential composition as arrows can have an arbitrary number of input/outputs as opposed to monads.

Behavioral Types Another venue for exploration is to incorporate more precise types that can distin-

guish between qubits in pure classical state vs. those in superposition vs. those in entanglement [JP09]

such as those inspired by the various quantum resource theories or the Heisenberg representation of

quantum mechanics [RSSL19, RSSL20]. This may help us provide more specific postconditions that

quantum programmers expect to hold true of their programs.

Classical Effects Finally, it will be an interesting challenge to reconcile both classical and quantum

effects together in a single grand unified theory for effects.

Acknowledgments

We thank Robert Rand and the anonymous reviewers for their feedback on a previous draft of this paper.

This work is funded by EPiQC, an NSF Expedition in Computing, under grant CCF-1730449.

References

[AG09] T. Altenkirch & A.S. Green (2009): The Quantum IO Monad. In: Semantic Techniques in Quan-

tum Computation, Cambridge University Press, pp. 173–205, doi:10.1017/CBO9781139193313.006.

Available at http://www.cs.nott.ac.uk/~psztxa/g5xnsc/chapter.pdf.

[Amy18] M. Amy (2018): Towards Large-scale Functional Verification of Universal Quantum Circuits. In:

Proc. QPL ’18, pp. 1–21, doi:10.4204/EPTCS.287.1.

[Dij76] E.W. Dijkstra (1976): A Discipline of Programming. Prentice-Hall, Englewood Cliffs, NJ.

4Since the time of this writing, we learned about Unruh’s work [Unr19] that we use in subsequent work [Sin20].

300 Quantum Hoare Type Theory

[DK19] J. Dunfield & N. Krishnaswami (2019): Bidirectional Typing. Available at

https://arxiv.org/abs/1908.05839. Submitted to ACM Computing Surveys.

[DP06] E. D’hondt & P. Panangaden (2006): Quantum Weakest Preconditions. Math. Struct.

Comput. Sci. 16(3), pp. 429–451, doi:10.1017/S0960129506005251. Available at

https://www.cs.mcgill.ca/~prakash/Pubs/weakest_mscs.pdf.

[FKS20] P. Fu, K. Kishida & P. Selinger (2020): Linear Dependent Type Theory for Quantum Programming

Languages: Extended Abstract. In: Proc. LICS ’20, p. 440–453, doi:10.1145/3373718.3394765.

[GA08] A.S. Green & T. Altenkirch (2008): From Reversible to Irreversible Computations. Electron. Notes

Theor. Comput. Sci. 210, pp. 65–74, doi:10.1016/j.entcs.2008.04.018. Proc. QPL ’06.

[Gre10] A.S. Green (2010): Towards a formally verified functional quantum programming language. Ph.D.

thesis, University of Nottingham. Available at http://eprints.nottingham.ac.uk/11457/.

[HM18] Y. Huang & M. Martonosi (2018): QDB: From Quantum Algorithms Towards Correct Quantum

Programs. In: 9th Workshop on Evaluation and Usability of Programming Languages and Tools

(PLATEAU ’18), pp. 4:1–4:14, doi:10.4230/OASIcs.PLATEAU.2018.4.

[HM19] Y. Huang & M. Martonosi (2019): Statistical Assertions for Validating Patterns and Finding Bugs in

Quantum Programs. In: Proc. ISCA ’19, pp. 541–553, doi:10.1145/3307650.3322213. Available at

https://arxiv.org/abs/1905.09721.

[Hoa69] C.A.R. Hoare (1969): An Axiomatic Basis for Computer Programming. Commun. ACM 12(10), pp.

576–580, doi:10.1145/363235.363259.

[JP09] P. Jorrand & S. Perdrix (2009): Abstract Interpretation Techniques for Quantum Computation.

In: Semantic Techniques in Quantum Computation, Cambridge University Press, pp. 206–234,

doi:10.1017/CBO9781139193313.007.

[MN19] A. Matuschak & M.A. Nielsen (2019): Quantum Computing for the Very Curious (and other essays).

Online. Available at https://quantum.country.

[NC10] M.A. Nielsen & I.L. Chuang (2010): Quantum Computation and Quantum Information, 10th anniver-

sary edition. Cambridge University Press, doi:10.1017/CBO9780511976667.

[NMB08] A. Nanevski, G. Morrisett & L. Birkedal (2008): Hoare Type Theory, Polymorphism and Sepa-

ration. J. Funct. Program. 18(5–6), pp. 865–911, doi:10.1017/S0956796808006953. Available at

https://software.imdea.org/~aleks/htt/jfpsep07.pdf.

[NMS+08] A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau & L. Birkedal (2008): Ynot: Dependent Types for

Imperative Programs. In: Proc. ICFP ’08, pp. 229–240, doi:10.1145/1411204.1411237. Available at

https://software.imdea.org/~aleks/htt/ynot08.pdf.

[Per12] J.T. Perconti (2012): Hoare Type Theory: Dependent Types for State. Available at

http://www.ccs.neu.edu/home/amal/course/7480-s12/HTT-notes.pdf.

[PRZ17] J. Paykin, R. Rand & S. Zdancewic (2017): QWIRE: A Core Language for Quantum Cir-

cuits. In: Proc. POPL ’17, pp. 846–858, doi:10.1145/3009837.3009894. Available at

https://jpaykin.github.io/papers/prz_qwire_2017.pdf.

[Ran18] R. Rand (2018): Formally Verified Quantum Programming. Ph.D. thesis, University of Pennsylvania.

Available at https://repository.upenn.edu/edissertations/3175.

[Rey02] J.C. Reynolds (2002): Separation Logic: A Logic for Shared Mutable Data Struc-

tures. In: Proc. LICS ’02, pp. 55–74, doi:10.1109/LICS.2002.1029817. Available at

https://www.cs.cmu.edu/~jcr/seplogic.pdf.

[Ros15] N.J. Ross (2015): Algebraic and Logical Methods in Quantum Computation. Ph.D. thesis, Dalhousie

University. Available at http://arxiv.org/abs/1510.02198.

[RPZ18] R. Rand, J. Paykin & S. Zdancewic (2018): QWIRE Practice: Formal Verification of Quantum Circuits

in Coq. In: Proc. QPL ’17, pp. 119–132, doi:10.4204/EPTCS.266.8.

Kartik Singhal & John Reppy 301

[RS17] F. Rios & P. Selinger (2017): A Categorical Model for a Quantum Circuit Description Language

(Extended Abstract). In: Proc. QPL ’17, pp. 164–178, doi:10.4204/EPTCS.266.11.

[RSSL19] R. Rand, A. Sundaram, K. Singhal & B. Lackey (2019): A Type System for Quantum Resources.

Available at http://ks.cs.uchicago.edu/publication/quantum-resource-types/. Draft.

[RSSL20] R. Rand, A. Sundaram, K. Singhal & B. Lackey (2020): Gottesman Types for Quantum Programs.

In: Proc. QPL ’20, Electronic Proceedings in Theoretical Computer Science 340, pp. 279–290,

doi:10.4204/EPTCS.340.14.

[Sel20] P. Selinger (2020): Dependently Typed Quantum Programming in Proto-Quipper. Available at

https://popl20.sigplan.org/details/planqc-2020-papers/15/. Invited talk at PLanQC

’20.

[Sin20] K. Singhal (2020): Quantum Hoare Type Theory. Technical Report, University of Chicago. Available

at https://arxiv.org/abs/2012.02154. Master’s paper.

[Unr19] D. Unruh (2019): Quantum Hoare Logic with Ghost Variables. In: Proc. LICS ’19, pp. 1–13,

doi:10.1109/LICS.2019.8785779. Available at https://arxiv.org/abs/1902.00325.

[VAS06] J. Vizzotto, T. Altenkirch & A. Sabry (2006): Structuring Quantum Effects: Superoperators as Ar-

rows. Math. Struct. Comput. Sci. 16(3), pp. 453–468, doi:10.1017/S0960129506005287. Available at

https://arxiv.org/abs/quant-ph/0501151.

[Yin12] M. Ying (2012): Floyd–Hoare Logic for Quantum Programs. ACM Trans. Program. Lang. Syst.

33(6):19, doi:10.1145/2049706.2049708.

A Modular Bell Pair

Writing a modular version of testBell.

A.1 Hadamard basis states

qplus : {emp} r : Qbit {Id(r, |+〉)}
= do q ⇐ mkQbit false;

applyU (H q);

return q

qminus : {emp} r : Qbit {Id(r, |-〉)}
= do q ⇐ mkQbit true;

applyU (H q);

return q

A.2 Creating entanglement

share : Π a : Qbit.

{a ∈ { |+〉, |-〉}} -- a ∈ {b, c} is short for Id(a,b) ∨ Id(a,c)

b : Qbit

{Id(a, b) ∧ a ∈ { |0〉, |1〉}}
= λa.do b ⇐ mkQbit false;

applyU (ifQ a (X b));

return b

302 Quantum Hoare Type Theory

A.3 Bell pair

bell : {emp} (a, b) : (Qbit, Qbit) {Id(a, b) ∧ a ∈ { |0〉, |1〉}}
= do qa ← qplus;

qb ← share qa;

return (qa, qb)

A.4 Testing modular Bell pair

testBell : {emp} (a, b) : (Bool, Bool) {emp ∧ Id(a, b)}

= do (qa, qb) ← bell;

(measQbit qa, measQbit qb)

B Teleportation

B.1 Alice’s circuit

alice : Π a : Qbit. Π e : Qbit

{(Id(a, -) ∧ entangled(e)}

r : (Bool, Bool)

{emp}

= λa.λe.do applyU (ifQ a (X e));

applyU (H a);

(measQbit a, measQbit e)

B.2 Bob’s circuit

bob : Π m1 m2 : Bool. Π e : Qbit

{entangled(e)}

r : Qbit

{(Id(r, -)}

= λm1.λm2.λe.do if m1 then applyU (Z e) else ();

if m2 then applyU (X e) else ();

return e

B.3 Teleport

teleport : Π q : Qbit. x : Pure.

{Id(q, x)}

r : Qbit

{Id(r, x)}

= λq.do (a, b) ← bell;

(m1, m2) ← alice q a;

tq ← bob m1 m2 b;

return tq

	1 Introduction
	2 Related Work and Background
	2.1 Hoare Type Theory
	2.2 Quantum IO Monad

	3 Quantum Hoare Type Theory
	3.1 Syntax
	3.2 Typing Rules
	3.2.1 Judgments
	3.2.2 Strongest Postconditions

	3.3 Sample programs

	4 Conclusions and Future Work
	A Modular Bell Pair
	A.1 Hadamard basis states
	A.2 Creating entanglement
	A.3 Bell pair
	A.4 Testing modular Bell pair

	B Teleportation
	B.1 Alice's circuit
	B.2 Bob's circuit
	B.3 Teleport

