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We introduce a technique for proving quantitative representation stability theorems for

sequences of representations of certain finite linear groups over a field of characteristic

zero. In particular, we prove a vanishing result for higher syzygies of VIC and SI-

modules, which can be thought of as a weaker version of a regularity theorem of Church–

Ellenberg [1, Theorem A] in the context of FI-modules. We apply these techniques to the

rational homology of congruence subgroups of mapping class groups and congruence

subgroups of automorphism groups of free groups. This partially resolves a question

raised by Church and Putman–Sam [11, Remark 1.8]. We also prove new homological

stability results for mapping class groups and automorphism groups of free groups

with twisted coefficients.

1 Introduction

Putman–Sam [11] introduced techniques for proving representation stability results

in the sense of Church–Ellenberg–Farb [2] for sequences of representations of several

families of finite linear groups. They applied their tools to prove stability results for the

homology groups of congruence subgroups of mapping class groups and automorphism

groups of free groups. In this paper, we introduce new techniques that allow us to

establish explicit stable ranges. Moreover, our methods do not require that we work

with homology groups that are finitely generated. These stronger results come at the

cost of working with field coefficients of characteristic zero.
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Quantitative Representation Stability 8625

1.1 Stability for congruence subgroups

The study of representation stability concerns the following framework: fix a sequence

of groups with inclusions

G0 ↪−→ G1 ↪−→ G2 ↪−→ G3 ↪−→ · · ·

such as symmetric groups Sn, general linear groups GLn(k), or symplectic groups

Sp2n(k). Fix a commutative ring R. Let {An} be a sequence of R[Gn]-modules with the

data of Gn-equivariant maps An → An+1. The sequence {An} is said to have generation

degree ≤ d if, for all n ≥ d, the R[Gn+1]-module generated by the image of An is all

of An+1. Informally, we say that the sequence {An} stabilizes if its generation degree is

finite. In this paper, we also discuss a related notion called presentation degree.

The main examples of spaces that we consider are classifying spaces of congru-

ence subgroups of mapping class groups and congruence subgroups of automorphism

groups of free groups. Let Mod(�g,r) denote the mapping class group of �g,r, the compact

orientable surface of genus g with r boundary components. The mapping class group

acts on H1(�g,r). For r ≤ 1, this action preserves the symplectic intersection form and so

we get a map

Mod(�g,r) → Sp2g(Z)

to the group Sp2g(Z) of symplectomorphisms of Z2g. Reducing modulo p gives a map

Mod(�g,r) → Sp2g(Z/pZ)

and we denote the kernel by Mod(�g,r,p). This group is often called the level p

congruence subgroup of Mod(�g,r). For r = 0, the classifying space of this group has

the homotopy type of the moduli stack of smooth genus g complex curves with full

level-p structure. For r ≤ 1, the homology groups Hi(Mod(�g,r,p);R) have the structure

of a R[Sp2g(Z/pZ)]-module. For r = 1, the inclusions of surfaces �g,1 ↪→ �g+1,1 induce

Sp2g(Z/pZ)-equivariant maps

Hi

(
Mod(�g,1,p);R

)→ Hi

(
Mod(�g+1,1,p);R

)
,

which allow us to make sense of stability. Our 1st result is the following.
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8626 J. Miller and J.C.H. Wilson

Theorem A. Let p ∈ Z be a prime and R be a field of characteristic zero. The sequence

{Hi(Mod(�g,1,p);R)}

has generation degree ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 for i = 0

5 for i = 1

(8)32i−3 for i > 1.

See Theorem 3.5 for a version of this theorem that addresses both generation

and relation degree. Putman–Sam [11, Theorem K] proved that the degree of generation

is finite when R is any Noetherian ring, and Theorem A quantifies their result when R is

a field of characteristic zero.

A similar story is also true for automorphism groups of free groups. Let Fn
denote the free group on n letters. The induced action of Aut(Fn) on the abelianization

Zn of Fn gives a surjective map

Aut(Fn) → GLn(Z).

Reduction mod p gives a surjective map

Aut(Fn) → GL±
n (Z/pZ)

to the subgroup GL±
n (Z/pZ) ⊆ GLn(Z/pZ) of matrices with determinant ±1. We refer to

the kernel of this map as the level-p congruence subgroup of Aut(Fn) and denote it by

Aut(Fn,p). The natural inclusion Fn ↪→ Fn+1 gives a GL±
n (Z/pZ)-equivariant map

Hi

(
Aut(Fn,p);R

)→ Hi

(
Aut(Fn+1,p);R

)
.

We prove the following theorem.

Theorem B. Let p be a prime and R be a field of characteristic zero. The sequence

{Hi(Aut(Fn,p);R)} has generation degree ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 for i = 0

4 for i = 1(13
2

)
32i−3 − 1

2 for i > 1.

See Theorem 3.7 for a version of this theorem that also addresses relation

degree. As before, Putman–Sam [11, Theorem I] proved that the degree of generation

is finite when R is any Noetherian ring. In Remark 3.8, we discuss a generalization

of Theorem B that applies to congruence subgroups of automorphism groups of free
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Quantitative Representation Stability 8627

products of certain fundamental groups of three manifolds (Z, Z/2Z, Z/4Z, Z/6Z, π1(�g),

etc.). The techniques of Putman–Sam do not apply in this more general context as it is

not currently known if the underlying vector spaces are finite-dimensional.

1.2 Bounding higher syzygies

To state our main technical tool and to state our homological stability with twisted

coefficients theorems, we need the following categories first introduced by Putman–Sam.

We write SI(k) to denote the category whose objects are finite-rank free symplec-

tic k-modules and whose morphisms are symplectic embeddings.

Given a category C and a commutative ring R, the term C-module over R will

mean a functor from C to the category of R-modules. We denote the category of C-

modules over R by C- ModR. Given a C-module A and an object V, let AV denote the

functor A evaluated on V. In the case C = SI(k), we write An to denote Ak2n , where we

equip k2n with a standard sympletic form; see Section 2.1.

Since the automorphism group of k2n in SI(k) is Sp2n(k), the R-module An is

naturally a R[Sp2n(k)]-module. Symplectic inclusions k2n ↪→ k2n+2 give R[Sp2n(k)]-

equivariant maps An → An+1. Thus, generation degree is well defined for SI(k)-modules.

We will use these constructions to study the homology groups Hi(Mod(�g,1,p);R), which

assemble to form an SI(Z/pZ)-module over R.

For A an SI(k)-module, let

HSI
0 : SI(k)– ModR → SI(k)– ModR

be given by the formula

HSI
0 (A)V = coker

⎛⎝⊕
W�V

AW → AV

⎞⎠
and let HSI

i denote the ith left derived functor of HSI
0 . Details are given in Section 2.4.

Vanishing of HSI
0 (M) controls the generation degree of M and vanishing

of both HSI
0 and HSI

1 control the presentation degree of M (see Definition 2.9 and

Proposition 2.35). Our main technical tool concerning SI(k)-modules is the following

theorem.

Theorem C. Let k be a finite field and R a be field of characteristic zero. Let A be an

SI(k)-module over R with HSI
0 (A)n = 0 for n > d and HSI

1 (A)n = 0 for n > r. Then for

i ≥ 2 the group HSI
i (A)n vanishes for n > 3i−1 max(r,d).
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8628 J. Miller and J.C.H. Wilson

The above theorem is analogous to the regularity theorem of Church–Ellenberg

[1, Theorem A] for FI-modules, although our techniques are different. This theorem

shows that we can bound the generation degrees of modules of higher syzygies in terms

of the degrees of generators and relations. It serves the same purpose in this paper that

the Noetherian theorems serve in Putman–Sam [11].

For U a subgroup of the group of units of k, let GLU
n

(
k
)

denote the subgroup of

matrices with determinant in U. Putman–Sam [11] introduced a category VICU(k) whose

automorphism groups are GLU
n (k), defined in Definition 2.2. The groups Hi(Aut(Fn,p))

assemble to form a VIC±(Z/pZ)-module. We prove the following result concerning

syzygies of VICU(k)-modules.

Theorem D. Let k be a finite field and R a be field of characteristic zero. Let A be a

VICU(k)-module over R with HVICU

0 (A)n = 0 for n > d and HVICU

1 (A)n = 0 for n > r. Then

for i ≥ 2 the group HVICU

i (A)n vanishes for n > 3i−1
(
max(r,d) + 1

2

)− 1
2 .

These theorems imply that when k is a finite field and R is a field of characteristic

zero, the categories of SI(k)- and VICU(k)-modules with finite presentation degree are

abelian categories; see Corollary 2.36.

1.3 Homological stability with twisted coefficients

Our techniques can also be applied to prove homological stability theorems with twisted

coefficients.

Theorem E. Let p ∈ Z be prime. Let R be a field of characteristic zero and let A be an

SI(Z/pZ)-module over R with generation degree ≤ d and relation degree ≤ r. Then an

inclusion �g,1 ↪→ �g+1,1 induces an isomorphism

Hi

(
Mod(�g,1);Ag

)→ Hi

(
Mod(�g+1,1);Ag+1

)

whenever

g ≥

⎧⎪⎪⎨⎪⎪⎩
max(d, r) for i = 0

max(9 + d + min(8,d), 6 + r + min(5, r), 9 + d + min(5,d)) for i = 1

max
(
(8)32i−2+1 +d + min

(
(8)32i−2,d

)
, (8)32i−3+ 1+ r + min

(
(8)32i−3,r

))
for i > 1.
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Quantitative Representation Stability 8629

In particular, the conclusion of Theorem E holds for

g ≥

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d + r for i = 0

17 + d + r for i = 1

1 + (8)32i−2 + 2d + 2r for i > 1.

Similarly, we prove the following stability theorem for automorphism groups of

free groups.

Theorem F. Let p ∈ Z be prime. Let R be a field of characteristic zero and let A be a

VIC±(Z/pZ)-module over R with generation degree ≤ d and relation degree ≤ r. Then the

inclusion Fn ↪→ Fn+1 induces an isomorphism

Hi

(
Aut(Fn);An

)→ Hi

(
Aut(Fn+1);An+1

)
whenever n is at least

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

max(d, r) for i = 0

max
(
6 + d + min(6,d), 4 + r + min(4, r)

)
for i = 1

max
( (13

2

)
32i−2 − 1

2 + d + min
((13

2

)
32i−2 − 1

2 ,d
)

,
(13

2

)
32i−3 − 1

2 + r

+ min
(13

2

)
32i−3 − 1

2 , r
) )

for i > 1.

In particular, the conclusion of Theorem F holds for

n ≥

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d + r for i = 0

12 + d + r for i = 1(13
2

)
32i−2 − 1

2 + 2d + 2r for i > 1.

These twisted stability theorems are qualitatively different than stability theo-

rems with polynomial coefficients, for example, the coefficients considered in [12]. See

the discussion before Theorem L in [11] or Example 1.4 of [5] for an exposition of this

difference. In fact, the work of Gan–Watterlond [3] implies that there are no nonconstant

polynomial coefficient systems in our context.
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8630 J. Miller and J.C.H. Wilson

1.4 Outline

In Section 2, we construct bounded resolutions of SI(k)- and VICU(k)-modules. We use

these resolutions in Section 3 where we prove representation stability for congruence

subgroups of mapping class groups and automorphism groups of free groups. We use

these representation stability results in Section 4 to prove twisted homological stability

theorems for mapping class groups and automorphism groups of free groups.

2 Algebraic Results

In this section, we bound the generation degrees of the modules of higher syzygies

of SI(k) and VICU(k)-modules over R that have finite presentation degree. Our main

theorems require that R be a field of characteristic zero and that k be a finite field.

However, many of our intermediate results apply in more generality.

2.1 C-modules

We begin by defining the categories of interest. All rings are assumed to have unit.

Definition 2.1. Let R and k be commutative rings. Let VIC(k) be the category whose

objects are finite-rank free k-modules and whose morphisms U → V are defined to be

the set

HomVIC(U,V) =
{

f = (T,C)

∣∣∣∣∣ T : U → V an injective linear map

C a specified direct complement of T(U) in V.

}

Composition of morphisms is defined by the rule

(T,C) ◦ (S,D) = (T ◦ S,C ⊕ f (D)) .

Similarly SI(k) denotes the category of finite-rank free symplectic k-modules and

injective, isometric embeddings.

We note that the image of a symplectic embedding f : V → W has a unique

symplectic complement f (V)⊥ ⊂ W.

We will use the following generalization of VIC, defined by Putman–Sam

[11, Section 1.2].
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Quantitative Representation Stability 8631

Definition 2.2. Fix a commutative ring k and a subgroup U ⊆ k×. Let

GLU
n (k) = {A ∈ GLn(k) | detA ∈ U}.

We write VICU(k) to denote the following category. Its objects are finite-rank free k-

modules V such that nonzero objects are assigned a U–orientation, a generator of

rankk(V)∧
V ∼= k

defined up to multiplication by U. If V and W have the same rank, then HomVICU(k)
(V,W)

is the set of linear isomorphisms that respect the designated U-orientations. If V has

strictly smaller rank than W, then a morphism V → W is a complemented injective

linear map f = (T,C), for which we assign to C the unique U-orientation such that

T(V) ⊕ C ∼= W as oriented k-modules.

Here T(V) is equipped with the orientation induced by the U-orientation on V.

In particular,

EndVICU(k)
(kn) ∼= GLU

n (k),

but if V has strictly smaller rank than W, then

HomVICU(k)
(V,W) ∼= HomVIC(k)(V,W).

When U = {1, −1}, we write VIC±(k) for VICU(k). Note that when U = k×, the category

VICU is isomorphic to VIC.

For convenience, we will often work with a skeleton of the category VIC(k) or

VICU(k), the full subcategory with objects kd, d ≥ 0. Given these choices of bases for

our objects, when convenient we can represent our morphisms (T,C) : kd → kn by an

equivalence class of (n × n) matrices in GLU
n (k) where the 1st d columns are the matrix

representative for T, and the final (n − d) columns span C. Similarly, we may choose a
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8632 J. Miller and J.C.H. Wilson

skeleton of SI(k) of symplectic vector spaces k2d with symplectic form

�d =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1

−1 0 0
. . .

0 0 1

−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

A morphism k2d → k2n is given by a (2n × 2d) matrix A that satisfies AT�nA = �d.

Remark 2.3. Consider the action of EndVICU(k)
(kn) ∼= GLU

n (k) on the morphisms

HomVICU(k)
(kd,kn). A morphism f = (T,C) has stabilizer GLU(C) ∼= GLU

n−d(k) in GLU
n (k).

Similarly, a morphism f ∈ HomSI(k)(k
2d,k2n) has stabilizer Sp(f (k2d)⊥) ∼= Sp2n−2d(k) in

Sp2n(k), where again f (k2d)⊥ denotes the symplectic complement of f (k2d) ⊆ k2n.

Throughout the paper we will let C generically refer to the category SI(k) or

VICU(k) and denote the endomorphisms EndVICU(k)
(kn) ∼= GLU

n (k) or EndSI(k)(k
2n) ∼=

Sp2n(k) generically by Gn. We stress that for the category SI(k), these indices n are

half the rank of the corresponding symplectic k-module k2n.

Definition 2.4. We write CB to denote the subcategory of C with the same objects as

C, whose morphisms are all isomorphisms of C. A CB-module W is therefore a sequence

W = {Wn} of Gn-representations, and we define the support of a CB-module to be the

set {n ∈ Z≥0 | Wn 
= 0}.

Definition 2.5. Let M(d) denote the representable VICU(k)-module

kn �−→ R
[
HomVICU(k)

(kd,kn)
]

or the representable SI(k)-module

k2n �−→ R
[
HomSI(k)(k

2d,k2n)
]

.

In both cases such morphism has stabilizer Gn−d by Remark 2.3, and so there

are isomorphisms of Gn-representations

M(d)n
∼= R

[
Gn/Gn−d

] ∼= IndGn
Gn−d

R ∼= IndGn
Gd×Gn−d

R[Gd] � R

where R denotes the trivial Gn−d-representation.
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Quantitative Representation Stability 8633

We sometimes write MVIC(d), MVICU

(d), or MSI(d) for M(d) when we wish to

specialize to a particular category C = VIC(k), C = VICU(k), or C = SI(k).

Definition 2.6. We define the functor

M : CB–Mod −→ C–Mod

to be the left adjoint to the forgetful functor

F : C–Mod −→ CB–Mod

A �−→ {
An

}
Concretely, given a Gd-representation W (viewed as a CB-module supported in

degree d), the C–module M(W) satisfies

M(W) = M (d) ⊗R[Gd] W.

As a Gn-representation,

M(W)n
∼=
{

0 n < d

IndGn
Gd×Gn−d

W � R n ≥ d.

Given a general CB–module W = {Wn}, the C-module M(W) is given by the formula

M : CB–Mod −→ C–Mod

{Wn} �−→
⊕
m≥0

M(Wm)

These formulas follow as in Church–Ellenberg–Farb [2, Definition 2.2.2 and Equation

(4)]. Following the terminology of Nagpal–Sam–Snowden [7], we call C-modules of the

form induced C–modules. Again we sometimes write MVIC(W), MVICU

(W), or MSI(W)

for M(W) when C = VIC(k), VICU(k), or SI(k).

Proposition 2.7. For any projective CB-module W, the C-module M(W) is projective. In

particular, if k is a finite commutative ring and R is a field of characteristic zero, then

M(W) is projective for all CB–modules W.
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8634 J. Miller and J.C.H. Wilson

Proof. Since M is the left adjoint of the exact forgetful functor, it preserves projectives;

see Weibel [13, Proposition 2.3.10]. When the algebras R[Gn] are semi-simple then all

CB-modules are projective. �

From the formula for M(W), and because induction of group representations is

an exact operation, we deduce the following.

Proposition 2.8. The functor M : CB–Mod → C–Mod is exact.

We now introduce the concepts of generation, relation, and presentation degree.

Definition 2.9. A C-module A is generated in degree ≤ d if A can be expressed as a

quotient of a C-module of the form

M(W) � A

for some CB-module W supported in degrees ≤ d. We say that A is related in degree ≤ r

if A can be expressed as a quotient as above whose kernel is generated in degree ≤ r.

If A is generated in degree ≤ d and related in degree ≤ r, we say it has presentation

degree ≤ max(d, r).

Proposition 2.10. Let A be a C-module. The following statements are all equivalent to

the condition that A is generated in degree ≤ d.

(a) A is a quotient of an induced C-module M(W) � A with W supported in

degrees ≤ d.

(b) For all n ≥ d, the Gn+1-representation An+1 is generated by the image of An

in An+1 under any map induced by a C morphism.

(c) For all n ≥ d, the C morphisms induce surjections IndGn+1
Gn

An � An+1.

(d) The subset {An}dn=0 of A is not contained in any proper C-submodule of A.

(e) The inclusion of CB-modules {An}dn=0 ↪→ {An} induces a surjective map of

C-modules

M
({

An

}d
n=0

)
� A.

Proof. We can verify directly that if W is supported in degrees ≤ d then M(W) satisfies

(b), and hence its C-module quotients do. Thus (a) implies (b). Parts (b) and (c) are

equivalent by definition of induction. It is straightforward to conclude (d) from (b). Part
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Quantitative Representation Stability 8635

(d) implies that any map of C-modules to A that is surjective in the 1st d degrees must

surject in all degrees, and so implies (e). Part (a) is immediate from part (e). �

Remark 2.11. We note that the induced C-module M(W) is generated in degree ≤ d if

and only if W is supported in degree ≤ d.

Proposition 2.12. Let k be a finite field and let R be a field of characteristic zero.

Any induced C-module M(W) can be realized as both a C-module quotient and a

C-submodule of C-modules of the form

∞⊕
m=0

M(m)⊕cm

for some (possibly infinite) multiplicities cm. If M(W) is generated in degree ≤ d, then

we can realize it as a quotient or a submodule of C-modules of the form

d⊕
m=0

M(m)⊕cm .

More generally, if A is any C-module generated in degree ≤ d, then we can realize A as

a quotient of a C-module of the form

d⊕
m=0

M(m)⊕cm .

Notably, the following constructions are valid even if we allow the R[Gn]-

representations Wn to be infinite-dimensional.

Proof of Proposition 2.12. Observe that we can construct a CB-module {R[Gn]⊕cn} so

as to obtain a map of CB-modules

R[Gn]⊕cn → Wn

that surjects in each degree n. If W is supported in degree ≤ d we may take cn = 0 for

n > d. Applying the functor M we obtain a map of C-modules,

M
({
R[Gm]⊕cm

}) =
⊕
m

M (m)⊕cm −→ M(W),

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2020/22/8624/5136347 by Purdue U
niversity Libraries AD

M
N

 user on 09 Septem
ber 2021



8636 J. Miller and J.C.H. Wilson

and by Proposition 2.8 this map surjects.

Moreover, since the algebras R[Gn] are semi-simple by assumption, the maps

R[Gn]⊕cn → Wn split to give an injective map of CB-modules W → {R[Gn]⊕cn}. Again the

induced map

M(W) −→
⊕
m

M (m)⊕cm

is injective by Proposition 2.8.

Finally, if A is any C-module generated in degree ≤ d, then by definition of

generation degree we can realize A as a quotient M(W) → A with W supported in

degree ≤ d. Then we may compose this map with the surjection constructed above to

obtain the desired surjective map

d⊕
m=0

M (m)⊕cm −→ M(W) −→ A.

�

2.2 Weight and stability degree

In this subsection, we will introduce concepts of weight and stability degree for

C-modules, closely analogous to the concepts of the same name used by Church et al.

[2] in the study of FI-modules. These C-module invariants will be our main tool for

bounding the generation degrees of the terms in resolutions of C-modules.

Definition 2.13. A C-module A has weight ≤ d if for each n, the Gn-representation

An is a subquotient of a representation of the form
⊕

m≤dM(m)
⊕cm
n for some (possibly

infinite) coefficients cm.

Remark 2.14. It follows from the definition that if A is a C-module of weight ≤ d, then

any subquotient of A has weight ≤ d.

Remark 2.15. By Proposition 2.12, any C-module A generated in degree ≤ d must be a

quotient of the form in Definition 2.13, and so A has weight ≤ d.

Lemma 2.16. Let k be a finite commutative ring, and let R be a field of characteristic

zero. Suppose that A is a C-module over R of weight ≤ d and that Cn is any subquotient

of the Gn-representation An. Then Cn = 0 if and only if (Cn)Gn−d
= 0.

An analogous statement for FI-modules was proved by Church–Ellenberg–Farb

[2, Lemma 3.2.7(iv)]. Their proof uses combinatorial properties of the branching rules
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Quantitative Representation Stability 8637

for induction of symmetric group representations. The following proof instead uses

Frobenius reciprocity.

Proof of Lemma 2.16. If Cn = 0, then its coinvariants must vanish. So suppose that

(Cn)Gn−d
= 0. Note that if m ≤ d, then (Cn)Gn−m

is a quotient of (Cn)Gn−d
and therefore

also vanishes. To verify that Cn vanishes, it is enough to show that

HomR[Gn](U,Cn) = 0 for all Gn-representations U.

By the definition of weight, and because we are working with finite groups over

characteristic zero, any irreducible subrepresentation of Cn must be contained in a Gn-

representation U of the form

U = IndGn
Gm×Gn−m

R[Gm] � R with m ≤ d

so it suffices to check that HomR[Gn](U,Cn) = 0 in this case. Using Frobenius reciprocity

(or the tensor-Hom adjunction), we find

HomR[Gn]

(
IndGn

Gm×Gn−m
R[Gm] � R, Cn

)
= HomR[Gm×Gn−m]

(
R[Gm] � R, ResGn

Gm×Gn−m
Cn

)
= HomR[Gm]

(
R[Gm], (Cn)Gn−m

)
= 0

as claimed. �

Definition 2.17. A C-module A has stability degree ≤ s if for each a ≥ 0, the induced

map

(An)Gn−a
−→ (An+1)Gn+1−a

is an isomorphism for all n ≥ s + a. We further say that A has injectivity degree ≤ s

if these maps are injective for n ≥ s + a, and surjectivity degree ≤ s if these maps are

surjective for n ≥ s + a. We use the notation InjDeg(A) ≤ s (respectively, SurjDeg(A) ≤ s)

to indicate that A has injectivity degree (respectively, surjectivity degree) ≤ s.
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8638 J. Miller and J.C.H. Wilson

Proposition 2.18. Let k be a finite commutative ring, let R be a field of characteristic

zero, and let B be a C-module over R. If B has surjectivity degree ≤ s, then so does any

quotient of B. If B has injectivity degree ≤ t, then so does any submodule of B.

Proof. Suppose that A is a submodule of B and that C is a quotient. Since the operation

of taking coinvariants by a finite group is exact over characteristic zero, we obtain the

following commutative diagrams. For n ≥ a + t, the diagram

implies that the map (An)Gn−a
−→ (An+1)Gn+1−a

injects.

For n ≥ a + s, the diagram

shows that the map (Cn)Gn−a
−→ (Cn+1)Gn+1−a

is surjective. �

Proposition 2.19. Let k be a finite commutative ring, let R be a field of characteristic

zero, and let f : A → B be a map of C-modules over R. Then

InjDeg(ker f ) ≤ InjDeg(A) SurjDeg(ker f ) ≤ max
(
SurjDeg(A), InjDeg(B)

)
InjDeg(coker f ) ≤ max

(
SurjDeg(A), InjDeg(B)

)
SurjDeg(coker f ) ≤ SurjDeg(B).

Proof. The results InjDeg(ker f ) ≤ InjDeg(A) and SurjDeg(coker f ) ≤ SurjDeg(B)

follow from Proposition 2.18. Since taking coinvariants is exact over R, for n ≥ a +
max(SurjDeg(A), InjDeg(B)) we obtain the following commutative diagram with exact
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Quantitative Representation Stability 8639

columns

A routine diagram chase demonstrates that the map (ker fn)Gn−a
−→

(ker fn+1)Gn+1−a
surjects, as desired. We also obtain, for n ≥ a + max(SurjDeg(A),

InjDeg(B)) the commutative diagram with exact columns

We can verify that the kernel of the map (coker fn)Gn−a
−→ (coker fn+1)Gn+1−a

vanishes, which concludes the proof. �

Patzt proved the following result on the stability degree of representable C-

modules. We remark that, although he only states the results for k = Q, his proof only

uses the assumption that k is a field.

Proposition 2.20 (Patzt [9, Proposition 3.11]). Let R be ring and k a field. Let C be the

category VIC(k) or SI(k). Then the representable C-module M(d) over R has injectivity

degree ≤ 0, and surjectivity degree ≤ 2d.

We now explain how to leverage this result to prove an analogous statement for

VICU(k).

Proposition 2.21. Let R be ring, k a field, and U a subgroup of k×. Then the repre-

sentable VICU(k)-module M(d) over R has injectivity degree ≤ 2d + 1, and surjectivity

degree ≤ 2d.
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8640 J. Miller and J.C.H. Wilson

Proof. Fix a ≥ 0. Let Im denote the (m × m) identity matrix. By definition the GLU
n (k)-

representation M(d)n is a permutation representation with R-basis the set of cosets

GLU
n (k)/ GLU

n−d(k). It follows that its coinvariants
(
M(d)n

)
GLU

n−a(k)
has R-basis the set of

double cosets

GLU
n−a(k)\ GLU

n (k)/ GLU
n−d(k).

Concretely, this is the set of (n×n) matrices B with determinants in U defined up to the

action of

GLU
n−a(k) ∼=

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣

Ia 0

0 �

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

on the left—acting by row operations on the bottom (n−a) rows of B—and the action of

GLU
n−d(k) ∼=

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣

Id 0

0 �

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

on the right, acting by column operations on the rightmost (n − d) columns of B. The

map (
M(d)n

)
GLU

n−a(k)
→ (

M(d)n+1

)
GLU

n+1−a(k)

defining stability degree is induced by the map

GLU
n (k) −→ GLU

n+1(k)

C �−→

⎡⎢⎢⎢⎢⎢⎣
0

C
...

0

0 · · · 0 1

⎤⎥⎥⎥⎥⎥⎦ .

We will first establish the bound on surjectivity degree for M(d) by proving that the

map

GLU
n−a(k)\ GLU

n (k)/ GLU
n−d(k) −→ GLU

n+1−a(k)\ GLU
n+1(k)/ GLU

n+1−d(k)

surjects for n ≥ 2d + a. When d = 0, the domain and codomain are both singleton sets

and the result is immediate, so we may assume d > 0. Let B be any matrix in GLU
n+1(k).
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Quantitative Representation Stability 8641

Patzt proved that MVIC(d) has surjectivity degree ≤ 2d; specifically, he found matrices

A ∈ GLn+1−a(k), D ∈ GLn+1−d(k), and C ∈ GLn(k) so that

[
Ia

A

]
B

[
Id

D

]
=

⎡⎢⎢⎢⎢⎢⎣
0

C
...

0

0 · · · 0 1

⎤⎥⎥⎥⎥⎥⎦ .

Our goal is to modify A, D, and C so that they have determinants in U. Observe that

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1

det(C)−1

det(D)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
Ia

A

]
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
B

⎛⎜⎜⎜⎜⎜⎝
[
Id

D

]⎡⎢⎢⎢⎢⎢⎣
1

. . .

1

det(D)−1

⎤⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1

det(C)−1

det(D)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

C
...

0

0 · · · 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
1

. . .

1

det(D)−1

⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

C′ ...

0

0 · · · 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

where C′ is obtained by scaling the bottom row of C by det(C)−1. Thus C′ has determinant

1, and the matrix on the right-hand side of the equation is in the image of GLU
n (k). Since

n + 1 − d ≥ 1 + d + a ≥ 1
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8642 J. Miller and J.C.H. Wilson

by assumption, the matrix

⎛⎜⎜⎜⎜⎜⎝
[
Id

D

]⎡⎢⎢⎢⎢⎢⎣
1

. . .

1

det(D)−1

⎤⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠

is contained in GLn+1−d(k) and moreover has determinant 1. Since

n + 1 − a ≥ 2d + 1 ≥ 2

the matrix

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1

det(C)−1

det(D)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
Ia

A

]
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

is contained in GLn+1−a(k) and must have determinant det(B)−1 ∈ U. This concludes the

proof of the bound on surjectivity degree.

We next prove the bound on injectivity degree. Let n ≥ 2d + a + 1, and we will

show that the map on double cosets

GLU
n−a(k)\ GLU

n (k)/ GLU
n−d(k) −→ GLU

n+1−a(k)\ GLU
n+1(k)/ GLU

n+1−d(k)

is injective. Suppose that [B] and [C] are double cosets in GLU
n (k) that map to the same

double coset in GLU
n+1(k). Since the map on double cosets is surjective for n ≥ 2d+a, we

may assume without loss of generality that [C] is represented by a matrix of the form

C =

⎡⎢⎢⎢⎢⎢⎣
0

C′ ...

0

0 · · · 0 1

⎤⎥⎥⎥⎥⎥⎦ ∈ GLU
n (k).
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Quantitative Representation Stability 8643

Patzt proved that MVIC(d) has injectivity degree 0 by exhibiting matrices A ∈ GLn−a(k)

and D ∈ GLn−d(k) so that [
Ia

A

]
B

[
Id

D

]
= C.

Now observe that⎛⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎣
1

. . .

1

det(D)

⎤⎥⎥⎥⎥⎥⎦
[
Ia

A

]⎞⎟⎟⎟⎟⎟⎠B

⎛⎜⎜⎜⎜⎜⎝
[
Id

D

]⎡⎢⎢⎢⎢⎢⎣
1

. . .

1

det(D)−1

⎤⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠

=

⎡⎢⎢⎢⎢⎢⎣
1

. . .

1

det(D)

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
0

C′ ...

0

0 · · · 0 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
1

. . .

1

det(D)−1

⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣
0

C′ ...

0

0 · · · 0 1

⎤⎥⎥⎥⎥⎥⎦
where ⎛⎜⎜⎜⎜⎜⎝

[
Id

D

]⎡⎢⎢⎢⎢⎢⎣
1

. . .

1

det(D)−1

⎤⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠ ∈ GLn−d(k) has determinant 1,

and⎛⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎣
1

. . .

1

det(D)

⎤⎥⎥⎥⎥⎥⎦
[
Ia

A

]⎞⎟⎟⎟⎟⎟⎠ ∈ GLn−a(k) has determinant det(C′) det(B)−1 ∈ U.

Thus [C] and [B] are the same double coset in GLU
n−a(k)\ GLU

n (k)/ GLU
n−d(k), and we

conclude the bound on injectivity degree. �
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8644 J. Miller and J.C.H. Wilson

From Proposition 2.20 and Proposition 2.21 we will deduce the following results

for general C-modules.

Proposition 2.22. Let R be a field of characteristic zero and k a finite field. Any C-

module A over R generated in degree ≤ d has surjectivity degree ≤ 2d. If A is an induced

module over VIC(k) or SI(k), then A has injectivity degree ≤ 0. Induced VICU-modules

generated in degree ≤ d have injectivity degree ≤ 2d + 1.

Proof. Since by Proposition 2.12 any C-module generated in degree ≤ d can be realized

as a quotient of a direct sum of C-modules M(m) with m ≤ d, the result follows from

Proposition 2.20, Proposition 2.21, and Proposition 2.18. If A is the C-module M(W) for

some CB-module W = {Wn}, then by Proposition 2.12 we can realize A as a submodule

of a direct sum of representable C-modules M(m), and the result again follows from

Proposition 2.20, Proposition 2.21, and Proposition 2.18. �

The following result shows that the stability degree of a general C-module is

controlled by its presentation degree.

Proposition 2.23. Let k be a finite field, and let R be a field of characteristic zero. Let C

be VIC(k) or SI(k), and suppose that A is a C-module over R with generation degree ≤ d

and relation degree ≤ r. Then A has stability degree ≤ max(2r, 2d). If C is VICU(k), and

A is a C-module over R with generation degree ≤ d and relation degree ≤ r, then A has

stability degree ≤ max(2r, 2d + 1).

Proof. By assumption, there exists a partial resolution of A by induced C-modules

M1 −→ M0 −→ A

with M1 generated in degree ≤ r and M0 generated in degree ≤ d. When C is VIC(k) or

SI(k), M1 and M0 have injectivity degree ≤ 0 and surjectivities degrees ≤ 2r and ≤ 2d,

respectively, by Proposition 2.22. When C is VICU(k), then by Proposition 2.22, M1 has

surjectivity degree ≤ 2r and injectivity degree ≤ 2r+1, while M0 has surjectivity degree

≤ 2d and injectivity degree ≤ 2d + 1. The result follows from Proposition 2.19. �

We will use the following variation of Proposition 2.23 in the proofs of

Theorem E and Theorem F.
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Proposition 2.24. Let k be a finite field, and let R be a field of characteristic zero.

Suppose that A is a C-module with generation degree ≤ d and relation degree ≤ r. Then

the induced maps on coinvariants

(An)Gn
→ (An+1)Gn+1

surject for n ≥ d and inject for n ≥ r. In particular these induced maps are

isomorphisms for all n ≥ max(d, r).

Proof. Suppose first A is the representable C-module M(d). Then (as in Proposition

2.20 and Proposition 2.21) a basis for the coinvariants (An)Gn
is given by the double

cosets Gn\Gn/Gn−d; these double cosets are empty for n < d and a singleton set for

n ≥ d. Hence, the maps

(
M(d)n

)
Gn

→ (
M(d)n+1

)
Gn+1

inject for all n ≥ 0 and surject for n ≥ d.

Next, suppose that A is an induced C-module M(W) with W supported in degree

≤ d. By Proposition 2.12 we can realize A as both a quotient and a submodule of C-

modules of the form
⊕d

m=0 M(m)⊕cm . Then by combining our results on M(d) with the

proof of Proposition 2.18 in the special case a = 0, we find that the maps on coinvariants

(
M(W)n

)
Gn

→ (
M(W)n+1

)
Gn+1

also must inject for all n ≥ 0 and surject for n ≥ d.

Now consider a general C-module A that has a partial resolution by induced

C-modules

M1 −→ M0 −→ A

with M1 generated in degree ≤ r and M0 generated in degree ≤ d. By applying the proof

of Proposition 2.22 in the special case that a = 0, we find that the maps

(An)Gn
→ (An+1)Gn+1

must inject for n ≥ r and surject for n ≥ d, as claimed. �
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2.3 Bounding syzygies of C-modules over characteristic zero

In this subsection, we will bound the degrees of the modules of higher syzygies of C-

modules presented in finite degree.

Proposition 2.25. Let k be a finite commutative ring, let R be a field of characteristic

zero, and let A be a C-module over R of weight ≤ d and stability degree ≤ s. Then A is

generated in degree ≤ (s + d).

The following proof uses methods similar to those used by Church–Ellenberg–

Farb [2, Proposition 3.3.3] to show that bounds on weight and stability degree of an

FI-module imply a form of multiplicity stability.

Proof. By Proposition 2.10, proving that A is generated in degree at most (s + d) is

equivalent to showing that the induced map

In : IndGn+1
Gn

An → An+1 surjects for n ≥ s + d.

Let Cn+1 denote the cokernel of this map; our objective is to show that Cn+1 = 0 for

n ≥ s + d.

Recall the definition of stability degree ≤ s: for each a ≥ 0,

(An)Gn−a

∼=−→ (An+1)Gn+1−a
for all n ≥ s + a.

This map of coinvariants factors as follows:

(An)Gn−a
−→

(
IndGn+1

Gn
An

)
Gn+1−a

(In)∗−→ (
An+1

)
Gn+1−a

.

Since this composite map surjects for n ≥ s + a by assumption, it follows that the map

(
IndGn+1

Gn
An

)
Gn+1−a

(In)∗−→ (
An+1

)
Gn+1−a

surjects once n ≥ s + a, and its cokernel vanishes for any a ≥ 0. Taking coinvariants is

right exact, so this cokernel is (Cn+1)GLn+1−a
.

Set a = d. By Lemma 2.16, since Cn+1 is a quotient of An+1 and A has weight ≤ d,

the vanishing of (Cn+1)Gn+1−d
for n ≥ s + d ensures the vanishing of Cn+1 for n ≥ s + d.

We conclude that A is generated in degree ≤ (s + d). �
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Theorem 2.26. Let C be SI(k) or VIC(k). Let k be a finite field, and let R be a field of

characteristic zero. Let A be a C-module over R with generation degree ≤ d and relation

degree ≤ r. Then there exists a resolution of A by induced modules Mk

−→ Mk −→ · · · −→ M2 −→ M1 −→ M0 −→ A,

where M0 is generated in degree ≤ d, and for k ≥ 1, Mk is generated in degree ≤ 3k−1r.

Proof. By assumption we have a short exact sequence 0 −→ K0 −→ M0 −→ A with

M0 an induced C-module generated in degree ≤ d and the kernel K0 generated in degree

≤ r. So we can extend the resolution by constructing a map M1 � K0 where M1 is an

induced C-module generated in degree ≤ r.

We proceed by strong induction. Suppose we have an exact sequence

· · · � Ki ↪→ Mi � · · · � K2 ↪→ M2 � K1 ↪→ M1 � K0 ↪→ M0 � A,

where Mi is an induced C-module generated in degree ≤ 3i−1r for i ≤ k. In particular Mk

is generated in degree ≤ 3k−1r, so it has weight ≤ 3k−1r by Remark 2.15 and injectivity

degree 0 by Proposition 2.22. The kernel

Kk ↪→ Mk −→ Mk−1,

being a submodule of Mk, has weight ≤ 3k−1r by Remark 2.14 and injectivity degree

0 by Proposition 2.19. The module Mk has stability degree ≤ (2)3k−1r by Proposition

2.22, so by Proposition 2.19 the kernel Kk has surjectivity degree ≤ (2)3k−1r. Then by

Proposition 2.25 the kernel Kk is generated in degree

≤ (2)3k−1r + 3k−1r = 3kr.

This implies that we may choose Mk+1 to be an induced C-module generated in

degree ≤ 3kr, which concludes the inductive step. The resulting resolution is shown in

Figure 1. �

Remark 2.27. The same inductive argument given for Theorem 2.26 can also be used

to show that if A is generated in degree ≤ d and has injectivity degree ≤ s, then we

can construct a resolution of A by induced C-modules with Mk generated in degree

≤ max
(
3kd, 3k−1(s + d)

)
.
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8648 J. Miller and J.C.H. Wilson

Fig. 1. Bounds on the syzygies of a VIC(k) or SI(k)-module A presented in finite degree.

Theorem 2.28. Let C be VICU(k). Let k be a finite field, and let R be a field of

characteristic zero. Let A be a C-module over R with generation degree ≤ d and relation

degree ≤ r. Then there exists a resolution of A by induced modules Mk

−→ Mk −→ · · · −→ M2 −→ M1 −→ M0 −→ A

where M0 is generated in degree ≤ d, M1 is generated in degree ≤ r, and for k ≥ 2, Mk

is generated in degree ≤ (2)3k−2 max(r,d) + 3k−2r + 1
2 (3k−1 − 1).

Proof. The proof proceeds by the same argument as Theorem 2.26, using the bounds

in Proposition 2.21 in place of Proposition 2.20. In the case that d ≤ r, these bounds are

shown in Figure 2.

In the case that d > r, the bounds are shown in Figure 3. �

2.4 C-module homology

This subsection is not needed to prove our results about congruence subgroups of

mapping class groups and automorphism groups of free groups. We include it because

it allows us to reformulate Theorem 2.26 and Theorem 2.28 in a way that does not

explicitly reference resolutions. In analogy to the theory of FI-homology developed by

Church et al. [1, 2], we make the following definition.

Definition 2.29. Define a functor HC
0 : C-Mod → C-Mod as the quotient

HC
0 (A)V = AV〈

f∗(W) | f ∈ HomC(W,V), dimkW < dimk V
〉 .

Equivalently, HC
0 (A) is the largest C-module quotient of A such that all non-

isomorphism C morphisms act by zero. By abuse of notation, we also write HC
0 to

denote the composition of HC
0 with the forgetful functor C-Mod → CB-Mod.
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8650 J. Miller and J.C.H. Wilson

Remark 2.30. We remark that, since every VICU(k) morphism f : W → V with dimkW <

dimk V factors through a morphism Z → V with dimk Z = dimk V − 1, it suffices to take

HVICU

0 (A)V = AV〈
f∗(Z) | f ∈ HomVICU(Z,V), dimk Z = dimk V − 1

〉 .
Similarly,

HSI
0 (A)V = AV〈

f∗(Z) | f ∈ HomSI(Z,V), dimk Z = dimk V − 2
〉 .

The following proposition summarizes some properties of the functor HC
0 .

Several parts are analogous to [2, Definition 2.3.7 and Remark 2.3.8].

Proposition 2.31. Let R be a commutative ring and consider the categories of C-

modules and CB-modules over R. The functor HC
0 : C-Mod → CB-Mod satisfies the

following.

i) A C-module A is generated in degree ≤ d if and only if HC
0 (A) is supported in

degree ≤ d.

ii) Suppose k is a finite commutative ring, R is a field of characteristic zero, and

A is a C-module. There are (noncanonical) splittings

HC
0 (A)n → An in each degree n.

iii) If k is a finite commutative ring and R is a field of characteristic zero, then

any C-module A can be realized as a quotient of the induced module

M(HC
0 (A)) � A.

For general commutative rings R and k, the C-module A can be realized as a

quotient of the induced module

M
({

An

∣∣∣ n ∈ support
(
HC

0 (A)
)})

� A.

iv) The functor HC
0 is a left inverse to the functor M, that is,

HC
0 (M(W)) = W for all CB-modules W.
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Quantitative Representation Stability 8651

v) The functor HC
0 is the left adjoint to the inclusion of categories

ι : CB-Mod → C-Mod,

where ι is defined such that non-isomorphism C morphisms act on ι(W) by

zero.

vi) The functor HC
0 is right exact. Hence, the same is true of HC

0 when viewed as

a functor

HC
0 : C-Mod → C-Mod.

Proof. By definition, HC
0 (A)n = 0 only if the R[Gn]-module An is generated by the image

of An−1. Hence, Part i) follows from Proposition 2.10, part (b). Part ii) follows because

R[Gn] is semi-simple by assumption, so the natural surjections An → HC
0 (A)n split. The

map {HC
0 (A)n} → {An} of CB-modules constructed in part ii) then induces the map of

C-modules M(HC
0 (A)) → A of part iii), and (as in the equivalence of Proposition 2.10

part (d) and part (e)) it is not difficult to deduce from the definition of HC
0 that this map

must surject. More generally, there is a surjective map of C-modules

M
({

An

∣∣∣ n ∈ support
(
HC

0 (A)
)})

−→ A

by an argument similar to the proof of Proposition 2.10, part (e).

Part iv) can be verified directly from the formula for M(W). Part v) follows as

in [2, Definition 2.3.7 and Remark 2.3.8]. To deduce part vi), observe that HC
0 : C-Mod

→ CB-Mod is the left adjoint to ι, and therefore right exact [13, Theorem 2.6.1]. Since

exactness is defined pointwise on C-modules, the same result implies that HC
0 is exact

as a functor C-Mod → C-Mod. �

By Proposition 2.31 vi), we may make the following definition.

Definition 2.32. Define the functors HC
k : C-Mod → C-Mod to be the left derived

functors of HC
0 .

To compute the C-homology of a C-module A, we may take an acyclic resolution

P∗ → A, apply HC
0 to each term and pass to homology. The following proposition shows

that we take the terms P i to be any induced modules.
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8652 J. Miller and J.C.H. Wilson

Proposition 2.33. Induced C-modules over R are HC∗ -acyclic.

Proof. Let W be a CB-module. It suffices to show that HC
k (M(W)) = 0 for all k > 0. Let

· · · −→ P2 −→ P1 −→ P0 −→ W

be a projective resolution of W by CB-modules. Since M is exact by Proposition 2.8, we

can promote this resolution to a resolution of M(W) by induced C-modules

· · · −→ M(P2) −→ M(P1) −→ M(P0) −→ M(W).

By Proposition 2.7, this is a projective resolution. Applying HC
0 , however, recovers our

original resolution

· · · −→ P2 −→ P1 −→ P0.

This resolution is exact by construction, and so we find HC
k (M(W)) = Hk(P

∗) = 0 for

k > 0. �

Proposition 2.34. Let R be a field of characteristic zero and k a finite field. Let A be

a C-module over R generated in degree ≤ d and related in degree ≤ r. Then HC
0 (A)V

vanishes for dimk V > d and HC
1 (A)V vanishes for dimk V > r.

• IfC is SI(k) or VIC(k), then for k ≥ 1, the groups HC
k (A)V vanish once dimk V >

3k−1r.

• If C is VICU(k), then for k ≥ 2, the groups HC
k (A)V vanish once

dimk V > (2)3k−2 max(r,d) + 3k−2r + 1

2
(3k−1 − 1).

Proof. By Proposition 2.33, we can compute HC
k (A)d by resolving A by induced C-

modules, applying the functor HC
0 and taking homology. The result follows from

applying HC
0 to the resolution described in Theorem 2.26 or Theorem 2.28. �

The following proposition relates the vanishing of HC
0 (A)n and HC

1 (A)n to the

generation and relation degree of a C-module A.
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Quantitative Representation Stability 8653

Proposition 2.35. Suppose that A is a C-module such that HC
0 (A)n = 0 for n > d and

HC
1 (A)n = 0 for n > r. Then A is generated in degree ≤ d and related in degree ≤

max(r,d).

Proof. Proposition 2.31 implies that A is generated in degree ≤ d and that we can find

a short exact sequence

0 → K → M → A → 0

with M an induced C-module that is generated in degree ≤ d. Consider the associated

long exact sequence on homology

· · · −→ HC
1 (A)n −→ HC

0 (K)n −→ HC
0 (M)n −→ HC

0 (A)n −→ 0.

Since HC
1 (A)n = 0 for n > r and HC

0 (M)n = 0 for n > d, it follows that HC
0 (K)n must

vanish for n > max(r,d). The claim follows by Proposition 2.31, i). �

Combining Proposition 2.34 and Proposition 2.35 establishes Theorem C and

Theorem D, respectively.

The following corollaries were suggested to us by Eric Ramos. We state these

without explicit ranges although the proofs we give can easily be made effective.

Corollary 2.36. Let k be a finite field and R a field of characteristic zero. Let C be one

of the categories SI(k) or VICU(k). Then the category of C-modules presented in finite

degree is an abelian category.

Proof. Let f : A → B be a map between C-modules presented in finite degree. We must

check that ker(f ) and coker(f ) are presented in finite degree. Note that without any

assumptions on R and k, it is true that the cokernel of a map of C-modules presented in

finite degree is presented in finite degree.

By Theorem C in the case of SI and Theorem D in the case of VICU, we see that

HC
2 (coker(f ))n

∼= 0 for n sufficiently large. By considering the long exact sequence of

C-homology groups associated to the short exact sequence

0 → im(f ) → B → coker(f ) → 0,

we see that HC
1 (im(f ))n

∼= HC
0 (im(f ))n

∼= 0 for n sufficiently large. Theorem C and

Theorem D imply that HC
2 (im(f ))n

∼= 0 for n sufficiently large. By considering the long
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8654 J. Miller and J.C.H. Wilson

exact sequence of C-homology groups associated to the short exact sequence

0 → ker(f ) → A → im(f ) → 0,

we see that ker(f ) is presented in finite degree. �

Corollary 2.37. Let k be a finite field and R a field of characteristic zero. Let C be one of

the categories SI(k) or VICU(k). Let B be a C-module and A a C-submodule. If A has finite

generation degree and B has finite presentation degree, then A has finite presentation

degree.

Proof. Let K denote B/A. By considering the long exact sequence in C-homology

associated to

0 → A → B → K → 0,

we see that K has finite presentation degree. Thus, by Theorem C and Theorem D,

HC
2 (K)n

∼= 0 for n sufficiently large. By again considering the long exact sequence in

C-homology associated to

0 → A → B → K → 0,

we see that A has finite presentation degree. �

3 Representation Stability Results

In this section, we apply the algebraic tools developed in the previous section to prove

our representation stability theorems.

3.1 Central stability homology

Central stability homology is an invariant of modules over categories such as SI(k)

or VIC(k). In the context of SI(k)-modules and VIC(k)-modules, it was introduced by

Putman–Sam [11], though the name central stability homology is due to Patzt [8], based

on earlier terminology in the work of Putman [10]. In this subsection, we describe basic

properties of central stability homology. After a draft of this paper was circulated,

we were informed that many of the results of this subsection were independently

established by Patzt [8]. In the interest of space, we will not reprove these properties.

Let �′ denote the augmented semi-simplicial category, the category of finite

ordered sets and order-preserving injections. We will realize �′ as a subcategory of
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Quantitative Representation Stability 8655

SI(k) and of VIC(k) by inclusions s : �′ → SI(k) and v : �′ → VIC(k) defined as follows.

Given an ordered set X, let s(X) be the free k-module on X � X with X � X a symplectic

basis. Injective maps of sets induce symplectic embeddings by extending linearly. Let

v(X) be the free k-module on X. Given an order-preserving injection ι : X → Y, let

T : v(X) → v(Y) be the linear map induced by ι and let C be span (Y − im(f )) in v(Y).

Define v(ι) to be (T,C).

Definition 3.1. Let A be an SI(k)-module. We now define a augmented semi-simplicial

SI(k)-module C•(A) whose value on an ordered set X and a symplectic k-module V is

given by the formula

CX(A)V =
⊕

T∈HomSI(k)(s(X),V)

A(im(T)⊥).

Composition induces the augmented semi-simplicial and SI(k)-module structure.

Similarly for A a VICU(k)-module, we define C•(A) by the formula

CX(A)V =
⊕

(T,C)∈HomVIC(k)(v(X),V)

A(C).

Let Ci(A)V denote CX(A)V for X = {0, . . . , i}. Let C∗(A)V denote the chain complex

formed by taking the alternating sum of the face maps and let Hi(A)V denote its

homology Hi(C∗(A)V). We call the chain complex C∗(A) the central stability chains on

A and call its homology H∗(A) the central stability homology.

Central stability homology is closely related to SI-homology and VICU-homology,

and both control the generation degrees of the modules of syzygies.

Patzt [8, Theorem 5.7] gave a general criterion for results of the form of the

following Theorem 3.2 to hold for a broad class of categories C. He verifies the criterion

for the categories SI(k) and VIC(k) [8, Remark 5.6]. Miller–Patzt–Wilson [5, Proposition

3.14] verified the criterion in the case C = VICU(k).

Theorem 3.2 (Patzt [8, Theorem 5.7], Miller–Patzt–Wilson [5, Proposition 3.14]). Let

A be an SI(k)-module with k a field. Let d0, . . . ,dk be integers with di+1 − di ≥ 3. Then

the following are equivalent.

i) There is an exact sequence of SI(k)-modules

Wk → Wk−1 → . . . → W0 → A → 0

with W i induced and generated in degrees ≤ di.
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8656 J. Miller and J.C.H. Wilson

ii) Hi(A)n = 0 for n > di+1 for all i < k.

Let A be a VICU(k)-module with k a field. Let d0, . . . ,dk be integers with di+1 −
di ≥ 2. Then the following are equivalent.

i) There is an exact sequence of VICU(k)-modules

Wk → Wk−1 → . . . → W0 → A → 0

with W i induced and generated in degrees ≤ di.

ii) Hi(A)n = 0 for n > di+1 for all i < k.

The following is a reformulation of work of Randal–Williams–Wahl [12, Lemma

5.9] and Mirzaii–van der Kallen [6, Theorem 7.4]. See also Miller–Patzt–Wilson [5,

Proposition 3.14]. It is a slight sharpening of the above theorem for the induced module

M(0).

Proposition 3.3 (Patzt [8, Remark 5.6]). Let k be a field. Then Hi(MSI(0))n
∼= 0 for

n > 2i + 3 and Hi(MVICU

(0))n
∼= 0 for n > 2i + 2.

3.2 Stability for congruence subgroups

3.2.1 Congruence subgroups of mapping class groups

Putman–Sam [11, Corollary 6.22] observe that the representations Hi(Mod(�g,1,p);R)

assemble to form an SI(Z/pZ)-module over R. We denote this SI(Z/pZ)-module by

Hi(Mod(�,p);R).

We prove our results on congruence subgroups using spectral sequences intro-

duced by Putman–Sam [11]. The following is implicit in the proof of [11, Theorem K] and

builds on [11, Theorem 5.13, Lemma 6.24, and Theorem 6.25]. See also Patzt [8, Corollary

8.5] and Miller–Patzt–Wilson [5, Proposition 3.38].

Theorem 3.4 (Putman–Sam [11]). For each g > 0, there is a homologically graded

spectral sequence Er
a,b(g) satisfying the following properties.

i) Er
a,b(g) ∼= 0 for a < −1 or b < 0.

ii) E2
a,b(g) ∼= Ha(Hb(Mod(�,p);R))g.

iii) E∞
a,b(g) ∼= 0 for a + b ≤ g−3

2 .

The E2 page is illustrated in Figure 4.
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Quantitative Representation Stability 8657

Fig. 4. E2
a,b(g).

We now prove the following strengthening of Theorem A.

Theorem 3.5. Let R be a field of characteristic zero and p be a prime. The SI(Z/pZ)-

module

H0 (Mod(�,p);R) ∼= MSI(0)

is generated in degree ≤ 0 and has no relations. The SI(Z/pZ)-module H1(Mod(�,p);R)

is generated in degree ≤ 5 and related in degree ≤ 8. For i > 1, the SI(Z/pZ)-module

Hi(Mod(�,p);R) is generated in degree ≤ (8)32i−3 and related in degree ≤ (8)32i−2.

Proof. We proceed by induction on i. Since H0(Mod(�,p);R) ∼= MSI(0), by

Proposition 3.3,

E2
a,0

∼= Ha

(
H0 (Mod(�,p);R)

)
g = 0 for g > 2a + 3.

Now consider the b = 1 row of the spectral sequence, which corresponds to the

homology of Mod(�,p) in degree i = 1. This row requires some additional care, so we

will show explicitly how to bound the vanishing of these central stability homology

groups. Once g ≥ 3, E∞−1,1(g) = 0 by Theorem 3.4. But for g > 5, the group E2
1,0(g) ∼=

H1(H0(Mod(�,p);R))g vanishes, and so in this range there are no nonzero differentials

into or out of the groups Er−1,1(g) for any r ≥ 2. Thus

E2−1,1(g) ∼= H−1

(
H1 (Mod(�,p);R)

)
g = 0 for g > 5.
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8658 J. Miller and J.C.H. Wilson

Fig. 5. Page E2
p,q(g) for g ≥ 8.

Similarly E∞
0,1(g) = 0 for g ≥ 5 and for r ≥ 2 the domain Er

2,0(g) of the only possible

nonzero differential to or from Er
0,1(g) vanishes for g > 7. Thus

H0

(
H1 (Mod(�,p);R)

)
g = 0 for g > 7.

See Figure 5.

If we replace the condition g > 7 with the weaker condition g > 8, then these two

central stability homology groups satisfy the hypotheses of Patzt’s Theorem 3.2, and we

obtain a partial resolution of induced SI(Z/pZ)-modules

M1 −→ M0 −→ H1 (Mod(�,p);R) −→ 0

with M0 generated in degree ≤ 5 and M1 generated in degree ≤ 8.

We now proceed with the inductive step. Suppose that j > 1 and that

Hi(Mod(�,p);R) is generated in degree max(5, (8)32i−3) and related in degree ≤ (8)32i−2

for all 1 ≤ i < j. Then Theorem 3.2 implies that there is a partial resolution of

Hi(Mod(�,p);R) by induced SI(Z/pZ)-modules with term M0 generated in degree

max(5, (8)32i−3) and M1 generated in degree ≤ (8)32i−2. It follows by Theorem 2.26

that we can extend this partial resolution to a resolution by induced modules with

term Mk generated in degree ≤ (8)(32i−2)(3k−1). Then Theorem 3.2 implies that

Hk(Hi(Mod(�,p);R))g vanishes for g > (8)(32i−2)(3k). Small values of these bounds

are shown in Figure 6, with some differentials superimposed.

In particular, E2
−1+r,j−r+1(g) = H−1+r(Hj−r+1(Mod(�,p);R))g vanishes for g >

(8)(32(j−r+1)−2)(3r−1) for 2 ≤ r ≤ j + 1, so there are no nonzero differentials to or from

Er
−1,j(g) once r ≥ 2 and g > (8)(32j−3). Since E∞

−1,j(g) = 0 in this range, we conclude that

E2
−1,j(g) = H−1

(
Hj (Mod(�,p);R)

)
g

= 0 for g > (8)(32j−3).
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Fig. 6. E2
a,b(g) vanishes at each point once g is strictly greater than the stated value.

Similarly E2
r,j−r+1(g) = Hr(Hj−r+1(Mod(�,p);R))g vanishes for g > (8)(32(j−r+1)−2)(3r) for

2 ≤ r ≤ j + 1, so there are no nonzero differentials to or from Er
0,j(g) once r ≥ 2 and

g > (8)(32j−2). Again E∞
−1,j(g) = 0 in this range, so we conclude that

E2
0,j(g) = H0

(
Hj (Mod(�,p);R)

)
g

= 0 for g > (8)(32j−2).

Finally, Theorem 3.2 then implies that Hj(Mod(�,p);R) is generated in degree ≤
(8)(32j−3) and related in degree ≤ (8)(32j−2), which concludes the inductive step. �

3.2.2 Congruence subgroups of automorphism groups of free products

Putman–Sam [11, Corollary 6.7] observed that the representations Hi(Aut(Fn,p);R)

assemble to form a VIC±(Z/pZ)-module over R, which we will denote by Hi(Aut(F,p);R).

Implicitly in the proof of [11, Theorem I] and building on [11, Theorem 5.13, Lemma 6.8,

and Theorem 6.9], Putman–Sam proved the following.

Theorem 3.6 (Putman–Sam [11]). For all n, there is a homologically graded spectral

sequence Er
a,b(n) satisfying the following properties.

i) Er
a,b(n) ∼= 0 for a < −1 or b < 0.

ii) E2
a,b(n) ∼= Ha(Hb(Aut(F,p);R))n.

iii) E∞
a,b(n) ∼= 0 for a + b ≤ n−3

2 .

The following implies Theorem B.
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8660 J. Miller and J.C.H. Wilson

Theorem 3.7. Let R be a field of characteristic zero and p be a prime. Then the

VIC±(Z/pZ)-module

H0(Aut(F,p);R) ∼= MVIC(0)

is generated in degree ≤ 0 and has no relations. The VIC±(Z/pZ)-module H1(Aut(F,p);R)

is generated in degree ≤ 4 and related in degree ≤ 6. For i > 1, the VIC±(Z/pZ)-

module Hi(Aut(F,p);R) is generated in degree ≤ (13
2 )32i−3 − 1

2 and related in degree

≤ (13
2 )32i−2 − 1

2 .

Proof. Since H0(Aut(F,p);R) ∼= M(0), these groups are generated in degree ≤ 0 and

have no relations. The bottom row of the E2(n) page, E2
k,0(n) ∼= Hk(H0(Aut(F,p);R)),

vanishes for n > 2k + 2 by Proposition 3.3. The groups Er−1,1(n) converge to zero

for n ≥ 3, and the only possible nonzero differential to or from these groups has

domain E2
1,0(n) ∼= H1(H0(Aut(F,p);R))n, which vanishes for n > 4. Hence E2−1,1(n) ∼=

H−1(H1(Aut(F,p);R))n = 0 for n > 4. Similarly the groups Er
0,1(n) converge to zero for

n ≥ 5 and admit no nonzero differentials for n > 6. We conclude

H−1

(
H1 (Aut(F,p);R)

)
n = 0 for n > 4, and H0

(
H1 (Aut(F,p);R)

)
n = 0 for n > 6.

By Theorem 3.2, there is a partial resolution M1 → M0 → H1(Aut(F,p);R) with M0 an

induced VIC±(Z/pZ)-module generated in degree ≤ 4, and M0 an induced VIC±(Z/pZ)-

module generated in degree ≤ 6.

We proceed by induction. Now assume that j > 1 and that for all 1 ≤ i < j we

have constructed a partial resolution of the VIC±(Z/pZ)-module Hi(Aut(F,p);R)

M1 → M0 → Hi(Aut(F,p);R)

by induced modules with M0 generated in degree ≤ ((13
2 )32i−3 − 1

2 ) and M1 generated

in degree ≤ ((13
2 )32i−2 − 1

2 ). By Theorem 2.28, we can extend this to a resolution M∗ →
Hi(Aut(F,p);R) by induced VIC±(Z/pZ)-modules with Mk generated in degree at most

(
3k−1

((
13

2

)
32i−2 − 1

2

)
+ 1

2
(3k−1 − 1)

)
=
((

13

2

)
(3k−1)(32i−2) − 1

2

)
for k ≥ 1.

Theorem 3.2 then implies that for k ≥ 1,

E2
k,i(n) ∼= Hk

(
Hi (Aut(F,p);R)

)
n = 0 for n >

((
13

2

)
(3k)(32i−2) − 1

2

)
.
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Quantitative Representation Stability 8661

In particular, for each 2 ≤ r ≤ j + 1,

E2
−1+r,j−r+1(n)∼=H−1+r

(
Hj−r+1(Aut(F,p);R)

)
n

= 0 for n >

((
13

2

)(
32(j−r+1)−2

)(
3−1+r

)
− 1

2

)
.

Hence, for r ≥ 2, there are no nonzero differentials to or from Er
−1,j(n) for r ≥ 2 and

n > ((13
2 )(32j−3) − 1

2 ). Since E∞
−1,j(n) = 0 in this range, we conclude that

E2
−1,j(n) = H−1

(
Hj (Aut(F,p);R)

)
n

= 0 for n >

(
13

2

)(
32j−3

)
− 1

2
.

Similarly, for each 2 ≤ r ≤ j+1, the group E2
r,j−r+1(n) ∼= Hr(Hj−r+1(Aut(F,p);R)))n

vanishes for n > ((13
2 )(32(j−r+1)−2)(3r) − 1

2 ). This implies that there are no nonzero

differentials to or from Er
0,j(n) for r ≥ 2 and n > ((13

2 )(32j−2) − 1
2 ). Again E∞

0,j(n) = 0

in this range, so we conclude that

E2
0,j(n) = H0

(
Hj (Aut(F,p);R)

)
n

= 0forn >

((
13

2

)
(32j−2) − 1

2

)
.

By Theorem 3.2, Hj(Aut(F,p);R) is generated in degree ≤ ((13
2 )(32j−3) − 1

2 ) and related

in degree ≤ ((13
2 )(32j−2) − 1

2 ). This completes the inductive step and concludes

the proof. �

Remark 3.8. Let G = π1(P) with P an orientable prime threemanifold such that

Mod(P) � Aut(G). Examples of such groups include Z, Z/2, Z/4, Z/6, and π1(�g);

see the introduction of Hatcher–Wahl [4]. Many of these groups admit surjections

φ : G → Z/pZ for some prime p. Given such a surjection, let Aut(G∗n, φ) denote the kernel

of Aut(G∗n) → GLn(Z/pZ). Here G∗n denotes the n-fold free product of G. An analogous

stability result to Theorem 3.7 can be proven for Hi(Aut(G∗n, φ);R) using [12, Lemma 5.6]

to establish the analog of Part iii) of Theorem 3.6. As it is not known if Hi(Aut(G∗n, φ);R)

is finitely generated for G 
= Z, it is unclear if the Noetherian techniques of Putman–Sam

[11, Theorem D] apply to Hi(Aut(G∗n, φ);R) for G 
= Z.

4 Twisted Stability Results

4.1 Tensor products of C-modules

Before we can prove our twisted homological stability theorems, we first must establish

some algebraic properties of tensor products of VICU(k)- and SI(k)-modules. Let C be
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8662 J. Miller and J.C.H. Wilson

one of the categories SI(k) or VICU(k). Let A and B be C-modules over a commutative

ring R. Let A ⊗R B be the C-module defined by the pointwise tensor product, with

(A ⊗R B)n
∼= An ⊗R Bn

and maps (A ⊗R B)m → (A ⊗R B)n given by the tensor product of the maps Am → An

with the maps Bm → Bn.

Our 1st goal of this section is to determine bounds on the generation and

presentation degree of the tensor product A ⊗R B in terms of the bounds on the factors

A and B. We begin by recalling some connectivity results from Miller–Patzt–Wilson [5]

and Mirzaii–van der Kallen [6].

Definition 4.1. Given a vector space V and subspaces U and W, let PBC•(V,U,W) be

the augmented semi-simplicial set with value on an ordered set X given by

PBCX(V,U,W) = { (f ,C) ∈ HomVIC(k) (v(X),V) | im(f ) ⊆ U,W ⊆ C
}

.

The augmented semi-simplicial structure is induced by composition of ordered sets.

Theorem 4.2 (Miller–Patzt–Wilson [5, Theorem 2.20]). For k a field, ||PBC•(V,U,W)||
is (

dimU − dimW − 3

2
)–connected.

In particular, ||PBC•(V,U,W)|| is nonempty if dimU ≥ 1 + dimW and is

connected if dimU ≥ 3 + dimW.

Given a symplectic vector space V, following Mirzaii–van der Kallen [6], Miller–

Patzt–Wilson define augmented semi-simplicial sets SPB•(V) [5, Definition 2.30] and

MPB•(V) [5, Definition 2.33]. We will not define these two objects here, but merely

recall the following: given a (not necessarily symplectic) subspace W ⊆ V, we obtain

an augmented semi-simplicial set SPB•(V) ∩ LkMPB(V)• (W) defined on an ordered set X by

SPBX(V) ∩ LkMPB(V)
X (W) =

{
T ∈ HomSI(k) (s(X),V) | W ⊆ im(T)⊥

}
.

Theorem 4.3 (Mirzaii–van der Kallen [6, Theorem 7.4]; see Miller–Patzt–Wilson [5,

Theorem 2.34]). Let k be a field. Let V be a symplectic vector space. Let W be a sub-

space of V, and U a maximal symplectic subspace of W. Then ||SPB•(V) ∩ LkMPB(V)• (W)||

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2020/22/8624/5136347 by Purdue U
niversity Libraries AD

M
N

 user on 09 Septem
ber 2021



Quantitative Representation Stability 8663

is (
1
2 dimV + 1

2 dimU − dimW − 4

2

)
-connected.

Using Theorem 4.2 and Theorem 4.3, we will prove the following.

Lemma 4.4. Let k be a field and R a commutative ring with U ⊆ R×. If C = VICU(k),

then M(a) ⊗R M(b) has generation degree ≤ a + b + min(a,b) and presentation degree

≤ a+ b+ min(a,b) + 2. If C = SI(k), then M(a) ⊗R M(b) has generation degree ≤ a+ b+
min(a,b) + 1 and presentation degree ≤ a + b + min(a,b) + 4.

We will see in Remark 4.5 that the bounds on generation degree in this theorem

are sharp when C = VIC(k), and consequently that the tensor products M(a) ⊗R M(b)

of representable VIC(k)-modules are not in general induced VIC(k)-modules.

Proof of Lemma 4.4 Let us first consider the case that C = VIC(k). We may assume

a,b > 0 since otherwise

M(a) ⊗R M(0) = M(a)

and the result is trivial. Let X be an ordered set of size i + 1 and let V be a vector space

of dimension n. By Theorem 3.2, it suffices to show

H−1

(
M(a) ⊗R M(b)

)
V = 0 for n > a + b + min(a,b) and that

H0

(
M(a) ⊗ M(b)

)
V = 0 for n > a + b + min(a,b) + 2.

We have

CX

(
M(a)⊗RM(b)

)
V =

⊕
(T,C)∈HomVIC(k)(v(X),V)

(
M(a) ⊗R M(b)

)
C

∼=
⊕

(T,C)∈HomVIC(k)(v(X),V)

R
[
HomVIC(k)(k

a,C)
]⊗R R

[
HomVIC(k)(k

b,C)
]

∼= R

⎡⎣ ⊔
(T,C)∈HomVIC(k)(v(X),V)

HomVIC(k)(k
a,C) × HomVIC(k)(k

b,C)

⎤⎦.
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8664 J. Miller and J.C.H. Wilson

An element in the set

⊔
(T,C)∈HomVIC(k)(v(X),V)

HomVIC(k)(k
a,C) × HomVIC(k)(k

b,C)

is a triple (
(T,C), (Ta,Ca), (Tb,Cb)

)
with

T : v(X) → V, V ∼= C⊕im(T), Ta : ka → C, C ∼= Ca⊕im(Ta), Tb : kb → C, C ∼= Cb⊕im(Tb).

When X = {0, 1, . . . , i} and v(X) =spank(e0, e1 . . . , ei), then the face map dj maps the

above summand to the summand indexed as follows. Let T\j denote the restriction of T

to spank(e0, e1 . . . , êj, . . . ei). Then the image under dj is the summand associated to the

triple

((
T\j,

(
C ⊕ span

(
T(ej)

))
,

(
Ta,
(
Ca ⊕ span

(
T(ej)

))
,

(
Tb,
(
Cb ⊕ span

(
T(ej)

)))
.

We can re-index our set to identify ((T,C), (Ta,Ca), (Tb,Cb)) with the following triple

(
(T,C),

(
Ta,
(
Ca ⊕ im(T)

))
,
(
Tb,
(
Cb ⊕ im(T)

)))
in

HomVIC(k) (v(X),V) × HomVIC(k)(k
a,V) × HomVIC(k)(k

b,V),

satisfying

im(T) ⊆ ((Ca + im(T)
) ∩ (Cb + im(T)

))
and

(
im(Ta) + im(Tb)

) ⊆ C.

The face map dj now acts only on (T,C) while fixing the pairs (Ta, (Ca ⊕ im(T))) and

(Tb, (Cb ⊕ im(T))). Conversely, we can recover
(
(T,C), (Ta,Ca), (Tb,Cb)

)
from this triple

using the equalities

Ca = C ∩ (im(T) ⊕ Ca

)
Cb = C ∩ (im(T) ⊕ Cb

)
;
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Quantitative Representation Stability 8665

see [5, Proposition 2.9 (vi)]. Thus, we obtain the following isomorphism of augmented

semi-simplicial R-modules.

CX

(
M(a) ⊗R M(b)

)
V

∼= R

⎡⎢⎣ ⊔
((Ta,Ca),(Tb,Cb))∈HomVIC(k)(ka,V)×HomVIC(k)(kb,V)

PBCX

(
V,Ca ∩ Cb, im(Ta) + im(Tb)

)⎤⎥⎦ .

Suppose without loss of generality that a ≥ b, and fix a pair ((Ta,Ca), (Tb,Cb)).

Because

V = Ca ⊕ im(Ta), Ca ∩ Cb ⊆ Ca and im(Ta) ⊆ (im(Ta) + im(Tb)
)

,

[5, Lemma 2.18] implies that

PBC•
(
V,Ca ∩ Cb, im(Ta) + im(Tb)

) ∼= PBC•
(
Ca,Ca ∩ Cb,

(
im(Ta) + im(Tb)

) ∩ Ca

)
.

Taking homology yields

Hi

(
M(a) ⊗R M(b)

)
V

∼=
⊕

((Ta,Ca),(Tb,Cb))∈HomVIC(k)(ka,V)×HomVIC(k)(kb,V)

H̃i

(∣∣∣∣PBC•
(
Ca,Ca ∩ Cb,

(
im(Ta) + im(Tb)

) ∩ Ca

) ∣∣∣∣;R) .

Observe that

dim(Ca∩Cb) ≥ n−a−b and dim
((

im(Ta) + im(Tb)
) ∩ Ca

) ≤ b = min(a,b).

By Theorem 4.2,

H̃−1

(∣∣∣∣PBC•
(
V,Ca ∩ Cb, im(Ta) + im(Tb)

) ∣∣∣∣;R) ∼= 0 for n > a + b + min(a,b)

and

H̃0

(∣∣∣∣PBC•
(
V,Ca ∩ Cb, im(Ta) + im(Tb)

) ∣∣∣∣;R) ∼= 0 for n > a + b + min(a,b) + 2.

The claim now follows for C = VIC(k).
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8666 J. Miller and J.C.H. Wilson

Now suppose that C = VICU(k), and again we may assume that a,b > 0. Recall

that

HomVIC(Rd,Rn) = HomVICU(Rd,Rn) whenever d 
= n.

Thus, the complexes C•(M(a)⊗RM(b))n associated VIC(k) and to VICU(k) have the same

p–chains for p ≤ 0 when n > a+b+min(a,b), and for p ≤ 2 when n > a+b+min(a,b)+
2. Hence, the results proved for VIC(k) in homological degree −1 and 0 also hold for

VICU(k).

Finally, consider C = SI(k), and again let a,b > 0. Let X be an ordered set of size

i + 1 and let V be a symplectic vector space of dimension 2n. Then

CX

(
M(a) ⊗R M(b)

)
V

=
⊕

T∈HomVIC(k)(s(X),V)

(
M(a) ⊗R M(b)

)
im(T)⊥

∼= R

⎡⎣ ⊔
T∈HomVIC(k)(s(X),V)

HomSI(k)

(
k2a, im(T)⊥

)
× HomVIC(k)

(
k2b, im(T)⊥

)⎤⎦.

Again we have the R-vector space on triples of symplectic maps (T,Ta,Tb) with

T : s(X) → V, Ta : k2a → im(T)⊥, Tb : k2b → im(T)⊥.

Equivalently, this is the space of triples (T,Ta,Tb) with

Ta : k2a → V, Tb : k2b → V, T : s(X) → (
im(Ta) + im(Tb)

)⊥ .

We note that (im(Ta)+im(Tb))
⊥ need not be a symplectic subspace. Thus, in the notation

of Miller–Patzt–Wilson [5], we have an isomorphism of semi-simplicial R-modules

C•
(
M(a) ⊗R M(b)

)
V

∼= R

⎡⎢⎣ ⊔
(Ta,Tb)∈HomSI(k)(k2a,V)×HomVIC(k)(k2b,V)

SPB•(V) ∩ LkMPB(V)•
(
im(Ta) + im(Tb)

)⎤⎥⎦.

Suppose that a ≥ b. Then (im(Ta) + im(Tb)) has dimension at most 2a + 2b and

contains the symplectic subspace im(Ta) of dimension 2a. By Theorem 4.3, then, the
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Quantitative Representation Stability 8667

homology groups

Hi

(
C•
(
M(a) ⊗R M(b)

)
V

)
= 0

for

i ≤
(
n + a − (2a + 2b) − 4

2

)
=
(
n − a − b − min(a,b) − 4

2

)
.

In particular,

H−1

(
M(a) ⊗R M(b)

)
n

= 0 for n > a + b + min(a,b) + 1, and

H0

(
M(a) ⊗R M(b)

)
n

= 0 for n > a + b + min(a,b) + 3.

Thus by Theorem 3.2, we can conclude that the SI(k)-module M(a)⊗RM(b) is generated

in degree ≤ a + b + min(a,b) + 1 and presented in degree ≤ a + b + min(a,b) + 4. �

The full statement of Miller–Patzt–Wilson [5, Theorem 2.20] also applies to the

case when k is a PID. A similar argument to our proof of Lemma 4.4 would give an analog

of Lemma 4.4 in this case, with a worse stable range.

Remark 4.5. Let C be the category VICU(k) or SI(k) for k a field, and let R be a

commutative ring. We remark that, in contrast to the case of FI-modules, the tensor

product M(a) ⊗R M(b) of representable C-modules over R is not generated in degree

≤ (a + b). Suppose that a ≥ b. First let C = VIC(k). We can show that the bounds on

the generation degree given in Lemma 4.4 are sharp. Let e1, . . . , en denote the standard

k–basis for the object kn of VIC(k). Consider an R-basis element

(f ,Cf ) ⊗ (g,Cg) ∈ M(a)n ⊗R M(b)n

for n = a + 2b with

im(f ) = span(e1, e2, . . . , ea)

Cf = span(e1 + ea+1, e2 + ea+2, . . . , eb + ea+b, ea+b+1, . . . , ea+2b);

im(g) = span(ea+1, ea+2, . . . , ea+b)

Cg = span(e1 + ea+1, e2 + ea+2, . . . , eb + ea+b, eb+1, . . . , ea, ea+1

+ ea+b+1, ea+2 + ea+b+2, . . . , ea+b + ea+2b).
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8668 J. Miller and J.C.H. Wilson

Since

Cg ∩ Cg = span(e1 + ea+1, e2 + ea+2, . . . , eb + ea+b) ⊆ (im(f ) + im(g)
)
,

it follows that (f ,Cf ) ⊗ (g,Cg) is not in the image of M(a)n ⊗R M(b)n for any n < a+ 2b.

We make an additional observation pointed out to us by Rohit Nagpal: when k is finite,

the dimension of M(a)n ⊗R M(b)n grows too slowly in n for M(a) ⊗R M(b) to contain

induced representations of the form M(W) with W supported in degree > (a + b). This

implies that, when a,b > 0, the VIC(k)-module M(a) ⊗RM(b) is not an induced module.

Similarly, let a ≥ b > 0, and consider the SI(k)-module M(a) ⊗R M(b). We will show

that it too has generators in degree n = a + 2b. Let v1,w1, v2,w2, . . . , vn,wn denote the

standard symplectic basis for k2n. Consider a basis element

f ⊗ g ∈ M(a)n ⊗R M(b)n

for n = a + 2b with

im(f ) = span(v1,w1, . . . , va,wa), and

im(g) = span(v1 + va+1,w1 + va+2, v2 + va+3, . . . , vb + va+2b−1,wb + va+2b).

Then

(im(f ) + im(g)) = span(v1,w1, v2,w2, . . . , va,wa, va+1, va+2, . . . , va+2b)

is not contained in any proper symplectic subspace, and so f ⊗ g is not in the image of

M(a)n ⊗R M(b)n for any n < a + 2b.

We can now use the results of Lemma 4.4 to establish bounds on the generation

and presentation degree of arbitrary tensor products.

Proposition 4.6. Let C be SI(k) or VICU(k). Let A and B be C-modules over a

commutative ring R with generation degrees ≤ dA and ≤ dB, respectively, and relation

degrees ≤ rA and ≤ rB, respectively. If C = VICU(k), then A ⊗R B has generation degree

≤
(
dA + dB + min(dA,dB)

)
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Quantitative Representation Stability 8669

and relation degree

≤ max
(
dA + rB + min(dA, rB), rA + dB + min(rA,dB), dA + dB + min(dA,dB) + 2

)
.

If C = VICU(k), then A ⊗R B has generation degree

≤
(
dA + dB + min(dA,dB) + 1

)
and relation degree

≤ max
(
dA+rB +min(dA, rB)+1, rA+dB +min(rA,dB)+1, dA+dB +min(dA,dB)+4

)
.

Proof. Let PA• and PB• be a resolutions of A and B, respectively, by induced C-modules

with PA
0 , PB

0 , PA
1 , and PB

0 generated in degree ≤ dA,dB, rA, rB, respectively. Take the

total complex associated to the double complex PA• ⊗R PB• . The total complex is exact

because the rows and columns of the double complex are. Thus, we have a resolution

. . . →
((

PA
0 ⊗R PB

1

)
⊕
(
PA

1 ⊗R PB
0

))
→
(
PA

0 ⊗R PB
0

)
→ A ⊗R B.

Define the degree of a C-module C to be the largest number n such that Cn 
= 0 and

denote this by deg C. By considering the hyperhomology spectral sequence associated to

this resolution and the functor HC
0 , we see that

degHC
0 (A ⊗R B) ≤ degHC

0

(
PA

0 ⊗R PB
0

)
and

degHC
1 (A ⊗R B) ≤ max

(
degHC

0

((
PA

0 ⊗R PB
1

)
⊕
(
PA

1 ⊗R PB
0

))
, degHC

1

(
PA

0 ⊗R PB
0

) )
.

Lemma 4.4 then implies that for C = VICU(k),

degHC
0

(
PA

0 ⊗R PB
0

)
≤ dA + dB + min(dA,dB),

degHC
0

((
PA

0 ⊗R PB
1

)
⊕
(
PA

1 ⊗R PB
0

))
≤ max

(
dA + rB + min(dA, rB), rA

+ dB + min(rA,dB)
)
, and

degHC
1

(
PA

0 ⊗R PB
0

)
≤ dA + dB + min(dA,dB) + 2.
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8670 J. Miller and J.C.H. Wilson

For C = SI(k),

degHC
0

(
PA

0 ⊗R PB
0

)
≤ dA + dB + min(dA,dB) + 1,

degHC
0

( (
PA

0 ⊗R PB
1

)
⊕
(
PA

1 ⊗R PB
0

) )
+ 1 ≤ max

(
dA + rB + min(dA, rB), rA

+ dB + min(rA,dB) + 1
)
, and

degHC
1

(
PA

0 ⊗R PB
0

)
≤ dA + dB + min(dA,dB) + 4.

The claim now follows from Proposition 2.35, which relates vanishing of HC
0 and HC

1 to

generation and relation degree. �

4.2 Homological stability with twisted coefficients

In this subsection, we prove Theorem E and Theorem F.

An inclusion of a surface �g,1 into �g+1,1 induces a map Mod(�g,1) →
Mod(�g+1,1). If A is an SI(Z/pZ)-module, then this inclusion map gives a map:

Hi

(
Mod(�g,1);Ag

)
→ Hi

(
Mod(�g+1,1);Ag+1

)
.

See Putman–Sam [11, Section 4] for more details on this and the analogous construction

in the case of Aut(Fn) and VIC±(Z/pZ)-modules.

Proof of Theorem E. Let Gg denote Sp2g(Z/pZ), let R be a field of characteristic zero,

and let A be an SI(Z/pZ)-module over R with generation degree d and relation degree

r. Given a group Q, let C∗(Q;R) denote a chain complex computing group homology of

Q with coefficients in R. All R[Gg]-modules are flat, so the operation of tensoring over

R[Gg] commutes with taking homology. We have

Hi

(
Mod(�g,1);Ag

) ∼=Hi

(
C∗
(
Mod(�g,1,p);R

)
⊗R[Gg] Ag

)
∼=Hi

(
Mod(�g,1,p);R

)
⊗R[Gg] Ag

∼=
(
Hi

(
Mod(�g,1,p);R

)
⊗R Ag

)
Gg

.

Let Di denote the generation degree of Hi(Mod(�,p);R) and Ri denote the

relation degree. By Proposition 4.6, Hi(Mod(�,p);R) ⊗R Ag has generation degree ≤
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Di + d + min(Di,d) and relation degree

≤ max(Di + r + min(Di, r) + 1,Ri + d + min(Ri,d) + 1,Di + d + min(Di,d) + 4).

By Proposition 2.24,

(
Hi

(
Mod(�g,1,p);R

)
⊗R Ag

)
Gg

∼=
(
Hi

(
Mod(�g+1,1,p);R

)
⊗R Ag

)
Gg+1

for g ≥ max(Di + r + min(Di, r) + 1,Ri + d + min(Ri,d) + 1,Di + d + min(Di,d) + 4). The

claim now follows from the bounds on Di and Ri from Theorem 3.5. �

Proof of Theorem F. The proof is the same as the proof of Theorem E except we use

the bounds from Theorem 3.7. �
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