
Information and Inference: A Journal of the IMA (2021) 10, 261–283
doi:10.1093/imaiai/iaaa003
Advance Access publication on 20 April 2020

An iterative method for classification of binary data

Denali Molitor† and Deanna Needell
Department of Mathematics, University of California, Los Angeles, Los Angeles, CA 90095, USA

†Corresponding author: dmolitor@math.ucla.edu
deanna@math.ucla.edu

[Received on 14 November 2018; revised on 19 September 2019; accepted on 10 February 2020]

In today’s data-driven world, storing, processing and gleaning insights from large-scale data are major
challenges. Data compression is often required in order to store large amounts of high-dimensional data,
and thus, efficient inference methods for analyzing compressed data are necessary. Building on a recently
designed simple framework for classification using binary data, we demonstrate that one can improve
classification accuracy of this approach through iterative applications whose output serves as input to
the next application. As a side consequence, we show that the original framework can be used as a
data preprocessing step to improve the performance of other methods, such as support vector machines.
For several simple settings, we showcase the ability to obtain theoretical guarantees for the accuracy of
the iterative classification method. The simplicity of the underlying classification framework makes it
amenable to theoretical analysis.

Keywords: classification; iterative framework; binary data.

1. Introduction

Interpretability of algorithms and the ability to explain predictions is of increasing importance as
machine learning algorithms are applied to an expanding range of problems in areas such as medicine,
criminal justice and finance [5, 6, 17]. Decisions made based on algorithmic predictions can have
profound repercussions for both participating individuals as well as society at large. A major drawback
to complex models such as deep neural networks [14, 24, 29, 30] is that it is extremely difficult to explain
how or why such algorithms arrive at a specific prediction; see e.g. [44, 46, 47] and references therein.
Studying and advancing models for which model output can be understood will help to both improve
methods that are more readily interpretable and develop tools for understanding more complex models.
The aim of this paper is to continue developing a framework with these two simultaneous goals in mind.
This will both build a simple yet robust and analysable approach, while also building a mathematical
foundation upon which state of the art methods can be studied.

To this end, we consider the problem of performing classification using only binary measurements
of the data. This situation may arise due to the need for extreme compression of data or in the interest
of hardware efficiency [2, 18, 27, 28]. Despite this extremely coarse quantization of the data, one can
still perform learning tasks, such as classification, with high accuracy. The authors of [36] recently
proposed a classification method for binary data, which they show to be reasonably accurate and
sufficiently simple to allow for theoretical analysis in certain settings. Additionally, the predicted class
can be approximately understood as the class whose binarized training data most closely and frequently

Symbol indicates reproducible data.

© The Author(s) 2020. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/10/1/261/5821496 by guest on 09 Septem
ber 2021

262 D. MOLITOR AND D. NEEDELL

matches that of the test point. We will extend this approach to an iterative feedback framework that
yields improved classification accuracy while also exhibiting more levels of abstraction akin to simple
neural networks.

1.1 Contributions

We propose an extension of the simple classification method for binary data proposed in [36], which
we will henceforth refer to as SCB. Specifically, we propose an iterative method that uses output from
SCB as input to a subsequent application of SCB. We refer to this iterative method as ISCB. We find
that the iterative extension, ISCB, often leads to improved performance over SCB. Additionally, we
demonstrate that SCB can be used for dimension reduction or as a data preprocessing step to improve the
performance of other models, such as support vector machines (SVM). While one can draw similarities
between methods such as decision tree ensembles [3, 34, 35] and approximate nearest neighbors [22, 26,
48] with SCB, we focus here on the extension of SCB to an iterative framework. Due to the simplicity
of the SCB framework, we can provide theoretical guarantees for the accuracy of the iterative extension
in simple two-dimensional settings.

1.2 Organization

The paper is organized as follows. Section 2 introduces the problem statement and classification
strategies of interest. Section 2.1 describes the SCB framework introduced in [36] and Section 2.2 our
proposed iterative extension. In Section 3, we demonstrate the performance of the proposed approach
on real and synthetic datasets. Section 4 discusses variations and practical considerations. We provide
theoretical guarantees for the proposed iterative method in several simplified settings and provide
intuition as to why ISCB generally outperforms the original SCB approach in Section 5. Lastly,
Section 6 comments on how SCB can be adapted to serve as a data preprocessing and dimension
reduction strategy for other methods applied to binary data.

2. Classification using binary data

We first introduce the problem and notation that will be used throughout. Let A ∈ R
m×n be a random

measurement matrix (e.g. typically it will contain i.i.d. standard normal entries). Let X = [x1 · · · xp] ∈
R

n×p be the matrix of p data vectors xi ∈ R
n with labels b = (b1, · · · bp). Let G be the number of groups

or classes to which the data points belong, so that we may assume bi ∈ {1, 2, . . . , G}. Suppose we have
the binary measurements of the data

Q = sign(AX),

where sign(M)i,j = sign(Mi,j) and for a real number c the sign function simply assigns sign(c) = 1 if
c � 0 and −1 otherwise. For a matrix M, let M(j) denote the jth column of M.

The rows of the matrix A can be viewed as the normal vectors to randomly oriented hyperplanes, in
which case the (i, j)th entry of Q denotes on which side of the ith hyperplane the jth data point xj lies.
In practice, the binary data Q may be obtained during processing or be provided as direct input from
some other source. In the latter case, we may not have access to the data matrix X or the measurement
matrix A, but only the resulting binary data Q. We refer to the binary information indicating the position
of a data point relative to a set of hyperplanes as a sign pattern. In particular, for a column Q(j) and any
subset of its entries, the resulting vector indicates the sign pattern of the jth data point relative to that
subset of hyperplanes.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/10/1/261/5821496 by guest on 09 Septem
ber 2021

AN ITERATIVE METHOD FOR CLASSIFICATION OF BINARY DATA 263

Fig. 1. A motivating example for using positions relative to hyperplanes for classification.

We aim to classify a data point x based only on the binary information contained in Q. As a simple
motivating example, consider the left plot of Fig. 1. The training data points each belong to one of
three classes, red, blue or green. Consider the test point indicated by the black x. Cycling through the
hyperplanes, the green hyperplane indicates that the test point likely belongs to the blue or red class
(since it lies on the same side as these clusters), the purple hyperplane indicates that the test point likely
belongs to the blue or green class, the blue hyperplane indicates that the test point likely belongs to
the blue class and the black hyperplane indicates that the test point likely belongs to the blue class. In
aggregate, the test point matches the relative positions of the blue class to the hyperplanes most often.
This prediction matches what we might predict visually.

For the data in the right plot of Fig. 1, there are both red and blue points on the same side as x for
each hyperplane. However, if we consider sign patterns with respect to pairs of hyperplanes instead of
only single hyperplanes, we can isolate data within cones or wedges as opposed to simply half-spaces.
Comparing the sign patterns of the training data with respect to pairs of hyperplanes with that of the
test point, we find that the test point x matches the sign patterns of the blue class most often. Thus, it
may not be enough to consider hyperplanes individually, but in tuples. SCB of [36] uses this intuition as
motivation.

Generating binary representations of data is a popular strategy for compressing and analysing high-
dimensional data. Binary representations are commonly applied to text data and used in computer vision
tasks for performing efficient search, detection and recognition [1, 12, 33, 39–43, 45]. Here, we focus not
on generating binary representation of the data or specific applications, but on making classifications
using binary data. While one could use more complicated methods to generate binary descriptors, in
order to preserve the geometric interpretation of ISCB, we use random hyperplanes to generate the
binary data as opposed to learned, data-dependent or domain-specific strategies. Similar strategies have
also been considered in the context of approximate nearest neighbours search for high-dimensional data
[13, 22, 26, 48]. Alternative methods for generating the binary representations could be used in the ISCB
framework, for example, to exploit potential structure within the data.

2.1 SCB

In SCB, sign patterns of the data with respect to tuples of hyperplanes of various lengths are recorded
and aggregated to arrive at a prediction. The length of the sign patterns, or the number of hyperplanes
considered, is referred to as the level. For each level � = 1, · · · , L, we choose m random combinations

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/10/1/261/5821496 by guest on 09 Septem
ber 2021

264 D. MOLITOR AND D. NEEDELL

of � hyperplanes. Each of the hyperplane-tuples provides a measurement of the data points. Fixing the
number of hyperplane combinations considered, as opposed to considering all possible combinations,
prevents the number of measurements from growing exponentially with the level.

Let t be a sign pattern for the ith measurement at the �th level and Pg|t be the number of training
points in class g with sign pattern t. This sign pattern information is then aggregated for the training data
points in the membership function r(�, i, t, g), with

r(�, i, t, g) := Pg|t∑G
j=1 Pj|t

∑G
j=1

∣∣∣Pg|t − Pj|t
∣∣∣∑G

j=1 Pj|t
, (2.1)

where � = 1, · · · , L, i = 1, · · · m and g = 1, · · · , G. The first term in this formula gives the fraction of
points with sign pattern t that belong to class g, while the second acts as a balancing term to account
for differences in the relative sizes of different classes. Each value in this membership function gives an
indication of how likely a data point is to belong to class g based on the fact that it has sign pattern t for
the ith measurement at the �th level. Larger r(�, i, t, g) values indicate that a data point is more likely to
belong to the gth class. Training is detailed in Algorithm 1, which simply consists of computing all of
the r(�, i, t, g) quantities.

Given a test point x, with binary data q = sign(Ax), for each level �, measurement i and associated
sign pattern t∗ we find the corresponding r(�, i, t∗, g) value and keep a running sum for each group g,
stored in the vector r̃ (note that the vector r̃ depends on the data point x, but we notationally ignore this
dependence for tidiness, and will write r̃(g) for a class g or data point y when clarification is needed). If
t∗ does not match any of the sign patterns observed in the training data, then no update to r̃ is made. The
testing procedure is detailed in Algorithm 2. In [36], the authors showed that this classification method
works well on both artificial and real datasets (e.g. MNIST [31], YaleB [9–11, 25]).

Algorithm 1 SCB training from [36]

1. Input: binary training data Q, training labels b, number of classes G, number of levels L.

2. for � from 1 to L, i from 1 to m do

3. Randomly select � hyperplanes.

4. for all observed sign patterns t and classes g from 1 to G do

5. Compute r(�, i, t, g) as in (2.1).

6. end for

7. end for

2.2 ISCB

We now introduce a novel iterative extension to SCB, which we refer to as ISCB. First, we motivate the
extension through an example. Consider Fig. 2, which plots the values of r̃ from Algorithm 2 for the task
of classifying the digits 0–4 of the MNIST dataset (where we will use class labels 0, 1, . . . , 4). Note that
test images of the digit 0 typically have lower r̃(1) values than do other digits. Similarly, test images of
the digit 1 typically have lower r̃(0) than do test images of the digits 1–4. Indeed, it is not only likely that

b̂x = argmaxg∈{1,··· ,G}̃r(g)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/10/1/261/5821496 by guest on 09 Septem
ber 2021

AN ITERATIVE METHOD FOR CLASSIFICATION OF BINARY DATA 265

Algorithm 2 SCB classification from [36]

1. Input: binary testing data q, number of classes G, number of levels L, learned parameters
r(�, i, t, g) and hyperplane tuples from Algorithm 1.

2. Initialize r̃(g) = 0 for g = 1, · · · , G.

3. for � from 1 to L, i from 1 to m do

4. Identify the sign pattern t∗ to which q corresponds for the ith �-tuple of hyperplanes.

5. for g from 1 to G do

6. r̃(g) = r̃(g) + r(�, i, t∗, g).

7. end for

8. end for

9. Set r̃(g) = r̃(g)
Lm for g = 1, · · · , G.

10. Classify b̂ = argmaxg∈{1,··· ,G}̃r(g).

Fig. 2. The r̃(g) values from SCB trained to classify digits 0–4 from the MNIST dataset are plotted. Five digits are considered
to ease visualization. One-hundred test points from each digit are used with points 1–100 corresponding to 0s, 101–200
corresponding to 1s, etc. r̃(0) values are plotted in red, r̃(1) in blue, r̃(2) in green, r̃(3) in magenta and r̃(4) in black.

corresponds to the true digit label, but in addition the r̃ vectors for testing images from different digits
contain different patterns. Thus, we expect that using a method more advanced than simply predicting
the class corresponding to the maximum of the r̃ vector may improve classification accuracy, specifically
a strategy that makes use of the distribution of the values contained in r̃.

One could make predictions based on the r̃ vectors in a variety of ways. We mention a few such
options here. Drawing intuition from simple neural network architectures such as multilayer perceptron
[16] and boosting algorithms such as AdaBoost [19, 20], we first consider using iterative applications
of SCB, where r̃ values of the training data from previous iterations are used as input training data for
the following iteration. In particular, this strategy is reminiscent of the structure of a single neuron in
a neural network in which information only propagates forward as opposed to throughout the whole

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/10/1/261/5821496 by guest on 09 Septem
ber 2021

266 D. MOLITOR AND D. NEEDELL

network. In contrast to deep neural networks, the output at each iteration, r̃, can be interpreted as a
vector indicating to which class a data point x is likely to belong. This iterative strategy also relates to
boosting in that subsequent iterations train on the shortcomings of previous iterations. Specifically, if
points from a given class are misclassified, but produce similarly structured r̃ vectors, this pattern may
be corrected in the next iteration.

The training and testing phases of the proposed ISCB method are detailed in Algorithms 3
and 4. To ease notation, denote rk, r̃k and A(k) as r, r̃ and A from the kth application of SCB
(Algorithms 1 and 2). During training, the first iteration in ISCB is executed as in Algorithm 1. We
collect the data X = [̃r1(x1) · · · r̃1(xp)] ∈ R

G×p, which will be used as training data for the next
iteration, where xi are training data points. In contrast to SCB, the iterative algorithm calculates r̃
values for both the training and test data. Note that the dimension of the data points is fixed at
G after the first application of SCB. For high-dimensional data, we will typically have G � n.
This reduction in dimension reduces the computational cost of some of the required computations,
such as Q = sign(AX). One could also make use of the same measurement matrix A for all
iterations after the first. Since the dimension is much smaller after the first iteration of SCB, one
may also need fewer levels for accurate classification. We leave an exhaustive study of the many
possible variations for future work, and focus here on establishing the mathematical framework of this
iterative approach.

After each application of Algorithm 1, we collect sign information of our data with respect to a
new set of random hyperplanes. Although the dimension of the data for the subsequent applications
lies in R

G and thus we expect the size of this data to be manageable, there are several motivations
for taking binary measurements of the data at each application. First, we can still take advantage of
methods for efficient storage of and computation with binary data. Second, the binary measurements
roughly preserve angular information about the data. For the r̃ values, we are generally interested in the
relative sizes of the components, since these represent the likelihood that a point belongs to a given
class. The overall magnitude of the r̃ values is of less importance and, thus, binary measurements
retain the significant information pertaining to the data. Third, considering binary measurements of
the data at each application maintains consistency between the applications. Specifically, the inputs to
each application are binary measurements of the data and SCB thus applies a similar transformation to
the data at each iteration. This makes the iterative method more interpretable, amenable to theoretical
analysis, and more in line with the layered structure of sophisticated deep neural net architectures.

Since the components of r̃ are always non-negative, we restrict the random hyperplanes to intersect
this space after the first application. For example, we can ensure the hyperplanes intersect this region
by requiring that the normal vectors have at least one positive and one negative coordinate. We do
not recenter the data after each application, as the structure of r̃ can lead to poor performance with
recentering. For an example, consider Fig. 3, in which the r̃ values follow a roughly linear trend for later
applications of the method.

For testing, we calculate r̃k(g) values for each iteration k by aggregating the r(�, i, t∗, g) values for
each sign pattern t∗ of the test point. Finally, at the last iteration K, we make the prediction

b̂ = argmax
g∈{1,··· ,G}̃

rK(g).

We pause to make a few remarks regarding ISCB and its relation to SCB and neural networks. For
both SCB and ISCB, one must specify the number of levels used. The level indicates the maximal size
of random subsets of hyperplanes used for matching sign patterns and determining the rk parameters.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/10/1/261/5821496 by guest on 09 Septem
ber 2021

AN ITERATIVE METHOD FOR CLASSIFICATION OF BINARY DATA 267

Fig. 3. The r̃k vectors are plotted for ISCB with varying numbers of iterations k. The original training and testing data are shown
in the upper left plot. Circles indicate training data and crosses indicate testing data. One level is used for each application of SCB
and the subsequent plots give the r̃k vectors for k = 1, 3 and 7 respectively.

In this way, the level indicates the granularity at which the sign patterns are compared and must match
in order to contribute to the learned rk parameters. We will see that the performance generally improves
when using a larger number of levels. Using more levels, however, requires more computation and
storage and the performance gain typically levels off. For ISCB, one must also indicate the number of
applications to consider. The k + 1st application uses the r̃k values from the kth application. With each
application, data points that were misclassified at the previous application have the opportunity to be
reclassified in the next application. As we will see in the experiments, using more than one application
of SCB typically leads to improved performance, but this improvement in accuracy levels off after only
a few applications.

While we draw inspiration from the multilayer structure of neural networks and one can draw
several similarities between the two, the models differ in significant ways. When binarizing the data
X in each application of SCB via Q = sign(AX), a linear transformation is applied to the data
followed by the nonlinear sign function. This step is followed by an aggregation of information
through the calculations of the parameters rk via (2.1). In contrast to neural networks, however,
the parameters rk for each application k of SCB are not learned via a gradient descent variant
or in order to minimize a specific loss function. Instead, the learned parameters are determined
via (2.1) by using counts of the training data points with specific sign patterns. Another major
difference between ISCB and neural networks is the usage of a fixed and random linear transformation
A, whose rows correspond to random hyperplanes as opposed to optimized, learned weights as
is typical for neural networks. In summary, while ISCB is inspired by some aspects of neural
networks, we do not claim the methods are in the same family of approaches. Indeed, SCB and

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/10/1/261/5821496 by guest on 09 Septem
ber 2021

268 D. MOLITOR AND D. NEEDELL

ISCB are rooted in the natural geometric interpretation demonstrated in Fig. 1 and subsequently well
suited to analysis.

Algorithm 3 ISCB training

1. Input: binary training data Q ∈ R
m×p, training labels b, number of classes G, number of levels

L, number of applications K.

2. for k from 1 to K, do

3. Train learned parameters rk(�, i, t, g) as in Algorithm 1, with input: Q, b, G and L.

4. Set X = 0 ∈ R
G×p.

5. for j from 1 to p do

6. Apply Algorithm 2 to Q(j) using learned parameters rk(�, i, t, g) to calculate r̃k.

7. Set X(j) = r̃k.

8. end for

9. Form the random measurement matrix A(k) ∈ R
m×G.

10. Set Q = sign(A(k)X).

11. end for

12. Output:rk(�, i, t, g), and A(k) for k from 1 to K.

Algorithm 4 ISCB testing

1. Input: binary test data q ∈ R
m, number of classes G, levels L and iterations K, learned

parameters rk(�, i, t, g), hyperplane tuples and A(k) from Algorithm 3.

2. for k from 1 to K do

3. Set r̃k = 0.

4. for � from 1 to L, i from 1 to m, do

5. Identify the pattern t∗ to which q corresponds for the ith �-tuple of hyperplanes.

6. for g from 1 to G do

7. Update r̃k(g) = r̃k(g) + rk(�, i, t∗, g).

8. end for

9. end for

10. Set q = sign(A(k)r̃k).

11. end for

12. Classify b = argmaxg∈{1,··· ,G}̃rK(g).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/10/1/261/5821496 by guest on 09 Septem
ber 2021

AN ITERATIVE METHOD FOR CLASSIFICATION OF BINARY DATA 269

Table 1 Flops required for inference via a single application of SCB

Flops Operation

2m(d − 1) Calculate q = sign(Ax)
G Initialize r̃
m

∑L
�=1 |T�,i|� bit-wise comparisons Identify the sign pattern (worst case)

mGL Update r̃(g) for each class and level
G + 1 Scale
G Predict b̂x = argmaxg∈{1,··· ,G}r̃(g)

2.3 Computational complexity

Given a test data point x ∈ R
d, inference via a single application of SCB (see Algorithm 2) requires

approximately

m

(
L∑

l=1

|T�,i| + GL + 2d − 1

)
+ 3G + 1 (2.2)

flops. Flop counts for each step in Algorithm 2 are given in Table 1. Identifying the sign pattern typically
dominates the testing cost of SCB. This step requires comparing a maximum of 2� binary vectors of
length � for the �th level. Fortunately, these binary comparisons can be implemented efficiently when
the number of levels is reasonably small (for example less than 32 bits). For the data considered here, we
find that choosing the number of levels to be between 10 and 20 is sufficient. For longer binary vectors,
however, one could incorporate fast binary search strategies used in computer vision applications [23,
37, 38]. Additionally, typically fewer than 2� sign patterns actually occur within the training data. In
(2.2) we assume that testing whether two binary strings of length � match requires a single flop. The
total cost for ISCB is roughly the sum of the costs of SCB at each iteration where the dimension of the
data d changes to the number of classes G after the first iteration. Since ISCB performs SCB at each
iteration, one could potentially reduce the total cost of ISCB by using fewer levels for some iterations.

3. Experimental results

We test ISCB on synthetic and image datasets. The synthetic datasets demonstrate why the iterative
method is effective for certain simple settings and how the data transforms between iterations. ISCB
is also tested on the MNIST dataset of handwritten digits [31], the YaleB dataset for facial recognition
[9–11, 25] and the NORB dataset for classification of images of various toys [32].

3.1 Two-dimensional synthetic data

We further motivate ISCB through examples with two-dimensional synthetic data. For two-dimensional
data with two classes, the dimension of the input data for all applications of SCB is two-dimensional
and so we can easily visualize the effect of the iterations on both the training and testing data. We find
that the more easily discerned data points are pushed out towards the boundary of the positive quadrant,
while data points that are closer to the class boundary linger closer to the line y = x in subsequent
iterations and thus have a higher likelihood of being predicted as the other class at the next iteration.

Consider the data given in the upper left plot of Fig. 3. There are two times as many points from the
red class considered, both in the training and testing set. Half of the red points in testing and training

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/10/1/261/5821496 by guest on 09 Septem
ber 2021

270 D. MOLITOR AND D. NEEDELL

Fig. 4. The r̃k(g) values for testing data from ISCB trained to classify digits 0–4 from the MNIST dataset are plotted for
application k = 1, 3, 5 from left to right. Five digits are considered to ease visualization. One hundred testing points from each
digit are used with points 1–100 corresponding to 0s, 101–200 corresponding to 1s, etc. r̃k(0) values are plotted in red, r̃k(1) in
blue, r̃k(2) in green, r̃k(3) in magenta and r̃k(4) in black.

lie on either side of the blue data points. Thus, applying SCB using a single level leads to all of the
blue test points being misclassified as red. The abhorrent misclassification of the blue points is caused
by the fact that we use only a single level (L = 1) and since for any hyperplane at least as many red
points as blue lie on either side of it. The r̃1 values, plotted in the upper right plot of Fig. 3, have a
much nicer distribution in terms of ease of classification; in fact, they are nearly linearly separable. The
separation in the r̃1 values between the blue and red points occurs since r̃1(red) is generally larger for
red points than for the misclassified blue points. That is, the points that truly belong to the red class
are more ‘confidently’ classified as red than are the blue points. If we consider the r̃1 values as data,
applying SCB now classifies the data with much higher accuracy (92% as compared to 66% for the
original training data), while still only using a single level. By the seventh iterative application of SCB,
the accuracy increases to 97%. If we perform the same experiment, but include a higher density of blue
points so that the total number of red and blue points are the same, we achieve higher accuracy at the
first application of SCB, but again see improved accuracy for later iterations.

We find that the r̃k(g) values for different classes spread out with additional applications of SCB
for more sophisticated data as well. Recall Fig. 2, which plots the r̃(g) values from SCB trained to
classify digits 0–4 from the MNIST dataset. We can visualize the separation between the data points
from different classes at later applications through similar plots. Figure 4 shows r̃k(g) values of testing
data with number of applications k of ISCB as k = 1, 3 and 5. As the number of applications k increases,
the r̃k(g) values for a testing point in class c generally approach r̃k(g) = 0 for g �= c, while r̃k(c)
approaches a positive value, leading to separation of data from different classes. After a few applications
k, the r̃k(g) values are pushed close to the boundary of RG+, the space of vectors of length G with non-
negative entries.

3.2 Image datasets

We test ISCB on the MNIST dataset of handwritten digits [31], the YaleB dataset for facial recognition
[9–11, 25] and the NORB dataset for classification of images of various toys [32]. Results are shown in
Fig. 5. We generally find both that increasing the number of levels used in each SCB application of ISCB
and increasing the number of applications leads to improved performance. The classification accuracies
typically level off after only a few applications of SCB, with the largest improvement typically occurring
between the first and second application. These trends are less clear in the YaleB dataset, but this
may be in part due to the limited amount of training data available for this dataset. For comparison, a

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/10/1/261/5821496 by guest on 09 Septem
ber 2021

AN ITERATIVE METHOD FOR CLASSIFICATION OF BINARY DATA 271

Fig. 5. Accuracies for classifying MNIST data among 10 classes (left plot), YaleB data among eight classes (middle plot) and
NORB data among five classes (right plot) are given in terms of the number of applications of SCB used. For the MNIST dataset,
the model is trained with p = 1000 images of each class and tested on 100 images from each class. The model for the YaleB
dataset is trained using p = 40 training images from each class and applied to 20 test images from each class. For the NORB
dataset, the model is trained on p = 1000 training images and is applied to 200 test images for each class. In each model, m = 500
measurements are used. Results are averaged over 10 trials.

Fig. 6. Accuracies for classifying MNIST data among 10 classes are given in terms of the number of applications of SCB used
for both training (dashed) and testing data (solid). The models are trained with p = 1000 images of each class, are tested on 100
images from each class and use m = 500 measurements. Results are averaged over 10 trials.

multilayer perceptron with a single hidden layer of 20 nodes, ReLU activations and trained via stochastic
gradient descent to a tolerance of 10−4 achieves an accuracy of 91.77%. With two hidden layers of 20
nodes, it achieves 92.21% for the same set of MNIST data used in Fig. 5 for ISCB. As is discussed
in Section 2.2, there are significant differences between ISCB and neural networks, making a direct
comparison unnatural.

The accuracy of ISCB applied to the training data as opposed to the testing data achieves higher
accuracies as expected (see Fig. 6). Increasing the number of levels and applications of SCB improves
the accuracy of the model for both training and testing data. The model performance applied to the
training data is still limited by the compression via the random hyperplanes.

4. Alternative iterative method

We remark here briefly about our choice in defining r̃k(g) and mention a natural alternative. We
motivated ISCB by noting that the r̃ vectors from Algorithm 2 for test data from the same classes share

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/10/1/261/5821496 by guest on 09 Septem
ber 2021

272 D. MOLITOR AND D. NEEDELL

Fig. 7. The performance of ISCB using r̃, presented in Section 2.2, (solid) is compared with that of the alternative version of
ISCB using r̂, presented in Section 4, (dashed) on the MNIST dataset. p = 1000 training and 100 testing images are used for each
digit. Each method uses m = 500 binary measurements of the data at each application of Algorithm 1. The number of levels L
used with each method is indicated in the legend.

similar structures. We additionally find that the contributions to the r̃ values coming from different levels
admit different patterns as well. We could thus choose to use

r̂k(�, g) =
m∑

i=1

∑
t∗

rk(�, i, t∗, g)

as data for the kth application of SCB instead of r̃k(g) as is done in Algorithm 3. Here, t∗ ranges over all
observed sign patterns for the ith �-tuple of hyperplanes. We refer to this method as ISCB with r̂. Note
that we have the following relation between r̃k and r̂k:

r̃k(g) =
L∑

�=1

r̂k(�, g).

After the first application of SCB, the dimension of the data for ISCB with r̂ is then R
LG.

In certain settings, ISCB with r̂ performs better than ISCB of Section 2.2. Typically, using r̂k(�, g)

as opposed to r̃k(g) as input to the subsequent applications of Algorithm 1 performs better when the
number of levels L used is small. Unfortunately, for higher numbers of levels L we see drastic declines
in performance for later applications when using r̂k(�, g), as this method is more prone to overfit.
These trends are illustrated in Fig. 7 for the MNIST dataset. In the left plot of Fig. 7, ISCB with r̂
leads to improved performance over ISCB with r̃. As the number of levels L used increases from 4 to
10, however, this difference diminishes. For greater than 14 levels, using ISCB with r̂k(�, g) leads to
decreasing performance in the number of applications of SCB (seen in the right plot of Fig. 7). The
same decrease in performance does not occur when using the r̃k(g) values as data for the next iteration,
suggesting this choice may be more robust.

5. Theoretical analysis

We next offer some simple theoretical insights demonstrating why we expect performance to improve
through multiple applications of SCB. We consider several scenarios that are simple, yet highlight the

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/10/1/261/5821496 by guest on 09 Septem
ber 2021

AN ITERATIVE METHOD FOR CLASSIFICATION OF BINARY DATA 273

intuition behind the approach. At a high level, the iterative framework has the opportunity to train on
the output from previous iterations and correct misclassifications that occur when the model from the
previous iteration is applied to the training data. Qualitatively, as the number of iterations increases,
we find that the data points that are more easily identifiable as belonging to a single class are pushed
towards extreme points of the range of outputs, while data points that are more difficult to classify fall
in the interior of the range and have the chance to be classified correctly at the next iteration.

5.1 Binary classification of point masses

As a simple but illustrative example, consider a classification task between two classes, where the
training and testing data for each class is concentrated at a single point, i.e. a point mass. We consider
only a single level L and let j be the number of hyperplanes that separate the two point masses in the first
application of SCB. In expectation, j

m gives an indication of the angle separating the two point masses,
where m is the number of rows in the measurement matrix. Let A1 be the number of points in class 1
and A2 be the number of points in class 2. For testing data in class 1,

r̃1(1) =
m∑

i=1

r(�, i, t∗, 1) = j + (m − j)
A1|A1 − A2|
(A1 + A2)

2
and

r̃2(2) =
m∑

i=1

r(�, i, t∗, 2) = (m − j)
A2|A1 − A2|
(A1 + A2)

2 .

For testing data in class 2,

r̃1(1) =
m∑

i=1

r(�, i, t∗, 1) = (m − j)
A1|A1 − A2|
(A1 + A2)

2 and

r̃2(2) =
m∑

i=1

r(�, i, t∗, 2) = j + (m − j)
A2|A1 − A2|
(A1 + A2)

2
.

Note that the data for the second application of the method are again two-dimensional. Let g̃1 be the r̃1
vector for data points in class 1 and g̃2 be the r̃1 vector for data points in class 2. The following formula
gives the angle θ between the two point masses at the second application,

θ = cos−1
(〈̃g1, g̃2〉

||̃g1||2 · ||̃g2||2

)
. (5.1)

Figure 8 shows the angle that separates the point masses of the training data at the second application
in terms of j

m for various ratios c = A1
A2

. We find that if A1 and A2 are similar in size, then the expected
angle separating the two point masses increases for the second application, making the point masses
‘easier’ to separate in later applications.

In particular, if the two classes contain the same number of points, i.e. A1 = A2, and at least one
hyperplane separates the two point masses initially, then at the next iteration, the angle between data
points of classes 1 and 2 is π/2 (the best possible). Since the data are two-dimensional and we restrict the
hyperplanes to intersect the positive quadrant after the first SCB application, then if the model classifies

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/10/1/261/5821496 by guest on 09 Septem
ber 2021

274 D. MOLITOR AND D. NEEDELL

Fig. 8. This plot shows the expected proportion of hyperplanes that separate data at the second iteration of ISCB given the fraction
of separating hyperplanes at the first application of SCB. The relative sizes of the two classes, given by A1 and A2, are varied as

well, as is indicated by the parameter c = A1
A2

given in the legend.

Fig. 9. Illustration of data setup for Section 5.2.

the point masses correctly at the first iteration, it will classify correctly at all subsequent iterations as
well.

5.2 Probabilistic bounds for an angular model

We next consider an analogue to Theorem 2 of [36], in which the authors provided a lower bound
on the probability that a data point will be classified correctly for data points of two different classes
that reside in separated angular wedges. Consider two-dimensional data with two classes. Suppose that
the data from each class is distributed within the disjoint wedges, G1 and G2, with angles A1 and A2
respectively. This setup is illustrated in Fig. 9. Consider the data points x1 and x2, which lie on the inside
edge of each wedge. Let A12 be the angle between these two points. We aim to find a lower bound on
the angle between the r̃1 vectors for x1 and x2 after a single application of SCB with a single level L.
Again, since we only use a single level, r̂1 = r̃1 for all points x.

Theorem 2 of [36] shows that a larger separating angle A12 between the classes leads to a higher
probability of correct classification for a data point from one of the classes. A lower bound on the
angle between the different classes after an application of SCB then indicates the probability of correct
classification at the next application, through Theorem 2 of [36].

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/10/1/261/5821496 by guest on 09 Septem
ber 2021

AN ITERATIVE METHOD FOR CLASSIFICATION OF BINARY DATA 275

Table 2 Contributions to the membership index parameter r for the point x1 and for hyperplanes of
various types. The variables u and u′ are i.i.d. random variables uniformly distributed between zero and
one, indicating the angle at which random hyperplanes intersect the wedges G1 and G2. The angles A1
and A2, wedges G1 and G2 and data points x1 and x2 are as shown in Fig. 9

Hyperplane case Number in event Class Value of r(1, i, t, g)

Separates x1 and x2 j 1 1
2 0

Does not separate x1 and x2 m − j − k1 − k2 1 A1|A1−A2|
(A1+A2)

2

or intersect G1 or G2 2 A2|A1−A2|
(A1+A2)

2

Intersects G2 k2 1 A1|A1−A2u′|
(A1+A2u′)2

2 A2u′|A1−A2u′|
(A1+A2u′)2

Intersects G1 k1 1 A1u|A1u−A2|
(A1u+A2)

2

2 A2|A1u−A2|
(A1u+A2)

2

Assume that the data is distributed with uniformly random angles within G1 and G2. Let k1 and k2 be
the number of hyperplanes that intersect G1 and G2, respectively, and let j be the number of hyperplanes
that separate G1 and G2. Note that

Ek1 = A1

π
, Ej = A12

π
and Ek2 = A2

π
.

Assume that the hyperplanes are also distributed with uniformly random angles within these wedges.
We can then replace Pg|t with angular measures, specifically, Aiuh, where uh ∈ [0, 1] and depends on
the angle at which the hyperplane h intersects Gi. Since the hyperplanes are uniformly distributed at
random within each region, the uh are uniform random variables between zero and one.

The contribution to the membership index parameter r for SCB with a single level L and for each
possible type of hyperplane in this setup are summarized in Table 2 for the point x1. To simplify
calculations, assume that A1 = A2. With this assumption, the membership index parameters no longer
depend on A1 or A2. Summing over all hyperplanes, for x1 we have

r̃1(1) =
m∑

i=1

r(1, i, t∗i , 1) = j +
k1∑

h=1

uh(1 − uh)

(uh + 1)2 +
k2∑

h=1

1 − u′
h

(1 + u′
h)

2

and

r̃1(2) =
m∑

i=1

r(1, i, t∗i , 2) =
k1∑

h=1

1 − uh

(uh + 1)2 +
k2∑

h=1

u′
h(1 + u′

h)

(1 + u′
h)

2 .

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/10/1/261/5821496 by guest on 09 Septem
ber 2021

276 D. MOLITOR AND D. NEEDELL

Fig. 10. For various values of k1 = k2 (the number of hyperplanes intersecting the wedges G1 and G2, respectively) and j (the
number of hyperplanes separating the wedges G1 and G2), the left plot indicates the true angle (in radians) between g̃1 and g̃2 as
given in (5.2) and (5.3). The right plot indicates the angle using the upper bound for cos(θ) given in (5.4).

The calculation for x2 is similar. Let g̃1 and g̃2 be the r̃1 vectors corresponding to x1 and x2,
respectively. Then at the next application, we have

g̃1 =
(

j +
k1∑

h=1

uh(1 − uh)

(uh + 1)2
+

k2∑
h=1

1 − u′
h

(1 + u′
h)

2
,

k1∑
h=1

1 − uh

(uh + 1)2
+

k2∑
h=1

u′
h(1 − u′

h)

(1 + u′
h)

2

)
(5.2)

and

g̃2 =
(k1∑

h=1

uh(1 − uh)

(uh + 1)2 +
k2∑

h=1

1 − u′
h

(1 + u′
h)

2 , j +
k1∑

h=1

1 − uh

(uh + 1)2 +
k2∑

h=1

u′
h(1 − u′

h)

(1 + u′
h)

2

)
. (5.3)

The angle between these two vectors is again given by (5.1). The resulting angles from simulations for
various k1 = k2 and j are given in the left plot of Fig. 10. We make the simplification k1 = k2 to ease
visualization. Unsurprisingly, as j increases so does the separation between g̃1 and g̃2. As k1 and k2
increase, for fixed j, the separation between g̃1 and g̃2 decreases.

Ideally, we would like to find a lower bound on the angle θ between g̃1 and g̃2 that depends on k1, k2
and j. Unfortunately, the explicit form of the resulting angle is relatively complicated. We can simplify
the denominator of (5.1) by using the bounds ||̃gi||2 � j. We expect this bound to be quite loose, if not
trivial, when j is small, but to provide a reasonable bound for larger j. With this simplification,

cos(θ) �

(
j + ∑k1

h=1
uh(1−uh)

(uh+1)2 + ∑k2
h=1

1−u′
h

(1+u′
h)

2

) (∑k1
h=1

uh(1−uh)

(uh+1)2 + ∑k2
h=1

1−u′
h

(1+u′
h)

2

)
j2

+
(∑k1

h=1
1−uh

(uh+1)2 + ∑k2
h=1

u′
h(1−u′

h)

(1+u′
h)

2

) (
j + ∑k1

h=1
1−uh

(uh+1)2 + ∑k2
h=1

u′
h(1−u′

h)

(1+u′
h)

2

)
j2

.

(5.4)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/10/1/261/5821496 by guest on 09 Septem
ber 2021

AN ITERATIVE METHOD FOR CLASSIFICATION OF BINARY DATA 277

Fig. 11. For various values of k1 = k2 (the number of hyperplanes intersecting the wedges G1 and G2, respectively), j (the
number of hyperplanes separating the wedges G1 and G2) and angles a, we plot the bound for P(θ � a) given by Theorem 5.1.
From left to right, the plots use k1 = 10, 50 and 100, respectively.

For this simplified bound, taking an expectation is a straightforward calculation; see Appendix A for
details. We eventually arrive at the bound

E(cos(θ)) � (k1 + k2)(2 log 2 − 1)

j
+ (k2

1 + k2
2)(10(log 2)2 − 14 log 2 + 5)

j2

+ 4k1k2(1 − log 2)(3 log 2 − 2) + (k1 + k2)(−2/3 + 8 log 2 − 10(log 2)2)

j2
.

(5.5)

Using Markov’s inequality, for a ∈ (0, π/2),

P(θ � a) = P [cos(θ) � cos(a)] � E(cos(θ))

cos(a)
. (5.6)

Although this bound is relatively loose, for sufficiently small a and large j, the probability that θ � a is
small. We summarize this result in Theorem 5.1. More visually appealing, Fig. 11 gives the probabilities
that result from combining (5.5) and (5.6) for a variety of hyperplane combinations and angles a.

Theorem 5.1 Suppose data is distributed as in Fig. 9, where points from classes 1 and 2 are distributed
with uniformly random angles within the wedges G1 and G2, respectively. Suppose that the angles A1
and A2 are equal. Let k1 and k2 be the number of hyperplanes that intersect G1 and G2, respectively. Let
j be the number of hyperplanes that separate G1 and G2. Consider the points x1 in class 1 and x2 in class
2 as shown in Fig. 9. The angle θ between the r̃ vectors for x1 and x2 after a single iteration of SCB with
one level L satisfies the following inequality:

P(θ � a) �
C1j(k1 + k2) + C2(k

2
1 + k2

2) + C3k1k2 + C4(k1 + k2)

j2 cos(a)
,

where

C1 = 2(log 2) − 1, C2 = 10(log 2)2 − 14 log 2 + 5,

C3 = 4(1 − log 2)(3 log 2 − 2), C4 = −10(log 2)2 + 8 log 2 − 2/3.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/10/1/261/5821496 by guest on 09 Septem
ber 2021

278 D. MOLITOR AND D. NEEDELL

Fig. 12. The four plots on the left display accuracies and predictions made via various methods for the data given in the upper
left-most plot. In the plots of the training and testing data, circles indicate training data and crosses indicate test data. Filled
markers indicate that a given method misclassified that particular data point. The methods considered are SCB and SVM with
both a linear and RBF kernel. The right set of four plots display accuracies and predictions made via the same set of methods
applied to the r̃ values from a single application of SCB with a single level (L = 1) and m = 100 measurements.

6. ISCB for data preprocessing and dimension reduction

We remark here briefly about another potential strategy using the output of the SCB approach. Although
this is not the focus of the current work, it may lead to fruitful future directions. The idea is to use the
output from SCB and then apply other established classification methods such as SVM [15] to the r̃
vectors. Considering SVM specifically, we find that this strategy can perform better than SVM applied
directly to the data.

First, consider a simple example with the synthetic data shown in the upper left plot of Fig. 12.
Applying SVM with a linear kernel [15, 21] unsurprisingly performs poorly, achieving an accuracy of
65%. A radial basis function (RBF) kernel [8, 21] SVM performs much better, achieving an accuracy
of 90%. Applying SVM instead to the r̃1 values of the training data produced via SCB with a single
level L and m = 100 measurements leads to 80% accuracy using a linear kernel and 97% accuracy
using an RBF kernel. Thus, applying SVM to the r̃1 values as opposed to the original data leads to an
improvement in accuracy of 15% for SVM with a linear and 7% for SVM with an RBF kernel.

For the same initial data, if we increase the number of levels L used in SCB to four and the number
of measurements to m = 200, the accuracies of SVM trained on the resulting r̃1 values are 97% with
a linear kernel and 94% with an RBF kernel (Fig. 13). The respective accuracies are improved by 21
and 4% respectively as compared to SVM applied to the original data. This increase in the number of
levels L and measurements m also leads to improved performance for both SCB and ISCB with two
applications. Note that if SCB is able to perfectly classify the training data points, then SVM with a
linear kernel trained on the r̃1 values of the training points will also perfectly classify the training data
points, as the r̃1 values of the training points will be linearly separable.

7. Conclusions and avenues for future work

The ISCB framework offers many directions for extensions and further analyses. In Section 5, we
provide theoretical analyses for simple settings. These analyses could be extended to other more

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/10/1/261/5821496 by guest on 09 Septem
ber 2021

AN ITERATIVE METHOD FOR CLASSIFICATION OF BINARY DATA 279

Fig. 13. The four plots on the left display accuracies and predictions made via various methods for the data given in the upper
left-most plot. In the plots of the training and testing data, circles indicate training data and crosses indicate test data. Filled
markers indicate that a given method misclassified that particular data point. The methods considered are SCB and SVM with
both a linear and RBF kernel. The right set of four plots display accuracies and predictions made via the same set of methods
applied to the r̃ values from SCB at the first application. L = 4 levels and m = 200 measurements are used for each application
of SCB.

sophisticated settings or to produce stronger guarantees. For example, while Theorem 5.1 gives
probabilistic bounds on the separating angle between classes after a single application of SCB, Theorem
2 of [36] cannot be applied directly to give a probability of the correct classification at the next iteration,
as the transformed data produced by the SCB application will no longer be distributed uniformly
within the respective wedge for each class. Explicit guarantees for when ISCB has a higher probability
of correct classification than SCB could provide further insights on the performance of ISCB. One
could also investigate guarantees when the measurements are noisy, leading to potential sign flips in
the binary matrix Q. Incorporating dithers or bias terms in the random linear measurements so that
Q = sign(AX +b) is another possible extension, although determining the scale for the values of b adds
additional complexity [4, 27]. Ideas from 1-bit compressive sensing could potentially be used to exploit
sparsity in the data as well [4, 7].

One could incorporate ideas from other machine learning models such as neural networks within the
ISCB framework. For example, one could use informed or learned separating hyperplane measurements
as opposed to entirely random hyperplanes. One could also use weighted linear combinations of the
rk parameters with learned weights in order to make predictions or compute the r̃k for the subsequent
application of SCB.

A variety of methods exist for summarizing and representing data with binary descriptors [1, 12,
33, 39–43, 45]. These methods could be used as alternatives to generating the binary matrix Q as
opposed to using binarized linear measurements of the data as is considered here and in [36]. Such
alternative strategies could be particularly effective when applied to image or video data, as many
methods for generating binary descriptors have been developed specifically for applications within the
field of computer vision. The natural geometric interpretation of the binarized linear measurements
Q = sign(AX) is advantageous, however, for deriving performance guarantees and maintaining the
geometric interpretation of SCB and ISCB.

We have illustrated that iterative applications of SCB of [36] lead to improved classification
accuracies as compared to the original single iteration approach in a variety of settings. Numerical

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/10/1/261/5821496 by guest on 09 Septem
ber 2021

280 D. MOLITOR AND D. NEEDELL

experiments on the MNIST, YaleB and NORB datasets support this claim. For a simple angular model,
we provide a bound on the probability that the separation between the transformed data of two classes
is small after an application of SCB. Experiments and theoretical analyses on synthetic data in simple
settings demonstrate the effects of multiple iterations on the data and predictions. These examples also
highlight simple situations in which the ISCB framework excels.

Acknowledgements

The authors would like to thank Tina Woolf for help with the initial code used for the SCB method.

Funding

National Science Foundation Division of Mathematics (CAREER #1348721); National Science Foun-
dation (BIGDATA #1740325).

References

1. Alahi, A., Ortiz, R. & Vandergheynst, P. (2012) Freak: fast retina keypoint. 2012 IEEE Conference on
Computer Vision and Pattern Recognition. Providence, RI, USA: IEEE, pp. 510–517.

2. Aziz, P. M., Sorensen, H. V. & Vn der Spiegel, J. (1996) An overview of sigma-delta converters. IEEE
Signal Process. Mag., 13, 61–84.

3. Banfield, R. E., Hall, L. O., Bowyer, K. W. & Kegelmeyer, W. P. (2007) A comparison of decision tree
ensemble creation techniques. IEEE Trans. Pattern Anal. Mach. Intell., 173–180.

4. Baraniuk, R. G., Foucart, S., Needell, D., Plan, Y. & Wootters, M. (2017) Exponential decay of
reconstruction error from binary measurements of sparse signals. IEEE Trans. Inf. Theory, 63, 3368–3385.

5. Barocas, S., Bradley, E., Honavar, V. & Provost, F. (2017) Big data, data science, and civil rights. https://
cra.org/ccc/resources/ccc-led-whitepapers/.

6. Barocas, S. & Selbst, A. D. (2016) Big data’s disparate impact. Calif. Law Rev., 104, 671.
7. Boufounos, P. T. & Baraniuk, R. G. (2008) 1-bit compressive sensing. 2008 42nd Annual Conference on

Information Sciences and Systems. Princeton, NJ, USA: IEEE, pp. 16–21.
8. Buhmann, M. D. (2003) Radial Basis Functions: Theory and Implementations, vol. 12. Cambridge, UK:

Cambridge University Press.
9. Cai, D., He, X. & Han, J. (2007) Spectral regression for efficient regularized subspace learning. International

Conference on Computer Vision, Rio de Janeiro, Brazil.
10. Cai, D., He, X., Han, J. & Zhang, H.-J. (2006) Orthogonal Laplacianfaces for face recognition. IEEE Trans.

Image Process., 15, 3608–3614.
11. Cai, D., He, X., Hu, Y., Han, J. & Huang, T. (2007) Learning a spatially smooth subspace for face

recognition. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Minnesota, USA.
12. Calonder, M., Lepetit, V., Strecha, C. & Fua, P. (2010) Brief: binary robust independent elementary

features. European Conference on Computer Vision. Heraklion, Crete, Greece: Springer, pp. 778–792.
13. Cao, Y., Qi, H., Zhou, W., Kato, J., Li, K., Liu, X. & Gui, J. (2018) Binary hashing for approximate nearest

neighbor search on big data: a survey. IEEE Access, 6, 2039–2054.
14. Collobert, R. & Weston, J. (2008) A unified architecture for natural language processing: deep neural

networks with multitask learning. Proceedings of the 25th International Conference on Machine Learning.
Helsinki, Finland: ACM, pp. 160–167.

15. Cortes, C. & Vapnik, V. (1995) Support-vector networks. Mach. Learn., 20, 273–297.
16. Cybenko, G. (1989) Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst.,

2, 303–314.
17. Munoz, C., Smith, M. & Patil, D. (2016) Big data: a report on algorithmic systems, opportunity, and civil

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/10/1/261/5821496 by guest on 09 Septem
ber 2021

https://cra.org/ccc/resources/ccc-led-whitepapers/
https://cra.org/ccc/resources/ccc-led-whitepapers/

AN ITERATIVE METHOD FOR CLASSIFICATION OF BINARY DATA 281

rights. Executive Office of the President. https://obamawhitehouse.archives.gov/sites/default/files/microsites/
ostp/2016_0504_data_discrimination.pdf.

18. Fang, J., Shen, Y., Li, H. & Ren, Z. (2014) Sparse signal recovery from one-bit quantized data: an iterative
reweighted algorithm. Signal Process., 102, 201–206.

19. Freund, Y. & Schapire, R. E. (1997) A decision-theoretic generalization of on-line learning and an
application to boosting. J. Comput. Syst. Sci., 55, 119–139.

20. Freund, Y., Schapire, R. & Abe, N. (1999) A short introduction to boosting. Japan. Soc. Artif. Intell., 14,
1612.

21. Friedman, J., Hastie, T. & Tibshirani, R. (2001) The Elements of Statistical Learning, vol. 1. Springer
Series in Statistics New York. NY, USA: Springer.

22. Gionis, A., Indyk, P. & Motwani, R. (1999) Similarity search in high dimensions via hashing. Proceedings
of the 25th International Conference on Very Large Data Bases, San Francisco, California, Morgan Kaufmann
Publishers, vol. 99, pp. 518–529.

23. Grauman, K. & Fergus, R. (2013) Learning binary hash codes for large-scale image search. Machine
Learning for Computer Vision. Berlin, Heidelberg, Germany: Springer, pp. 49–87.

24. He, K., Zhang, X., Ren, S. & Sun, J. (2016) Deep residual learning for image recognition. Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE,
pp. 770–778.

25. He, X., Yan, S., Hu, Y., Niyogi, P. & Zhang, H.-J. (2005) Face recognition using Laplacianfaces. IEEE
Trans. Pattern Anal. Mach. Intell., 27, 328–340.

26. Indyk, P. & Motwani, R. (1998) Approximate nearest neighbors: towards removing the curse of dimension-
ality. Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing. Dallas, Texas, USA:
ACM, pp. 604–613.

27. Jacques, L., Laska, J., Boufounos, P. & Baraniuk, R. (2013) Robust 1-bit compressive sensing via binary
stable embeddings of sparse vectors. IEEE Trans. Inf. Theory, 59, 2082–2102.

28. Laska, J. N., Wen, Z., Yin, W. & Baraniuk, R. G. (2011) Trust, but verify: fast and accurate signal recovery
from 1-bit compressive measurements. IEEE Trans. Signal Process., 59, 5289–5301.

29. LeCun, Y., Bengio, Y. & Hinton, G. (2015) Deep learning. Nature, 521, 436.
30. LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. (1998) Gradient-based learning applied to document

recognition. Proc. IEEE, 86, 2278–2324.
31. LeCun, Y., Cortes, C. & Burges, C. (2010) MNIST handwritten digit database. AT&T Labs, 2. http://yann.

lecun.com/exdb/mnist.
32. LeCun, Y., Huang, F. J. & Bottou, L. (2004) Learning methods for generic object recognition with

invariance to pose and lighting. Proceedings of IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, vol. 2. Washington, DC, USA: IEEE, pp. II–104.

33. Leutenegger, S., Chli, M. & Siegwart, R. (2011) BRISK: binary robust invariant scalable keypoints.
International Conference on Computer Vision. Barelona, Spain: IEEE, pp. 2548–2555.

34. Murthy, S. K., Kasif, S. & Salzberg, S. (1994) A system for induction of oblique decision trees. J. Artif.
Intell. Res., 2, 1–32.

35. Murthy, S. K., Kasif, S., Salzberg, S. & Beigel, R. (1993) OC1: a randomized algorithm for building
oblique decision trees. Association for the Advancement of Artificial Intelligence, vol. 93, pp. 322–327.
Citeseer.

36. Needell, D., Saab, R. & Woolf, T. (2018) Simple classification using binary data. J. Mach. Learn. Res.,
19, 2487–2516.

37. Norouzi, M., Punjani, A. & Fleet, D. J. (2012) Fast search in hamming space with multi-index
hashing. 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA: IEEE,
pp. 3108–3115.

38. Persson, A. & Loutfi, A. (2016) Fast matching of binary descriptors for large-scale applications in robot
vision. Int. J. Adv. Robot. Syst., 13, 58.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/10/1/261/5821496 by guest on 09 Septem
ber 2021

https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/2016_0504_data_discrimination.pdf
https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/2016_0504_data_discrimination.pdf
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist

282 D. MOLITOR AND D. NEEDELL

39. Rublee, E., Rabaud, V., Konolige, K. & Bradski, G. R. (2011) ORB: an efficient alternative to SIFT or
SURF. International Conference on Computer Vision, vol. 11, p. 2. Barcelona, Spain, Citeseer.

40. Strecha, C., Bronstein, A., Bronstein, M. & Fua, P. (2012) LDAHash: improved matching with smaller
descriptors. IEEE Trans. Pattern Anal. Mach. Intell., 34, 66–78.

41. Trzcinski, T., Christoudias, M., Fua, P. & Lepetit, V. (2013) Boosting binary keypoint descriptors.
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR, USA: IEEE,
pp. 2874–2881.

42. Trzcinski, T., Christoudias, M. & Lepetit, V. (2014) Learning image descriptors with boosting. IEEE
Trans. Pattern Anal. Mach. Intell., 37, 597–610.

43. Trzcinski, T. & Lepetit, V. (2012) Efficient discriminative projections for compact binary descriptors.
European Conference on Computer Vision. Florence, Italy: Springer, pp. 228–242.

44. Ventura, C., Masip, D. & Lapedriza, A. (2017) Interpreting CNN models for apparent personality trait
regression. IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu, HI, USA:
IEEE, pp. 1705–1713.

45. Yang, X. & Cheng, K.-T. (2012) LDB: an ultra-fast feature for scalable augmented reality on mobile devices.
2012 IEEE International Symposium on Mixed and Augmented Reality. Atlanta, Georgia, USA: IEEE,
pp. 49–57.

46. Zhang, Q., Nian Wu, Y. & Zhu, S.-C. (2018) Interpretable convolutional neural networks. Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE,
pp. 8827–8836.

47. Zhang, Q.-S. & Zhu, S.-C. (2018) Visual interpretability for deep learning: a survey. Front. Inform. Tech.
Electron. Eng., 19, 27–39.

48. Zhao, K., Lu, H. & Mei, J. (2014) Locality preserving hashing. Twenty-eighth AAAI Conference on Artificial
Intelligence, Palo Alto, CA, USA, AAAI Press.

Appendix A. Detailed calculations for Section 5.2

In this section, we provide details for calculating (5.5). Let

K11 =
k1∑

h=1

uh(1 − uh)

(uh + 1)2 , K12 =
k1∑

h=1

1 − uh

(uh + 1)2 , K21 =
k2∑

h=1

1 − u′
h

(1 + u′
h)

2 , K22 =
k2∑

h=1

u′
h(1 − u′

h)

(1 + u′
h)

2 ,

where uh and u′
h are i.i.d. uniformly random variables between zero and one. We can then rewrite (5.4)

as

cos(θ) � (j + K11 + K21)(K11 + K21) + (j + K12 + K22)(K12 + K22)

j2

= j(K11 + K21 + K12 + K22) + K2
11 + 2K11K21 + K2

21 + K2
12 + 2K12K22 + K2

22

j2
. (A.1)

We then require the expectation of each term in the numerator. Since uh and u′
h are i.i.d., EK11K21 =

EK11EK21. Straightforward integral calculations lead to the following expected values:

E

(
uh(1 − uh)

(uh + 1)2

)
= 3 log 2 − 2, E

(
1 − uh

(uh + 1)2

)
= 1 − log 2,

E

(
u2

h(1 − uh)
2

(uh + 1)4

)
= 25/6 − 6 log 2, E

(
(1 − uh)

2

(uh + 1)4

)
= 1/6.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/10/1/261/5821496 by guest on 09 Septem
ber 2021

AN ITERATIVE METHOD FOR CLASSIFICATION OF BINARY DATA 283

We then have the following expectations:

EK11 = k1(3 log 2 − 2)

EK12 = k1(1 − log 2)

EK2
11 = k1(k1 − 1)(3 log 2 − 2)2 + k1(25/6 − 6 log 2)

EK2
12 = k1(k1 − 1)(1 − log 2)2 + k1(1/6).

EK22,EK21,EK2
22 and EK2

21 take the same forms with k2 replacing k1.
Taking the expectation of (A.1),

E(cos(θ)) � (k1 + k2)(2 log 2 − 1)

j

+ (k2
1 − k1 + k2

2 − k2)(3 log 2 − 2)2 + (k2
1 − k1 + k2

2 − k2)(1 − log 2)2

j2

+ 4k1k2(1 − log 2)(3 log 2 − 2) + (k1 + k2)(1/6 + 25/6 − 6 log 2)

j2

� (k1 + k2)(2 log 2 − 1)

j

+ (k2
1 − k1 + k2

2 − k2)(10(log 2)2 − 14 log 2 + 5)

j2

+ 4k1k2(1 − log 2)(3 log 2 − 2) + (k1 + k2)(13/3 − 6 log 2)

j2

� (k1 + k2)(2 log 2 − 1)

j
+ (k2

1 + k2
2)(10(log 2)2 − 14 log 2 + 5)

j2

+ 4k1k2(1 − log 2)(3 log 2 − 2) + (k1 + k2)(−2/3 + 8 log 2 − 10(log 2)2)

j2
,

providing the desired bound.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/10/1/261/5821496 by guest on 09 Septem
ber 2021

	An iterative method for classification of binary data
	1. Introduction
	1.1 Contributions
	1.2 Organization

	2. Classification using binary data
	2.1 SCB
	2.2 ISCB
	2.3 Computational complexity

	3. Experimental results
	3.1 Two-dimensional synthetic data
	3.2 Image datasets

	4. Alternative iterative method
	5. Theoretical analysis
	5.1 Binary classification of point masses
	5.2 Probabilistic bounds for an angular model

	6. ISCB for data preprocessing and dimension reduction
	7. Conclusions and avenues for future work

