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The May-Milgram filtration and Ek -cells
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We describe an Ek -cell structure on the free Ek+1 -algebra on a point, and more
generally describe how the May-Milgram filtration of ΩmΣmSk lifts to a filtration
of the free Ek+m -algebra on a point by iterated pushouts of free Ek -algebras.

55P48; 18D50, 55R40, 55R80

1 Introduction

Cell structures on topological spaces have many uses, and operadic cell structures play
similar roles in the study of algebras over an operad; they appear when defining model
category structures on categories of algebras over operads, and in the case of the little
k-cubes operad Ek they have found applications to homological stability [12, 8, 9].

Despite the usefulness of such Ek -cell structures, few have been described explicitly. In
this paper we give an Ek -cell decomposition of an Ek -algebra weakly equivalent to the
free Ek+1 -algebra on a point. We generalize this to a filtration of the free Ek+m -algebra
on a point by Ek -algebras, and explain how this can be thought of as a lift of the
May-Milgram filtration of the iterated based loop space ΩmΣmSk .

We shall state our results without giving definitions (which appear in Section 2), with
the exception of that of a cell attachment in the category AlgEk

(Top). This definition
uses the free Ek -algebra functor Ek = FEk , which is left adjoint to the forgetful functor
UEk : AlgEk

(Top)→ Top sending an Ek -algebra to its underlying space. Let A be an
Ek -algebra in Top , and let e : ∂Dd → UEk (A) be a map of topological spaces. To attach
a d -dimensional Ek -cell to A, we take the adjoint map Ek(∂Dd)→ A of e and take the
pushout of the following diagram in AlgEk

(Top):

Ek(∂Dd) A

Ek(Dd) A ∪Ek
e Dd.
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To make this homotopy invariant we need to require that A is cofibrant, or derive the
cell-attachment construction.

An Ek -algebra is called cellular if it is built by iterated Ek -cell attachments (such
algebras are always cofibrant). Giving an Ek -cell structure on A is giving a weak
equivalence between A and a cellular Ek -algebra. Note that the following colimit is
also a homotopy colimit:

Theorem 1.1 Ek+1(∗) is weakly equivalent as an Ek -algebra to a cellular Ek -algebra
with exactly one cell in dimensions divisible by k and no other cells. That is, it is weakly
equivalent to the colimit colimr∈N Ar of algebras Ar obtained by setting A−1 = ∅ and
taking iterated pushouts in AlgEk

(Top)

Ek(∂Drk) Ar

Ek(Drk) Ar+1.

An Ek -cell structure on A induces an ordinary cell structure on its k-fold delooping
BkA (see Remark 2.6). The one induced on BkEk+1(∗) ∼= ΩΣSk by the Ek -cell structure
of Theorem 1.1 is that coming from the James construction [11]. The filtration coming
from the James construction was generalized by May and Milgram [14, 15] to a filtration
on ΩmΣmSk , and we will construct a filtration of Ek+m(∗) by Ek -algebras which deloops
to the May-Milgram filtration on BkEk+m(∗) ' ΩmΣmSk .

To state this result precisely, we need to introduce some notation. Let I denote the
open interval (0, 1), Fr(Im) the space of ordered configurations of r points in Im ,
and Cr(Im) := Fr(Im)/Sr the space of unordered configurations of r points in Im .
Furthermore, let φm,r denote the vector bundle Fr(Im)×Sr Rr−1 → Cr(Im) with Rr−1

the representation of the symmetric group Sr given by the orthogonal complement
to the trivial representation in the permutation representation with its usual metric.
This vector bundle inherits a Riemannian metric. For E → B a vector bundle with
Riemannian metric, let D(E) denote its unit disk bundle, S(E) denote its unit sphere
bundle and kE denote its k-fold Whitney sum.

Theorem 1.2 Ek+m(∗) is weakly equivalent as an Ek -algebra to the colimit colimr∈N Ar

of algebras Ar obtained by setting A−1 = ∅ and taking iterated pushouts in AlgEk
(Top)

Ek(S(kφm,r+1)) Ar

Ek(D(kφm,r+1)) Ar+1.
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This implies that the homotopy cofiber of Ar → Ar+1 in AlgEk
(Top) is the free Ek -

algebra on the Thom space of kφm,r+1 viewed as a based space. These Thom spaces and
their corresponding Thom spectra are well-studied, e.g. being related to Brown-Gitler
spectra when k = 2 [5, 4]. When m = 1, Cr(Im) is contractible and the vector bundle
kφm,r+1 has dimension kr . Thus the sphere bundle is homotopy equivalent to ∂Drk and
hence Theorem 1.1 is a consequence of Theorem 1.2.

In Corollary 4.14 we give a configuration space model F[r](Ik × Im)(∗) for the Ek -
algebras Ar . The space F[r](Ik × Im)(∗) is given by the spaces of configuration spaces
of points in Im × Ik such that each subset {x} × Ik contains at most r points. We use
this in Theorem 5.2 to prove that the k-fold delooping of Ar is homotopy equivalent to
the r th stage of the May-Milgram filtration of ΩmΣmSk .

Remark 1.3 Our results bear a resemblance to the Dunn–Lurie additivity theorem
[6] [13, Theorem 5.1.2.2]. This result says that Ek+m ' Ek ⊗ Em for a suitable tensor
product of operads, and our result says that Ek+m(∗) can be obtained as Ek -algebra from
the cardinality filtration on Em(∗), twisted by the vector bundles kφm,r+1 . It would be
interesting to know whether it is possible to deduce Theorem 1.2 from the additivity
theorem.
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2 Recollections of homotopy theory for algebras over an op-
erad

We work in the setting of [8] and use similar notation when possible.

Assumption 2.1 S is a simplicially enriched complete and cocomplete category with
closed symmetric monoidal structure such that the tensor product ⊗ commutes with
sifted colimits.

Assumption 2.2 S comes equipped with a cofibrantly generated model structure which
is both simplicial and monoidal, and such that the monoidal unit 1 is cofibrant.

The first version of [8] required that homotopy equivalences are weak equivalences but
this is in fact always the case by Proposition 9.5.16 of [10].

When G is a symmetric monoidal category, then we may endow the category SG of
functors G→ S with the Day convolution tensor product; this will also be symmetric
monoidal. Similarly, the category S∗ of pointed objects in S with smash product
inherits these properties.

Example 2.3 The examples of S most relevant to this paper are: (i) the category sSet

of simplicial sets with the Quillen model structure and cartesian product, and (ii) the
category Top of compactly generated weakly Hausdorff spaces with the Quillen model
structure and cartesian product (see [18] for more details about the point-set topology).

Let FB∞ denote the category of (possibly empty) finite sets and bijections, then the
objects of the category (SG)FB∞ of functors FB∞ → SG are called symmetric sequences.
In addition to the Day convolution tensor product, (SG)FB∞ admits a composition
product ◦ (which is rarely symmetric); for X ,Y ∈ (SG)FB∞ the evaluation of the
composition product X ◦ Y on the set {1, 2, . . . , r} is given by

X ◦ Y(r) =
⊔
d≥0

X (d)⊗Sd

 ⊔
k1+...+kd=r

Sr ×Sk1 +...+Skd
Y(k1)⊗ . . .⊗ Y(kd)

 .

Algebraic & Geometric Topology XX (20XX)
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A (symmetric) operad is a unital monoid with respect to this composition product.
An O-algebra A is an object A ∈ S with a left O-module structure on A considered
as a symmetric sequence concentrated in cardinality 0. Equivalently we can use the
associated monad on S, for which we also use the notation O ,

O(X) :=
⊔
r≥0

O(r)⊗Sr X⊗r,

and define an O -algebra to be an algebra over this monad. The category AlgO(SG) of
O -algebras is both complete and cocomplete.

A free O -algebra is one of the form O(X) with O -algebra structure maps induced by the
monad multiplication and unit. We use the notation FO : SG → AlgO(SG) for the free
O -algebra functor, which is the left adjoint to the forgetful functor UO : AlgO(SG)→ SG

sending an algebra to its the underlying object. Note O = UOFO .

Any O-algebra admits a canonical presentation as a reflexive coequalizer of free
O -algebras:

FO(O(UO(A))) FO(UO(A)) A,

the top map coming from the O-algebra structure map O(UO(A)) → UO(A), and
the bottom map coming from the natural transformation FOO → FO induced by the
monad multiplication. Thus free O-algebras generate the category of O-algebras
under sifted colimits, and the category of right O -module functors C→ D preserving
sifted colimits is equivalent to the category of functors AlgO(C)→ D preserving sifted
colimits; one constructs the latter from the former using the canonical presentation, and
one constructs the former from the latter by evaluating on free O -algebras.

For X ∈ SG and g ∈ G, the evaluation X 7→ X(g) ∈ S has a left adjoint; given Y ∈ S

we denote its image under this left adjoint by Yg . Given a map ∂Dd → UO(A)(g)
(where ∂Dd stands for ∂Dd ⊗ 1, the copowering of ∂Dd with the monoidal unit), we
obtain by adjunction first a map ∂Dg,d → UO(A) and then a map FO(∂Dg,d)→ A. An
O -cell attachment is defined to be the following pushout in AlgO(SG)

(1)
FO(∂Dg,d) A

FO(Dg,d) A ∪O Dg,d.

Explicitly this pushout may be constructed as the following reflexive coequalizer

FO(O(UO(A)) ∪ Dg,d) FO(UO(A) ∪ Dg,d) A ∪O Dg,d.

Algebraic & Geometric Topology XX (20XX)
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The left vertical map in (1) is a cofibration, so cell attachments are homotopy-invariant
when AlgO(SG) is left proper. In general we need to derive the construction; we will
momentarily explain when this can be done using a monadic bar resolution.

Using the copowering of SG over sSet, any operad in simplicial sets gives rise to
an operad in SG , and using the strong monoidal functor Sing: Top → sSet so does
any operad in compactly-generated weakly Hausdorff topological spaces. We shall
restrict our attention to operads O in sSet which are Σ-cofibrant, i.e. for all r ≥ 0 the
Sr -action on O(r) is free. We may attempt to define a model structure on AlgO(SG)
by declaring the (trivial) fibrations and weak equivalences to be those of underlying
objects. If it exists, this is called the projective model structure.

Assumption 2.4 The projective model structure exists on AlgO(SG).

When this assumption is satisfied, the projective model structure will be a cofibrantly
generated model structure with generating (trivial) cofibrations obtained by applying
O to the generating (trivial) cofibrations of the model structure on SG . Since SG is
a simplicial and monoidal model category, it is automatic that the forgetful functor
UO : AlgO(SG)→ SG preserves (trivial) cofibrations, cf. Lemma 9.5 of [8]. When O
is a Σ-cofibrant operad in simplicial sets, the projective model structure exists in the
settings of Example 2.3, cf. Section 9.2 of [8].

When UO(A) ∈ SG is cofibrant, we may use the monadic bar resolution to find an
explicit cofibrant replacement of A and thus compute derived functors.

Definition 2.5 The monadic bar resolution is the augmented simplicial object B•(FO,O,A)
with p-simplices given by FO(Op(UO(A))) for p ≥ 0 and A for p = −1. The face
maps and augmentation are induced by the monad multiplication and the O-algebra
structure on A, and the degeneracies by the unit of the monad.

This is a special case of the two-sided monadic bar construction, which is used
throughout the paper. It takes as input a monad T , a right T -functor F and a T -algebra
A with underlying object A, and has p-simplices given by B•(F,T,A) = F(Tp(A)).
The face maps and degeneracy maps are similar to above, for details see e.g. Section 9
of [14].

Let |−| denote the (thin) geometric realization, and introduce the notation B(FO,O,A) :=
|B•(FO,O,A)|. Note that here we take geometric realization in the categories of O-
algebras, but UO commutes with geometric realization by Section 8.3.3 of [8]. The
augmentation induces a map B(FO,O,A)→ A, which is always a weak equivalence

Algebraic & Geometric Topology XX (20XX)
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using an extra degeneracy argument. It is a free simplicial resolution in the sense
of Definition 8.16 of [8] when the bar construction is Reedy cofibrant. Because O
is Σ-cofibrant, this is the case when UO(A) is cofibrant, using the Reedy cofibrancy
criterion of Lemma 9.14 of [8].

Remark 2.6 In [12], O -algebra cell attachments were defined using partial algebras.
The formula in Definition 3.1 of [12], written in our notation, is |[p] 7→ FO(Op(A)∪Dd)| .
This may be obtained by inserting B(FO,O,A) into the underived formula for cell
attachment. We explained above that this gives derived cell attachment when UO(A) is
cofibrant, but in Top and sSet this assumption is unnecessary. In sSet , every object is
cofibrant. In Top , we use that geometric realization sends levelwise weak equivalences
between proper simplicial spaces to weak equivalences, even if the simplicial spaces
are not levelwise cofibrant. This allows us to cofibrantly replace A in the category of
O-algebras (which will be cofibrant in topological spaces because O is Σ-cofibrant).
Thus results of [12] apply: in particular, Proposition 6.12 of [12] implies that an Ek -cell
structure on an Ek -algebra in topological spaces deloops to an ordinary cell structure
on the k-fold delooping. The reason for this is that delooping preserves homotopy
pushouts and Ek(∂Dd)→ Ek(Dd) deloops to ∂Dd ↪→ Dd .

3 Rank completion

We shall define a rank completion filtration in the case that we are working in a category
of functors SG where G has a notion of rank, and the operad O and O-algebra A
satisfy mild conditions. Later in this paper, O will be Ek and G will be N; the rank
function will be used to keep track of the number of points in a configuration, and
though we shall not use this, G can be used to record group actions on configurations.

Assumption 3.1 G is a symmetric monoidal groupoid equipped with strong monoidal
functor κ : G→ N, which we call a rank functor.

Let G≤r denote the full subcategory on G on those objects g such that κ(g) ≤ r , and
Gr denote the full subcategory on objects g such that κ(g) = r . Precomposition gives
restriction functors (≤ r)∗ and (r)∗ participating in adjunctions

SG≤r SG,
(≤r)∗

(≤r)∗
SGr SG.

(r)∗

(r)∗

There are further relative restriction and extension functors between SGr , SG≤r for
different r , participating in analogous adjunctions. The functors (≤ r)∗ and (r)∗ are
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themselves left adjoints; though we will not use their right adjoints, we will use that
(≤ r)∗ and (r)∗ commute with colimits.

It follows from the formula for Day convolution that SG≤r inherits a symmetric
monoidal tensor product, an alternative expression for which is given by X ⊗ Y = (≤
r)∗((≤ r)∗(X) ⊗ (≤ r)∗(Y)). This makes visible that (≤ r)∗ is strong monoidal and
simplicial. In particular, the functor (≤ r)∗ takes O-algebras in SG to O-algebras in
SG≤r . Its left adjoint (≤ r)∗ in general does not. However, we may use the canonical
presentation of O -algebras explained in the previous section to construct a left adjoint
(≤ r)alg

∗ : AlgO(SG≤r )→ AlgO(SG) to (≤ r)∗ : AlgO(SG)→ AlgO(SG≤r ). Explicitly it
is the following reflexive coequalizer

FO((≤ r)∗O(UO(A))) FO((≤ r)∗UO(A)) (≤ r)alg
∗ (A).

It is defined uniquely up to isomorphism by demanding that (≤ r)alg
∗ FO(X) = FO((≤

r)∗(X)) and that it preserves sifted colimits.

Definition 3.2 We define the rth rank completion functor Tr : AlgO(SG)→ AlgO(SG)
to be (≤ r)alg

∗ (≤ r)∗ .

This functor underlies the monad associated to the adjunction (≤ r)alg
∗ a (≤ r)∗ and has

a right adjoint. The counit gives a natural transformation Tr ⇒ id, and the commutative
diagram of groupoids

G

G≤0 G≤1 G≤2 · · · ,

gives rise to a tower of natural transformations of functors AlgO(SG)→ AlgO(SG)

id

T0 T1 T2 · · · .

Since colimits are computed objectwise and the map (g)∗Tr(A) → (g)∗A is the
identity as soon as r ≥ κ(g), the natural transformation colimr∈NTr ⇒ id is a natural
isomorphism.

The functor (≤ r)∗ obviously preserves fibrations and weak equivalences, so (≤ r)alg
∗ is

a left Quillen functor. However, (≤ r)∗ also preserves cofibrations, as these are retracts
of iterated pushouts along free O -algebra maps, which are preserved by (≤ r)∗ . Hence

Algebraic & Geometric Topology XX (20XX)
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Tr = (≤ r)alg
∗ (≤ r)∗ preserves trivial cofibrations between cofibrant objects, and thus

admits a left derived functor by precomposition with a functorial cofibrant replacement.
Moreover, as explained above, when UO(A) is cofibrant we may use a monadic bar
resolution to cofibrantly replace A. As a composition of two left adjoints, Tr commutes
with geometric realization. Thus we obtain the following formula for TL

r (A):

(2) TL
r (A) = B(FO(≤ r)∗,O, (≤ r)∗UO(A)) = B(FO(≤ r)∗(≤ r)∗,O,UO(A)),

the latter equality following from the fact that (≤ r)∗ commutes with O .

We next restrict our attention to a setting where the underlying object of FO(X) agrees
with X in rank ≤ r up to homotopy, for those X which are concentrated in rank r . To
see when this occurs, note that for any operad O and X concentrated in rank r , O(X) is
isomorphic to O(0) in rank 0 and O(1)⊗X in rank r . Hence the following assumption
suffices:

Assumption 3.3 O is a non-unitary operad in simplicial sets, i.e. O(0) = ∅, and
O(1) ' ∗.

Definition 3.4 We say X ∈ SG is reduced if it is concentrated in rank > 0, that is,
X(g) is initial when κ(g) = 0.

The horizontal maps in the following proposition are obtained from the identity
morphisms of (r + 1)∗UOTL

r (A) and (r + 1)∗UOTL
r+1(A) respectively, the vertical

maps from the natural transformation Tr ⇒ Tr+1 .

Proposition 3.5 For reduced A there is a homotopy cocartesian square in AlgO(SG)

FO((r + 1)∗(r + 1)∗UOTL
r (A)) TL

r (A)

FO((r + 1)∗(r + 1)∗UOTL
r+1(A))) TL

r+1(A),

where we remark that (r + 1)∗UOTL
r+1(A) ∼= (r + 1)∗UO(A).

Proof This diagram is obtained by applying (≤ r + 1)alg
∗ to a diagram in AlgO(SG≤r+1),

a functor which preserves homotopy cocartesian squares as it is a left Quillen functor.
Hence it suffices to prove that the following is homotopy cocartesian in AlgO(SG≤r+1):

FO((r + 1)∗UOTL
r (A)) (≤ r)alg

∗ (≤ r)∗A

FO((r + 1)∗UOA) (≤ r + 1)∗A,

Algebraic & Geometric Topology XX (20XX)
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where FO now denotes the free algebra functor SG≤r+1 → AlgO(SG≤r+1), (≤ r)∗ and
(r + 1)∗ denote the left adjoints to (≤ r)∗ : SG≤r+1 → SG≤r and (≤ r + 1)∗SG≤r+1 →
SGr+1 respectively, and (≤ r)alg

∗ denotes the left adjoint to (≤ r)∗ : AlgO(SG≤r+1) →
AlgO(SG≤r ).

The result now follows from the next lemma: substitute in its statement

X  (r + 1)∗UOTL
r (A)

Y  (r + 1)∗UOA
A (≤ r)alg

∗ (≤ r)∗A
B A.

Verifying condition (ii) uses that O(1) ' ∗.

Lemma 3.6 Suppose A,B ∈ AlgO(SG≤r+1) are cofibrant in SG≤r+1 and reduced, and
X, Y ∈ SG≤r+1 are cofibrant and concentrated in rank r + 1. Then a commutative square

FO(X) A

FO(Y) B,

is homotopy cartesian in AlgO(SG≤r+1) if the following two conditions hold:

(i) the map (≤ r)∗A→ (≤ r)∗B is a weak equivalence,

(ii) the commutative square

(r + 1)∗X (r + 1)∗UOA

(r + 1)∗Y (r + 1)∗UOB

is homotopy cocartesian.

Proof We may assume without loss of generality that A and B are cofibrant in SG≤r+1

and X → Y is a cofibration between cofibrant objects. We can factor the commutative
square as

FO(X) B(FO,O,UO(A)) A

FO(Y) B(FO,O,UO(B)) B,

'

'

Algebraic & Geometric Topology XX (20XX)
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where the horizontal maps are weak equivalences because A and B are cofibrant in
SG≤r+1 .

The left square is the geometric realization of the following square of simplicial objects(
[p] 7→ FO(X)

) (
[p] 7→ FO(Op(UO(A)))

)
(
[p] 7→ FO(Y)

) (
[p] 7→ FO(Op(UO(B)))

)
.

All these simplicial objects are Reedy cofibrant; this is evident for the left entries, and
for the right entries follows from another application of Lemma 9.14 of [8]. Geometric
realization of Reedy cofibrant simplicial objects is a homotopy colimit, and thus
commutes with homotopy pushouts. In particular, a levelwise homotopy cocartesian
diagram of Reedy cofibrant simplicial objects geometrically realizes to a homotopy
cocartesian diagram. It thus suffices to prove that each of the levels

FO(X) FO(Op(UO(A)))

FO(Y) FO(Op(UO(B)))

is homotopy cocartesian.

Since X → Y is a cofibration between cofibrant objects, the map from the homotopy
pushout to the bottom-right corner is given by

FO(Op(UO(A)) ∪X Y) −→ FO(Op(UO(B))).

This is a weak equivalence in AlgO(SG≤r+1) if and only if the map on underlying objects
is. Since FO preserves weak equivalences between cofibrant objects, it suffices to prove
that the map

Op(UO(A)) ∪X Y −→ Op(UO(B))

is a weak equivalence. Indeed, both objects are cofibrant since X 7→ O(X) preserves
cofibrant objects, as do pushouts along a cofibration.

We do this by induction over p. For p = 0, we observe that since X and Y are
concentrated in rank r + 1, we have a commutative diagram

(≤ r)∗UO(A) (≤ r)∗UO(B)

(≤ r)∗UO(A) ∪X Y (≤ r)∗UO(B).

∼=

Algebraic & Geometric Topology XX (20XX)
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Thus for ranks ≤ r the result follows from assumption (i). In rank r + 1, the case p = 0
follows from assumption (ii). This completes the proof of the initial case.

To prove the induction step, it suffices to prove the following statement: if Z,W are
reduced and X, Y are concentrated in degree r + 1, then if (i) (≤ r)∗Z → (≤ r)∗W is a
weak equivalence and (ii) the commutative square

(r + 1)∗X (r + 1)∗Z

(r + 1)∗Y (r + 1)∗W

is homotopy cocartesian, then (i’) (≤ r)∗O(Z)→ (≤ r)∗O(W) is a weak equivalence
and (ii’) the commutative square

(3)
(r + 1)∗X (r + 1)∗O(Z)

(r + 1)∗Y (r + 1)∗O(W)

is homotopy cocartesian.

Deducing (i) from (i’) is done by noting that (≤ r)∗ commutes with O and O preserves
weak equivalences between cofibrant objects. To deduce (ii’) from (i) and (ii), we use
the formula

(r + 1)∗O(Z) =
⊔
n≥1

O(n)⊗Sn

 ⊔
1≤r1,...,rn≤r+1∑

ri=r+1

(r1)∗(r1)∗Z ⊗ · · · ⊗ (rn)∗(rn)∗Z


and a similar one for W . To restrict the ri to positive integers, we used that O is
non-unitary, and that Z and W are reduced. From this expression, we see that (3) is a
coproduct of two commutative diagrams. The first is

i (r + 1)∗O((≤ r)∗(≤ r)∗Z)

i (r + 1)∗O((≤ r)∗(≤ r)∗W),

where i is the initial object, which is homotopy cocartesian because the right map is a
weak equivalence as a consequence of (i). The second is

(r + 1)∗X O(1)⊗ (r + 1)∗Z

(r + 1)∗Y O(1)⊗ (r + 1)∗W,

Algebraic & Geometric Topology XX (20XX)
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which homotopy cocartesian by (ii) since O(1) ' ∗.

We thus get a sequence of maps

TL
0 (A) −→ TL

1 (A) −→ TL
2 (A) −→ · · ·

whose homotopy colimit is naturally weakly equivalent to A and whose homotopy
cofibers we understand. This is the rank completion filtration.

When we can make sense of homology, e.g. in one of the settings mentioned in Section
10.1 of [8], we get a corresponding spectral sequence converging conditionally to
the homology of UO(A). The E1 -page will be rather unwieldy, and we believe the
following spectral sequence may be more useful:

Remark 3.7 Let (−)+ denote the monad whose underlying functor takes the coproduct
with the terminal object (so that algebras over it are pointed objects). As O is a non-
unitary operad in simplicial sets, cf. Assumption 3.3, there is a canonical map of monads
from O to (−)+ which can be viewed as an augmentation of O . This augmentation
is given on X ∈ SG by the map O(X) =

⊔
n≥1O(n) ⊗Sn X⊗n → X+ which on the

summand O(1) ⊗ X is the map O(1) ⊗ X → ∗ ⊗ X = X and on the summands
O(n)⊗Sn X⊗n for n ≥ 2 is the unique map to the terminal object.

Taking indecomposables with respect to this augmentation, we obtain theO -indecomposables
functor QO : AlgO(SG)→ SG∗ determined uniquely up to isomorphism by demanding
that QOFO ∼= (−)+ and that QO commutes with sifted colimits. Applying its left-
derived functor QOL to the diagram in the previous proposition, we get that if A is
reduced there is a homotopy cocartesian square in SG∗ :

(r + 1)∗(r + 1)∗UOTL
r (A)+ QOL (TL

r (A))

(r + 1)∗(r + 1)∗UOTL
r+1(A)+ QOL (TL

r+1(A)).

When we can make sense of homology, we can define O-homology by HOg,d(A) :=
H̃d((g)∗QOL (A)). The result of the previous discussion is a conditionally convergent
spectral sequence (suppressing the filtration degree, so in particular the p in E1

p,q refers
to rank)

E1
p,q = Hp+q((p)∗TL

p (A), (p)∗TL
p−1(A)) =⇒ HOp,p+q(A),

where it may be helpful to recall that (p)∗TL
p (A) ∼= (p)∗A.
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4 An Ek -algebraic analogue of the May-Milgram filtration

To deduce our results, we specialize the results of the previous section to O = Ek , the
non-unital little k-cubes operad. Recall that I denotes the open interval (0, 1), and
let Embrect(

⊔
n Ik, Ik) denote the space of ordered n-tuples of rectilinear embeddings

Ik → Ik with disjoint image (that is, they are a composition of translation and dilation
by positive real numbers in each of the k directions).

Definition 4.1 The non-unital little k-cubes operad Ek has topological space Ek(n) of
n-ary operations given by

Ek(n) :=

{
∅ if n = 0,

Embrect(
⊔

n Ik, Ik) if n > 0,

with symmetric group Sn permuting the n-tuples. The unit in Ek(1) is the identity map
Ik → Ik , and composition is induced by composition of embeddings.

This satisfies Assumption 3.3 and hence gives rise to an operad in SG , all of whose
objects are concentrated on the monoidal unit of G. Ek -algebras in SG are algebras
over this operad, and we shall adopt the shorter notation Ek for the free Ek -algebra
functor FEk . (If S = Top and G = ∗, as a consequence of our conventions these are
algebras over the operad |Sing(Ek)| in topological spaces.)

We shall take G = N, with κ : N→ N the identity functor. Let

UEk+m
Ek

: AlgEk+m
(SN) −→ AlgEk

(SN)

denote the forgetful functor induced by the map of operads Ek → Ek+m given by sending
a cube e : Ik → Ik to e× idIm : Ik× Im → Ik× Im . For the sake of brevity we will often
write U for UEk+m

Ek
.

We are interested in free algebras on a point, which we will consider concentrated in
rank 1. In this section we will more generally study Ek+m(X) for X ∈ SN satisfying a
similar condition:

Assumption 4.2 X ∈ SN is concentrated in rank 1, i.e. X(g) is initial unless g = 1
(so in particular reduced), and X is cofibrant.

We will give an elementary geometric model for the Ek -algebra TL
r (UEk+m(X)), and use

Proposition 3.5 to describe UEk+m(X) up to weak equivalence as a colimit of iterated
pushouts along maps of free Ek -algebras. The following definition was mentioned in
the introduction:
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•

•

•

•

•

•

•

•

Ik = I

Im = I

Figure 1: An element of F8(Ik × Im) for k = 1, m = 1 (suppressing the labels on the point for
the sake of clarity) which is in F[r]

8 (Ik × Im) when r ≥ 4, but not when r < 4.

Definition 4.3 For a manifold M and n ≥ 1, the topological space Fn(M) of ordered
configurations of n points in M is given by {(m1, . . . ,mn) | mi 6= mj if i 6= j} ⊂ Mn .
For n = 0 we define Fn(M) = ∅.

We choose to define F0(M) to be empty since we work with non-unital Ek -algebras. For
n > 0, the topological space Fn(M) is homeomorphic to the space of embeddings of
the set {1, . . . , n} into M , and precomposition by permutations of {1, . . . , n} defines
a Sn -action on the space Fn(M). Taking the singular simplicial set, these assemble
to a symmetric sequence F(M) in sSet. For M = Ik × Im , this is a left Ek+m -module,
where the action is given by composition of embeddings.

Just like we used the enrichment of copowering of SN over sSet to make the operad Ek

in sSet into an operad in SN , we use it to make the left Ek+m -module F(Ik × Im) in
sSet into a left Ek+m -module in SN . Analogously to the free Ek -algebra construction,
we can take the composition product of F(Ik × Im) ∈ (SN)G with an object X ∈ SN

considered as a symmetric sequence concentrated in cardinality 0. We refer to this as
“applying” F(Ik × Im) to X . The resulting object F(Ik × Im)(X) ∈ SN comes endowed
with an Ek+m -algebra structure. This construction is natural in X , and thus we obtain a
functor F(Ik × Im) : SN → AlgEk+m

(SN).

Definition 4.4 We let F[r]
n (Ik × Im) denote the subspace of Fn(Ik × Im) consisting

of ordered configurations η = (m1, . . . ,mn) such that for all x ∈ Ik the intersection
η ∩ ({x} × Im) has cardinality at most r .

Since the condition defining F[r]
n (Ik × Im) is invariant under the Sn -action, these

topological spaces may be assembled into a symmetric sequence F[r](Ik × Im) ⊂
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F(Ik × Im) in sSet and by the copowering also in SN . The left Ek+m -module structure
on F(Ik× Im) does not restrict. However, using the map of operads Ek → Ek+m induced
by the inclusion Ik → Ik × Im on the first k coordinates, we get a left Ek -module
structure on F(Ik × Im) which does restrict and application of this symmetric sequence
gives a functor F[r](Ik × Im) : SN → AlgEk

(SN).

As we assumed that X is cofibrant, we can use a monadic bar resolution to give an
explicit formula for TL

r (UEk+m(X)) ∈ AlgEk
(SN):

TL
r (UEk+m(X)) = B(Ek(≤ r)∗, Ek, (≤ r)∗UEk+m(X)).

We take this specific model for the domain of the map in the following proposition:

Proposition 4.5 There are weak equivalences

αr : TL
r (UEk+m(X)) −→ F[r](Ik × Im)(X),

of Ek -algebras, which fit into commutative diagrams for r ≥ 0

(4)

TL
r (UEk+m(X)) TL

r+1(UEk+m(X))

F[r](Ik × Im)(X) F[r+1](Ik × Im)(X).

αr αr+1

Let us start by defining the maps:

Lemma 4.6 There are maps αr : TL
r (UEk+m(X)) −→ F[r](Ik × Im)(X) of Ek -algebras

making Diagram (4) commute.

Proof The map Ek+m → F(Ik × Im) which sends a cube to its center is a homotopy
equivalence of left Ek+m -modules in symmetric sequences, so we have an induced weak
equivalence Ek+m(X)→ F(Ik × Im)(X) of Ek+m -algebras. To define αr , we first insert
this weak equivalence into the right entry of the bar construction

|B•(Ek(≤ r)∗, Ek, (≤ r)∗UEk+m(X))|

|B•(Ek(≤ r)∗, Ek, (≤ r)∗UF(Ik × Im)(X))|.

'

The assumption that X is concentrated in rank 1 gives us an isomorphism

(≤ r)∗UF(Ik × Im)(X)) ∼= U ((≤ r)∗F(Ik × Im))((≤ r)∗X).
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Here (≤ r)∗F(Ik × Im) is an object in the truncated symmetric sequence category
(functors from the category of possibly empty finite sets of cardinality ≤ r into sSet

with tensor product the restriction of the composition product) and (≤ r)∗F(Ik × Im) is
the functor given by tensoring with (≤ r)∗F(Ik × Im).

Because ⊗ commutes with colimits in each variable and geometric realization, the
target is obtained by applying the symmetric sequence

|B•(Ek(≤ r)∗, Ek, (≤ r)∗F(Ik+m)|

in Top to X (as always, via Sing and the simplicial copowering). We define a map of
left Ek -modules in symmetric sequences in Top

ar : |B•(Ek(≤ r)∗, Ek, (≤ r)∗F(Ik+m))| −→ F[r](Ik × Im)

by describing an augmentation from B•(Ek(≤ r)∗, Ek, (≤ r)∗F(Ik+m)) to F[r](Ik × Im).
The 0-simplices of the former are given by

Ek(≤ r)∗(≤ r)∗F(Ik+m) =
⊔
n≥1

Ek(n)×Sn

⊔
1≤k1,...,kn≤r

Fki(Ik × Im)

where the rank of each component is k1 + ...+ kn . Given a collection of embeddings
ei : Ik → Ik and configurations ξi ∈ Fki(Ik × Im), we may take the union of the images
(ei × idIm)(ξi) in Ik × Im and obtain an ordered configuration of k1 + . . .+ km points
such that no subset {x} × Im contains more than r points. This map is easily seen to
be compatible with the left Ek -module structures. That the diagram commutes is clear
from the definition.

We next prove that each ar is a weak homotopy equivalence, using a microfibration
argument.

Definition 4.7 A map π : E → B of topological spaces is a microfibration if for each
i ≥ 0 and commutative diagram

Di × {0} E

Di × [0, 1] B,

h

π

H

there exists an ε > 0 and a partial lift H̃ : Di × [0, ε]→ E , i.e. π ◦ H̃ = H|Di×[0,ε] and
H̃|Di×{0} = h.

Lemma 4.8 (Lemma 2.2 of [19]) If π : E → B is a microfibration with weakly
contractible fibers, then π is a weak homotopy equivalence.
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Our strategy is to prove that ar is a microfibration with weakly contractible fibers. To
do this, we use the following lemma in point-set topology.

Lemma 4.9 Let X• be a levelwise Hausdorff simplicial space. Let

X1,• ⊂ X2,• ⊂ · · · ⊂ X•

be an N>0 -indexed sequence of simplicial subspaces such that: (i) Xs,p ⊂ Xp is compact
for all s, p, and (ii) each point x ∈ Xp has an open neighborhood contained in some
Xs,p . If C is compact, then any continuous map C→ |X•| factors as C→ |Xs,•| → |X•|
for some s.

Proof The strategy is to first identify |X•| with the sequential colimit colims |Xs,•|
and then show that this particular sequential colimit commutes with maps out of the
compact space C .

The inclusions Xs,p → Xp induce a continuous bijection colims Xs,p → Xp . To show
it is a homeomorphism we need to prove it is open: V ⊂ colims Xs,p being open
means that all V ∩ Xs,p are open, and by the hypothesis for all x ∈ V , V contains
an open neighborhood of x in Xp , which means it is open in Xp . Since colimits of
simplicial spaces are computed levelwise, colims Xs,• → X• is an isomorphism of
simplicial spaces. Since geometric realization commutes with filtered colimits (it has a
right adjoint when working with compactly generated weakly Hausdorff spaces), the
canonical map colims |Xs,•| → |X•| is a homeomorphism.

In CGWH spaces, maps out of a compact space commute with sequential colimits
of closed inclusions by Lemma 3.6 of [18]. Thus we shall verify that each map
|Xs,•| → |Xs+1,•| is a closed inclusion, using its description as a colimit of the maps of
skeleta:

sk0|Xs,•| sk1|Xs,•| · · ·

sk0|Xs+1,•| sk1|Xs+1,•| · · · .

We claim all maps in this diagram are closed inclusions. All maps are clearly continuous
injections and a continuous injection between compact Hausdorff spaces is always a
closed inclusion, so it suffices to prove that each space is compact Hausdorff. They
are compact because each skp|Xs,•| is a quotient of the compact space

⊔
k≤p ∆k × Xs,k .

They are Hausdorff because we may freely add degeneracies to write skp|Xs,•| as the
geometric realization of a levelwise Hausdorff simplicial space and apply Theorem 1.1
of [16]. Furthermore, from the construction it is clear each square is a pullback square.
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The result then follows from the following result about CGWH spaces, Lemma 3.9 of
[18]: given a commutative diagram

A0 A1 · · ·

B0 B1 · · ·

f0 f1

with all maps closed inclusions and all squares pullbacks, the induced map colims As →
colims Bs is also a closed inclusion.

Lemma 4.10 The map ar : |B•(Ek(≤ r)∗, Ek, (≤ r)∗F(Ik+m)| → F[r](Ik × Im) is a
microfibration.

Proof Fixing a cardinality n, we need to prove that the component ar(n) is a microfi-
bration. Suppose we are given a commutative diagram

Di × {0} |B•(Ek(≤ r)∗, Ek, (≤ r)∗F(Ik+m))|(n)

Di × [0, 1] F[r]
n (Ik × Im).

h

ar(n)

H

Since Di × [0, 1] is compact, there exists a δ > 0 such that H factors over the compact
subspace of configurations ξ where

(a) the points in ξ have distance ≥ δ from each other,

(b) for all closed cubes C ⊂ Rk with equal sides of length < δ , the set C × Im

contains at most r points of ξ .

Let us abbreviate Bp(Ek(≤ r)∗, Ek, (≤ r)∗F(Ik+m))(n) by Xp , and by Xδp the subspace of
Xp of elements whose image under αr(n) satisfies (a) and (b).

Let ρp : Xδp → (0,∞) be the minimum of the distances from the points in the image
ξ to the boundaries of the images of the cubes. Then Xδ

•
is a simplicial space with

a sequence of continuous functions ρp : Xδp → (0,∞) such that ρp+1 ◦ si = ρp and
ρp−1 ◦ di ≥ ρp . For each integer s ≥ 1, the subspaces Xδs,p := ρ−1

p ([1/s,∞)) ⊂ Xδp
assemble to a simplicial space Xδs,• .

This satisfies the hypotheses of Lemma 4.9 (condition (i) of that lemma is the reason
we use Xδ

•
instead of X• , and uses that only the interiors of cubes need to be disjoint,

not their closures). Hence the map h factors over some stage |Xδs,•| with δ ≥ 1
s > 0

such that for all d ∈ Di , the configuration H(d, 0) is given by a ξ which satisfies the
properties
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(a) the points in ξ have distance ≥ 1
s from each other,

(b) for all closed cubes C ⊂ Rk with equal sides of length < 1
s , the set C × Im

contains at most r points of ξ ,

(c) the points in ξ have distance ≥ 1
s to the boundaries of the images of the cubes in

h(d).

By continuity of the map H , there is an ε > 0 such that for all d ∈ Di and t ∈ [0, ε], the
configuration H(d, t) is within distance 1

3s of H(d, 0). The partial lift is given by the map
which assigns to (d, t) ∈ Di × [0, ε] the element of |X•| represented by configuration
H(d, t) inside the cubes coming from the unique non-degenerate representative of h(d).
To see this is well-defined, note that (c) implies a point in H(d, t) remains within the
same cubes of h(d) as the corresponding point in H(d, 0).

To see it is continuous, note that the movement of the points in the configuration can be
described by recording their displacements by an element ∆(d, t) of

(
[− 1

3s ,
1
3s ]k+m

)n

(each ∆(d, 0) equals 0). That is, ∆(d, t) is defined by H(d, t) = H(d, 0) + ∆(d, t).

There is a simplicial map (
[− 1

3s
,

1
3s

]k+m
)n

× X1/s
s,• −→ X•

obtained by applying the displacement to the configuration. This is continuous, and
well-defined because whenever we move points in the configuration of an element of
X1/s

s,p at most 1
3s in any of the directions, they do not (a) collide with each other, (b) have

more than r points in a subset {x} × Im , and (c) cross boundaries of cubes. That the
lift is continuous then follows by observing that it can be realized as a composition of
continuous maps

Di × [0, ε] ∆×h−→
(

[− 1
3s
,

1
3s

]k+m
)n

× |X1/s
s,• |

∼=−→
∣∣∣∣([− 1

3s
,

1
3s

]k+m
)n

× X1/s
s,•

∣∣∣∣
−→ |X•|.

We now prove that the fibers of ar(n) are weakly contractible, so Lemma 4.8 implies
that ar(n) is a weak homotopy equivalence.

Lemma 4.11 The fibers of the map ar : |B•(Ek(≤ r)∗, Ek, (≤ r)∗F(Ik+m)| → F[r](Ik ×
Im) are weakly contractible.
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•
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Ik = I

Im = I

Figure 2: An element of X1 in the case k = m = 1, r = 4, and n = 6. There are two innermost
cubes and one outermost cube.

Proof Fix a configuration ξ ∈ F[r]
n (Ik× Im). As above, the fiber ε−1(ξ) is given by the

geometric realization of the subsimplicial space of X• with underlying configuration ξ .
Call this simplicial space X•(ξ). Another application of Lemma 9.14 of [8] tells us this
is Reedy cofibrant.

Let ξ′ ∈ Symn(Ik) := (Ik)n/Sn be the configuration with multiplicities obtained by
projecting ξ onto Ik . The p-simplices of X•(ξ) are given by p + 1 levels of nested
k-dimensional cubes such that all points of ξ′ are contained in an innermost cube
and all cubes except the outermost ones contain at most r points of ξ′ counted with
multiplicity. Let (e1, e2, . . . el) ∈ Ek(l) be a collection of cubes such that every cube
ei contains exactly one point of ξ′ (counted without multiplicity) and every point of
ξ′ (counted without multiplicity) is in one of the cubes ei . Let X•(ξ, e) denote the
subsimplicial space of X•(ξ) where we require that if a cube contains a point of ξ′ ,
then it contains the corresponding ei . This is also Reedy cofibrant. Thus, since the
inclusion X•(ξ, e) ↪→ X•(ξ) induces a levelwise homotopy equivalence, it induces a weak
equivalence on geometric realizations. View X•(ξ, e) as an augmented simplicial space
by adding a point in degree −1. There is an extra degeneracy Xp(ξ, e) → Xp+1(ξ, e)
given by inserting ei in the innermost cubes, and hence |X•(ξ, e)| is contractible.

Proof of Proposition 4.5 By combining Lemmas 4.8, 4.10, and 4.11, we see that the
map ar : |B•(Ek(≤ r)∗, Ek, (≤ r)∗F(Ik+m)| → F[r](Ik× Im) is a weak equivalence. Since
ar is a map of symmetric sequences and all of the symmetric group actions are free,
it is weak equivalence of symmetric sequences. The result follows because applying
a weak equivalence between Σ-cofibrant symmetric sequences in sSet to a cofibrant
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object is a weak equivalence by Lemma 9.1 of [8], and geometric realization preserves
weak equivalences between Reedy cofibrant simplicial objects.

The inclusion Ik × Fr+1(Im) ↪→ Fr+1(Ik × Im) given by (x, ξ) 7→ x × ξ , i.e. sending
each point mi ∈ ξ to x × mi , has image given by the complement of F[r]

r+1(Ik × Im)
in Fr+1(Ik × Im). Let ϕm,r denote the trivial vector bundle over Ik × Fr(Im) given
by Ik × Fr(Im)× Rr−1 → Ik × Fr(Im), with Sr acting diagonally and with Rr−1 the
orthogonal complement to the trivial representation in the permutation representation
with its usual metric. The vector bundle ϕm,r can be thought of as the Sr -equivariant
analogue of φm,r from the introduction.

Lemma 4.12 The normal bundle of Ik × Fr+1(Im) in Fr+1(Ik × Im) is Sr+1 -
equivariantly isomorphic to kϕm,r+1 .

Proof The normal bundle to Ik×Fr+1(Im) is the orthogonal complement in T(Fr+1(Ik×
Im)) to the tangent bundle T(Ik × Fr+1(Im)). The former is the restriction of T(Ik ×
Im)⊕r+1 ∼= (TIk)⊕r+1 ⊕ (TIm)⊕r+1 , and the latter is the restriction of TIk ⊕ (TIm)⊕r+1 .
The inclusion is the diagonal on the first term and the identity on the second, and
equivariant for the Sr+1 -action. Thus the normal bundle is Sr+1 -equivariantly
isomorphic to the restriction of the orthogonal complement of the diagonal TIk ⊂
(TIk)⊕r+1 . This is isomorphic to a k-fold Whitney sum of the trivial Rr -bundle, with
Sr+1 -action given by the standard representation.

The vector bundle ϕm,r+1 inherits a Riemannian metric, and we let S(kϕm,r+1) be the
sphere bundle with fiber over (x, ξ) ∈ Ik × Fr+1(Im) those vectors of length 1

2 d(y, ∂Ik).
This bounds a disk bundle D(kϕm,r+1), and both are clearly isomorphic to the unit
sphere and disk bundles. Using the exponential map, we obtain the horizontal maps in
the following commutative diagram of Sr+1 -spaces:

S(kϕm,r+1) F[r]
r+1(Ik × Im)

D(kϕm,r+1) F[r+1]
r+1 (Ik × Im) = Fr+1(Ik × Im).

Proposition 4.13 For all r ≥ 0, there is a zigzag of homotopy cocartesian squares

Ek((r + 1)∗S(kϕm,r+1)⊗Sr+1 X⊗r+1) · · · · · · TL
r (UEk+m(X))

Ek((r + 1)∗D(kϕm,r+1)⊗Sr+1 X⊗r+1) · · · · · · TL
r+1(UEk+m(X)).

'

'
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Proof The above result implies that for cofibrant X , we have a homotopy cocartesian
square

S(kϕm,r+1)⊗Sr+1 X⊗r+1 (r + 1)∗UEk F[r](Ik × Im)(X)

D(kϕm,r+1)⊗Sr+1 X⊗r+1 (r + 1)∗UEk F[r+1](Ik × Im)(X).

By Proposition 4.5, we have a commutative diagram with horizontal maps weak
equivalences

(r + 1)∗UEk F[r](Ik × Im)(X) (r + 1)∗UEk TL
r (UEk+m(X))

(r + 1)∗UEk F[r+1](Ik × Im)(X) (r + 1)∗UEk TL
r+1(UEk+m(X)).

αr

'

αr+1

'

Since applying Ek and (r + 1)∗ preserves homotopy cocartesian squares, doing so
gives us the left and middle squares. For the right square, specialize Proposition 3.5 to
O = Ek and A = UEk+m(X) to obtain a homotopy cocartesian square

Ek((r + 1)∗(r + 1)∗UEk TL
r (UEk+m(X))) TL

r (UEk+m(X))

Ek((r + 1)∗(r + 1)∗UEk TL
r+1(UEk+m(X))) TL

r+1(UEk+m(X)).

We now deduce Theorem 1.2 from this by taking S = Top and X = (1)∗(∗); we need
to resolve the issue that Proposition 4.13 only provides zigzags.

Proof of Theorem 1.2 We start with an elementary homotopy-theoretic observation.
Given a commutative diagram of topological spaces

S(kφm,r+1) X X′

D(kφm,r+1) Y Y ′

'

'

with decorated arrows weak equivalences, we can find maps S(kφm,r+1) → X′ and
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D(kφm,r+1)→ Y ′ such that in the following diagram

S(kφm,r+1) X X′

D(kφm,r+1) Y Y ′

'

'

the outer square commutes and the triangles commute up to homotopy. To prove this,
first homotope S(kφm,r+1)→ X until a lift exists (which is possible since the domain has
the homotopy type of a CW-complex). Because S(kφm,r+1) ↪→ D(kφm,r+1) admits the
structure of a NDR-pair, we may extend this to a homotopy of commutative diagrams.
At this point it suffices to find a lift in the commutative diagram

S(kφm,r+1) Y ′

D(kφm,r+1) Y,

which exists as (D(kφm,r+1), S(kφm,r+1)) is homotopy equivalent to a CW pair.

Given this observation, we prove by induction over r that we may construct Ar '
TL

r+1(UEk+m(∗)) by iterated pushouts along free algebras, obtaining in the process maps
between the Ar satisfying colimr Ar = hocolimr Ar ' FEk+m(∗).

The initial case is A−1 = ∅ . For the induction step, let us assume we have produced Ar

as in the statement of Theorem 1.2 with a weak equivalence βr : Ar → TL
r (UEk+m(∗)).

Using the observation in the diagram of Proposition 4.13, we may assume we have a
homotopy cocartesian commutative diagram

S(kφm,r+1) (r + 1)∗UEk TL
r (UEk+m(∗))

D(kφm,r+1) (r + 1)∗UEk TL
r+1(UEk+m(∗)).

Applying the observation again to lift along αr , we may assume we have a homotopy
cocartesian commutative diagram

S(kφm,r+1) (r + 1)∗UEk Ar (r + 1)∗UEk TL
r (UEk+m(∗))

D(kφm,r+1) (r + 1)∗UEk TL
r+1(UEk+m(∗)).

(r+1)∗UEkβr
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We take adjoints and define Ar+1 as the pushout fitting in a commutative diagram

Ek((r + 1)∗S(kφm,r+1)) Ar TL
r (UEk+m(∗))

Ek((r + 1)∗D(kφm,r+1)) Ar+1 TL
r+1(UEk+m(∗)).

βr

βr+1

The outer and left squares are homotopy cocartesian, the former by construction and the
latter as a homotopy pushout. Thus the right square is also homotopy cocartesian, and
hence the map βr+1 : Ar+1 → TL

r+1(UFEk+m(∗)) is a weak equivalence.

Combining the last sentence of this proof with Proposition 4.5, we get the description
of Ar announced in the introduction.

Corollary 4.14 There are weak equivalences of Ek -algebras

Ar
βr−→ TL

r (UEk+m(∗)) αr−→ F[r](Ik × Im)(∗).

Remark 4.15 It is plausible that Theorem 1.2 may be deduced from results analogous
to those in [8]. One would need an CW approximation theorem for Ek -algebras in
TopN , and verify that one may desuspend the identification of ΣkQEk

L (FEk+m(∗)) with
the k-fold bar construction with respect to the canonical augmentation.

5 Relation to the May-Milgram filtration

We now explain the relationship between the results in the previous section and the
May-Milgram filtration on ΩmΣmSk .

Definition 5.1 Given a based topological space (X, x0), let C(M; X) be the quotient
of
⊔

n≥0 Fn(M) ×Sn Xn by the relation that (m1, . . .mn; x1, . . . xn) is equivalent to
(m1, . . .mn−1; x1, . . . xn−1) if xn = x0 . We call this the configuration space of unordered
points in M with labels in X .

When X = S0 , we recover ordinary unordered configuration spaces and drop X from the
notation. Work of Milgram and May implies that ΩmΣmX has the weak homotopy type
of C(Im; X) when X is connected [15, 14]. The r th stage Mr(C(Im; X)) of the May-
Milgram filtration of C(Im; X) ' ΩmΣmX is defined to be the image of Fr(Im)×Si Xi

in C(Im; X).
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In this paper, we use only the case X = Sk . In that case, ΩmΣmSk is weakly equivalent
to the k-fold delooping of C(Ik × Im) = F(Ik × Im)(∗) ' Ek+m(∗). Let us denote the
Ek -algebra F[r](Ik × Im)(∗) by C[r](Ik × Im).

Theorem 5.2 The k-fold delooping of C[r](Ik × Im) is homotopy equivalent to the r th
stage in the May-Milgram filtration of ΩmΣmSk .

To prove this, we need to consider a generalization of C[r](Ik × Im) where points can
vanish if they enter certain regions.

Definition 5.3 Let M be a manifold and N ⊂ M a subspace. Let C[r](M × Im) denote
the subspace of C(M × Im) of configurations ξ where ξ ∩

(
{x} × Im

)
has cardinality

≤ r for all x ∈ M . Let C[r]((M,N) × Im) be the quotient of C[r](M × Im) by the
equivalence relation that ξ ∼ ξ′ if ξ ∩ ((M \ N)× Im) = ξ′ ∩ (((M \ N)× Im).

We drop the superscript for r = ∞ and drop the − × Im for m = 0. There are two
configuration space models for ΩmΣmSk = ΩmSk+m . The first is a special case of May’s
approximation theorem from [14], building on the work of Milgram in [15], and the
second is a specialization of Proposition 2 of [3].

Theorem 5.4 (May) For k > 0, C(Im; Sk) is weakly homotopy equivalent to ΩmΣmSk .

Theorem 5.5 (Bödigheimer) For k > 0, C((Rk,Rk \ Ik)× Im) is weakly homotopy
equivalent to ΩmΣmSk .

We will relate these two models of ΩmΣmSk , and compare filtrations of these spaces.
The topological space C((Rk,Rk \ Ik)× Im) is filtered by the C[r]((Rk,Rk \ Ik)× Im).
From now on, we view Sk as Rk/(Rk \ Ik) with base point given by the image of Rk \ Ik .
Define a map ρ by

ρ : C(Im; Sk) −→ C((Rk,Rk \ Ik)× Im)

((m1; x1), . . . , (mr, xr)) 7−→ (x1 × m1, . . . , xr × mr),

where mi ∈ Im and xi ∈ Rk/(Rk \ Ik) = Sk . This inclusion has image consisting of
those configurations with at most one point in each fiber of Rk × Im → Im . We denote
its restrictions by ρr : Mr(C(Im; Sk))→ C[r]((Rk,Rk \ Ik)× Im).

Lemma 5.6 The maps ρ and ρr are homotopy equivalences.

Algebraic & Geometric Topology XX (20XX)



The May-Milgram filtration and Ek -cells 1027

Proof The strategy is to scale the configurations so that in each fiber of Rk × Im → Im

all but at most one point is pushed into Rk \ Ik . To do so, we pick a continuous function
η : C((Rk,Rk\Ik)×Im)→ (0,∞) with the property that for all ξ ∈ C((Rk,Rk\Ik)×Im)
and x ∈ Im , there is at most one point in ξ that is within distance η(ξ) of 0×x ∈ Rk×Im .
Let φR

t : Rk → Rk be a continuous family of maps, depending on t ∈ [0, 1] and R > 0,
such that:

· φR
0 = id,

· φR
t |(φR

t )−1(Ik) a homeomorphism onto its image,

· φR
t (Rk \ Ik) ⊂ Rk \ Ik and φR

1 (y) ∈ Rk \ Ik if ||y|| > R.

Then we define

H : [0, 1]× C((Rk,Rk \ Ik)× Im) −→ C((Rk,Rk \ Ik)× Im)

(t, ξ) 7−→ (id× φη(ξ)
t )∗(ξ),

where the subscript ∗ means induced map on configuration spaces. For t = 1, all but at
most one point in each fiber are pushed into Rk \ Ik (where these points vanish). In
particular, we can regard it as a continuous map

h : C((Rk,Rk \ Ik)× Im) −→ C(Im; Sk).

The homotopy H then provides a homotopy from ρ◦h to the identity on C((Rk,Rk \ Ik),
and since it preserves the subspace C(Im; Sk) also a homotopy from h ◦ ρ to the identity
on C(Im; Sk). Thus ρ is a homotopy equivalence.

Since ρ, h and H preserve the filtration, this also proves the ρr are homotopy
equivalences.

Thus C[r]((Rk,Rk\Ik)×Im) is homotopy equivalent to the r th stage of the May-Milgram
filtration. We claim that the k-fold delooping of C[r](Ik× Im) is C[r]((Rk,Rk \ Ik)× Im).

The k-fold bar construction of an augmented Ek -algebra is defined in full generality in
Section 13.1 of [8]. We will specialize it to the Ek -algebra C[r](Ik × Im) in Top, with
its canonical augmentation to ∗, and make a minor modification to the “grids” for the
sake of computational convenience, replacing [0, 1] with [1/4, 3/4] in the following
definition:

Definition 5.7 We write Pk(p1, . . . , pk) ⊂
∏

j Rpj+1 for the subspace of k-tuples

{1/4 < tj
0 < · · · < tj

pj
< 3/4}1≤j≤k.

We make [p1, . . . , pk] 7→ Pk(p1, . . . , pk) into a k-fold semi-simplicial space by defining
the ith face map in the jth direction by forgetting tj

i .
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Rk = R2 Ik = I2

Im = I

[1/4, 3/4]

t1
0

t0
0 t0

1

·

·

•

•

·

·

•

·

·

•

•

•

•

Figure 3: An element of X1,0 for r = 4, k = 2, and m = 1. Points in the configuration
disappear when they leave the cube I2× I , cannot hit the walls {t0

i }× [1/4, 3/4]× I for i = 0, 1
or [1/4, 3/4]× {t1

0} × I , and every vertical line segment can contain at most 4 points.

Definition 5.8 BEk
•,··· ,•(C[r](Ik×Im)) is the k-fold semi-simplicial space with (p1, . . . , pk)-

simplices given by the subspace of

({tj
i}, ξ) ∈ Pk(p1, . . . , pk)× C[r](Ik × Im)

such that ξ is contained in
∏

j[t
j
0, t

j
pj]× Im and ξ is disjoint from [1/4, 3/4]j−1×{tj

i}×
[1/4, 3/4]k−j × Im for 1 ≤ j ≤ k and 0 ≤ i ≤ pj .

For 0 < i < pj , the ith face map in the jth direction is given by the corresponding face
map on Pk and the identity on C[r](Ik × Im). The 0th face map in the jth direction is
given by the corresponding face map on Pk and by deleting all particles in ξ which
have jth coordinate < tj

1 . Similarly, the pj th face map in the jth direction is given by
the corresponding face map on Pk and by deleting all particles in ξ which have jth
coordinate > tj

pj−1 .

Definition 5.9 The k-fold delooping of Cr(Ik × Im) is the pointed topological space
given by

BkC[r](Ik × Im) := ||BEk
•,··· ,•(C

[r](Ik × Im))||.

Combined with Lemma 5.6, the following proposition completes the proof of Theorem
5.2.
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Proposition 5.10 There is a zig-zag of weak equivalences of Em -algebras

BkC[r](Ik × Im)
||f•||←−− ||X•,...,•||

ε−→ C[r] ((Rk,Rk \ Ik)× Im) .
Proof We start by defining the augmented k-fold semi-simplicial topological space
X•,··· ,• : its topological space of (p1, . . . , pk)-simplices

Xp1,...,pk ⊂ Pk(p1, . . . , pk)× C[r] ((Rk,Rk \ Ik)× Im)
is the subspace of ({tj

i}, ξ) such that ξ is disjoint from [1/4, 3/4]j−1 × {tj
i} ×

[1/4, 3/4]k−j × Im for each 1 ≤ j ≤ k and 0 ≤ i ≤ pj . This is augmented over
C[r]

(
(Rk,Rk \ Ik)× Im

)
. The ith face map in the jth direction is given by forgetting tj

i

and the augmentation forgets all tj
i ’s.

We denote the map

||X•,··· ,•|| −→ C[r] ((Rk,Rk \ Ik)× Im)
by ε. To show this is a weak equivalence, we prove it is a microfibration with weakly
contractible fibers and invoke Lemma 4.8. For ξ ∈ C[r]

(
(Rk,Rk \ Ik)× Im

)
, let Sj

ξ ⊆ R
be the subspace of t ∈ (1/4, 3/4) such that

ξ ∩
(
[1/4, 3/4]j−1 × {t} × [1/4, 3/4]k−j × Im) = ∅.

The fiber ε−1(ξ) is the thick geometric realization of a k-fold semi-simplicial space
with space of (p1, · · · , pk)-simplices homotopy equivalent to the product of sets of
order preserving-maps from {0, . . . , pj} to π0(Sj

ξ) for 1 ≤ j ≤ k , which is product
of simplices. Since levelwise weak equivalences induce weak equivalences on thick
geometric realizations (see e.g. Theorem 2.2 of [7]), the fibers of ε are weakly
contractible.

The proof that ε is a microfibration is similar to that of Lemma 4.10. The key fact is
that if

ξ ∩
(
[1/4, 3/4]j−1 × {tj} × [1/4, 3/4]k−j × Im) = ∅,

the same will be true for nearby configurations (this is why we use [1/4, 3/4] instead
of I, otherwise new points could appear and hit the forbidden regions immediately).

We will next construct a k-fold semi-simplicial map

f• : X•,...,• −→ BEk
•,··· ,•(C

[r](Ik × Im))

and prove its thick geometric realization is a weak equivalence. The map fp1,...,pk

is defined on a (p1, . . . , pk)-simplex ({tj
i}, ξ) by deleting from a configuration ξ ∈
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C[r]
(
(Rk,Rk \ Ik)× Im

)
those points outside

∏k
j=1[tj

0, t
j
pj], and interpreting the remain-

ing configuration as an element of C[r]
(
Ik × Im

)
. Since we are taking thick geometric

realizations, to prove ||f•|| is a weak equivalence, it suffices to prove each fp1,··· ,pk is a
weak homotopy equivalence.

To prove this, we first observe that the inclusion of the subspace X′p1,...,pk
of Xp1,...,pk of

those ({tj
i}, ξ) such that for all 1 ≤ j ≤ k we have

ξ ∩
(

[1/4, 3/4]j−1 × ([1/4, tj
0] ∪ [tj

pj
, 3/4])× [1/4, 3/4]k−j × Im

)
= ∅,

is a homotopy equivalence. In other words, in X′p1,··· ,pk
all points in ξ lie either in∏k

j=1[tj
0, t

j
pj] or have one of their first k coordinates < 1/4 or > 3/4.

Thus it suffices to prove that the inclusion

gp1,··· ,pk : BEk
p1,··· ,pk

(C[r](Ik × Im)) −→ X′p1,...,pk
,

which regards a configuration in C[r](Ik × Im) as one in C[r]((Rk,Rk \ Ik) × Im), is
a homotopy equivalence. Then the composition fp1,...,pk ◦ gp1,··· ,pk is the identity on
BEk

p1,··· ,pk (C[r](Ik × Im)). A homotopy from gp1,...,pk ◦ fp1,··· ,pk to the identity on X′p1,...,pk

is given as follows: it is the identity on the points in ξ in
∏k

j=1[tj
0, t

j
pj] and pushes the

remaining points linearly outwards from (1/2, · · · , 1/2) until all are in the regions
Rk \ Ik where they vanish.

Remark 5.11 Snaith showed that the May-Milgram filtration stably splits [17]. How-
ever, its lift to a filtration of Ek+m(∗) of Ek -algebras does not split after taking suspension
spectra. Such a splitting would imply that C2(I2 × I1) ' RP2 stably splits off a copy
of F[1]

2 (I2 × I1)/S2 ' RP1 .

However, this filtration does split after stabilizing in a different manner. Recall QEk
L

denotes the derived indecomposables functor of Remark 3.7. Basterra-Mandell showed
that derived indecomposables can be considered as stabilization of an algebra over an
operad [1], and derived indecomposables of an Ek -algebra may be computed using its
k-fold bar construction, see [2] or Chapter 13 of [8]. Thus the induced filtration of the
stabilization QEk

L (Σ∞Ek+m(∗)+) agrees with the suspension spectra of the May-Milgram
filtration and hence splits by the work of Snaith [17].
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