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We introduce a technique for proving quantitative representation stability theorems for
sequences of representations of certain finite linear groups over a field of characteristic
zero. In particular, we prove a vanishing result for higher syzygies of VIC and SI-
modules, which can be thought of as a weaker version of a regularity theorem of Church—
Ellenberg [1, Theorem A] in the context of FI-modules. We apply these techniques to the
rational homology of congruence subgroups of mapping class groups and congruence
subgroups of automorphism groups of free groups. This partially resolves a question
raised by Church and Putman-Sam [11, Remark 1.8]. We also prove new homological
stability results for mapping class groups and automorphism groups of free groups

with twisted coefficients.

1 Introduction

Putman-Sam [11] introduced techniques for proving representation stability results
in the sense of Church-Ellenberg-Farb [2] for sequences of representations of several
families of finite linear groups. They applied their tools to prove stability results for the
homology groups of congruence subgroups of mapping class groups and automorphism
groups of free groups. In this paper, we introduce new techniques that allow us to
establish explicit stable ranges. Moreover, our methods do not require that we work
with homology groups that are finitely generated. These stronger results come at the

cost of working with field coefficients of characteristic zero.
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Quantitative Representation Stability 8625
1.1 Stability for congruence subgroups

The study of representation stability concerns the following framework: fix a sequence

of groups with inclusions
Gy —> Gy = Gy = Gz = ---

such as symmetric groups S,, general linear groups GL,(k), or symplectic groups
Sp,, (k). Fix a commutative ring R. Let {4,} be a sequence of R[G,]-modules with the
data of G,-equivariant maps A, — A, ;. The sequence {A,} is said to have generation
degree < d if, for all n > d, the RI[G,,,,]-module generated by the image of A, is all
of A, ;. Informally, we say that the sequence {A,} stabilizes if its generation degree is
finite. In this paper, we also discuss a related notion called presentation degree.

The main examples of spaces that we consider are classifying spaces of congru-
ence subgroups of mapping class groups and congruence subgroups of automorphism

groups of free groups. Let Mod(XZ ;) denote the mapping class group of X, ., the compact

g
orientable surface of genus g with r boundary components. The mapping class group
acts on H, (%, ,). Forr < 1, this action preserves the symplectic intersection form and so

we get a map
Mod(,,) — Spy,(Z)

to the group Spag(Z) of symplectomorphisms of Z29. Reducing modulo p gives a map
MOd(Eg,r) - Sp2g(Z/pZ)

and we denote the kernel by Mod(X,,,p). This group is often called the level p
congruence subgroup of Mod(Eglr). For r = 0, the classifying space of this group has
the homotopy type of the moduli stack of smooth genus g complex curves with full
level-p structure. For r < 1, the homology groups Hi(Mod(Egyr,p);R) have the structure
of a R[Sp,,(Z/pZ)]-module. For r = 1, the inclusions of surfaces £, < X, induce

Spyy(Z/pZ)-equivariant maps
H;(Mod(Z,,,p); R) — H;(Mod(Z,,, ,,p); R),

which allow us to make sense of stability. Our 1st result is the following.
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8626 J. Miller and J.C.H. Wilson

Theorem A. Let p € Z be a prime and R be a field of characteristic zero. The sequence
{H;(Mod(Z,1,p)i R)}
0 fori=0

has generation degree < {5 fori=1

(8)3%-3 fori> 1.

See Theorem 3.5 for a version of this theorem that addresses both generation
and relation degree. Putman-Sam [11, Theorem K] proved that the degree of generation
is finite when R is any Noetherian ring, and Theorem A quantifies their result when R is
a field of characteristic zero.

A similar story is also true for automorphism groups of free groups. Let F,
denote the free group on n letters. The induced action of Aut(F,,) on the abelianization

Z" of F,, gives a surjective map
Aut(F,) — GL, (Z).
Reduction mod p gives a surjective map
Aut(F,) — GLi(Z/pZ)

to the subgroup GL:(Z/pZ) C GL,,(Z/pZ) of matrices with determinant +1. We refer to
the kernel of this map as the level-p congruence subgroup of Aut(F,) and denote it by

Aut(F,, p). The natural inclusion F,, < F, ,, gives a GL# (Z/pZ)-equivariant map
H;(Aut(F,, p); R) — H;(Aut(F, ,,p); R).
We prove the following theorem.

Theorem B. Let p be a prime and R be a field of characteristic zero. The sequence
0 fori=0
{H;(Aut(F,,, p); R)} has generation degree < {4 fori=1

(%) 32i-3 _ 3 fori>1.

See Theorem 3.7 for a version of this theorem that also addresses relation
degree. As before, Putman-Sam [11, Theorem I] proved that the degree of generation
is finite when R is any Noetherian ring. In Remark 3.8, we discuss a generalization

of Theorem B that applies to congruence subgroups of automorphism groups of free
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Quantitative Representation Stability 8627

products of certain fundamental groups of three manifolds (Z, Z/27Z, 7Z./47, Z./6Z, nl(Eg),
etc.). The techniques of Putman-Sam do not apply in this more general context as it is

not currently known if the underlying vector spaces are finite-dimensional.

1.2 Bounding higher syzygies

To state our main technical tool and to state our homological stability with twisted
coefficients theorems, we need the following categories first introduced by Putman-Sam.

We write Sl(k) to denote the category whose objects are finite-rank free symplec-
tic k-modules and whose morphisms are symplectic embeddings.

Given a category C and a commutative ring R, the term C-module over R will
mean a functor from C to the category of R-modules. We denote the category of C-
modules over R by C-Modg. Given a C-module A and an object V, let A;, denote the
functor A evaluated on V. In the case C = Sl(k), we write A, to denote A, 2., where we
equip k?"* with a standard sympletic form; see Section 2.1.

Since the automorphism group of k?* in SI(k) is Sp,, (k), the R-module A,, is

naturally a R[Sp,,(k)l-module. Symplectic inclusions k2" s K22

give RI[Sp,, K)]-
equivariant maps A,, — A, ;. Thus, generation degree is well defined for Sl(k)-modules.
We will use these constructions to study the homology groups H;(Mod(X%, ;, p); R), which
assemble to form an SI(Z/pZ)-module over R.

For A an Sl(k)-module, let
Hgl : Sl(k)-Modg — Sl(k)-Modg

be given by the formula

HgI(A)V = coker @ Aw = Ay

wCev

and let His' denote the ith left derived functor of Hg'. Details are given in Section 2.4.
Vanishing of Hg'(M) controls the generation degree of M and vanishing

of both Hg' and HlSI control the presentation degree of M (see Definition 2.9 and

Proposition 2.35). Our main technical tool concerning Sl(k)-modules is the following

theorem.

Theorem C. Let k be a finite field and R a be field of characteristic zero. Let A be an
Sl(k)-module over R with Hg'(A)n = 0forn > d and HIS'(A)n = 0 for n > r. Then for

i > 2 the group His'(.A)n vanishes for n > 3" max(r, d).
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8628 J. Miller and J.C.H. Wilson

The above theorem is analogous to the regularity theorem of Church-Ellenberg
[1, Theorem A] for Fl-modules, although our techniques are different. This theorem
shows that we can bound the generation degrees of modules of higher syzygies in terms
of the degrees of generators and relations. It serves the same purpose in this paper that
the Noetherian theorems serve in Putman-Sam [11].

For 4l a subgroup of the group of units of k, let GLY (k) denote the subgroup of
matrices with determinant in 4. Putman-Sam [11] introduced a category VIC* (k) whose
automorphism groups are GL%(k), defined in Definition 2.2. The groups H;(Aut(F,, p))
assemble to form a VICT(Z/pZ)-module. We prove the following result concerning

syzygies of VIC*(k)-modules.

Theorem D. Let k be a finite field and R a be field of characteristic zero. Let A be a
VIC*(k)-module over R with H(\)/ICu (A),, =0forn > d and HY'Cu (A),, =0forn > r. Then
for i > 2 the group HLV'Cu (A),, vanishes for n > 3! (max(r, d) + 3) -3

These theorems imply that when k is a finite field and R is a field of characteristic
zero, the categories of Sl(k)- and VIC*(k)-modules with finite presentation degree are

abelian categories; see Corollary 2.36.

1.3 Homological stability with twisted coefficients

Our techniques can also be applied to prove homological stability theorems with twisted

coefficients.

Theorem E. Let p € Z be prime. Let R be a field of characteristic zero and let A be an
SI(Z/pZ)-module over R with generation degree < d and relation degree < r. Then an

inclusion ¥, ; < Xg,; ; induces an isomorphism

g+1,

H;(Mod(%,,); Ag) = H;(Mod(Zg, 1) Agy1)

whenever
max(d, ) fori=0
g > ymax(9 + d + min(8,d), 6 + r + min(5,r), 9 + d + min(5, d)) fori=1

max ((8)3%2+1 +d + min ((8)3%72,d), (8)3% %+ 1+ r +min ((8)3%2,r)) fori > 1.
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Quantitative Representation Stability 8629

In particular, the conclusion of Theorem E holds for

d+r fori=0
g>117+d+r fori=1
1+ (8)3%242d+2r fori>1.

Similarly, we prove the following stability theorem for automorphism groups of

free groups.

Theorem F. Let p € Z be prime. Let R be a field of characteristic zero and let .4 be a
VICE(Z/pZ)-module over R with generation degree < d and relation degree < r. Then the

inclusion F,, < F,,; induces an isomorphism
Hi (Aut(Fn); -An) - Hi (AUt(FnJrl); -An+1)

whenever n is at least

max(d,r) fori=0
max (6 + d + min(6, d), 4 + r + min(4,r)) fori=1
)
max ( (%) 32i-2 _ 3 +d+ min ((%) 32i-2 _ 3.d), (%) 32i-3 _ 4T
+min(%)32i_3—%,r)) fori > 1.

In particular, the conclusion of Theorem F holds for

d+r fori=0
n=l124d+r fori=1
(173) 32i72_%+2d+2r fori > 1.

These twisted stability theorems are qualitatively different than stability theo-
rems with polynomial coefficients, for example, the coefficients considered in [12]. See
the discussion before Theorem L in [11] or Example 1.4 of [5] for an exposition of this
difference. In fact, the work of Gan-Watterlond [3] implies that there are no nonconstant

polynomial coefficient systems in our context.
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1.4 Outline

In Section 2, we construct bounded resolutions of Sl(k)- and VICu(k)—modules. We use
these resolutions in Section 3 where we prove representation stability for congruence
subgroups of mapping class groups and automorphism groups of free groups. We use
these representation stability results in Section 4 to prove twisted homological stability

theorems for mapping class groups and automorphism groups of free groups.

2 Algebraic Results

In this section, we bound the generation degrees of the modules of higher syzygies
of Sl(k) and VICu(k)—modules over R that have finite presentation degree. Our main
theorems require that R be a field of characteristic zero and that k be a finite field.

However, many of our intermediate results apply in more generality.

2.1 C-modules

We begin by defining the categories of interest. All rings are assumed to have unit.

Definition 2.1. Let R and k be commutative rings. Let VIC(k) be the category whose
objects are finite-rank free k-modules and whose morphisms U — V are defined to be
the set

T :U — V an injective linear map
Hom\,(U, V) = f=(T,0C ) ) )
C a specified direct complement of T'(U) in V.

Composition of morphisms is defined by the rule
(T,C)o(S,D)=(ToS,C®f(D)).

Similarly Sl(k) denotes the category of finite-rank free symplectic k-modules and

injective, isometric embeddings.

We note that the image of a symplectic embedding f : V — W has a unique
symplectic complement f(V)- c W.

We will use the following generalization of VIC, defined by Putman-Sam
[11, Section 1.2].
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Definition 2.2, Fix a commutative ring k and a subgroup 4 C k*. Let
§(
GL;; (k) = {A € GL,(k) | det A € 41}.

We write VIC* (k) to denote the following category. Its objects are finite-rank free k-

modules V such that nonzero objects are assigned a {-orientation, a generator of

ranky (V)

N\ V=Ek
defined up to multiplication by 4. If V and W have the same rank, then Hom,cu g, (V, W)
is the set of linear isomorphisms that respect the designated il-orientations. If V has
strictly smaller rank than W, then a morphism V — W is a complemented injective

linear map f = (T, C), for which we assign to C the unique 4-orientation such that
TWVyeC=WwW as oriented k-modules.

Here T(V) is equipped with the orientation induced by the i-orientation on V.
In particular,
~ ot i
End, cu g, (K") = GLy (K),

but if V has strictly smaller rank than W, then
Homycu e (V, W) = Homy ) (V, W).

When 4 = {1, -1}, we write VIC* (k) for VICu(k). Note that when il = k*, the category
VIC! is isomorphic to VIC.

For convenience, we will often work with a skeleton of the category VIC(k) or
VICu(k), the full subcategory with objects k2, d > 0. Given these choices of bases for
our objects, when convenient we can represent our morphisms (T, C) : k% — k" by an
equivalence class of (n x n) matrices in GL’;l‘(k) where the 1st d columns are the matrix

representative for T, and the final (n — d) columns span C. Similarly, we may choose a
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8632 J. Miller and J.C.H. Wilson

skeleton of Sl(k) of symplectic vector spaces k?¢ with symplectic form

0
-1 0 0

0 0
-1 0

A morphism k?¢ — k2" is given by a (2n x 2d) matrix A that satisfies ATQ,A = Q.

~

Remark 2.3. Consider the action of EndVIC“(k) &" = GL%(k) on the morphisms
HomVICu(k)(kd,k"). A morphism f = (T, C) has stabilizer GL*(C) = GLﬁ_d(k) in GLY (k).
Similarly, a morphism f € Homg,,, (k??,k?") has stabilizer Sp(f(k??)*) = Sp,,_,4(k) in
2dy L
)

Spy, (k), where again f(k denotes the symplectic complement of f(k2%) C k2".

Throughout the paper we will let C generically refer to the category Sl(k) or
VIC*(k) and denote the endomorphisms EndVICu(k)(k”) = GL%(k) or EndSKk)(kZ”) ~
Sp,, (k) generically by G,,. We stress that for the category Sl(k), these indices n are

half the rank of the corresponding symplectic k-module k2.

Definition 2.4. We write CB to denote the subcategory of C with the same objects as
C, whose morphisms are all isomorphisms of C. A CB-module W is therefore a sequence
W = {W,} of G, -representations, and we define the support of a CB-module to be the
set{neZ.y| W, #0}.

Definition 2.5. Let M(d) denote the representable VICu(k)-module
k" — R [HomVICu(k) (kd,k”)]

or the representable Sl(k)-module
k%" —> R [HomS|(k) (kz‘i,kz’l)] .

In both cases such morphism has stabilizer G,,_; by Remark 2.3, and so there

are isomorphisms of G, -representations
M(d), = R[G,/G, 4] = Indg" R = Indd" .  RIGJIKR

where R denotes the trivial G,,_;-representation.
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We sometimes write MY/C(d), MV'Cu(d), or MS!(d) for M(d) when we wish to
specialize to a particular category C = VIC(k), C = VIC*(k), or C = SI(k).

Definition 2.6. We define the functor
M : CB-Mod — C-Mod
to be the left adjoint to the forgetful functor

F : C-Mod — CB-Mod

Ar— {A4,}

Concretely, given a G,-representation W (viewed as a CB-module supported in
degree d), the C-module M (W) satisfies

M) = M (d) ®R[cy] W-
As a G,,-representation,

n<d

dS” WKXR n>d.

GagxGp_q

0
M), = [

Given a general CB-module W = {W,,}, the C-module M (W) is given by the formula

M : CB-Mod — C-Mod

W} — P Mw,,)

m=>0

These formulas follow as in Church-Ellenberg-Farb [2, Definition 2.2.2 and Equation
(4)]. Following the terminology of Nagpal-Sam-Snowden [7], we call C-modules of the
form induced C-modules. Again we sometimes write MYC )y, MV'CM(W), or MS'w)
for M (W) when C = VIC(k), VIC*(k), or SI(k).

Proposition 2.7. For any projective CB-module W, the C-module M (W) is projective. In
particular, if k is a finite commutative ring and R is a field of characteristic zero, then
M(W) is projective for all CB-modules W.
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Proof. Since M is the left adjoint of the exact forgetful functor, it preserves projectives;
see Weibel [13, Proposition 2.3.10]. When the algebras R[G,,] are semi-simple then all

CB-modules are projective. |

From the formula for M (W), and because induction of group representations is

an exact operation, we deduce the following.
Proposition 2.8. The functor M : CB-Mod — C-Mod is exact.
We now introduce the concepts of generation, relation, and presentation degree.

Definition 2.9. A C-module A is generated in degree < d if A can be expressed as a

quotient of a C-module of the form

for some CB-module W supported in degrees < d. We say that A is related in degree < r
if A can be expressed as a quotient as above whose kernel is generated in degree < r.
If A is generated in degree < d and related in degree < r, we say it has presentation

degree < max(d, r).

Proposition 2.10. Let .A be a C-module. The following statements are all equivalent to

the condition that A4 is generated in degree < d.

(a) A is a quotient of an induced C-module M(W) — A with W supported in
degrees < d.

(b) Forall n > d, the G,,,,-representation A, ; is generated by the image of A,
in A, under any map induced by a C morphism.

(c) Forall n > d, the C morphisms induce surjections Indngrl Ay = Apiq-

(d) The subset {An}gzo of A is not contained in any proper C-submodule of A.

(e) The inclusion of CB-modules {.An}g:0 — {A,} induces a surjective map of

C-modules

M({Ankrso) = A

Proof. We can verify directly that if W is supported in degrees < d then M (W) satisfies
(b), and hence its C-module quotients do. Thus (a) implies (b). Parts (b) and (c) are

equivalent by definition of induction. It is straightforward to conclude (d) from (b). Part
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(d) implies that any map of C-modules to A that is surjective in the 1st d degrees must

surject in all degrees, and so implies (e). Part (a) is immediate from part (e). |

Remark 2.11. We note that the induced C-module M (W) is generated in degree < d if
and only if W is supported in degree < d.

Proposition 2.12. Let k be a finite field and let R be a field of characteristic zero.
Any induced C-module M (W) can be realized as both a C-module quotient and a

C-submodule of C-modules of the form

@ M (m)éBCm

m=0

for some (possibly infinite) multiplicities c,,. If M(W) is generated in degree < d, then

we can realize it as a quotient or a submodule of C-modules of the form
d
@ M(m)éBCm.
m=0

More generally, if A is any C-module generated in degree < d, then we can realize A as

a quotient of a C-module of the form

d
B Mm)®em.

m=0

Notably, the following constructions are valid even if we allow the RIG,]-

representations W, to be infinite-dimensional.

Proof of Proposition 2.12. Observe that we can construct a CB-module {R[G,]%°"} so

as to obtain a map of CB-modules
RIG,]% — W,

that surjects in each degree n. If W is supported in degree < d we may take c, = 0 for

n > d. Applying the functor M we obtain a map of C-modules,

M({RIG,1%"}) = @ M (m)®m — M),
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and by Proposition 2.8 this map surjects.
Moreover, since the algebras RIG, ] are semi-simple by assumption, the maps
RIG, % — W, split to give an injective map of CB-modules W — {RI[G,1%°"}. Again the

induced map

MW) — @M (m)®en

is injective by Proposition 2.8.

Finally, if A is any C-module generated in degree < d, then by definition of
generation degree we can realize A as a quotient M(W) — A with W supported in
degree < d. Then we may compose this map with the surjection constructed above to
obtain the desired surjective map

d
P Mm®m — Mw) — A.
m=0 [

2.2 Weight and stability degree

In this subsection, we will introduce concepts of weight and stability degree for
C-modules, closely analogous to the concepts of the same name used by Church et al.
[2] in the study of Fl-modules. These C-module invariants will be our main tool for

bounding the generation degrees of the terms in resolutions of C-modules.

Definition 2.13. A C-module A has weight < d if for each n, the G, -representation
A, is a subquotient of a representation of the form ,,_4 M(@m)E™ for some (possibly

infinite) coefficients c,,,.

Remark 2.14. It follows from the definition that if 4 is a C-module of weight < d, then
any subquotient of A has weight < d.

Remark 2.15. By Proposition 2.12, any C-module A generated in degree < d must be a
quotient of the form in Definition 2.13, and so A has weight < d.

Lemma 2.16. Let k be a finite commutative ring, and let R be a field of characteristic
zero. Suppose that A is a C-module over R of weight < d and that C,, is any subquotient

of the G, -representation A,,. Then C,, = 0 if and only if (C,)g,_, = 0.

An analogous statement for Fl-modules was proved by Church-Ellenberg-Farb

[2, Lemma 3.2.7(iv)]. Their proof uses combinatorial properties of the branching rules
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for induction of symmetric group representations. The following proof instead uses

Frobenius reciprocity.

Proof of Lemma 2.16. If C, = 0, then its coinvariants must vanish. So suppose that
(Cp)g,_, = 0. Note that if m < d, then (C,)¢, . is a quotient of (C,)s_ , and therefore

also vanishes. To verify that C,, vanishes, it is enough to show that
Hompg; 1(U,C,) =0 for all G, -representations U.

By the definition of weight, and because we are working with finite groups over
characteristic zero, any irreducible subrepresentation of C,, must be contained in a G-

representation U of the form
U=Indg" . RIG,]JNR withm=d

so it suffices to check that Homgg (U, C,) = 0 in this case. Using Frobenius reciprocity

(or the tensor-Hom adjunction), we find

Homyg, (1nd§:, g,  RIG,I KR, C,)
= Hompg(g, «G, ml (R[Gm] X R, Resgsznim cn)

= Hompg, (RIG,), Co)c,.,)

=0

as claimed. [ |

Definition 2.17. A C-module A has stability degree < s if for each a > 0, the induced

map

(An)Gn,a — (An+1 )Gn+1_a

is an isomorphism for all n > s + a. We further say that A has injectivity degree < s
if these maps are injective for n > s + a, and surjectivity degree < s if these maps are
surjective for n > s + a. We use the notation InjDeg(A) < s (respectively, SurjDeg(A) < s)

to indicate that .4 has injectivity degree (respectively, surjectivity degree) < s.
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8638 J. Miller and J.C.H. Wilson

Proposition 2.18. Let k be a finite commutative ring, let R be a field of characteristic
zero, and let B be a C-module over R. If B has surjectivity degree < s, then so does any

quotient of B. If B has injectivity degree < t, then so does any submodule of B.

Proof. Suppose that .4 is a submodule of 5 and that C is a quotient. Since the operation
of taking coinvariants by a finite group is exact over characteristic zero, we obtain the

following commutative diagrams. For n > a + t, the diagram

(An)Gn,a (An+1)Gn+1,a

| |

(Bn)Gn—a — (Bn+1 )Gn+l—a

implies that the map (A,)g, , — (As11)g,,, , injects.

For n > a + s, the diagram

(Bn)Gn—a - (Bn+1 )Gn+1—a

Clepe — Crni1)gp

shows that the map (C,)¢, , — (Cpi1)g,,, , i surjective. |

Proposition 2.19. Let k be a finite commutative ring, let R be a field of characteristic

zero, and let f : A — B be a map of C-modules over R. Then

InjDeg(kerf) < InjDeg(A) SurjDeg(ker f) < max (Suereg(.A), InjDeg(B))

InjDeg(coker f) < max (Suereg(A),InjDeg(B)) SurjDeg(coker f) < SurjDeg(B).

Proof. The results InjDeg(kerf) < InjDeg(A) and SurjDeg(cokerf) < SurjDeg(5)
follow from Proposition 2.18. Since taking coinvariants is exact over R, for n > a +

max(SurjDeg(A), InjDeg(B)) we obtain the following commutative diagram with exact
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columns

(kerf)g, ., kerfri1)6,.1 0

(An)Gn,a (An+1)Gn+1,a

f* f*

(Bn)Gn—a — (Bn+1)Gn+1—a

A routine diagram chase demonstrates that the map (kerf,)s , —
(keran)GnH% surjects, as desired. We also obtain, for n > a + max(SurjDeg(A),

InjDeg(3)) the commutative diagram with exact columns

(An)Gn—a

(An"l‘l )Gn+17a

s I

(Bn)ana — (B”"Fl )Gn+1—a

(cokerfy)g, , —— (cokerf, g, ., ..

We can verify that the kernel of the map (cokerf,)s, , —> (cokerf, i)g, ., .,

vanishes, which concludes the proof. [ |

Patzt proved the following result on the stability degree of representable C-
modules. We remark that, although he only states the results for k = Q, his proof only

uses the assumption that k is a field.

Proposition 2.20 (Patzt [9, Proposition 3.11]). Let R be ring and k a field. Let C be the
category VIC(k) or Sl(k). Then the representable C-module M(d) over R has injectivity

degree < 0, and surjectivity degree < 2d.

We now explain how to leverage this result to prove an analogous statement for
VICH (k).

Proposition 2.21. Let R be ring, k a field, and 4 a subgroup of k*. Then the repre-
sentable VIC"(k)-module M(d) over R has injectivity degree < 2d + 1, and surjectivity
degree < 2d.
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Proof. Fix a > 0. Let I, denote the (m x m) identity matrix. By definition the GL} (k)-
representation M(d),, is a permutation representation with R-basis the set of cosets
GLy (k)/GLY (k). It follows that its coinvariants (M(d),,)

double cosets

Gr (o has R-basis the set of
n—a

GLy . (k)\ GLY(k)/ GLY (k).

Concretely, this is the set of (n x n) matrices B with determinants in {{ defined up to the

action of

I 0

a ‘

GLY (k) =
o |

on the left—acting by row operations on the bottom (n — a) rows of B—and the action of

Id‘O

GLy k) =
o |

on the right, acting by column operations on the rightmost (n — d) columns of B. The

map

(M(d)n)GLﬁ_a(k) - (M(d)nﬂ)GLgﬂw(k)

defining stability degree is induced by the map

GLp (k) — GLY | (k)

0

We will first establish the bound on surjectivity degree for M(d) by proving that the

map
GLy_,(k)\ GLY(k)/ GLy_ (k) — GLy, | _,(k)\GLy, ,(k)/GLY | (k)

surjects for n > 2d + a. When d = 0, the domain and codomain are both singleton sets

and the result is immediate, so we may assume d > 0. Let B be any matrix in GL%H(k).
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Patzt proved that MY'C(d) has surjectivity degree < 2d; specifically, he found matrices
AecGL,,, ,k),DeGL,,, 4(k), and C € GL, (k) so that

2 _
1
I I
A D 1
det(C)~!
det(D)~!
i det(D) |
- - .
1
c
= 1 0
1
det(C)! .
det(D)~
det(D) | [0---0 1]
_ .
C/
= 0
[0---0 1

where C’ is obtained by scaling the bottom row of C by det(C)~!. Thus C’ has determinant
1, and the matrix on the right-hand side of the equation is in the image of GL’;ll(k). Since

n+l—-d>14d+a=>1
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by assumption, the matrix

|

is contained in GL, ,;_4(k) and moreover has determinant 1. Since

det(D)~!

n+l—-a>2d+1>2

the matrix

1 A

det(C)~!

det(D)_

is contained in GL,,,;_,(k) and must have determinant det(B)~! € il This concludes the
proof of the bound on surjectivity degree.
We next prove the bound on injectivity degree. Let n > 2d + a + 1, and we will

show that the map on double cosets
GLy_,(k)\ GLy (k)/ GLy_;(k) — GLy,;_,(&)\GL, ;(k)/GLy,;_;(k)

is injective. Suppose that [B] and [C] are double cosets in GL%(k) that map to the same

: 1t
double coset in GL;,

may assume without loss of generality that [C] is represented by a matrix of the form

(k). Since the map on double cosets is surjective for n > 2d +a, we

C= : € GLY (k).
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Patzt proved that MV!C(d) has injectivity degree 0 by exhibiting matrices A € GL,_,&)

and D € GL,,_;4(k) so that
I I
“« |B|¢ |=c
A D

Now observe that

1 1
I
a B Id
1 A D 1
det(D) det(D)~!
1 ol [1
= C/
1 0 1
i det) | |0---0 1 det(D)~!
i 0
C/
a 0
[0---0
where
1
I ‘.
|: d D:| ' € GL,_4(k) has determinant 1,
1
det(D)~!
and
1
I
|: a Ai| € GL,_,(k) has determinant det(C’) det(B)~! e 4l
1
det(D)

Thus [C] and [B] are the same double coset in GL,%_a(k)\ GL%(k)/ GL%_ 7)), and we

conclude the bound on injectivity degree. |
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From Proposition 2.20 and Proposition 2.21 we will deduce the following results

for general C-modules.

Proposition 2.22. Let R be a field of characteristic zero and k a finite field. Any C-
module A over R generated in degree < d has surjectivity degree < 2d. If A is an induced
module over VIC(k) or Sl(k), then A has injectivity degree < 0. Induced VIC*-modules

generated in degree < d have injectivity degree < 2d + 1.

Proof. Since by Proposition 2.12 any C-module generated in degree < d can be realized
as a quotient of a direct sum of C-modules M(m) with m < d, the result follows from
Proposition 2.20, Proposition 2.21, and Proposition 2.18. If A is the C-module M (W) for
some CB-module W = {W,,}, then by Proposition 2.12 we can realize A as a submodule
of a direct sum of representable C-modules M(m), and the result again follows from

Proposition 2.20, Proposition 2.21, and Proposition 2.18. |

The following result shows that the stability degree of a general C-module is

controlled by its presentation degree.

Proposition 2.23. Let k be a finite field, and let R be a field of characteristic zero. Let C
be VIC(k) or SlI(k), and suppose that .4 is a C-module over R with generation degree < d
and relation degree < r. Then A has stability degree < max(2r, 2d). If C is VICu(k), and
A is a C-module over R with generation degree < d and relation degree < r, then A has
stability degree < max(2r,2d + 1).

Proof. By assumption, there exists a partial resolution of A by induced C-modules

M — MO — 4

with M! generated in degree < r and M° generated in degree < d. When C is VIC(k) or
Sl(k), M! and M° have injectivity degree < 0 and surjectivities degrees < 2r and < 2d,
respectively, by Proposition 2.22. When C is VIC¥(k), then by Proposition 2.22, M! has
surjectivity degree < 2r and injectivity degree < 2r+ 1, while M° has surjectivity degree

< 2d and injectivity degree < 2d + 1. The result follows from Proposition 2.19. |

We will use the following variation of Proposition 2.23 in the proofs of

Theorem E and Theorem F.
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Proposition 2.24. Let k be a finite field, and let R be a field of characteristic zero.
Suppose that A is a C-module with generation degree < d and relation degree < r. Then

the induced maps on coinvariants

(Ane, = Anide,,

surject for n > d and inject for n > r. In particular these induced maps are

isomorphisms for all n > max(d, r).

Proof. Suppose first A is the representable C-module M(d). Then (as in Proposition
2.20 and Proposition 2.21) a basis for the coinvariants (A, ), is given by the double
cosets G,\G,,/G,,_g4 these double cosets are empty for n < d and a singleton set for

n > d. Hence, the maps

(M (d)n)cm - (M(d)nH)GnH

inject for all n > 0 and surject for n > d.

Next, suppose that A is an induced C-module M (W) with W supported in degree
< d. By Proposition 2.12 we can realize .4 as both a quotient and a submodule of C-
modules of the form @fnzo M(m)®m, Then by combining our results on M (d) with the

proof of Proposition 2.18 in the special case a = 0, we find that the maps on coinvariants

(MW))g, = (MW)py)

Gnt1

also must inject for all n > 0 and surject for n > d.
Now consider a general C-module A that has a partial resolution by induced

C-modules
M — MO — A

with M! generated in degree < r and M generated in degree < d. By applying the proof
of Proposition 2.22 in the special case that a = 0, we find that the maps

(Apg, — (An+1)Gn+1

must inject for n > r and surject for n > d, as claimed. [ |
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2.3 Bounding syzygies of C-modules over characteristic zero

In this subsection, we will bound the degrees of the modules of higher syzygies of C-

modules presented in finite degree.

Proposition 2.25. Let k be a finite commutative ring, let R be a field of characteristic
zero, and let A be a C-module over R of weight < d and stability degree < s. Then A is

generated in degree < (s + d).

The following proof uses methods similar to those used by Church-Ellenberg-
Farb [2, Proposition 3.3.3] to show that bounds on weight and stability degree of an
FI-module imply a form of multiplicity stability.

Proof. By Proposition 2.10, proving that A is generated in degree at most (s + d) is

equivalent to showing that the induced map
I : IndEZ“An - A surjects for n > s+ d.

Let C,,,, denote the cokernel of this map; our objective is to show that C, ; = 0 for
n>s+d.

Recall the definition of stability degree < s: for each a > 0,
Ae, . — Anig,.,, foralln=s+a.
This map of coinvariants factors as follows:

(An)Gn,a - (Indg:+l“4n) % (An-i-l)

G .
Gn+1—a n+l-a

Since this composite map surjects for n > s + a by assumption, it follows that the map

Gn In)x
(IndGnHAn) - (AnJrl)GnH_a

Gn+1—a

surjects once n > s + a, and its cokernel vanishes for any a > 0. Taking coinvariants is
right exact, so this cokernel is (C,)gr,,, .-
Set a = d. By Lemma 2.16, since C,,, is a quotient of A, ; and A has weight < d,

the vanishing of (C,, )¢ for n > s + d ensures the vanishing of C,,; forn > s +d.

n+l-d

We conclude that A is generated in degree < (s + d). [ |
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Theorem 2.26. Let C be Sl(k) or VIC(k). Let k be a finite field, and let R be a field of
characteristic zero. Let A be a C-module over R with generation degree < d and relation

degree < r. Then there exists a resolution of .4 by induced modules Mk
—>Mk—>---—>M2—>M1—>MO—>A,
where M0 is generated in degree < d, and for k > 1, MF is generated in degree < 3k=1p,

Proof. By assumption we have a short exact sequence 0 — K° — M°® — A with
M© an induced C-module generated in degree < d and the kernel K° generated in degree
< r. So we can extend the resolution by constructing a map M! — K° where M! is an
induced C-module generated in degree < r.

We proceed by strong induction. Suppose we have an exact sequence
e Kl M K2 e ME s K e MY KD s MO 4,

where M is an induced C-module generated in degree < 3~'r for i < k. In particular M*
is generated in degree < 3% 1r, so it has weight < 3¥~!r by Remark 2.15 and injectivity

degree 0 by Proposition 2.22. The kernel
Ick s Mk _ Mk_l,

being a submodule of MF, has weight < 3k~1

r by Remark 2.14 and injectivity degree
0 by Proposition 2.19. The module M¥ has stability degree < (2)3*"!r by Proposition
2.22, so by Proposition 2.19 the kernel K* has surjectivity degree < (2)3%1r. Then by

Proposition 2.25 the kernel K* is generated in degree
< ()3 1r 4+ 3k 1p = 3kp,

This implies that we may choose MX*! to be an induced C-module generated in
degree < 3*r, which concludes the inductive step. The resulting resolution is shown in

Figure 1. |

Remark 2.27. The same inductive argument given for Theorem 2.26 can also be used
to show that if A is generated in degree < d and has injectivity degree < s, then we
can construct a resolution of A by induced C-modules with M¥ generated in degree
< max (3%d, 3 1(s + d)).
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s P gk s Ak s KB o A8 = 2 S A2 = ol S gl 0 o A0 — 4

gen.deg. < 3k 3kr k-1, 27r or or 3r 3r r r d
weight < 3k 3k—1p k=1, s 9r 9r 3r 3r T T d d
inj.deg. < 0 0 0 e 0 0 0 0 0 0 0 0
surj.deg. < (2)3%r (2)3k— 1, (2)3F 1 i 187 18r 6r 6r 2r 2r 2r 2d

Fig. 1. Bounds on the syzygies of a VIC(k) or SI(k)-module A presented in finite degree.

Theorem 2.28. Let C be VICu(k). Let k be a finite field, and let R be a field of
characteristic zero. Let .4 be a C-module over R with generation degree < d and relation

degree < r. Then there exists a resolution of A by induced modules M¥
oMM M MY g

where MO is generated in degree < d, M! is generated in degree < r, and for k > 2, Mk
is generated in degree < (2)3¥"2max(r, d) + 3¥~2r + 2 (3¥"1 — 1).

Proof. The proof proceeds by the same argument as Theorem 2.26, using the bounds
in Proposition 2.21 in place of Proposition 2.20. In the case that d < r, these bounds are
shown in Figure 2.

In the case that d > r, the bounds are shown in Figure 3. |

2.4 C-module homology

This subsection is not needed to prove our results about congruence subgroups of
mapping class groups and automorphism groups of free groups. We include it because
it allows us to reformulate Theorem 2.26 and Theorem 2.28 in a way that does not
explicitly reference resolutions. In analogy to the theory of FIl-homology developed by
Church et al. [1, 2], we make the following definition.

Definition 2.29. Define a functor Hg : C-Mod — C-Mod as the quotient

Av

C —
Ho v = T ) 7 < Bomow, V), dimy, W < dimy 7]’

Equivalently, HS(A) is the largest C-module quotient of 4 such that all non-
isomorphism C morphisms act by zero. By abuse of notation, we also write Hg to
denote the composition of Hg with the forgetful functor C-Mod — CB-Mod.
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Remark 2.30. We remark that, since every VIC* (k) morphism f : W — V with dim; W <
dim,, V factors through a morphism Z — V with dimy Z = dim, V — 1, it suffices to take

A
gVict _ 4 .
o Ay (f.(2) | f € Homy,cu(Z, V), dimy Z = dimy V — 1)
Similarly,
A

(f.(2) | f € Homg(Z, V), dimy Z = dim, V — 2}’

The following proposition summarizes some properties of the functor Hg.

Several parts are analogous to [2, Definition 2.3.7 and Remark 2.3.8].

Proposition 2.31. Let R be a commutative ring and consider the categories of C-
modules and CB-modules over R. The functor Hg : C-Mod — CB-Mod satisfies the

following.

i) A C-module A is generated in degree < d if and only if Hg(A) is supported in
degree < d.
ii) Suppose k is a finite commutative ring, R is a field of characteristic zero, and

A is a C-module. There are (noncanonical) splittings
Hg(A)n - A, in each degree n.

iii) If k is a finite commutative ring and R is a field of characteristic zero, then

any C-module A can be realized as a quotient of the induced module
MHS (A) - A.

For general commutative rings R and k, the C-module A can be realized as a

quotient of the induced module
M ([An ‘ n € support (Hg(A))]) —- A.
iv) The functor Hg is a left inverse to the functor M, that is,

Hg MW) =w for all CB-modules W.
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v) The functor Hg is the left adjoint to the inclusion of categories
1 : CB-Mod — C-Mod,

where ¢ is defined such that non-isomorphism C morphisms act on «(W) by
Zero.
vi) The functor Hg is right exact. Hence, the same is true of Hg when viewed as

a functor

HS : C-Mod — C-Mod.

Proof. By definition, HOC (A),, = 0 only if the R[G,,]-module A,, is generated by the image
of A, _,. Hence, Part i) follows from Proposition 2.10, part (b). Part ii) follows because
RIG,] is semi-simple by assumption, so the natural surjections A,, — Hg(A)n split. The
map {Hg(A)n} — {A,,} of CB-modules constructed in part ii) then induces the map of
C-modules M(Hg(A)) — A of part iii), and (as in the equivalence of Proposition 2.10
part (d) and part (e)) it is not difficult to deduce from the definition of Hg that this map

must surject. More generally, there is a surjective map of C-modules

M ({An n € support (HS(A))}) — A
by an argument similar to the proof of Proposition 2.10, part (e).

Part iv) can be verified directly from the formula for M (W). Part v) follows as
in [2, Definition 2.3.7 and Remark 2.3.8]. To deduce part vi), observe that Hg : C-Mod
— CB-Mod is the left adjoint to ¢, and therefore right exact [13, Theorem 2.6.1]. Since
exactness is defined pointwise on C-modules, the same result implies that Hg is exact
as a functor C-Mod — C-Mod. |

By Proposition 2.31 vi), we may make the following definition.

Definition 2.32. Define the functors H,S : C-Mod — C-Mod to be the left derived

functors of H(?.

To compute the C-homology of a C-module .4, we may take an acyclic resolution
P* — A, apply Hg to each term and pass to homology. The following proposition shows

that we take the terms P! to be any induced modules.
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Proposition 2.33. Induced C-modules over R are HC-acyclic.

Proof. Let W be a CB-module. It suffices to show that H,S(M(W)) =0forall k > 0. Let

—P >pl P W

be a projective resolution of W by CB-modules. Since M is exact by Proposition 2.8, we

can promote this resolution to a resolution of M (W) by induced C-modules
o — M(P*) — M(P') — M(P°) — MW).

By Proposition 2.7, this is a projective resolution. Applying HS, however, recovers our

original resolution

.—p: - pl 5 po
This resolution is exact by construction, and so we find H,?(M(W)) = H(P*) = 0 for

k> 0. [ |

Proposition 2.34. Let R be a field of characteristic zero and k a finite field. Let A be
a C-module over R generated in degree < d and related in degree < r. Then Hg(A)V

vanishes for dim; V > d and H?(A)V vanishes for dim; V > r.

e IfCis Sl(k) or VIC(k), then for k > 1, the groups H,?(A)V vanish once dimy V >
3k—1p,

e IfCis VICu(k), then for k > 2, the groups H,?(A)V vanish once

1
dimy V > (2)3° % max(r,d) +3°"2r + 2@ — 1),

Proof. By Proposition 2.33, we can compute H,S(A)d by resolving A by induced C-
modules, applying the functor Hg and taking homology. The result follows from
applying Hg to the resolution described in Theorem 2.26 or Theorem 2.28. |

The following proposition relates the vanishing of Hg (A), and HlC (A),, to the

generation and relation degree of a C-module A.
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Proposition 2.35. Suppose that A is a C-module such that Hg(A)n =0forn > d and
H?(A)n = 0 for n > r. Then A is generated in degree < d and related in degree <

max(r, d).

Proof. Proposition 2.31 implies that A is generated in degree < d and that we can find

a short exact sequence
O K- M- A—->0

with M an induced C-module that is generated in degree < d. Consider the associated

long exact sequence on homology
C C C C
- — H{(A),, — H5 (K),, — H5(M),, — H; (A),, — 0.

Since HIC(A),L = 0 forn > r and Hg(./\/l)n = 0 for n > d, it follows that Hg(IC)n must

vanish for n > max(r, d). The claim follows by Proposition 2.31, i). ]

Combining Proposition 2.34 and Proposition 2.35 establishes Theorem C and
Theorem D, respectively.
The following corollaries were suggested to us by Eric Ramos. We state these

without explicit ranges although the proofs we give can easily be made effective.

Corollary 2.36. Let k be a finite field and R a field of characteristic zero. Let C be one
of the categories Sl(k) or VIC*(k). Then the category of C-modules presented in finite

degree is an abelian category.

Proof. Letf:.A— Bbeamap between C-modules presented in finite degree. We must
check that ker(f) and coker(f) are presented in finite degree. Note that without any
assumptions on R and k, it is true that the cokernel of a map of C-modules presented in
finite degree is presented in finite degree.

By Theorem C in the case of Sl and Theorem D in the case of VIC”, we see that
Hzc(coker(f))n = 0 for n sufficiently large. By considering the long exact sequence of

C-homology groups associated to the short exact sequence
0 — im(f) — B — coker(f) — 0,

we see that ch(im(f))n = Hg(im(f))n = 0 for n sufficiently large. Theorem C and
Theorem D imply that Hg(im(f))n = 0 for n sufficiently large. By considering the long
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exact sequence of C-homology groups associated to the short exact sequence
0 — ker(f) > A — im(f) — 0,
we see that ker(f) is presented in finite degree. |

Corollary 2.37. Let k be a finite field and R a field of characteristic zero. Let C be one of
the categories Sl(k) or VICu(k). Let B be a C-module and A a C-submodule. If A has finite
generation degree and B has finite presentation degree, then .4 has finite presentation

degree.

Proof. Let K denote B/A. By considering the long exact sequence in C-homology

associated to
0O—-A—-B—->K—=0,

we see that K has finite presentation degree. Thus, by Theorem C and Theorem D,
HE(IC)H = 0 for n sufficiently large. By again considering the long exact sequence in

C-homology associated to
0O—-A—-B—->K—=0,

we see that 4 has finite presentation degree. |

3 Representation Stability Results

In this section, we apply the algebraic tools developed in the previous section to prove

our representation stability theorems.

3.1 Central stability homology

Central stability homology is an invariant of modules over categories such as Sl(k)
or VIC(k). In the context of Sl(k)-modules and VIC(k)-modules, it was introduced by
Putman-Sam [11], though the name central stability homology is due to Patzt [8], based
on earlier terminology in the work of Putman [10]. In this subsection, we describe basic
properties of central stability homology. After a draft of this paper was circulated,
we were informed that many of the results of this subsection were independently
established by Patzt [8]. In the interest of space, we will not reprove these properties.
Let A’ denote the augmented semi-simplicial category, the category of finite

ordered sets and order-preserving injections. We will realize A’ as a subcategory of
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SI(k) and of VIC(k) by inclusions s : A’ — Sl(k) and v : A’ — VIC(k) defined as follows.
Given an ordered set X, let s(X) be the free k-module on X 1 X with X U X a symplectic
basis. Injective maps of sets induce symplectic embeddings by extending linearly. Let
v(X) be the free k-module on X. Given an order-preserving injection : : X — Y, let
T : v(X) — v(Y) be the linear map induced by ¢ and let C be span (Y — im(f)) in v(Y).
Define v (1) to be (T, C).

Definition 3.1. Let .A be an Sl(k)-module. We now define a augmented semi-simplicial
Sl(k)-module C,(A) whose value on an ordered set X and a symplectic k-module V is
given by the formula
Cx(A)y = $H A@m(T)*).
TeHomg)y) (s(X),V)
Composition induces the augmented semi-simplicial and Sl(k)-module structure.
Similarly for A a VIC(k)-module, we define C,(A) by the formula

Cx(A)V = @ .A(C)

(T,C)eHomyg k) (V(X),V)

Let C;(A) denote Cx(A), for X = {0, ..., i}. Let C,(A), denote the chain complex
formed by taking the alternating sum of the face maps and let H;(A);, denote its
homology H;(C,(A),). We call the chain complex C,(A) the central stability chains on
A and call its homology H, (A) the central stability homology.

Central stability homology is closely related to SI-homology and VICu—homology,
and both control the generation degrees of the modules of syzygies.

Patzt [8, Theorem 5.7] gave a general criterion for results of the form of the
following Theorem 3.2 to hold for a broad class of categories C. He verifies the criterion
for the categories Sl(k) and VIC(k) [8, Remark 5.6]. Miller-Patzt-Wilson [5, Proposition
3.14] verified the criterion in the case C = VIC* (k).

Theorem 3.2 (Patzt [8, Theorem 5.7], Miller-Patzt-Wilson [5, Proposition 3.14]). Let
A be an Sl(k)-module with k a field. Let d,, ..., d; be integers with d;,; — d; > 3. Then

the following are equivalent.

i) There is an exact sequence of Sl(k)-modules
wk swkt o w0 5 A0

with W' induced and generated in degrees < d;.
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ii) H;(A), =0forn >d;  foralli <k.
Let A be a VICY(k)-module with k a field. Let d,, ..., d; be integers with diq —
d; > 2. Then the following are equivalent.

i) There is an exact sequence of VICu(k)—modules
wk swkt o oWl 5 A0

with W' induced and generated in degrees < a;.
ii) H;(A), =0forn >d;,, foralli <k.

The following is a reformulation of work of Randal-Williams-Wahl [12, Lemma
5.9] and Mirzaii-van der Kallen [6, Theorem 7.4]. See also Miller-Patzt-Wilson [5,
Proposition 3.14]. It is a slight sharpening of the above theorem for the induced module

M(0).

Proposition 3.3 (Patzt [8, Remark 5.6]). Let k be a field. Then Hi(MS'(O))n = 0 for
n > 2i+ 3 and Hi(MV'Cu(O))n =0forn > 2i+ 2.

3.2 Stability for congruence subgroups

3.2.1 Congruence subgroups of mapping class groups

Putman-Sam [11, Corollary 6.22] observe that the representations Hi(Mod(Egll,p);R)
assemble to form an SI(Z/pZ)-module over R. We denote this SI(Z/pZ)-module by
H;(Mod(Z, p); R).

We prove our results on congruence subgroups using spectral sequences intro-
duced by Putman-Sam [11]. The following is implicit in the proof of [11, Theorem K] and
builds on [11, Theorem 5.13, Lemma 6.24, and Theorem 6.25]. See also Patzt [8, Corollary
8.5] and Miller—Patzt-Wilson [5, Proposition 3.38].

Theorem 3.4 (Putman-Sam [11]). For each g > O, there is a homologically graded
spectral sequence E;b(g) satisfying the following properties.
i) Eglb(g) =Z0fora<-—-1lorb<0.
i) Eglb(g) = H,(H,(Mod(Z, p); R)) 4
i) E%(g) =0fora+b < L2

The E? page is illustrated in Figure 4.
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31 H_1(H3(Mod(%,p); R)y  Ho(Hz(Mod(S,p); R))g  Hi(H3(Mod(E,p); R)g  Ha(Hz(Mod(S,p); R))g
2| H_i1(H2(Mod(£,p); R)g  Ho(H2(Mod(S,p); R))g  Hi(H2(Mod(S,p); R))g  Ha(Ha2(Mod(E, p); R))g
1| H_i(Hi(Mod(Z,p);R))g  Ho(Hi(Mod(%,p); R))g  Hi(Hi(Mod(S,p);R))g  Ha(Hi(Mod(E,p); R))g

0 H_;(Ho(Mod(X,p); R))g Ho(Ho(Mod(3,p); R))g H; (Ho(Mod(3, p); R))g Hz(Ho(Mod(3,p); R))g

Fig. 4. E2,(9).

We now prove the following strengthening of Theorem A.

Theorem 3.5. Let R be a field of characteristic zero and p be a prime. The SI(Z/pZ)-

module
Hy (Mod(Z, p); R) = M5(0)

is generated in degree < 0 and has no relations. The SI(Z/pZ)-module H, (Mod(X, p); R)
is generated in degree < 5 and related in degree < 8. For i > 1, the SI(Z/pZ)-module
H;(Mod(Z, p); R) is generated in degree < (8)3%~2 and related in degree < (8)3%~2.

Proof. We proceed by induction on i. Since Hy(Mod(X,p);R) = MSY0), by

Proposition 3.3,
Eg,o = H, (H, (Mod(E,p);R))g =0 forg>2a+3.

Now consider the b = 1 row of the spectral sequence, which corresponds to the
homology of Mod(Z, p) in degree i = 1. This row requires some additional care, so we
will show explicitly how to bound the vanishing of these central stability homology
groups. Once g > 3, E%} ;(9) = 0 by Theorem 3.4. But for g > 5, the group Eio(g) =
H, (Hy(Mod(X, p)iR), vanishes, and so in this range there are no nonzero differentials

into or out of the groups E£1,1(9) for any r > 2. Thus

E2,,(9) =H_, (H; (Mod(Z,p);R), =0  forg>5.
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2 H_1(H2(Mod(X%, p); R))4 Ho(H2(Mod(X, p); R))g H, (H2(Mod(X%, p); R))g H>(H2(Mod(Z,p); R))g
1 H_i(H1(Mod(%,p); R))g Ho(H1 (Mod(X, p); R))g H, (Hy(Mod(%, p); R))g Hy(Hi(Mod(3,p); R))g
0 0 0 0 0

-1 0 1 2

Fig. 5. Page Elz,yq(g) for g > 8.

Similarly Eg7(9) = 0 for g > 5 and for r > 2 the domain EJ 4(g) of the only possible

nonzero differential to or from Ej , (9) vanishes for g > 7. Thus
H, (H, (Mod(E,p);R))g =0 forg > 7.

See Figure 5.
If we replace the condition g > 7 with the weaker condition g > 8, then these two
central stability homology groups satisfy the hypotheses of Patzt’s Theorem 3.2, and we

obtain a partial resolution of induced SI(Z/pZ)-modules
M — MO — H; Mod(X,p);R) — 0

with MO generated in degree < 5 and M! generated in degree < 8.

We now proceed with the inductive step. Suppose that j > 1 and that
H,;(Mod(X, p); R) is generated in degree max(5, (8)3%~%) and related in degree < (8)3%~2
for all 1 < i < j. Then Theorem 3.2 implies that there is a partial resolution of
H;(Mod(X,p); R) by induced SI(Z/pZ)-modules with term MO generated in degree
max(5, (8)3%73) and M! generated in degree < (8)3%~2. It follows by Theorem 2.26
that we can extend this partial resolution to a resolution by induced modules with
term MK generated in degree < (8)(3%-2)(3k~1), Then Theorem 3.2 implies that
H, (H;(Mod(%, p); R)), vanishes for g > (8)(3%-2)(3%). Small values of these bounds
are shown in Figure 6, with some differentials superimposed.

In particular, E31+r,j—r+1(g) = H71+r(1-57r+1(Mod(E,p);R))g vanishes for g >
(8)(320—mtD=2y(3r-1) for 2 < r < j + 1, so there are no nonzero differentials to or from

E", (g)oncer>2andg > (8)(3%3). Since E* ;(9) = 0 in this range, we conclude that

E?, ;@ =H_, (H;(Mod(Z,p);R)) =0 forg> @)% ).
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4 8(3%) 8(3%) 8(37) 8(3%) 8(3%) 8(3%)
3 8(3%) 8(3%) 8(37) 8(3%)
2 8(3) 8(3?) 8(3%) 8(3%) 8(3%)
1 5 8 8(3) 8(3%)
0 0 -1 -1 -1 -1 -1
-1 0 1 2 3 4

Fig. 6. Eg »(9) vanishes at each point once g is strictly greater than the stated value.

Similarly E2 i r1@ = H(H;_,.;; (Mod(Z, p); R)), vanishes for g > (8)(320U-r+1=2y(3") for
2 < r < j+1, so there are no nonzero differentials to or from E(r)j(g) once r > 2 and

g > (8)(3%972). Again E* ;(9) = 0 in this range, so we conclude that
E3(9) = Hy (H; (Mod(z,p);m)g —0 forg> (8)@3¥ 2.

Finally, Theorem 3.2 then implies that HJ-(Mod(E, p); R) is generated in degree <
(8)(3%73) and related in degree < (8)(3%~2), which concludes the inductive step. [ ]

3.2.2 Congruence subgroups of automorphism groups of free products

Putman-Sam [11, Corollary 6.7] observed that the representations H;(Aut(F,,p);R)
assemble to form a VICT (Z/pZ)-module over R, which we will denote by H;(Aut(F, p); R).
Implicitly in the proof of [11, Theorem I] and building on [11, Theorem 5.13, Lemma 6.8,

and Theorem 6.9], Putman-Sam proved the following.

Theorem 3.6 (Putman-Sam [11]). For all n, there is a homologically graded spectral

sequence Ej ,(n) satisfying the following properties.

i) Eglb(n) =0fora<—-1lorb <0.
i) EZ,(n) = H,(H,(Aut(F,p); R)),,.
ili) E%%(n)=0fora+b < ;3.

The following implies Theorem B.
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Theorem 3.7. Let R be a field of characteristic zero and p be a prime. Then the
VICi(Z/pZ)—module

Hy(Aut(F, p); R) = MV'C(0)

is generated in degree < 0 and has no relations. The VIC*(Z/pZ)-module H, (Aut(F,p); R)
is generated in degree < 4 and related in degree < 6. For i > 1, the VIC*(Z/pZ)-

1

module H;(Aut(F,p); R) is generated in degree < (%)321'_3 — 7 and related in degree

13\22i-2 _ 1
< ($)3% 2 -3

Proof. Since Hy(Aut(F,p); R) = M(0), these groups are generated in degree < 0 and
have no relations. The bottom row of the E?(n) page, E,io(n) = H,(H,(Aut(F,p); R)),
vanishes for n > 2k + 2 by Proposition 3.3. The groups E’,,(n) converge to zero
for n > 3, and the only possible nonzero differential to or from these groups has
domain Efyo(n) = H, (Hy(Aut(F, p); R)),,, which vanishes for n > 4. Hence E31,1(n) ~
H_,(H,(Aut(F, p); R)),, = 0 for n > 4. Similarly the groups ES,I(n) converge to zero for

n > 5 and admit no nonzero differentials for n > 6. We conclude
H_, (H, (Aut(F,p);R)), =0 forn >4, and H,(H, (Aut(F,p);R)), =0 forn > 6.

By Theorem 3.2, there is a partial resolution M! - M% — H, (Aut(F, p); R) with MO? an
induced VIC* (Z/pZ)-module generated in degree < 4, and M° an induced vIcE (Z/pZ)-
module generated in degree < 6.

We proceed by induction. Now assume that j > 1 and that forall 1 <i < j we
have constructed a partial resolution of the VICE(Z /pZ)-module H;(Aut(F, p); R)

M - M® — H,(Aut(F,p); R)
by induced modules with MO generated in degree < ((43)3%~3 — 1) and M! generated

in degree < ((%)32"_2 — %). By Theorem 2.28, we can extend this to a resolution M* —
H;(Aut(F, p); R) by induced VIC*(Z/pZ)-modules with M¥ generated in degree at most

1 ((13Yaziez 1Y L1 oake1 ) (18 jak-1yja2i2, 1
(3 ((2) 2)4_2(3 1))_((2)( )3T 2) fork > 1.

Theorem 3.2 then implies that for k > 1,

E} ;(n) = Hy (H; (Aut(F,p); R)), =0 forn > ((12—3) (3%)(3%-2) — %) )
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In particular, foreach2 <r <j+1,

E 13 : 1
2 ~ ' 3 NI
71+r,jfr+1(n)—H—1+r(Hj—r+1(AUt(F,p),R))n— 0 forn > ((7)( U-r+D) )(3 +r)—§).

Hence, for r > 2, there are no nonzero differentials to or from Eil j(n) for r > 2 and
n > ((4)(3%-3%) — ). Since E* ;(n) = 0 in this range, we conclude that

E?, (n)=H_, (Hj (Aut(F,p);R))n —0 forn> (?) (321'*3) _ %

Similarly, for each 2 < r < j+1, the group Ef,jfrﬂ (n) = Hr(Hj—r+1 (Aut(F,p); R))),
vanishes for n > ((4)(320~+1-2)(3") — 1). This implies that there are no nonzero
differentials to or from ESJ(n) forr > 2 and n > ((173)(32f_2) - %). Again Egj.(n) =0

in this range, so we conclude that

13 . 1
E(Z),j(”) = Hy (HJ (Aut(F,p);R))n = 0forn > ((7) (3%-2 _ 5) _

By Theorem 3.2, H;(Aut(F, p); R) is generated in degree < (23)(3%73) — 1) and related

the proof. |

in degree < ((12—3)(32j_2) — %). This completes the inductive step and concludes

Remark 3.8. Let G = m;(P) with P an orientable prime threemanifold such that
Mod(P) — Aut(G). Examples of such groups include Z, Z/2, Z/4, 7./6, and T (2g);
see the introduction of Hatcher-Wahl [4]. Many of these groups admit surjections
¢ : G — 7Z/pZ for some prime p. Given such a surjection, let Aut(G*", ¢) denote the kernel
of Aut(G**) — GL,(Z/pZ). Here G*" denotes the n-fold free product of G. An analogous
stability result to Theorem 3.7 can be proven for H;(Aut(G*", ¢); R) using [12, Lemma 5.6]
to establish the analog of Part iii) of Theorem 3.6. As it is not known if H;(Aut(G*", ¢); R)
is finitely generated for G # Z, it is unclear if the Noetherian techniques of Putman-Sam
[11, Theorem D] apply to H;(Aut(G*"*, ¢); R) for G # Z.

4 Twisted Stability Results
4.1 Tensor products of C-modules

Before we can prove our twisted homological stability theorems, we first must establish

some algebraic properties of tensor products of VICu(k)— and Sl(k)-modules. Let C be

120z Joquisidag g0 UO Jasn NINQY SOUEIAIT AUSIoAUN anpind Aq /#E9€ L §/¥298/22/0202/10Ie/ulwl/wod dno-olwspeoe)/:sdjjy Wwoj papeojumoq



8662 J. Miller and J.C.H. Wilson

one of the categories Sl(k) or VIC* (k). Let A and B be C-modules over a commutative

ring R. Let A ®g B be the C-module defined by the pointwise tensor product, with
(A®gB), = A, ®g B,

and maps (A ®y B),, = (A ®g B),, given by the tensor product of the maps A4,, — A,
with the maps B,, — B,,.

Our 1st goal of this section is to determine bounds on the generation and
presentation degree of the tensor product A ®g B in terms of the bounds on the factors
A and B. We begin by recalling some connectivity results from Miller-Patzt-Wilson [5]

and Mirzaii—van der Kallen [6].

Definition 4.1. Given a vector space V and subspaces U and W, let PBC,(V,U, W) be

the augmented semi-simplicial set with value on an ordered set X given by
PBCx(V,U, W) ={ (f,C) € Homy,c,, (v(X), V) | im(f) CU, W C C}.

The augmented semi-simplicial structure is induced by composition of ordered sets.

Theorem 4.2 (Miller-Patzt-Wilson [5, Theorem 2.20]). For k a field, ||[PBC,(V, U, W)||

dimU — dim W — 3
is ( 2 )—connected.

In particular, [|[PBC,(V,U,W)|| is nonempty if dimU > 1 + dimW and is
connected if dim U > 3 + dim W.

Given a symplectic vector space V, following Mirzaii-van der Kallen [6], Miller—
Patzt-Wilson define augmented semi-simplicial sets SPB,(V) [5, Definition 2.30] and
MPB, (V) [5, Definition 2.33]. We will not define these two objects here, but merely
recall the following: given a (not necessarily symplectic) subspace W C V, we obtain

an augmented semi-simplicial set SPB, (V) N ka’IPB(V)(W) defined on an ordered set X by
SPB (V) N LKMPEV) () = {T € Homggq (s(X), V) | W < im(T)L} .

Theorem 4.3 (Mirzaii-van der Kallen [6, Theorem 7.4]; see Miller-Patzt-Wilson [5,
Theorem 2.34]). Let k be a field. Let V be a symplectic vector space. Let W be a sub-
space of V, and U a maximal symplectic subspace of W. Then ||SPB,(V) N Lkl.VIPB(V)(W)H
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is

(%dimV—{—%dimU—dimW—éL
2

) -connected.

Using Theorem 4.2 and Theorem 4.3, we will prove the following.

Lemma 4.4. Let k be a field and R a commutative ring with &{ C R*. If C = VICu(k),
then M(a) ®g M(b) has generation degree < a + b + min(a, b) and presentation degree
< a+b+min(a,b) +2. If C = Sl(k), then M(a) ®z M(b) has generation degree < a+b +
min(a, b) + 1 and presentation degree < a + b + min(a, b) + 4.

We will see in Remark 4.5 that the bounds on generation degree in this theorem
are sharp when C = VIC(k), and consequently that the tensor products M(a) @z M(b)

of representable VIC(k)-modules are not in general induced VIC(k)-modules.

Proof of Lemma 4.4 Let us first consider the case that C = VIC(k). We may assume

a,b > 0 since otherwise
M(a) @z M(0) = M(a)

and the result is trivial. Let X be an ordered set of size i + 1 and let V be a vector space

of dimension n. By Theorem 3.2, it suffices to show

H_,(M(a) @ M(b)), =0 for n > a + b + min(a, b) and that

Hy(M(a) ® M(b)), =0 forn > a + b + min(a, b) + 2.

We have
Cx(M(a)®xM (b)), = b (M(a) ®g M(D)),
(T,C)eHomy g k) (V(X),V)
= @ R [HOInVlC(k) (ka, C)] ®R R [Homv|c(k) (kb, C):I
(T,C)eHomyc) (V(X),V)
=R |_| HomV|C(k) (ka, C) X Hom\”c(k) (kb, C)

(T,C)eHomy gk (V(X), V)
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An element in the set

|_| HomV|C(k) (ka ,C) x HomV|C(k) (kb, C)
(T,C)eHomy g k) (V(X),V)

is a triple

((T,C),(T,,Cy), (Ty, Cp))
with
T:v(X)—>V, V=ZCoim(T), T,:k* - C, C=C,oim(T,), Tp: kK’ > c c= Cp,®im(Ty).
When X = {0,1,...,i} and v(X) =spang(egy,é€; ...,€;), then the face map d]- maps the
above summand to the summand indexed as follows. Let T\i denote the restriction of T

to spang(eg, € ..., €;,...¢;). Then the image under d; is the summand associated to the

triple

((T\]-, (C @ span (T(ej))) , (Ta, (Ca @ span (T(ej))) , (Tb, (Cb @ span (T(ej)))).
We can re-index our set to identify ((T, C), (T, C,), (T}, Cp)) with the following triple
(T,0), (T, (€, ©1m(D) , (Ty, (€, ® im(D))))
in
HomV|C(k) (V(X), V) X HomV|C(k) (ka, V) X Homv|c(k) (kb, V),
satisfying
im(T) € ((C, +im(T)) N (C, +im(T)))  and (im(T,) +im(Ty)) C C.
The face map d]- now acts only on (T, C) while fixing the pairs (T,, (C, ® im(T))) and
(Tp, (Cp ® im(T))). Conversely, we can recover ((T, 0),(T,,C,), (Ty, Cb)) from this triple

using the equalities

C,=Cn(imT@C,) C,=Cn(im(T) ®Cy);
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see [5, Proposition 2.9 (vi)]. Thus, we obtain the following isomorphism of augmented

semi-simplicial R-modules.

Cx(M(a) ®g MD)),,

12

R | | PBCy (V,C, N Cp, im(T,) +im(T}))
((Ta.Ca) (Tp,Cp)) €Homyc ) (K%, V) x Homyc ) (kP, V)

Suppose without loss of generality that a > b, and fix a pair ((T,, C,), (T}, Cp)).

Because
V =C, ®im(T,), C,NC,CC, and im(T,) C (im(T,) +im(T,)),
[5, Lemma 2.18] implies that
PBC, (V, C, N Cy, im(T,) + im(T})) = PBC, (C,, C, N Cp, (im(T,) + im(Ty)) N C,).
Taking homology yields
H; (M(a) @ M()),, = P

((Ta.,Ca) (Ty,Cp)) €Homy g 1) (K2, V) x Homy g 1) (KP, V)

H; (||PBC, (C,.C, N Cp, (IM(T,) +im(T})) N C,)

iR).
Observe that

dim(C,NCy) > n—a-b and dim ((im(T,) + im(T,)) N C,) < b = min(a,b).

By Theorem 4.2,

H_, (||PBC, (V,C, N Cy,im(T,) + im(T}))

|iR) = 0forn > a+b+min(a,b)
and

H, (||PBC, (V,C, N Cp,im(T,) + im(T}))

|iR) = 0forn > a+b+min(a,b) + 2.

The claim now follows for C = VIC(k).
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Now suppose that C = VIC*(k), and again we may assume that a,b > 0. Recall
that

HomV|C(Rd,R”) = Hom,cu (R%,R™) whenever d # n.

Thus, the complexes C,(M(a) ® M (b)),, associated VIC(k) and to VIC* (k) have the same
p—chains for p < 0 when n > a+ b+ min(a, b), and for p < 2 when n > a+b+min(a, b) +
2. Hence, the results proved for VIC(k) in homological degree —1 and 0 also hold for
VICH(Kk).

Finally, consider C = Sl(k), and again let @, b > 0. Let X be an ordered set of size

i+ 1 and let ¥V be a symplectic vector space of dimension 2n. Then

Cy (M(a@) ® M(D)),
= @ (M(@) @ M)y 7yt

TeHomyc ) (5(X),V)

~R | | Homg; (kZ“, im(T)L) x Homyg (k2b, im(T)i)
TeHomy g ) (s(X),V)

Again we have the R-vector space on triples of symplectic maps (T, T, T}) with
T:s(X) —> V, T, : k?* — im(T)*, T, : k? — im(T)*.
Equivalently, this is the space of triples (T, T, T}) with

T, K% >V, T,:k® >V, T:sX)— (im(T,) +im(T,)".

a

We note that (im(T,) —i—im(Tb))L need not be a symplectic subspace. Thus, in the notation

of Miller-Patzt-Wilson [5], we have an isomorphism of semi-simplicial R-modules

C. (M(a) ® M(®D)),

12

R |_| SPB, (V) N LKMPEY) (im(T,) + im(T}))
(Tq,Tp) €Homg ) (k22,V) x Homyc i) (&2, V)

Suppose that @ > b. Then (im(T,) + im(T;)) has dimension at most 2a + 2b and

contains the symplectic subspace im(T,) of dimension 2a. By Theorem 4.3, then, the

120z Joquisidag g0 UO Jasn NINQY SOUEIAIT AUSIoAUN anpind Aq /#E9€ L §/¥298/22/0202/10Ie/ulwl/wod dno-olwspeoe)/:sdjjy Wwoj papeojumoq



Quantitative Representation Stability 8667
homology groups
H, (c,(M(a) ®p M(b))V) -0

for

2

. (n+a—(2a+2b)—4)
i< 5

(n—a — b — min(a, b) —4)
In particular,

H_I(M(a) ®r M(b))nzo forn > a+ b+ min(a,b) +1, and

Hy(M(@) &g M(b))n =0 forn>a+b+min(a,b)+3.

Thus by Theorem 3.2, we can conclude that the Sl(k)-module M(a) ®z M (b) is generated
in degree < a + b + min(a, b) + 1 and presented in degree < a + b + min(a, b) + 4. [ |

The full statement of Miller—Patzt-Wilson [5, Theorem 2.20] also applies to the
case when k is a PID. A similar argument to our proof of Lemma 4.4 would give an analog

of Lemma 4.4 in this case, with a worse stable range.

Remark 4.5. Let C be the category VICu(k) or Sl(k) for k a field, and let R be a
commutative ring. We remark that, in contrast to the case of Fl-modules, the tensor
product M(a) ®g M(b) of representable C-modules over R is not generated in degree
< (a + b). Suppose that a > b. First let C = VIC(k). We can show that the bounds on
the generation degree given in Lemma 4.4 are sharp. Let e, ..., e, denote the standard

k-basis for the object k™ of VIC(k). Consider an R-basis element
(fl Cf) (24 (gl Cg) € M(a’)n ®R M(b)n

for n = a + 2b with

im(f) = span(e;, ey, ..., e,)
Cr=span(e; +e, 1,83+ € 0,18+ €aipr €aypiir--1€qq2p);
im(g) = span(e,1,€,.9:---1€44p)
Cg =span(e; + e, 1,8+ € 0, €+ €41 p €pi1s---1€0,€441

t+euibii1r€atatCaipyar--1€aqp T €ayop)-
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Since
Cy N Cy=span(e; +e,,1,8; + €40, €+ €413 C (im(f) +im(g)),

it follows that (f, Cr) ®(9,Cy) is not in the image of M(a),, ®g M(b),, for any n < a + 2b.
We make an additional observation pointed out to us by Rohit Nagpal: when k is finite,
the dimension of M(a),, ®g M(b),, grows too slowly in n for M(a) ®z M(b) to contain
induced representations of the form M (W) with W supported in degree > (a + b). This
implies that, when a, b > 0, the VIC(k)-module M(a) ®g M (b) is not an induced module.
Similarly, let @ = b > 0, and consider the Sl(k)-module M(a) ®x M (b). We will show
that it too has generators in degree n = a + 2b. Let v, wy, vy, Wy, ..., V,, W, denote the

standard symplectic basis for k?". Consider a basis element
f®ge M@, ® M(b),

for n = a + 2b with

im(f) = span(vy, wy, ..., Vg, W), and
im(g) = span(vy + Va1, Wy + Vaig, Vo + Vayg o0 Vi + Vagop_1, Wp + Vayop)-
Then
(im(f) + im(g)) = span(v,, w;, vy, Wy, ..., V,, W, Vai1:Vasar--1Vaiop)

is not contained in any proper symplectic subspace, and so f ® g is not in the image of
M(a),, @z M(b),, for any n < a + 2b.

We can now use the results of Lemma 4.4 to establish bounds on the generation

and presentation degree of arbitrary tensor products.

Proposition 4.6. Let C be Sl(k) or VIC*(k). Let A and B be C-modules over a
commutative ring R with generation degrees < d 4 and < dg, respectively, and relation

degrees < r 4 and < ry, respectively. If C = VIC*(k), then A ®pg B has generation degree

< (dA +dy + min(d 4, dB))
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and relation degree

< max (dA +rg+min(dy,rg), Ty +dg+min(r 4, dg), d 4+ dg +min(d 4, dg) + 2).
If C = VIC*(k), then A ®pg B has generation degree

< (dA +dp +min(d 4, dg) + 1)

and relation degree
< max (dA—I—rB +min(d 4, rg)+1, ry+dg+min(ry, dg)+1, dA+dB+min(dA,dB)+4).
Proof. Let 79:4 and Pfg be a resolutions of A and B, respectively, by induced C-modules
with 7364, Pg, 73{4, and 73(? generated in degree < d 4, dg, 14,75, respectively. Take the
total complex associated to the double complex P:4 g P?. The total complex is exact
because the rows and columns of the double complex are. Thus, we have a resolution

.~ (P4 exPP) @ (Pt €x PF)) — (Ps ©a PE) - Aoy B.

Define the degree of a C-module C to be the largest number n such that C, # 0 and
denote this by deg C. By considering the hyperhomology spectral sequence associated to

this resolution and the functor Hg, we see that
deg HS (A®p B) < deg HS (P5' @ PF)
and
degH?(A ®g B) < max (degHg ((73(34 ®r Pfg) &) (Pf‘ ®r 7353)) , degH? (7354 ®r 7353) )
Lemma 4.4 then implies that for C = VIC*(k),

deg HS (P! ®5 P§) = d 4 + djg +mind 4, dpp),
degHg ((Pé ®r 7713) ) (77{4 ®r POB)> < max (dA +rg+min(d 4,15), T4
+dpg + min(r g, dB)), and

deg HY (Pg' ®5 P§) = d s + djg + min(d 4, dp) + 2
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For C = Sl(k),

deg HS (P§' @ P§) < dy + dp +min(dy, ) + 1,
degHg( (PS‘ ®r Pfg) ® (Pf‘ ®g Pg) ) + 1 < max (dA +rg+min(dy, ). 74
+ dB + min(rA, dB) + 1), and
deg HY (Pg' ® P§) = d 4 + djg + min(d 4, dp) + 4

The claim now follows from Proposition 2.35, which relates vanishing of Hg and HlC to

generation and relation degree. |

4.2 Homological stability with twisted coefficients

In this subsection, we prove Theorem E and Theorem F.
An inclusion of a surface ¥,, into X, induces a map Mod(%,;) —

Mod(X2y,;,). If Ais an SI(Z/pZ)-module, then this inclusion map gives a map:
H, (Mod(Egll);Ag) —~ H, (Mod(zgﬂll);AgH) :

See Putman-Sam [11, Section 4] for more details on this and the analogous construction
in the case of Aut(F,) and VIC*(Z/pZ)-modules.

Proof of Theorem E. Let Gy denote Spoy(Z/pZ), let R be a field of characteristic zero,
and let A be an SI(Z/pZ)-module over R with generation degree d and relation degree
r. Given a group Q, let C,(Q; R) denote a chain complex computing group homology of
Q with coefficients in R. All R[Gyl-modules are flat, so the operation of tensoring over

RI[G,4] commutes with taking homology. We have

H (Mod(Eg,l):Ag) =H (C* (MOd(Zgrl'p);R) @icy) o)
~H, (Mod(zg,lrp)iR) ®RiG,l Ag
=~ (Hi (Mod(Egyl,p);R) ®R 'Ag)Gg

Let D; denote the generation degree of H;(Mod(X,p);R) and R; denote the
relation degree. By Proposition 4.6, H;(Mod(X, p); R) Qg Ag has generation degree <
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D; + d 4+ min(D;, d) and relation degree
<max(D; +r+minD,;,r) + 1,R; + d + min(R;,d) + 1,D; + d + min(D;, d) + 4).
By Proposition 2.24,

(Hi (MOd(Eg'l'p);R) ®r Ag)Gg = (Hi (Mod(ng’l,p);R) ®r “49)

Gg+1

for g > max(D; + r+min(D,;,r) + 1,R; + d + min(R,;,d) + 1,D; + d + min(D;, d) + 4). The

claim now follows from the bounds on D; and R; from Theorem 3.5. |

Proof of Theorem F. The proof is the same as the proof of Theorem E except we use
the bounds from Theorem 3.7. |
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