# A Wide Input Power Line Energy Harvesting Circuit for Wireless Sensor Nodes

Jinhua Wang and Dong Sam Ha
Multifunctional Integrated Circuits and Systems (MICS) Group
Bradley Department of Electrical and Computer Engineering
Virginia Tech, Blacksburg, Virginia, 24061, USA
{wjinhua6, ha}@vt.edu

Abstract— The proposed circuit aims to harvest energy from AC powerlines with a wide current ranging from 10 to 50 A. The proposed system includes a wake-up circuit and is capable of cold-start. A buck-boost converter operating in DCM is adopted for impedance matching, where the impedance is rather independent of the operation conditions. So, the proposed system can be applicable to various types of wireless sensor nodes with different internal impedances. Experimental results show that the proposed system achieves an efficiency of 80.6% under the powerline current of 50 A.

Keywords— Powerline energy harvesting, current transformer, buck-boost convertor, impedance matching, maximum power point (MPP), wireless sensor network (WSN).

### I. INTRODUCTION

Massive deployment of wireless IoT (Internet of Things) devices makes replacement or recharge of batteries expensive and impractical for some applications. Energy harvesting is a promising solution, and various designs are proposed to harvest power from ambient resources including thermal, vibrational, solar, wind, and RF sources [1]-[5]. Among these ambient resources, AC powerlines are a stable energy source in an urban environment. Many researchers investigated methods to exploit this stable source of energy to power wireless IoT devices [6]-[14].

Major design challenges of magnetic field energy harvesters for powerline energy harvesting include saturation and nonlinearity of the core, the geometry of the core, and positioning of the harvester, and distance of harvesting devices from the AC power lines [11]-[16]. The power factor is another issue due to the inductive nature of magnetic field energy harvesters [17]. The core saturation and nonlinearity are investigated and an efficient energy harvester is presented in [18]. Design issues for power management circuits for power line energy harvesting include such as impedance matching, underline current and load variations, wake-up circuit, cold-start, and output voltage regulation [12]-[21]. Impedance matching is often achieved by adjusting the duty cycle and the switching frequency of the DC-DC converter [20]-[23] and maximum power point tracking (MPPT) schemes aim to maintain impedance matching under varying operating conditions [4], [24] and [25].

In this paper, we present a power management circuit to harvest energy from railroad powerlines to power wireless sensor networks (WSN). We designed a magnetic field energy harvesting system for railroad power lines, whose current changes a wide range from 10 A to 50 A. Accordingly, the power stage is designed to withstand a wide range of the input current. A buck-boost converter operating in discontinuous conduction mode (DCM) is adopted for impedance matching, as the input impedance is ideally independent of the operating

conditions such as input voltage, output voltage and load resistance.

This paper is organized as follows. Section II reviews magnetic field energy harvesters, existing power line energy harvesting circuits, and an oscillator adopted for the proposed circuit. Section III presents the proposed circuit and describes the operation of individual blocks. Section IV presents an experiment setup and measurement results. Section V concludes the paper.

#### II. PRELIMINARIES

# A. Magnetic Field Energy Harvesters

A magnetic field energy harvester (MFEH) shown in Fig. 1 is composed of a winding coil around a ferrite core. It is in essence a current transformer and is used as an energy harvesting device for powerlines [8], [9], [11], [17], [26]-[30]. The number of turns of the coil and the ferrite core geometry determines the potential of the device to harvest electromagnetic power as investigated in [9]. An equivalent circuit model considering nonlinearities is presented in [31], and an efficient magnetic field energy harvester is presented in [18] and [19].

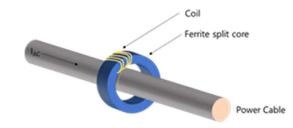



Fig. 1. Magnetic field energy harvester.

# B. Energy Harvesting Circuits for Powerlines

Zhuang et al. proposed a circuit, in which the core of the MFEH is ensured not in the saturation mode [8]. Noting that instantaneous power can be much larger for a short time period than the average power for a long time period, the circuit aims to power the load for a short period with large energy. After charging the storage capacitor for 190 ms from a powerline current of 10 A, the circuit extracts 792 mW from the power line. In order to avoid saturation of the core of the MFEH, a switch is added to the circuit to short the circuit of the core, when the coil reaches saturation.

Taithongchai and Leelarasmee presented a circuit design to harvest 58 mW from a powerline with 65 A of line current [10]. A boost converter dynamically adjusts the input impedance to implement MPPT, which is based on the feedback of the output voltage. A low-power microcontroller PIC16F690 is used to adjust the duty cycle of the boost converter. One shortcoming of the design is the inability to

regulate the output voltage, and so that the circuit may be used to recharge batteries but not to power sensor nodes directly. Also, the circuit is limited to harvest energy only from powerlines with large current ranging from 65 A to 130 A.

Zeng et al. presented an MFEH for 3-Phase 10 kV powerlines [27]. The system uses an off-the-shelf MAX17710 energy harvesting IC, which limits the maximum input voltage to 6 V, therefore resulting in a limit of the harvested power of the system.

#### C. Oscillator

The oscillator shown in Fig. 2 generates a switching frequency with a fixed duty cycle and is adopted for the proposed design [23]. The frequency and the duty cycle of the oscillator can be approximated as (1) and (2), respectively, if  $R_2 \gg R_1$ . The switching frequency and duty cycle can be tuned with R<sub>1</sub>, R<sub>2</sub> and C<sub>1</sub>, and in practice, R<sub>1</sub> or R<sub>2</sub> can be a variable resistor. The output voltage V<sub>GATE</sub> drives the gate of a MOSFET in a buck-boost converter for the proposed design.

$$f \approx \frac{1}{(R_1 + R_2)C_1 ln2}$$

$$D \approx \frac{R_1}{R_2}$$
(2)

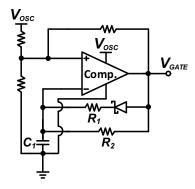



Fig. 2. Oscillator.

## III. PROPOSED DESIGN

The proposed power management circuit (PMC) aims to cover a wide range of powerline current from 10 A to 50 A, and harvest energy from such AC power lines to power wireless sensor nodes.

## A. Block Diagram

Fig. 3 shows the block diagram of the proposed circuit for powerline energy harvesting. As an MFEH starts to harvest power from a powerline, the rectifier charges the wake-up circuit to activate the oscillator (OSC), which in turn activates the buck-boost converter. A buck-boost converter provides impedance matching to extract the maximum power. The voltage regulator regulates the output voltage to 3.3 V to power the load, i.e., sensors.

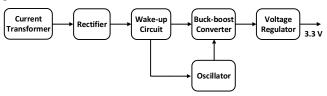



Fig. 3. System Block Diagram.

### B. Buck-boost Converter

To extract maximum power from an MFEH, the converter needs to match the internal impedance of the MFEH along with the rectifier. The input impedance of the buck-boost converter operating in discontinuous conduction mode (DCM) is as follows [23].

$$R_{IN} = \frac{2L}{D^2 T_S} \tag{3}$$

 $R_{IN} = \frac{2L}{D^2 T_S}$  (3) where L is the inductance, D is the duty cycle, and T<sub>S</sub> is the switching period of the converter. (3) shows that the input impedance of a buck-boost converter in DCM is independent of the operating conditions such as input and output voltages and load resistance. So, our circuit adopts a buck-boost converter in DCM. Once the inductor size and the switching frequency are decided, the duty cycle D can adjust the input impedance of the buck-boost converter to match the impedance of the MFEH along with the rectifier, so that maximum power could be extracted from the energy harvester.

## C. Wake-up Circuit

When the MFEH starts to generate power from a powerline, it charges capacitor C<sub>1</sub> through R<sub>1</sub> of the wake-up circuit in Fig. 4. The capacitor voltage V<sub>OSC</sub> provides power to the oscillator. When the voltage reaches 3 V, the oscillator starts to oscillate, which activates the buck-boost converter. When the MFEH does not generate power, the Vosc approaches to 0. Hence, the oscillator becomes inactive to save the power dissipation of the converter. The breakdown voltage of the diode  $D_1$  is 5 V, which regulates the maximum capacitor voltage V<sub>OSC</sub>.

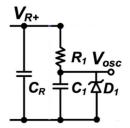



Fig. 4. Wake-up Circuit.

The proposed system is capable of cold start. Suppose that the capacitor C<sub>1</sub> is drained completely, and all the blocks in Fig. 3 are deactivated. As the MFEH generates induced voltage out of the powerline, the full-bridge rectifier composed of passive diodes charges the capacitor C<sub>1</sub>. When the capacitor voltage Vosc reaches 3 V, it activates the oscillator and hence the buck-boost converter.

A complete circuit diagram of the proposed PMC is shown in Fig. 5. The MFEH, noted as the current transformer, generates an AC voltage harvested from the powerline current. The full-bridge rectifier is implemented with Schottky diodes for high efficiency. The inductor L<sub>1</sub> of the converter is 15 mH and the capacitor Co is 1 F. Based on simulation results, the input impedance of the buck-boost converter is set to 2  $k\Omega$  to match the source impedance of the current transformer followed by the rectifier and the wake-up circuit. The voltage regulator provides regulated 3.3 V DC for the load such as sensors, and it is an off-the-shelf IC Analog LT8608.

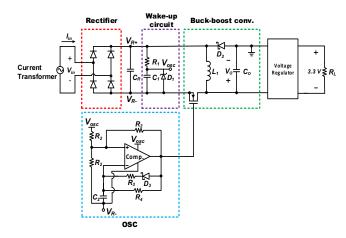


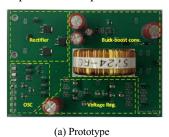

Fig. 5. Proposed Power Management Circuit.

#### IV. EXPERIMENTAL RESULTS

## A. Prototype and Experiment Setup

The MFEH or current transformer is shown in Fig. 6. The size of the ferrite core is 59 mm by 49 mm. The powerline current of the MFEH ranges from 10 A to 50 A for our experiments.






(a) Core

(b) With a case

Fig. 6. Magnetic Field Energy Harvester.

Fig. 7 shows a prototype of the proposed PMC and the experiment setup. The size of the PCB is 91 mm by 132 mm.





(b) Experiment setup

Fig. 7. Prototype and Experiment Setup.

# B. Power and Efficiency

The proposed PMC with the MFEH is experimented with the powerline current of 10 A, 30 A and 50 A with a frequency of 60 Hz.

To measure the maximum power delivered by the MFEH, we attached a variable resistor at the output of the MFEH, while all other circuit blocks, including the rectifier, the converter and the oscillator, are removed. We measured the maximum power  $P_{Max}$  delivered to the resistor with an optimal resistance value. To measure the efficiency of the PMC, we attached a variable resistor directly at the output of

the buck-boost converter without the voltage regulator and measured the maximum power  $P_{Max,buck-boost}$  with the optimal load resistance value. The efficiency of the proposed PMC is defined as follows.

$$\eta = \frac{P_{Max,buck-boost}}{P_{Max}} \times 100(\%) \tag{4}$$

# 1) Powerline current of 10 A

Fig. 8 shows the power  $P_{Max}$  delivered to the load resistor by our MFEH with the rectifier under the powerline current of 10 A. The measurement results show that the peak power of 7.96 mW is achieved for the resistance of 2 k $\Omega$ , implying the resistance that is required for the input impedance of the buck-boost converter. The power  $P_{Max}$  is sensitive to the resistor value, which indicates that impedance matching is necessary for the proposed powerline energy harvesting system.



Fig. 8. Output Power vs. Load Resistance of the Magnetic Field Energy Harvester for Powerline Current of 10 A.

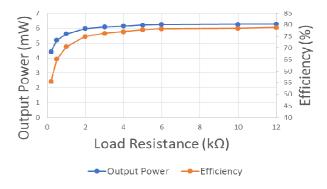



Fig. 9. Output power and Efficiency vs. Load R of the PMC for Powerline Current of 10 A.

To emulate the optimal resistance of  $2 \, k\Omega$ , the duty cycle D of the buck-boost converter with a 15 mH inductor is set to 21% under the switching frequency of 3 kHz. A variable load resistor is attached in parallel with the capacitor  $C_0$ . Fig. 9 shows the power delivered to the load resistor and its efficiency of the proposed PMC. The output power is somewhat constant for load resistor greater than  $2 \, k\Omega$ . It verifies that the input impedance of the buck-boost converter in DCM is rather insensitive to its load resistance. The peak output power and efficiency of the buck-boost converter are 6.2 mW and 77.89%, respectively, under the load resistance of  $5 \, k\Omega$ .

### 2) Powerline current of 30 A

The same measurements are performed for the powerline current of 30 A. Fig. 10 shows the power delivered to the load resistor by the MFEH. The peak power of 70.21 mW is achieved with the load resistance of 2 k $\Omega$ . It implies the source impedance of the MFEH is independent of the powerline current. As the current increases three times, the power would be nine times for an ideal MFEH as a current transformer, but the actual increase is slightly less than that mainly due to the increased loss of the MFEH.

Fig. 11 plots the output power and the efficiency of the PMC. The peak output power and the peak efficiency are 55.69 mW and 79.32%, respectively, under the load resistance of 5 k $\Omega$ . As expected, the efficiency increases as the powerline current increases, but the optimal resistance remains the same.



Fig. 10. Output Power vs. Load Resistance of the Magnetic Field Energy Harvester for Powerline Current of 30 A.

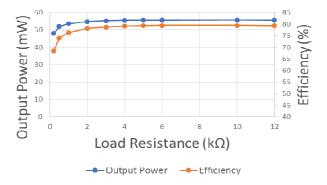



Fig. 11. Output power and Efficiency vs. Load R of the PMC for Powerline Current of 30 A.

#### 3) Powerline current of 50 A

The measurements are repeated for 50 A. Fig. 12 shows the peak power of 193.34 mW is achieved for the MFEH at the load resistance of 2 k $\Omega$ . Again, it verifies the source impedance of the MFEH is independent of the powerline current. As the current increases five times compared with the case of 10 A, the harvested power increase is 5.66 mW from 199 mW, which is twenty-five times the harvested power with the case of 10 A, implying further increased loss of the MFEH.

Fig. 13 plots the output power and the efficiency of the PMC. The peak output power and the efficiency of the PMC are 156.6 mW and 80.99%, respectively, under the load

resistance of 5 k $\Omega$ . The efficiency increases slightly compared with that of 30 A.



Fig. 12. Output Power vs. Load Resistance of the Magnetic Field Energy Harvester for Powerline Current of 50 A.




Fig. 13. Output power and Efficiency vs. Load R of the PMC for Powerline Current of  $50\ A$ .

In order to power the wireless sensor nodes with a stable output voltage, the proposed circuit adopts a voltage regulator IC Analog LT8608. Corresponding to different applications with different needs of supply voltage, LT8608 can regulate the output voltage to 1.8V, 3.3 V, 5V and 12V. For the proposed circuit, with a recommended configuration from the datasheet, when the output voltage of the buck-boost converter is between 3.9 V to 42 V, LT8608 can regulate it to 3.3 V.

# V. CONCLUSIONS

An AC power line energy harvesting circuit is presented in this paper. The proposed system adopts an MFEH to extract energy from AC powerlines and adopts a buck-boost converter operating in DCM for impedance matching. A wake-up circuit is adopted so that the circuit is capable of cold-start. The proposed PMC is designed to operate for a wide powerline current. The measurement results also indicate that the source impedance of the MFEH remains constant even under a wide range of the powerline current.

#### ACKNOWLEDGMENT

This research was supported in part by the National Science Foundation Award number 1704176.

#### REFERENCES

- [1] S. Kim et al., "Ambient RF Energy-Harvesting Technologies for Self-Sustainable Standalone Wireless Sensor Platforms," Proceedings of the IEEE, vol. 102, no. 11, pp. 1649-1666, 2014, doi: 10.1109/JPROC.2014.2357031.
- [2] A. Jushi, A. Pegatoquet, and T. N. Le, "Wind Energy Harvesting for Autonomous Wireless Sensor Networks," in 2016 Euromicro Conference on Digital System Design (DSD), 31 Aug.-2 Sept. 2016 2016, pp. 301-308, doi: 10.1109/DSD.2016.43.
- [3] J. H. Hyun, L. Huang, and D. S. Ha, "Vibration and Thermal Energy Harvesting System for Automobiles with Impedance Matching and Wake-up," in 2018 IEEE International Symposium on Circuits and Systems (ISCAS), 27-30 May 2018 2018, pp. 1-5, doi: 10.1109/ISCAS.2018.8351419.
- [4] Deepti and S. Sharma, "Energy harvesting using piezoelectric for Wireless Sensor Networks," in 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), 4-6 July 2016 2016, pp. 1-3, doi: 10.1109/ICPEICES.2016.7853564.
- [5] Q. Brogan, T. O. Connor, and D. S. Ha, "Solar and thermal energy harvesting with a wearable jacket," in 2014 IEEE International Symposium on Circuits and Systems (ISCAS), 1-5 June 2014 2014, pp. 1412-1415, doi: 10.1109/ISCAS.2014.6865409.
- [6] P. Kamat, D. Sutar and P. Pavan Prasad, "Efficient Energy Harvesting Using Current Tranformer for Smart Grid Application," 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, 2018, pp. 343-347, doi: 10.1109/ICOEI.2018.8553892.
- [7] X. Zhao, T. Keutel, M. Baldauf and O. Kanoun, "Energy harvesting for overhead power line monitoring," International Multi-Conference on Systems, Signals & Devices, Chemnitz, 2012, pp. 1-5, doi: 10.1109/SSD.2012.6198106.
- [8] Y. Zhuang, C. Xu, S. Yuan, C. He, A. Chen, W. W. Lee, J. Zhou, and Y. Huang, "An improved energy harvesting system on power transmission lines," in 2017 IEEE Wireless Power Transfer Conference (WPTC), 2017, doi: 10.1109/WPT.2017.7953847.
- [9] K. Tashiro, H. Wakiwaka, S. Inoue, and Y. Uchiyama, "Energy Harvesting of Magnetic Power-Line Noise," *IEEE Transactions on Magnetics*, vol. 47, no. 10, pp. 4441-4444, 2011, doi: 10.1109/TMAG.2011.2158190.
- [10] T. Taithongchai and E. Leelarasmee, "Adaptive electromagnetic energy harvesting circuit for wireless sensor application," in 2009 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 6-9 May 2009 2009, vol. 01, pp. 278-281, doi: 10.1109/ECTICON.2009.5137008.
- [11] J. D. Boles, B. Ozpineci, L. M. Tolbert, T. A. Burress, C. W. Ayers, and J. A. Baxter, "Inductive power harvesting for a touchless transmission line inspection system," in 2016 IEEE Power and Energy Society General Meeting (PESGM), 17-21 July 2016 2016, pp. 1-5, doi: 10.1109/PESGM.2016.7741736.
- [12] A. Abasian, A. Tabesh, A. Z. Nezhad, and N. Rezaei-Hosseinabadi, "Design Optimization of an Energy Harvesting Platform for Self-Powered Wireless Devices in Monitoring of AC Power Lines," *IEEE Transactions on Power Electronics*, vol. 33, no. 12, pp. 10308-10316, 2018, doi: 10.1109/TPEL.2017.2775961.
- [13] T. Hosseinimehr and A. Tabesh, "Magnetic Field Energy Harvesting from AC Lines for Powering Wireless Sensor Nodes in Smart Grids," in IEEE Transactions on Industrial Electronics, vol. 63, no. 8, pp. 4947-4954, Aug. 2016, doi: 10.1109/TIE.2016.2546846.
- [14] S. Yuan, Y. Huang, J. Zhou, Q. Xu, C. Song and P. Thompson, "Magnetic Field Energy Harvesting Under Overhead Power Lines," in IEEE Transactions on Power Electronics, vol. 30, no. 11, pp. 6191-6202, Nov. 2015, doi: 10.1109/TPEL.2015.2436702.
- [15] K. Tashiro, H. Wakiwaka, S. Inoue and Y. Uchiyama, "Energy Harvesting of Magnetic Power-Line Noise," in IEEE Transactions on Magnetics, vol. 47, no. 10, pp. 4441-4444, Oct. 2011, doi: 10.1109/TMAG.2011.2158190.
- [16] F. Guo, H. Hayat and J. Wang, "Energy harvesting devices for high voltage transmission line monitoring," 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 2011, pp. 1-8, doi: 10.1109/PES.2011.6039037.
- [17] H. Tzu-Chi, Y. Yao-Yi, L. Yu-Huei, D. Ming-Jhe, C. Shih-Hsien, and C. Ke-Horng, "A battery-free energy harvesting system with the

- switch capacitor sampler (SCS) technique for high power factor in smart meter applications," in 2011 IEEE/IFIP 19th International Conference on VLSI and System-on-Chip, 3-5 Oct. 2011 2011, pp. 359-362, doi: 10.1109/VLSISoC.2011.6081609.
- [18] S. Yuan, Y. Huang, J. Zhou, Q. Xu, C. Song, and G. Yuan, "A High-Efficiency Helical Core for Magnetic Field Energy Harvesting," *IEEE Transactions on Power Electronics*, vol. 32, no. 7, pp. 5365-5376, 2017, doi: 10.1109/TPEL.2016.2610323.
- [19] Z. Wang, J. Hu, J. Han, G. Zhao, J. He and S. X. Wang, "A Novel High-Performance Energy Harvester Based on Nonlinear Resonance for Scavenging Power-Frequency Magnetic Energy," in IEEE Transactions on Industrial Electronics, vol. 64, no. 8, pp. 6556-6564, Aug. 2017, doi: 10.1109/TIE.2017.2682040.
- [20] G. Yu, Z. Donglai, and H. Zhu, "Adaptive impedance matching optimal control method for cascaded DC-DC power supply system," in *IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society*, 29 Oct.-1 Nov. 2017 2017, pp. 751-755, doi: 10.1109/IECON.2017.8216130.
- [21] Y. Xu, D. S. Ha, and M. Xu, "Energy harvesting circuit with input matching in boundary conduction mode for electromagnetic generators," in 2017 IEEE International Symposium on Circuits and Systems (ISCAS), 28-31 May 2017 2017, pp. 1-4, doi: 10.1109/ISCAS.2017.8050864.
- [22] Y. Huang, N. Shinohara, and T. Mitani, "Theoretical analysis on DC-DC converter for impedance matching of a rectifying circuit in wireless power transfer," in 2015 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 26-28 Aug. 2015 2015, pp. 229-231, doi: 10.1109/RFIT.2015.7377943.
- [23] N. Kong, D. S. Ha, A. Erturk, and D. J. Inman, "Resistive impedance matching circuit for piezoelectric energy harvesting," Journal of Intelligent Material Systems and Structures, vol. 21, no. 13, pp. 1293–1302, September 2010.
- [24] Y. Jiang, J. A. A. Qahouq, and T. A. Haskew, "Adaptive Step Size With Adaptive-Perturbation-Frequency Digital MPPT Controller for a Single-Sensor Photovoltaic Solar System," *IEEE Transactions on Power Electronics*, vol. 28, no. 7, pp. 3195-3205, 2013, doi: 10.1109/TPEL.2012.2220158.
- [25] S. Gaikwad and M. Ghosal, "Energy efficient storage-less and converter-less renewable energy harvesting system using MPPT," 2017 2nd International Conference for Convergence in Technology (I2CT), Mumbai, 2017, pp. 971-973, doi: 10.1109/I2CT.2017.8226273.
- [26] X. Zhao, T. Keutel, M. Baldauf, and O. Kanoun, "Energy harvesting for overhead power line monitoring," in *International Multi-Conference on Systems, Signals & Devices*, 20-23 March 2012 2012, pp. 1-5, doi: 10.1109/SSD.2012.6198106.
- [27] X. Zeng, B. Li, H. Li, S. Chen, and Y. Chen, "Non-invasive energy harvesting for wireless sensors from electromagnetic fields around 10kV three-core power cables," in 2017 1st International Conference on Electrical Materials and Power Equipment (ICEMPE), 14-17 May 2017 2017, pp. 536-539, doi: 10.1109/ICEMPE.2017.7982197.
- [28] M. Yao and M. Zhao, "Research on electric energy harvesting from high-voltage transmission line," in 2013 3rd International Conference on Electric Power and Energy Conversion Systems, 2-4 Oct. 2013 2013, pp. 1-4, doi: 10.1109/EPECS.2013.6713052.
- [29] A. Obaid and X. Fernando, "Wireless energy harvesting from ambient sources for cognitive networks in rural communities," in 2017 IEEE Canada International Humanitarian Technology Conference (IHTC), 21-22 July 2017 2017, pp. 139-143, doi: 10.1109/IHTC.2017.8058175.
- [30] J. Fang et al., "Research on the Control Strategy of Induction Power Supply for Distribution Network Lines," 2019 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Macao, Macao, 2019, pp. 1-5, doi: 10.1109/APPEEC45492.2019.8994555.
- [31] Q. Sun, S. Patil, N. Sun, and B. Lehman, "Modeling and optimization of an inductive magnetic harvester considering nonlinear effects," in 2013 IEEE 14th Workshop on Control and Modeling for Power Electronics (COMPEL), 23-26 June 2013 2013, pp. 1-6, doi: 10.1109/COMPEL.2013.6626463.