
HOSVD-Based Algorithm for Weighted Tensor Completion

Zehan Chao, Longxiu Huang and Deanna Needell

Abstract

Matrix completion, the problem of completing missing entries in a data matrix with low-
dimensional structure (such as rank), has seen many fruitful approaches and analyses. Tensor
completion is the tensor analog that attempts to impute missing tensor entries from similar low-
rank type assumptions. In this paper, we study the tensor completion problem when the sampling
pattern is deterministic and possibly non-uniform. We first propose an efficient weighted Higher
Order Singular Value Decomposition (HOSVD) algorithm for the recovery of the underlying low-
rank tensor from noisy observations and then derive the error bounds under a properly weighted
metric. Additionally, the efficiency and accuracy of our algorithm are both tested using synthetic
and real datasets in numerical simulations.

Keyword: HOSVD decomposition; tensor completion; weighted tensor

1 Introduction

In many data-rich domains such as computer vision, neuroscience, and social networks, tensors have
emerged as a powerful paradigm for handling the data deluge. In recent years, tensor analysis has
gained more and more attention. To a certain degree, tensors can be viewed as the generalization of
matrices to higher dimensions, and thus multiple questions from matrix analysis extend naturally to
tensors. Similar to matrix decomposition, the problem of tensor decomposition (decomposing an input
tensor into several less complex components) has been widely studied both in theory and application
(see e.g., [27, 33, 61]). Thus far, the problem of low-rank tensor completion, which aims to complete
missing or unobserved entries of a low-rank tensor, is one of the most actively studied problems
(see e.g., [23, 41, 42, 53]). It is noteworthy that, as caused by various unpredictable or unavoidable
reasons, multidimensional datasets are commonly raw and incomplete, and thus often only a small
subset of entries of tensors are available. It is, therefore, natural to address the above issue using
tensor completion in modern data-driven applications, in which data are naturally represented as a
tensor, such as image/video inpainting [34, 41], link-prediction [19], and recommendation systems [54],
to name a few.

In the past few decades, the matrix completion problem, which is a special case of tensor comple-
tion, has been extensively studied. In matrix completion, there are mature algorithms [10], theoretical
foundations [11, 12, 13] and various applications [2, 9, 24, 43] that pave the way for solving the tensor
completion problem in high-order tensors. Recently, Foucart et al. [21] proposed a simple algorithm
for matrix completion for general deterministic sampling patterns, and raised the following questions:
given a deterministic sampling pattern Ω and corresponding (possibly noisy) observations of the ma-
trix entries, what type of recovery error can we expect? In what metric? How can we efficiently
implement recovery? These were investigated in [21] by introducing an appropriate weighted error

metric for matrix recovery of the form ‖H � (M̂ −M)‖F , where M is the true underlying low-rank

matrix, M̂ refers to the recovered matrix, and H is a best rank-1 matrix approximation for the sam-
pling pattern Ω. In this regard, similar questions arise for the problem of tensor completion with
deterministic sampling patterns. Unfortunately, as is often the case, moving from the matrix setting
to the tensor setting presents non-trivial challenges, and notions such as rank and SVD need to be
re-defined and re-evaluated. We address these extensions for the completion problem here.

1

ar
X

iv
:2

00
3.

08
53

7v
2

 [
m

at
h.

N
A

]
 6

 J
ul

 2
02

1

Motivated by the matrix case, we propose an appropriate weighted error metric for tensor recovery
of the form ‖H�(T̂ −T)‖F , where T is the true underlying low-rank tensor, T̂ is the recovered tensor,
and H is an appropriate weight tensor. For the existing work, the error is only limited to the form
‖T̂ − T ‖F , which corresponds to the case that all the entries of H are 1, where H can be considered
to be a CP rank-1 tensor. It motivates us to rephrase the questions mentioned above as follows.

Main questions. Given a sampling pattern Ω, and noisy observations T + Z on Ω, for what
rank-one weight tensor H can we efficiently find a tensor T̂ so that ‖H� (T̂ − T)‖F is small compared
to ‖H‖F ? And how can we efficiently find such weight tensor H, or determine that a fixed H has this
property?

1.1 Contributions

Our main goal is to provide an algorithmic tool, theoretical analysis, and numerical results that
address the above questions. In this paper, we propose a simple weighted Higher Order Singular
Value Decomposition (HOSVD) method. Before we implement the weighted HOSVD algorithm, we
first appropriately approximate the sampling pattern Ω with a rank one tensor H. We can achieve
high accuracy if ‖H −H(−1) � 1Ω‖F is small, where H(−1) denotes the element-wise inverse. Finally,
we present empirical results on synthetic and real datasets. The simulation results show that when the
sampling pattern is non-uniform, the use of weights in the weighted HOSVD algorithm is essential,
and the results of the weighted HOSVD algorithm can provide a very good initialization for the total
variation minimization algorithm which can dramatically reduce the iterative steps without lose the
accuracy. In doing so, we extend the weighted matrix completion results of [21] to the tensor setting.

1.2 Organization

The paper is organized as follows. In Section 2, we give a brief review of related work and concepts
for tensor analysis, instantiate notations, and state the tensor completion problem under study. Our
main results are stated in Section 3 and the proofs are provided in Appendices A and B. The numerical
results are provided and discussed in Section 4.

2 Related Work, Background, and Problem Statement

In this section, we give a brief overview of the works that are related to ours, introduce some necessary
background information about tensors, and finally give a formal statement of tensor completion prob-
lem under study. The related work can be divided into two lines: that based on matrix completion
problems, which leads to a discussion of weighted matrix completion and related work, and that based
on tensor analysis, in which we focus on CP and Tucker decompositions.

2.1 Matrix Completion

The matrix completion problem is to determine a complete d1 × d2 matrix M from its partial entries
on a subset Ω ⊆ [d1]× [d2]. We use 1Ω to denote the matrix whose entries are 1 on Ω and 0 elsewhere
so that the entries of MΩ = 1Ω �M are equal to those of the matrix M on Ω, and are equal to 0
elsewhere, where � denotes the Hadamard product. There are various works that aim to understand
matrix completion with respect to the sampling pattern Ω. For example, the works in [7, 26, 40]
relate the sampling pattern Ω to a graph whose adjacency matrix is given by 1Ω and show that as
long as the sampling pattern Ω is suitably close to an expander, efficient recovery is possible when
the given matrix M is sufficiently incoherent. Mathematically, the task of understanding when there
exists a unique low-rank matrix M that can complete MΩ as a function of the sampling pattern Ω is
very important. In [48], the authors give conditions on Ω under which there are only finitely many
low-rank matrices that agree with MΩ, and the work of [51] gives a condition under which the matrix

2

can be locally uniquely completed. The work in [3] generalized the results of [48, 51] to the setting
where there is sparse noise added to the matrix. The works [5, 49] study when rank estimation is
possible as a function of a deterministic pattern Ω. Recently, [16] gave a combinatorial condition on
Ω that characterizes when a low-rank matrix can be recovered up to a small error in the Frobenius
norm from observations in Ω and showed that nuclear minimization will approximately recover M
whenever it is possible, where the nuclear norm of M is defined as ‖M‖∗ :=

∑r
i=1 σi with σ1, · · · , σr

the non-zero singular values of M .
All the works mentioned above are in the setting where recovery of the entire matrix is possible,

but in many cases full recovery is impossible. Ref. [32] uses an algebraic approach to answer the
question of when an individual entry can be completed. There are many works (see e.g., [18, 46]) that
introduce a weight matrix for capturing the recovery results of the desired entries. The work [26] shows
that, for any weight matrix, H, there is a deterministic sampling pattern Ω and an algorithm that
returns M̂ using the observation MΩ such that ‖H � (M̂ −M)‖F is small. The work [38] generalizes
the algorithm in [26] to find the “simplest” matrix that is correct on the observed entries. Succinctly,
their works give a way of measuring which deterministic sampling patterns, Ω, are “good” with respect
to a weight matrix H. In contrast to these two works, [21] is interested in the problem of whether one

can find a weight matrix H and create an efficient algorithm to find an estimate M̂ for an underlying
low-rank matrix M from a sampling pattern Ω and noisy samples MΩ +ZΩ such that ‖H�(M̂−M)‖F
is small.

In particular, one of our theoretical results is that we generalize the upper bounds for weighted
recovery of low-rank matrices from deterministic sampling patterns in [21] to the upper bound of
tensor weighted recovery. The details of the connection between our result and the matrix setting
result in [21] is discussed in Section 3.

2.2 Tensor Completion Problem

Tensor completion is the problem of filling in the missing elements of partially observed tensors.
Similar to the matrix completion problem, low rankness is often a necessary hypothesis to restrict the
degrees of freedom of the missing entries for the tensor completion problem. Since there are multiple
definitions of the rank of a tensor, this completion problem has several variations.

The most common tensor completion problems [22, 41] may be summarized as follows (we will
define the different ranks subsequently, see further on in this section).

Definition 2.1 (Low-rank tensor completion (LRTC), [53]). Given a low-rank (CP rank, Tucker
rank, or other ranks) tensor T and sampling pattern Ω, the low-rank completion of T is given by the
solution of the following optimization problem:

min
X

rank∗(X)

subject to XΩ = TΩ, (1)

where rank∗ denotes the specific tensor rank assumed at the beginning.

In the literature, there are many variants of LRTC but most of them are based on the following
questions:

(1) What type of the rank should one use (see e.g., [4, 6, 29])?

(2) Are there any other restrictions based on the observations that one can assume (see e.g., [25,
41, 45])?

(3) Under what conditions can one expect to achieve a unique and exact completion (see e.g., [4])?

In the rest of this section, we instantiate some notations and review basic operations and definitions
related to tensors. Then some tensor decomposition-based algorithms for tensor completion are stated.
Finally, a formal problem statement under study will be presented.

3

2.2.1 Preliminaries and Notations

Tensors, matrices, vectors, and scalars are denoted in different typeface for clarity below. In the sequel,
calligraphic boldface capital letters are used for tensors, capital letters are used for matrices, lower
boldface letters for vectors, and regular letters for scalars. The set of the first d natural numbers is
denoted by [d] := {1, · · · , d}. Let X ∈ Rd1×···×dn and α ∈ R, X (α) represents the element-wise power
operator, i.e., (X (α))i1···in = Xαi1···in . 1Ω ∈ Rd1×···×dn denotes the tensor with 1 on Ω and 0 otherwise.
We use X � 0 to denote the tensor with Xi1···in > 0 for all i1, · · · , in. Moreover, we say that Ω ∼ W
if the entries of X are sampled randomly with the sampling set Ω such that (i1, · · · , in) ∈ Ω with
probability Wi1···in . We include here some basic notions relating to tensors, and refer the reader to
e.g., [33] for a more thorough survey.

Definition 2.2 (Tensor). A tensor is a multidimensional array. The dimension of a tensor is called
the order (also called the mode). The space of real tensors of order n and size d1× · · ·× dn is denoted
as Rd1×···×dn . The elements of a tensor X ∈ Rd1×···×dn are denoted by Xi1···in .

An n-order tensor X can be matricized in n ways by unfolding it along each of the n modes. The
definition for the matricization of a given tensor is stated below.

Definition 2.3 (Matricization/unfolding of a tensor). The mode-k matricization/unfolding of tensor

X ∈ Rd1×···×dn is the matrix, which is denoted as X(k) ∈ R
dk×

∏
j 6=k

dj
, whose columns are composed

of all the vectors obtained from X by fixing all indices except for the k-th dimension. The mapping
X 7→ X(k) is called the mode-k unfolding operator.

Example 2.4. Let X ∈ R3×4×2 with the following frontal slices:

X1 =

1 4 7 10
2 5 8 11
3 6 9 12

 X2 =

13 16 19 22
14 17 20 23
15 18 21 24

 ,
then the three mode-n matricizations are

X(1) =

1 4 7 10 13 16 19 22
2 5 8 11 14 17 20 23
3 6 9 12 15 18 21 24

 ,
X(2) =


1 2 3 13 14 15
4 5 6 16 17 18
7 8 9 19 20 21
10 11 12 22 23 24

 ,
X(3) =

[
1 2 3 · · · 10 11 12
13 14 15 · · · 22 23 24

]
.

Definition 2.5 (Folding operator). Suppose that X is a tensor. The mode-k folding operator of a
matrix M = X(k), denoted as foldk(M), is the inverse operator of the unfolding operator.

Definition 2.6 (∞-norm). Given X ∈ Rd1×···×dn , the norm ‖X‖∞ is defined as

‖X‖∞ = max
i1,··· ,in

|Xi1···in |.

The unit ball under the ∞-norm is denoted by B∞.

Definition 2.7 (Frobenius norm). The Frobenius norm for a tensor X ∈ Rd1×···×dn is defined as

‖X‖F =

√ ∑
i1,··· ,in

X 2
i1···in .

4

Definition 2.8 (Max-norm for matrix). Given X ∈ Rd1×d2 , the max-norm for X is defined as

‖X‖max = min
X=UV T

‖U‖2,∞ ‖V ‖2,∞ .

Definition 2.9 (Product operations).

• Outer product: Let a1 ∈ Rd1 , · · · ,an ∈ Rdn . The outer product among these n vectors is a
tensor X ∈ Rd1×···×dn defined as:

X = a1⊗⊗⊗ · · · ⊗⊗⊗ an, Xi1,··· ,in =

n∏
k=1

ak(ik).

The tensor X ∈ Rd1×···×dn is of rank one if it can be written as the outer product of n vectors.

• Kronecker product of matrices: The Kronecker product of A ∈ RI×J and B ∈ RK×L is denoted
by A⊗B. The result is a matrix of size (KI)× (JL) defined by

A⊗B =


A11B A12B · · · A1JB
A21B A22B · · · A2JB

...
...

. . .
...

AI1B AI2B · · · AIJB

 .

• Khatri-Rao product: Given matrices A ∈ Rd1×r and B ∈ Rd2×r, their Khatri-Rao product is
denoted by A�B. The result is a matrix of size (d1d2)× r defined by

A�B =
[
a1 ⊗ b1 · · · ar ⊗ br

]
,

where ai and bi stand for the i-th column of A and B respectively.

• Hadamard product: Given X ,Y ∈ Rd1×···×dn , their Hadamard product X � Y ∈ Rd1×···×dn is
defined by element-wise multiplication, i.e.,

(X � Y)i1···in = Xi1···inYi1···in .

• Mode-k product: Let X ∈ Rd1×···×dn and U ∈ Rdk×J , the multiplication between X on its mode-k
with U is denoted as Y = X ×k U with

Yi1,··· ,ik−1,j,ik+1,··· ,in =

dk∑
s=1

Xi1,··· ,ik−1,s,ik+1,··· ,inUs,j .

Definition 2.10 (Tensor (CP) rank [27, 28]). The (CP) rank of a tensor X , denoted rank(X), is
defined as the smallest number of rank-1 tensors that generate X as their sum. We use Kr to denote
the cone of rank-r tensors.

Given kM ∈ Rdk×r, we use J1M, · · · , nMK to denote the CP representation of tensor X , i.e.,

X =

r∑
j=1

(
1M(:, j)⊗⊗⊗ · · · ⊗⊗⊗ nM(:, j)

)
,

where M(:, j) means the j-th column of the matrix M .
Different from the case of matrices, the rank of a tensor is not presently well understood. Addi-

tionally, the task of computing the rank of a tensor is an NP-hard problem [36]. Next we introduce
an alternative definition of the rank of a tensor, which is easy to compute.

5

Definition 2.11 (Tensor Tucker rank [28]). Let X ∈ Rd1×···×dn . The tuple (r1, · · · , rn) ∈ Nn is called
the Tucker rank of the tensor X , where rk = rank(X(k)). We use Kr to denote the cone of tensors
with Tucker rank r.

Tensor decompositions are powerful tools for extracting meaningful, latent structures in hetero-
geneous, multidimensional data (see e.g., [33]). In this paper, we focus on two most widely used
decomposition methods: CP and HOSVD. For more comprehensive introduction, readers are referred
to [1, 33, 52].

2.2.2 CP-Based Method for Tensor Completion

The CP decomposition was first proposed by Hitchcock [27] and further discussed in [14]. The formal
definition of the CP decomposition is the following.

Definition 2.12 (CP decomposition). Given a tensor X ∈ Rd1×···×dn , its CP decomposition is an
approximation of n loading matrices Ak ∈ Rdk×r, k = 1, · · · , n, such that

X ≈ JA1, · · · , AnK =

r∑
i=1

A1(:, i)⊗⊗⊗ · · · ⊗⊗⊗An(:, i),

where r is a positive integer denoting an upper bound of the rank of X and Ak(:, i) is the i-th column
of matrix Ak. If we unfold X along its k-th mode, we have

X(k) ≈ Ak(A1 � . . .�Ak−1 �Ak+1 � · · · �An)T .

Here the ≈ sign means that the algorithm should find an optimal X̂ with the given rank such that
the distance between the low-rank approximation and the original tensor, ‖X − X̂‖F , is minimized.

Given an observation set Ω, the main idea to implement tensor completion for a low-rank tensor
T is to conduct imputation based on the equation

X = TΩ + X̂Ωc ,

where X̂ = JA1, · · · , AnK is the interim low-rank approximation based on the CP decomposition, X is
the recovered tensor used in next iteration for decomposition, and Ωc = {(i1, · · · , in) : 1 ≤ ik ≤ dk}\Ω.
For each iteration, we usually estimate the matrices Ak using the alternating least squares optimization
method (see e.g., [8, 31, 55]).

2.2.3 HOSVD-Based Method for Tensor Completion

The Tucker decomposition was proposed by Tucker [57] and further developed in [17, 35].

Definition 2.13 (Tucker decomposition). Given an n-order tensor X , its Tucker decomposition is
defined as an approximation of a core tensor C ∈ Rr1×···×rn multiplied by n factor matrices Ak ∈
Rdk×rk , k = 1, · · · , n along each mode, such that

X ≈ C ×1 A1 ×2 · · · ×n An = JC;A1, · · · , AnK,

where rk is a positive integer denoting an upper bound of the rank of the matrix X(k).
If we unfold X along its k-th mode, we have

X(k) ≈ AkC(k)(A1 ⊗ · · · ⊗Ak−1 ⊗Ak+1 ⊗ · · · ⊗An)T

Tucker decomposition is a widely used tool for tensor completion. To implement Tucker decompo-
sition, one popular method is called the higher-order SVD (HOSVD) [57]. The main idea of HOSVD
is:

6

1. Unfold X along mode k to obtain matrix X(k);

2. Find the economic SVD decomposition of X(k) = kUkΣkV T ;

3. Set Ak to be the first rk columns of kU ;

4. C = X ×1 A
T
1 ×2 · · · ×n ATn .

If we want to find a Tucker rank r = [r1, · · · , rn] approximation for the tensor X via HOSVD
process, we just replace Ak by the first rk columns of Uk.

2.2.4 Tensor Completion Problem under Study

In our setting, it is supposed that T is an unknown tensor in Kr∩βB∞ or Kr∩βB∞. Fix a sampling
pattern Ω ⊆ [d1]× · · · × [dn] and the weight tensor W. Our goal is to design an algorithm that gives
provable guarantees for a worst-case T , even if it is adapted to Ω.

In our algorithm, the observed data are TΩ + ZΩ = 1Ω � (T + Z), where Zi1···in ∼ N (0, σ2) are
i.i.d. Gaussian random variables. From the observations, the goal is to learn something about T . In
this paper, instead of measuring our recovered results with the underlying true tensor in a standard
Frobenius norm ‖T − T̂ ‖F , we are interested in learning T using a weighted Frobenius norm, i.e., to

develop an efficient algorithm to find T̂ so that∥∥∥W(1/2) � (T − T̂)
∥∥∥
F

is as small as possible for some weight tensor W. When measuring the weighted error, it is important
to normalize appropriately to understand the meaning of the error bounds. In our results, we always
normalize the error bounds by

∥∥W(1/2)
∥∥
F

. It is noteworthy that∥∥∥W(1/2) � (T − T̂)
∥∥∥
F∥∥W(1/2)

∥∥
F

=

 ∑
i1,··· ,in

Wi1···in∑
i1,··· ,inWi1,··· ,in

(Ti1···in − T̂i1···in)2

1/2

,

which gives a weighted average of the per entry squared error. Generally, our problem can be formally
stated below.

Problem: Weighted Universal Tensor Completion
Parameters:
• Dimensions d1, · · · , dn;
• A sampling pattern Ω ⊆ [d1]× · · · × [dn];
• Parameters σ, β > 0, r or r = [r1 · · · rn];
• A rank-1 weight tensor W ∈ Rd1×···×dn so that Wi1···in > 0 for all i1, · · · , in;
• A set K (e.g., Kr ∩ βB∞ or Kr ∩ βB∞).
Goal: Design an efficient algorithm A with the following guarantees:
• A takes as input entries TΩ + ZΩ so that Zi1···in ∼ N (0, σ2) are i.i.d.;
• A runs in polynomial time;
• With high probability over the choice of Z, A returns an estimate T̂ of T so that∥∥∥W(1/2) � (T − T̂)

∥∥∥
F∥∥W(1/2)

∥∥
F

≤ δ

for all T ∈ K, where δ depends on the problem parameters.

Remark 2.14 (Strictly positive W). The requirement that Wi1···in is strictly greater than zero is a
generic condition. In fact, if Wi1···in = 0 for some (i1, · · · , in), some mode k with index ik of W is
zero, then we can reduce the problem to a smaller one by ignoring that mode k with index ik.

7

3 Main Results

In this section, we state informal versions of our main results. With fixed sampling pattern Ω and
weight tensor W, we can find T̂ by solving the following optimization problem:

T̂ =W(−1/2) � argmin
rank (X)=r

∥∥∥X −W(−1/2) � YΩ

∥∥∥
F
, (2)

or
T̂ =W(−1/2) � argmin

Tucker-rank (X)=r

∥∥∥X −W(−1/2) � YΩ

∥∥∥
F
, (3)

where YΩ ∈ Rd1×···×dn with

YΩ(i1, · · · , in) =

{
Ti1···in + Zi1···in if (i1, · · · , in) ∈ Ω

0 if (i1, · · · , in) 6∈ Ω
.

It is known that solving (2) is NP-hard. However, there are some polynomial time algorithms to
find approximate solutions for (2) such that the approximation is (empirically) close to the actual
solution of (2) in terms of the Frobenius norm. In our numerical experiments, we solve (2) via the
CP-ALS algorithm [14]. To solve (3), we use the HOSVD process [17]. Assume that T has Tucker
rank r = [r1, · · · , rn]. Let

Âi = argmin
rank (A)=ri

∥∥∥A− (W(−1/2) � YΩ)(i)

∥∥∥
2

and set Ûi to be the left singular vector matrix of Âi. Then the estimated tensor is of the form

T̂ =W(−1/2) � ((W(−1/2) � YΩ)×1 Û1Û
T
1 ×2 · · · ×n ÛnÛTn .

In the following, we call this the weighted HOSVD algorithm.

3.1 General Upper Bound

Suppose that the optimal solution T̂ for (2) or (3) T̂ can be found, we would like to give an upper

bound estimations for ‖W(1/2) � (T − T̂)‖F with some proper weight tensor W.

Theorem 3.1. Let W = w1 ⊗⊗⊗ · · · ⊗⊗⊗ wn ∈ Rd1×···×dn have strictly positive entries, and fix Ω ⊆
[d1]×· · ·×[dn]. Suppose that T ∈ Rd1×···×dn has rank r for problem (2) or Tucker rank r = [r1, · · · , rn]

for problem (3), and let T̂ be the optimal solutions for (2) or (3). Suppose that Zi1···in ∼ N (0, σ2).
Then with probability at least 1− 2−|Ω|/2 over the choice of Z,∥∥∥W(1/2) � (T − T̂)

∥∥∥
F
≤ 2 ‖T ‖∞

∥∥∥W(1/2) −W(−1/2) � 1Ω

∥∥∥
F

+ 4σµ
√
|Ω| log(2),

Recall here, (W(1/2))i1···in = W(1/2)
i1···in and (W(−1/2))i1···in = W(−1/2)

i1···in as defined in Section 2.2.1 and

µ2 = max(i1,··· ,in)∈Ω
1

Wi1···in
.

Notice that the upper bound in Theorem 3.1 is for the optimal output T̂ for problems (2) and
(3), which is general. However, the upper bound in Theorem 3.1 contains no rank information of the
underlying tensor T . To introduce the rank information of the underlying tensor T , we restrict our
analysis for Problem (3) by considering the HOSVD process in the sequel.

3.2 Results for Weighted HOSVD Algorithm

In this section, we begin by giving a general upper bound for the weighted
HOSVD algorithm.

8

3.2.1 General Upper Bound for Weighted HOSVD

Theorem 3.2 (Informal, see Theorem B.1). LetW = w1⊗⊗⊗· · ·⊗⊗⊗wn ∈ Rd1×···×dn have strictly positive
entries, and fix Ω ⊆ [d1] × · · · × [dn]. Suppose that T ∈ Rd1×···×dn has Tucker rank r = [r1, · · · , rn].

Suppose that Zi1···in ∼ N (0, σ2) and let T̂ be the estimate of the solution of (3) via the HOSVD
process. Then

∥∥∥W(1/2) � (T − T̂)
∥∥∥
F
.

 n∑
k=1

√
rk log(dk +

∏
j 6=k

dj)µk

σ

+

(
n∑
k=1

rk

∥∥∥(W(−1/2) � 1Ω −W(1/2))(k)

∥∥∥
2

)
‖T ‖∞ ,

with high probability over the choice of Z, where

µ2
k = max

max
ik

 ∑
i1,··· ,ik−1,ik+1,··· ,in

1(i1,i2,··· ,in)∈Ω

Wi1i2···in

 , max
i1,··· ,ik−1,ik+1,··· ,in

(∑
ik

1(i1,i2,··· ,in)∈Ω

Wi1i2···in

) .

and a . b means that a ≤ cb for some universal constant c > 0.

Remark 3.3. The upper bound in [21] suggests ‖W (1/2) � (M − M̂)‖F ≤ 2
√

2rλ‖M‖∞
+4
√

2σµ1

√
r log(d1 + d2), where λ = ‖W (1/2) − W (−1/2) ◦ 1Ω‖ and µ2

1 = max(i,j)∈Ω
1
Wij

, where

M̂ is obtained by considering the truncated SVD decompositions. Notice that in our result, when
n = 2, the upper bound becomes 2

√
r log(d1 + d2)µσ + 2r‖W (1/2) − W (−1/2) ◦ 1Ω‖‖M‖∞ with

µ2 = max{‖1Ω ◦ W (−1)‖∞, ‖1Ω ◦ W (−1)‖1}. Since µ in our work is much bigger than the µ1 in
[21], the bound in our work is weaker than the one in [21]. The reason is that in order to obtain a
general bound for all tensor, the fact that the optimal approximations M̂ for a given matrix in the
spectral norm and Frobenious norm are the same cannot be applied.

3.2.2 Case Study: When Ω ∼ W

To understand the bounds mentioned above, we also study the case when Ω ∼ W such that ‖(W(1/2)−
W(−1/2) � 1Ω)(k)‖2 is small for k = 1, · · · , n. Even though the samples are taken randomly in this
case, our goal is to understand our upper bounds for deterministic sampling pattern Ω. To make sure
that ‖(W(1/2)−W(−1/2)�1Ω)(k)‖2 is small, we need to assume that each entry ofW is not too small.
For this case, we have the following main results.

Theorem 3.4 (Informal, see Theorems B.4 and B.11). Let W = w1⊗⊗⊗ · · ·⊗⊗⊗wn ∈ Rd1×···×dn be a CP
rank-1 tensor so that for all (i1, · · · , in) ∈ [d1] × · · · × [dn] we have Wi1···in ∈ [1√

d1···dn
, 1]. Suppose

that Ω ∼ W.

• Upper bound: Then the following holds with high probability.
For our weighted HOSVD algorithm A, for any Tucker rank-r tensor T with ‖T ‖∞ ≤ β, A
returns T̂ = A(TΩ + ZΩ) so that with high probability over the choice of Z,∥∥∥W(1/2) � (T − T̂)

∥∥∥
F∥∥W(1/2)

∥∥
F

.
1√
|Ω|

(
βn2rd

n−1
2 log(d) + σn2r1/2d

n−1
2

)
,

where r = maxk{rk} and d = maxk{dk}.

9

• Lower bound: If additionally, W is flat (the entries of W are close), then for our weighted
HOSVD algorithm A, there exists some T ∈ Kr ∩ βB∞ so that with probability at least 1

2 over
the choice of Z,∥∥W(1/2) � (A(TΩ + ZΩ)− T)

∥∥
F∥∥W(1/2)

∥∥
F

& min


σ√
|Ω|

(
r̃d̃

d̃+ 2C ′2r̃

)n
2

,
σ√
|Ω|

 r̃d̃(√
d̃+

√
2r̃ log(r̃)C ′

)2


n
2

,
β√

n log(d̃)

 ,

where r̃ = mink{rk}, d̃ = mink{dk}, and C ′ is some constant to measure the “flatness” of W.

Remark 3.5. The formal statements in Theorems B.4 and B.11 are more general than the statements
in Theorem 3.4.

4 Experiments

4.1 Simulations for Uniform Sampling Pattern

In this section, we test the performance of our weighted HOSVD algorithm when the sampling pattern
arises from uniform random sampling. Consider a tensor T of the form T = C ×1 U1 ×2 · · · ×n Un,
where Ui ∈ Rdi×ri and C ∈ Rr1×···×rn . Let Z be a Gaussian random tensor with Zi1···in ∈ N (0, σ)
and Ω be the sampling pattern set according to uniform sampling. In this simulation, we compare
the results of numerical experiments for using the HOSVD algorithm to solve

T̂ = argmin
Tucker rank (X)=r

‖X − YΩ‖F , (4)

T̂ = argmin
Tucker rank (X)=r

∥∥∥∥X − 1

p
YΩ

∥∥∥∥
F

, (5)

and
T̂ =W(−1/2) � argmin

Tucker rank (X)=r

∥∥∥X −W(−1/2) � YΩ

∥∥∥
F
, (6)

where p = |Ω|∏n
k=1 dk

and YΩ = TΩ + ZΩ.

First, we generate a synthetic sampling set Ω with sampling rate SR: = |Ω|∏n
k=1 dk

= 30% and find a

weight tensor W by solving
W = argmin

X�0,rank(X)=1

‖X − 1Ω‖F (7)

via the alternating least squares method for the non-negative CP decomposition. Next, we generate
synthetic tensors T ∈ Rd1×···×dn of the form C ×1 U1 ×2 · · · ×n Un with n = 3, 4 with rank (T(i)) = r,
where i = 1, · · · , n, and r varies from 2 to 10. Then we add mean zero Gaussion random noise Z
with variance σ = 10−2 so that a new tensor is generated, which is denoted by Y = T + Z. Then
we solve the tensor completion problems (4), (5) and (6) by the HOSVD procedure. For each fixed
low-rank tensor, we average over 20 tests. We measure error using the weighted Frobenius norm. The
simulation results are reported in Figures 1 and 2. Figure 1 shows the results for the tensor of size
100 × 100 × 100 and Figure 2 shows the results for the tensor of size 50 × 50 × 30 × 30, where the

weighted error is of the form ‖W(1/2)�(T̂ −T)‖F
‖W(1/2)‖ . These figures demonstrate that using our weighted

samples performs more efficiently than using the original samples. For the uniform sampling case, the
p weighted samples and W weighted samples exhibit similar performance.

10

2 4 6 8 10
10

-1

10
0

10
1

10
2

Figure 1: Tensor of size 100 × 100× 100 using the uniform sampling pattern: plots the errors of the

form ‖W(1/2)�(T̂ −T)‖F
‖W(1/2)‖F

. The lines labeled as HOSVD, HOSVD-p and HOSVD-w represent the results

for solving (4), (5) and (6), respectively.

2 4 6 8 10
10

-1

10
0

10
1

10
2

10
3

Figure 2: Tensor of size 50× 50× 30× 30 using the uniform sampling pattern: plots the errors of the

form ‖W(1/2)�(T̂ −T)‖F
‖W(1/2)‖F

. The lines labeled as HOSVD, HOSVD-p and HOSVD-w represent the results

for solving (4), (5) and (6), respectively.

4.2 Simulation for Non-Uniform Sampling Pattern

To generate a non-uniform sampling pattern with sampling rate 30%, we first generate a CP rank 1
tensor of the form H = J1;h1, · · · ,hnK, where hi = (ui1ddi/2e, vi1bdi/2c) 0 < ui, vi ≤ 1. Let Ω ∼ H.
Then we repeat the process as in Section 4.1. The simulation results are shown in Figures 3 and 4.

11

As shown in figures, the results using our proposed weighted samples perform more efficiently than
using the p weighted samples.

2 4 6 8 10
10

-2

10
-1

10
0

10
1

10
2

Figure 3: Tensor of size 100 × 100 × 100 using the non-uniform sampling pattern: plots the errors

of the form ‖W(1/2)�(T̂ −T)‖F
‖W(1/2)‖F

. The lines labeled as HOSVD, HOSVD-p and HOSVD-w represent the

results for solving (4), (5) and (6), respectively.

2 4 6 8 10
10

-1

10
0

10
1

10
2

10
3

Figure 4: Tensor of size 50 × 50 × 30 × 30 using the non-uniform sampling pattern: plots the errors

of the form ‖W(1/2)�(T̂ −T)‖F
‖W(1/2)‖F

. The lines labeled as HOSVD, HOSVD-p and HOSVD-w represent the

results for solving (4), (5) and (6), respectively.

Remark 4.1. When we use the HOSVD procedure to solve (4), (5), and (6), we need (an estimate
of) the Tucker rank as input. Instead of inputting the real rank of the true tensor, we could also use

12

the rank that is estimated by considering the decay of the singular values for the unfolded matrices
of the sampled tensor YΩ as the input rank, which we call SV-rank. The simulation results for the
non-uniform sampling pattern with SV-rank as input are reported in Figure 5. The simulation shows
that the weighted HOSVD algorithm performs more efficiently than using the p weighted samples or
the original samples. Comparing Figure 5 with Figure 3, we could observe that using the estimated
rank as input for HOSVD procedure performs even better than using the real rank as input. This
observation motivates a way to find a “good” rank as input for HOSVD procedure.

Remark 4.2. We only provide guarantees on the performance in the weighted Frobenius norm, (as

we report the weighted error ‖W
(1/2)�(T̂ −T)‖F
‖W(1/2)‖F

), our procedures exhibit good empirical performance

even in the usual relative error ‖T̂ −T ‖F‖T ‖F when the Tucker rank of the tensor is relatively low. However,

we observe that the advantages of weighted HOSVD scheme tend to be diminished in terms of relative
error when the Tucker rank increases. This result is not surprising since the entries are treated
unequally in scheme (6). Therefore we leave the investigation on relative error and the tensor rank
for future work.

2 4 6 8 10
10

-2

10
-1

10
0

10
1

10
2

Figure 5: Tensor of size 100×100×100 using the non-uniform sampling pattern and with the SV-rank

as the input rank: plots the errors of the form ‖W(1/2)�(T̂ −T)‖F
‖W(1/2)‖F

.

4.3 Test for Real Data

In this section, we test our weighted HOSVD algorithm for tensor completion on three videos, see
[20]. The dataset is the tennis-serve data from an Olympic Sports Dataset [47]1. The three videos are
color video. In our simulation, we use the same setup as the one in [20], and choose 30 frames evenly
from each video. For each frame, the size is scaled to 360 × 480 × 3, so each video is transformed
into a 4-D tensor data of size 360× 480× 3× 30. The first frame of each video after preprocessing is
illustrated in Figure 6.

1One can download the dataset from http://vision.stanford.edu/Datasets. There are a lot of videos in the zip
file and we only choose three of them: “d2P zx JeoQ 00120 00515.seq” (video 1), “gs3sPDfbeg4 00082 00229.seq”(video
2), and “VADoc-AsyXk 00061 0019.seq” (video 3).

13

http://vision.stanford.edu/Datasets/OlympicSports/

(a) Video 1 (b) Video 2 (c) Video 3

Figure 6: The first frame of videos [20].

We implement the experiments for different sampling rates of 10%, 30%, 50%, and 80% to generate
uniform and non-uniform sampling patterns Ω. In our implementation, we use the SV-rank of TΩ as
the input rank. According to the generated sampling pattern, we find a weight tensor W and find
estimates T̂1 and T̂2 by considering (4) and (6) respectively, using the input Tucker rank r. The entries
on T1 and T2 are forced to be the observed data. The Signal to Noise Ratio (SNR)

SNR(T̂) = −20 log10

(
‖T̂ − T ‖F
‖T ‖F

)

are computed and the simulation results are reported in Tables 1 and 2. As shown in the tables,
applying HOSVD process to (6) can give a better result than applying HOSVD process to (4) directly
regardless of the uniformity of the sampling pattern.

Video SR Input Rank HOSVD w+TV HOSVD HOSVD w/HOSVD p TVM

10% [7 17 3 5] 13.29 (16.3s) 1.27 (3.74s) 10.15 (11.4s) 13.04 (41.3s)

30% [18 10 3 6] 16.96 (14.0s) 4.26 (4.01s) 12.05 (7.23s) 17.05 (29.7s)

50% [26 4 3 11] 19.60 (12.2s) 8.21 (2.99s) 14.59 (7.03s) 19.68 (23.8s)

80% [47 47 3 22] 24.90 (11.5s) 17.29 (6.55s) 19.75 (8.08s) 25.01 (18.1s)

10% [28 6 3 7] 10.98 (13.1s) 1.19 (4.20s) 7.88 (8.76s) 10.89 (42.2s)

30% [34 18 3 15] 14.44 (16.1s) 4.11 (3.80s) 10.40 (7.51s) 14.50 (31.4s)

50% [35 33 3 9] 16.95 (15.3s) 7.85 (5.86s) 12.84 (7.64s) 16.96 (26.6s)

80% [56 50 3 21] 22.21 (15.1s) 16.51 (7.24s) 18.64 (8.45s) 22.19 (18.4s)

10% [12 9 3 10] 12.34 (16.1s) 1.22 (2.73s) 8.46 (9.88s) 12.23 (45.7s)

30% [20 24 3 11] 17.10 (15.3s) 4.24 (3.17s) 11.62 (7.62s) 17.19 (35.3s)

50% [25 32 3 14] 20.44 (12.3s) 8.20 (3.92s) 14.54 (5.85s) 20.49 (28.9s)

80% [50 72 3 30] 26.80 (12.4s) 18.03 (8.40s) 21.38 (8.93s) 26.71 (20.9s)

Table 1: Signal to noise ratio (SNR) and elapsed time (in second) for HOSVD and HOSVD w on
video data with uniform sampling pattern. The HOSVD w and HOSVD p behave very similar for
uniform sampling hence we integrate the results into one column.

Finally, we test the proposed weighted HOSVD algorithm on real candle video data named “can-
dle 4 A”2. We have tested the relation between the relative errors and the sampling rates using
r = (5, 5, 5) as the input rank for HOSVD algorithm. The relative errors are presented in Figure 7.

2The dataset can be downloaded from the Dynamic Texture Toolbox in http://www.vision.jhu.edu/code/)

14

http://www.vision.jhu.edu/code/

Video SR Input Rank HOSVD HOSVD w HOSVD p

10% [6 13 3 3] 1.09 10.07 5.56

30% [10 28 3 16] 3.74 11.81 7.53

50% [21 41 3 14] 7.05 13.22 10.73

80% [44 57 3 26] 15.76 19.60 17.39

10% [38 11 3 2] 1.13 8.04 4.33

30% [26 19 3 16] 3.79 10.13 6.80

50% [30 27 3 10] 7.15 12.57 10.14

80% [53 50 3 23] 14.81 18.55 16.31

10% [16 11 3 2] 1.09 8.31 4.73

30% [17 23 3 17] 3.76 11.05 6.87

50% [24 38 3 14] 7.18 13.78 9.99

80% [47 69 3 22] 15.88 20.82 16.02

Table 2: Signal to noise ratio (SNR) for HOSVD and HOSVD w on video data with non-uniform
sampling pattern.

The simulation results also show that the proposed weighted HOSVD algorithm can implement tensor
completion efficiently.

0 20 40 60 80

10
-1

10
0

0 20 40 60 80

10
-1

10
0

Figure 7: Relation between relative error and sampling rate for the dataset “candle 4 A” using [5, 5, 5]
as the input rank for HOSVD process. The left figure records the relative error for the uniform
sampling pattern and the right figure for the non-uniform sampling pattern. The sampling error
stands for the relative error between the original video and the video with masked entries estimated
to be zeros, hence should approximately equal to

√
1− SR, where SR is the sampling rate.

4.4 The Application of Weighted HOSVD on Total Variation Minimization

As shown in the previous simulations, the weighted HOSVD decomposition can provide better results
for tensor completion by comparing with HOSVD. There are a bunch of algorithms that are Sensitive
to initialization. Additionally, real applications may have higher requirements for accuracy. Therefore,
it is meaningful to combine our weighted HOSVD with other algorithms in order to further improve the
performance. In this section, we would consider the application of weighted HOSVD decomposition on
the total variation minimization algorithm. As a traditional approach, the total variation minimization

15

(TVM), is broadly applied in studies about image recovery and denoising. While the earliest research
could trace back to 1992 [50]. The later studies combined TVM and other low rank approximation
algorithms such as Nuclear Norm Minimization (see e.g., [59, 44, 60]) and HOSVD (e.g., [58, 30, 39])
in order to achieve better performance in image and video completion tasks.

Motivated by the matrix TV minimization, we proposed the tensor TV minimization which is
summarized in Algorithm 1. In Algorithm 1, the Laplacian operator computes the divergence of all-
dimension gradients for each entry of the tensor. The shrink operator simply moves the input towards
0 with distance λ, or formally defined as:

shrink(x, λ) = sign(x) ·max(|x| − λ, 0)

For the initialization of X 0 in Algorithm 1, we assign X 0 to be the output of the result from
HOSVD-w. Applying the same experiment setting as in Section 4.3, we evaluate the performance of the
cocktail approach as well as the regular HOSVD approach. We report the simulation results in Table
1 and we measure the performances by considering the signal to noise ratio(SNR). As shown in Table
1, the total variation minimization could be applied to further improve the result of (6). Specifically,
the TVM with 0 as initialization performs similar to TVM with HOSVD-w as initialization when
the observed rate is high, but the HOSVD-w initialization could improve the performance of TVM
when the observed rate is very low (e.g., 10%). Additionally, we compared the decay of relative error
for using the weighted HOSVD output as initialization and the default initialization (X 0 = 0). The
iterative results are shown in Figure 8, and it shows that using the result from weighted HOSVD as
an initialization could notably reduce the iterations of TV-minimization for achieving the convergence
threshold (‖X k −X k−1‖F < 10−4).

Input : Noised tensor T ∈ Rd1×···×dn ; Sampling pattern Ω ∈ {0, 1}d1×···×dn ; stepsize hk,
threshold λ; X 0 ∈ Rd1×···×dn .

Set X 0 = X 0 + (TΩ −X 0
Ω).

for k = 0 : K do
for i = 1 : n do
∇i(X kα1,...,αn) = X kα1,...,αi+1,...,αn −X

k
α1,...αi,...,αn , (αi = 1, 2, ..., di − 1)

(∇i(·) = 0 when αi = di)
∆i(X kα1,...,αn) = X kα1,...,αi−1,...,αn + X kα1,...,αi+1,...,αn − 2X kα1,...αi,...,αn , (αi =
2, 3, ..., di − 1) (∆i(·) = 0 when αi = 1 or di)

end

∆(X kα1,...,αn) =
∑
i ∆i(X kα1,...,αn)

X k+1
α1,...,αn = X kα1,...,αn + hk · shrink(

∆(Xkα1,...,αn
)√∑

i∇2
i (Xkα1,...,αn

)
, λ)

X k+1
Ω = TΩ

end

Output: XK
Algorithm 1: TV Minimization for Tensor

16

(a)

0 10 20 30 40 50

0.2

0.4

0.6

0.8

1

(b)

Figure 8: Convergence comparison between total variation minimization (TVM) with HOSVD-w, 0,

and HOSVD as initialization on video 1 with SR = 50%: (a) the relative error ‖T̂ −T ‖F‖T ‖F vs. number

of iterations. (b) the relative error v.s. total computational CPU time(initialization + completion).

5 Conclusions

In this paper, we propose a simple but efficient algorithm named the weighted HOSVD algorithm
for recovering an underlying low-rank tensor from noisy observations. For this algorithm, we provide
upper and lower error bounds that measure the difference between the estimates and the true under-
lying low-rank tensor. The efficiency of our proposed weighted HOSVD algorithm is also shown by
numerical simulations. Additionally, the result of our weighted HOSVD algorithm can be used as an
initialization for the total variation minimization algorithm, which shows that using our method as an
initialization for the total variation minimization algorithm can increasingly reduce the iterative steps
leading to improved overall performance in reconstruction (see our conference paper [15]). It would
be interesting for future work to combine the weighted HOSVD algorithm with other algorithms to
achieve more accurate results for tensor completion in many settings.

Acknowledgements

The authors are supported by NSF DMS #2011140 and NSF BIGDATA #1740325. The authors take
pleasure in thanking Hanqin Cai, Keaton Hamm, Armenak Petrosyan, Bin Sun, and Tao Wang for
comments and suggestions on the manuscript.

A Proof for Theorem 1

In this appendix, we provide the proof for Theorem 3.1.

Proof of Theorem 3.1. Let YΩ = TΩ + ZΩ.∥∥∥W(1/2) � (T − T̂)
∥∥∥
F

=
∥∥∥W(1/2) � T −W(−1/2) � YΩ +W(−1/2) � YΩ −W(1/2) � T̂

∥∥∥
F

≤
∥∥∥W(1/2) � T −W(−1/2) � YΩ

∥∥∥
F

+
∥∥∥W(−1/2) � YΩ −W(1/2) � T̂

∥∥∥
F

17

≤ 2
∥∥∥W(1/2) � T −W(−1/2) � YΩ

∥∥∥
F

= 2
∥∥∥W(1/2) � T −W(−1/2) � (TΩ + ZΩ)

∥∥∥
F

≤ 2
∥∥∥W(1/2) � T −W(−1/2) � 1Ω � T

∥∥∥
F

+ 2
∥∥∥W(−1/2) � ZΩ

∥∥∥
F

≤ 2
∥∥∥T � (W(1/2) −W(−1/2) � 1Ω)

∥∥∥
F

+ 2
∥∥∥W(−1/2) � ZΩ

∥∥∥
F

≤ 2 ‖T ‖∞
∥∥∥W(1/2) −W(−1/2) � 1Ω

∥∥∥
F

+ 2
∥∥∥W(−1/2) � ZΩ

∥∥∥
F
.

Thus, we have that∥∥∥W(1/2) � (T − T̂)
∥∥∥
F
≤ 2 ‖T ‖∞

∥∥∥W(1/2) −W(−1/2) � 1Ω

∥∥∥
F

+ 2
∥∥∥W(−1/2) � ZΩ

∥∥∥
F
. (8)

Next, let’s estimate
∥∥W(−1/2) � ZΩ

∥∥
F

. Notice that

∥∥∥W−(1/2) � ZΩ

∥∥∥2

F
=

∑
(i1,··· ,in)∈Ω

Z2
i1···in
Wi1···in

P
{∥∥∥W(−1/2) � ZΩ

∥∥∥
F
≥ t
}

= P
{
es‖W

(−1/2)�ZΩ‖2
F ≥ est

2
}

≤ e−st
2

E
(

exp

(
s
∥∥∥W(−1/2) � ZΩ

∥∥∥2

F

))
≤ e−st

2 ∏
(i1,··· ,in)∈Ω

E
(

exp

(
sZ2

i1···in
Wi1···in

))

= e−st
2 ∏

(i1,··· ,in)∈Ω

(
1√

1− 2σ2s/Wi1···in

)

Recall that µ2 = max(i1,··· ,in)∈Ω
1

Wi1,··· ,in
. By choosing s = 1

4σ2µ2 , we have that

P
{∥∥∥W−(1/2) ◦ ZΩ

∥∥∥
F
≥ t
}
≤ exp

(
− t2

4σ2µ2

)
2|Ω|/2.

We conclude that with probability at least 1− 2−|Ω|/2,∥∥∥W(−1/2) ◦ ZΩ

∥∥∥
F
≤ 2σµ

√
|Ω| log(2).

Plugging this into (8) proves the theorem.

B Proof of Theorems 2 and 3

In this appendix, we provide the proofs for the results related with the weighted HOSVD algorithm.
The general upper bound for weighted HOSVD in Theorem 3.2 is restated in Appendix B.1 and its
proof is also presented there. If the sampling pattern Ω is generated according to the weight tensor
W, the related results in Theorem 3.4 are illustrated in Appendix B.2.

18

B.1 General Upper Bound for Weighted HOSVD Algorithm

Theorem B.1. Let W = w1 ⊗⊗⊗ · · · ⊗⊗⊗ wn ∈ Rd1×···×dn have strictly positive entries, and fix Ω ⊆
[d1] × · · · × [dn]. Suppose that T ∈ Rd1×···×dn has Tucker rank r = [r1 · · · rn]. Suppose that
Zi1···in ∼ N (0, σ2) and let

T̂ =W(−1/2) � ((W(−1/2) � YΩ)×1 Û1Û
T
1 ×2 · · · ×n ÛnÛTn)

where Û1, · · · , Ûn are obtained by HOSVD approximation process, where YΩ = 1Ω � (T + Z). Then
with probability at least 1−

∑n
i=1

1
di+

∏
j 6=i dj

over the choice of Z,∥∥∥W(1/2) � (T − T̂)
∥∥∥
F

≤

 n∑
k=1

6

√
rk log(dk +

∏
j 6=k

dj)µk

σ +

(
n∑
k=1

3rk

∥∥∥(W(−1/2) � 1Ω −W(1/2))(k)

∥∥∥
2

)
‖T ‖∞ .

where

µ2
k = max

max
ik

 ∑
i1,··· ,ik−1,ik+1,··· ,in

1(i1,i2,··· ,in)∈Ω

Wi1i2···in

 , max
i1,··· ,ik−1,ik+1,··· ,in

(∑
ik

1(i1,i2,··· ,in)∈Ω

Wi1i2···in

) .

Proof. Recall that TΩ = 1Ω � T and ZΩ = 1Ω � Z. First we have the following estimations.∥∥∥W(1/2) �
(
T̂ − T

)∥∥∥
F

=
∥∥∥(W(−1/2) � YΩ

)
×1 Û1Û

T
1 ×2 · · · ×n ÛnÛTn −

(
W(1/2) � T

)
×1 U1U

T
1 ×2 · · · ×n UnUTn

∥∥∥
F

≤
∥∥∥((W(−1/2) � YΩ)×1 Û1Û

T
1 − (W(1/2) � T)×1 U1U

T
1

)
×2 Û2Û

T
2 ×3 · · · ×n ÛnÛTn

∥∥∥
F

+
∥∥∥(W(1/2) � T

)(
×2U2U

T
2 ×3 · · · ×n UnUTn −×2Û2Û

T
2 ×3 · · · ×n ÛnÛTn

)∥∥∥
F

≤
√

2r1

∥∥∥Û1Û
T
1 (W(−1/2) � YΩ)(1) − U1U

T
1 (W(1/2) � T)(1)

∥∥∥
2

+

n∑
k=2

∥∥∥(W(1/2) � T)

×2Û2Û
T
2 ×3 · · · ×k−1 Ûk−1Û

T
k−1 ×k (UkU

T
k − ÛkÛTk)×k+1 Uk+1U

T
k+1 ×k+2 · · · ×n UnUTn

∥∥∥
F

≤
√

2r1

∥∥∥Û1Û
T
1 (W(−1/2) � YΩ)(1) − (W(1/2) � T)(1)

∥∥∥
2

+

n∑
k=2

√
rk

∥∥∥(UkU
T
k − ÛkÛTk)(W(1/2) � T)(k)

∥∥∥
2

≤
√

2r1

(∥∥∥Û1Û
T
1 (W(−1/2) � YΩ)(1) − (W(−1/2) � YΩ)(1)

∥∥∥
2

+
∥∥∥(W(−1/2) � YΩ)(1) − (W(1/2) � T)(1)

∥∥∥
2

)
+

n∑
k=2

√
rk

∥∥∥(UkU
T
k − ÛkÛTk)(W(1/2) � T)(k)

∥∥∥
2

≤ 2
√

2r1

∥∥∥(W(−1/2) � YΩ)(1) − (W(1/2) � T)(1)

∥∥∥
2

+

n∑
k=2

√
rk

∥∥∥(UkU
T
k − ÛkÛTk)(W(1/2) � T)(k)

∥∥∥
2
.

Notice that∥∥∥(UkUTk − ÛkÛTk) (W(1/2) � T)(k)

∥∥∥
2

=
∥∥∥(W(1/2) � T)(k) − ÛkÛTk (W(1/2) � T)(k)

∥∥∥
2

≤
∥∥∥(W(1/2) � T)(k) − (W(−1/2) � YΩ)(k)

∥∥∥
2

+
∥∥∥ÛkÛTk (W(1/2) � T −W(−1/2) � YΩ)(k)

∥∥∥
2

+

19

∥∥∥(W(−1/2) � YΩ)(k) − ÛkÛTk (W(−1/2) � YΩ)(k)

∥∥∥
2

≤ 3
∥∥∥(W(1/2) � T)(k) − (W(−1/2) � YΩ)(k)

∥∥∥
2
.

Therefore, we have∥∥∥W(1/2) � (T̂ − T)
∥∥∥
F
≤

n∑
k=1

3
√
rk

∥∥∥(W(1/2) � T)(k) − (W(−1/2) � YΩ)(k)

∥∥∥
2
. (9)

Next, to estimate
∥∥(W(−1/2) � YΩ −W(1/2) � T)(k)

∥∥
2

for k = 1, · · · , n.
Let us consider the case when k = 1. Other cases can be derived similarly. Using the fact that

T(1) has rank r1 and
∥∥T(1)

∥∥
max
≤ √r1

∥∥T(1)

∥∥
∞ =

√
r1 ‖T ‖∞, we conclude that∥∥∥(W(−1/2) � YΩ −W(1/2) � T)(1)

∥∥∥
2

=
∥∥∥(W(−1/2) � TΩ −W(1/2) � T)(1) + (W(−1/2) � ZΩ)(1)

∥∥∥
2

≤
∥∥∥(W(−1/2) � TΩ −W(1/2) � T)(1)

∥∥∥
2

+
∥∥∥(W(−1/2) � ZΩ)(1)

∥∥∥
2

=
∥∥∥(W(−1/2) � 1Ω −W(1/2))(1) � T(1)

∥∥∥
2

+
∥∥∥(W(−1/2) � ZΩ)(1)

∥∥∥
2

≤
∥∥T(1)

∥∥
max

∥∥∥(W(−1/2) � 1Ω −W(1/2))(1)

∥∥∥
2

+
∥∥∥(W(−1/2) � ZΩ)(1)

∥∥∥
2

≤
√
r1 ‖T ‖∞

∥∥∥(W(−1/2) � 1Ω −W(1/2))(1)

∥∥∥
2

+
∥∥∥(W(−1/2) � ZΩ)(1)

∥∥∥
2
.

To bound
∥∥(W(−1/2) � ZΩ)(1)

∥∥
2
, we consider

(W(−1/2) � ZΩ)(1) =
∑

i1,··· ,in

1(i1,··· ,in)∈ΩZi1···in√
Wi1···in

ei1(ei2 ⊗ · · · ⊗ ein)T ,

where eik is the ik-th standard basis vector of Rdk .
Please note that ∑

i1,··· ,in

1(i1,··· ,in)∈Ω

Wi1···in
ei1(ei2 ⊗ · · · ⊗ ein)T (ei2 ⊗ · · · ⊗ ein)ei1

T

=
∑

i1,··· ,in

1(i1,··· ,in)∈Ω

Wi1···in
ei1ei1

T .

Therefore, ∥∥∥∥∥∥
∑

i1,··· ,in

1(i1,··· ,in)∈Ω

Wi1···in
ei1(ei2 ⊗ · · · ⊗ ein)T (ei2 ⊗ · · · ⊗ ein)ei1

T

∥∥∥∥∥∥
2

= max
i1

∑
i2,··· ,in

1(i1,i2,··· ,in)∈Ω

Wi1i2···in
≤ µ2

1.

Similarly, ∥∥∥∥∥∥
∑

i1,··· ,in

1(i1,··· ,in)∈Ω

Wi1···in
(ei2 ⊗ · · · ⊗ ein)ei1

Tei1(ei2 ⊗ · · · ⊗ ein)T

∥∥∥∥∥∥
2

20

= max
i2,··· ,in

∑
i1

1(i1,i2,··· ,in)∈Ω

Wi1i2···in
≤ µ2

1.

By ([56] Theorem 1.5), for any t > 0,

P
{∥∥∥(W(−1/2) � ZΩ)(1)

∥∥∥ ≥ t} ≤
d1 +

∏
j 6=1

dj

 exp

(
− t2

2σ2µ2
1

)
.

We conclude that with probability at least 1− 1
d1+

∏
j 6=1 dj

, we have

∥∥∥(W(−1/2) � ZΩ)(1)

∥∥∥ ≤ 2σµ1

√
log(d1 +

∏
j 6=1

dj).

Similarly, we have∥∥∥(W(−1/2) � YΩ −W(1/2) � T)(k)

∥∥∥
2

≤
√
rk ‖T ‖∞

∥∥∥(W(−1/2) � 1Ω −W(1/2))(k)

∥∥∥
2

+
∥∥∥(W(−1/2) � ZΩ)(k)

∥∥∥
2
,

with ∥∥∥(W(−1/2) � ZΩ)(k)

∥∥∥
2
≤ 2σµk

√
log(dk +

∏
j 6=k

dj)

with probability at least 1− 1
dk+

∏
j 6=k dj

, for k = 2, · · · , n.

Plugging all these into (9), we can obtain the bound in our theorem.

Next we are going to study the special case when the sampling set Ω ∼ W.

B.2 Case Study: Ω ∼ W
In this section, we would provide upper and lower bounds for the weighted
HOSVD algorithm.

B.2.1 Upper Bound

First, let us understand the bounds λ` and µ` in the case when Ω ∼ W for ` = 1, · · · , n.

Lemma B.2. Let W = w1 ⊗⊗⊗ · · · ⊗⊗⊗wn ∈ Rd1×···×dn be a CP rank-1 tensor so that all (i1, · · · , in) ∈

[d1] × · · · × [dn] with Wi1···in ∈
[

1√∏n
j=1 dj

, 1

]
. Suppose that Ω ⊆ [d1] × · · · × [dn] so that for each

i1 ∈ [d1], · · · , in ∈ [dn], (i1, · · · , in) ∈ Ω with probability Wi1···in , independently for each (i1, · · · , in).
Then with probability at least 1−

∑n
`=1

2
d`+

∏
j 6=` dj

over the choice of Ω, we have for ` = 1, · · · , n

λ` =
∥∥∥(W(1/2) −W(−1/2) � 1Ω)(`)

∥∥∥
2
≤ 2

√
d` +

∏
k 6=`

dk log

d` +
∏
k 6=`

dk

 , (10)

and

µ` ≤ 2

√√√√√
d` +

∏
k 6=`

dk

 log

d` +
∏
k 6=`

dk

. (11)

21

Proof. Fix i1 ∈ [d1]. Bernstein’s inequality yields

P

 ∑
i2,··· ,in

1(i1,··· ,in)∈Ω

w1(i1) · · ·wn(in)
−
∏
k 6=1

dk ≥ t


≤ exp

 −t2/2∑
i2,··· ,in

(
1

w1(i1)···wn(in) − 1
)

+ 1
3

√
n∏
k=1

dkt

 .

and

P

{∑
i1

1(i1,··· ,in)∈Ω

w1(i1) · · ·wn(in)
− d1 ≥ t

}

≤ exp

 −t2/2∑
i1

(1/(w1(i1) · · ·wn(in))− 1) + 1
3

√
n∏
k=1

dkt

 .

Set t = 2
√

2(d1 +
∏
j 6=1

dj) log(d1 +
∏
j 6=1

dj), then we have

P

 ∑
i2,··· ,in

1(i1,i2,··· ,in)∈Ω

w1(i1) · · ·wn(in)
−
∏
k 6=1

dk ≥ 2
√

2

d1 +
∏
j 6=1

dj

 log

d1 +
∏
j 6=1

dj


≤ 1

/d1 +
∏
j 6=1

dj

2

and

P

∑
i1

1(i1,i2,··· ,in)∈Ω

w1(i1)w2(i2) · · ·wn(in)
− d1 ≥ 2

√
2

d1 +
∏
j 6=1

dj

 log

d1 +
∏
j 6=1

dj


≤ 1

/d1 +
∏
j 6=1

dj

2

.

Hence, by taking a union bound,

P

max

max
i1

∑
i2,··· ,in

1(i1,i2,··· ,in)∈Ω

w1(i1)w2(i2) · · ·wn(in)
, max
i2,··· ,in

∑
i1

1(i1,i2,··· ,in)∈Ω

w1(i1)w2(i2) · · ·wn(in)


≥ 4

d1 +
∏
j 6=1

dj

 log

d1 +
∏
j 6=1

dj

 ≤ 1

d1 +
∏
j 6=1

dj
.

Similarly, we have

P

µ2
k ≥ 4

dk +
∏
j 6=k

dj

 log

dk +
∏
j 6=k

dj

 ≤ 1

dk +
∏
j 6=k

dj
, for all k = 2, · · · , n.

22

Combining all these inequalities above, with probability at least 1−
∑n
`=1

1
d`+

∏
j 6=` dj

, we have

µ` ≤ 2

√√√√√
d` +

∏
k 6=`

dk

 log

d` +
∏
k 6=`

dk

, for all ` = 1, · · · , n.

Next we would bound λ` in (10). First of all, let’s consider ‖(W(1/2) −W(−1/2) � 1Ω)(1)‖2. Set

γi1···in =
Wi1···in−1(i1,··· ,in)∈Ω√

Wi1···in
. Then(

W(1/2) −W(−1/2) � 1Ω

)
(1)

=
∑

i1,··· ,in

γi1···inei1(ei2 ⊗ · · · ⊗ ein)T .

Notice that ∑
i1,··· ,in

E
(
γ2
i1···inei1(ei2 ⊗ · · · ⊗ ein)T (ei2 ⊗ · · · ⊗ ein)ei1

T
)

=
∑
i1

 ∑
i2,··· ,in

E(γ2
i1···in)

 ei1ei1T .
Since E(γ2

i1···in) = 1−Wi1···in ≤ 1− 1√
d1···dn

≤ 1, then∥∥∥∥∥∥
∑

i1,··· ,in

E(γ2
i1···inei1(ei2 ⊗ · · · ⊗ ein)T (ei2 ⊗ · · · ⊗ ein)ei1

T)

∥∥∥∥∥∥
2

≤
∏
j 6=1

dj .

Similarly, ∥∥∥∥∥∥
∑

i1,··· ,in

E(γ2
i1···in(ei2 ⊗ · · · ⊗ ein)ei1

Tei1(ei2 ⊗ · · · ⊗ ein)T)

∥∥∥∥∥∥
2

≤ d1.

In addition,

∥∥γi1···inei1(ei2 ⊗ · · · ⊗ ein)T
∥∥

2
≤

 n∏
j=1

dj

1/4

≤

√
d1 +

∏
j 6=1 dj

2
.

Then, the matrix Bernstein Inequality ([56] Theorem 1.4) gives

P
{∥∥∥∥(W(1/2) −W(−1/2) � 1Ω

)
(1)

∥∥∥∥
2

≥ t
}

≤

d1 +
∏
j 6=1

dj

 exp

−
t2/2(

d1 +
∏
j 6=1

dj

)
+ t

3

√√√√(d1 +
∏
j 6=1

dj

)/
2

 .

Let t = 2
√
d1 +

∏
j 6=1 dj log

(
d1 +

∏
j 6=1 dj

)
, then we have

P


∥∥∥∥(W(1/2) −W(−1/2) � 1Ω

)
(1)

∥∥∥∥
2

≥ 2

√
d1 +

∏
j 6=1

dj log

d1 +
∏
j 6=1

dj

 ≤ 1

d1 +
∏
j 6=1

dj
.

23

Similarly,

P


∥∥∥∥(W(1/2) −W(−1/2) � 1Ω

)
(k)

∥∥∥∥
2

≥ 2

√
dk +

∏
j 6=k

dk log

dk +
∏
j 6=k

dj

 ≤ 1

dk +
∏
j 6=k

dj
,

for all k = 2, · · · , n.
Thus, with probability at least 1−

∑n
`=1

1
d`+

∏
j 6=` dj

, we have

∥∥∥(W(1/2) −W(−1/2) � 1Ω)(`)

∥∥∥
2
≤ 2

√
d` +

∏
k 6=`

dk log

d` +
∏
k 6=`

dk

 , for all ` = 1, · · · , n.

By a union of bounds in (11) and (10), we could establish the lemma.

Lemma B.3. Let m =
∥∥W(1/2)

∥∥2

F
. Then with probability at least 1−2 exp(−3m/104), over the choice

of Ω

||Ω| −m| ≤ m

4
.

Proof. Please note that

||Ω| −m| =

∣∣∣∣∣∣
∑

i1,··· ,in

(1(i1,··· ,in)∈Ω −Wi1···in)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

i1,··· ,in

(1(i1,··· ,in)∈Ω − E(1(i1,··· ,in)∈Ω)

∣∣∣∣∣∣ ,
which is the sum of zero-mean independent random variables. Observe that |1(i1,··· ,in)∈Ω−E(1(i1,··· ,in)∈Ω)| =
|1(i1,··· ,in)∈Ω −Wi1···in | ≤ 1 and∑

i1,··· ,in

E(1(i1,··· ,in)∈Ω −Wi1···in)2 =
∑

i1,··· ,in

(Wi1···in −W2
i1···in) ≤ m.

By Bernstein’s inequality,

P (||Ω| −m| ≥ t) ≤ 2 exp

(
− t2/2

m+ t/3

)
.

Set t = m/4, then we have

P (||Ω| −m| ≥ m/4) ≤ 2 exp

(
− m2/32

m+m/12

)
= 2 exp(−3m/104).

Next let us give the formal statement for the upper bounds in Theorem 3.4.

Theorem B.4. LetW = w1⊗⊗⊗· · ·⊗⊗⊗wn ∈ Rd1×···×dn be a CP rank-1 tensor so that for all (i1, · · · , in) ∈
[d1]×· · ·× [dn] we have Wi1···in ∈

[
1√

d1···dn
, 1
]
. Suppose that we choose each (i1, · · · , in) ∈ [d1]×· · ·×

[dn] independently with probability Wi1···in to form a set Ω ⊆ [d1] × · · · × [dn]. Then with probability
at least

1− 2 exp

− 3

104

√√√√ n∏
j=1

dj

− n∑
k=1

2

dk +
∏
j 6=k dj

24

For the weighted HOSVD Algorithm named A, A returns T̂ = A(TΩ +ZΩ) for any Tucker rank r
tensor T with ‖T ‖∞ ≤ β so that with probability at least 1−

∑n
k=1

1
dk+

∏
j 6=k dj

over the choice of Z,∥∥∥W(1/2) � (T − T̂)
∥∥∥
F∥∥W(1/2)

∥∥
F

≤
√

5β√
|Ω|

 n∑
k=1

3rk

√
dk +

∏
j 6=k

dj log

dk +
∏
j 6=k

dj


+

√
5σ

|Ω|

 n∑
k=1

6

√
rk(dk +

∏
j 6=k

dj) log

dk +
∏
j 6=k

dj


Proof. This is directly from Theorem B.1, Lemmas B.2 and B.3.

B.2.2 Lower Bound

To deduce the lower bound, we have to construct a finite subset S in the cone Kr so that we can
approximate the minimal distance between two different elements in S. Before we prove the lower
bound, we need the following theorems and lemmas.

Theorem B.5 (Hanson-Wright inequality). There is some constant c > 0 so that the following holds.
Let ξ ∈ {0,±1}d be a vector with mean-zero, independent entries, and let F be any matrix which has
zero diagonal. Then

P
{
|ξTFξ| > t

}
≤ 2 exp

(
−c ·min

{
t2

‖F‖2F
,

t

‖F‖2

})
.

Theorem B.6 (Fano’s Inequality). Let F = {f0, · · · , fn} be a collection of densities on K, and
suppose that A : K → {0, · · · , n}. Suppose there is some β > 0 such that for any i 6= j, DKL(fi‖fj) ≤
β. Then

max
i

PK∼fi {A(K) 6= i} ≥ 1− β + log(2)

log(n)
.

The following lemma specializes Fano’s Inequality to our setting, which is a generalization of
([21] Lemma 19). In the following lemma, we show that for any reconstruction algorithm on a set
K ⊆ Rd1×···×dn , with probability no less than 1

2 , there exists some elements in K such that the
weighted reconstruction error is bounded below by some quantity, where the quantity is independent
of the algorithm.

Lemma B.7. Let K ⊆ Rd1×···×dn , and let S ⊆ K be a finite subset of K so that |S| > 16. Let
Ω ⊆ [d1]× · · · × [dn] be a sampling pattern. Let σ > 0 and choose

κ ≤
σ
√

log |S|
4 maxT ∈S ‖TΩ‖F

,

and suppose that
κS ⊆ K.

Let Z ∈ Rd1×···×dn be a tensor whose entries Zi1···in are i.i.d., Zi1···in ∼ N (0, σ2). Let H ⊆
Rd1×···×dn be any weight tensor.

Then for any algorithm A : RΩ → Rd1×···×dn that takes as input TΩ + ZΩ for T ∈ K and outputs
an estimate T̂ to T , there is some X ∈ K so that

‖H� (A(XΩ + ZΩ)−X)‖F ≥
κ

2
min
T 6=T ′∈S

‖H� (T − T ′)‖F (12)

with probability at least 1
2 .

25

Proof. Consider the set
S′ = κS = {κT : T ∈ S}

which is a scaled version of S. By our assumption, S′ ⊆ K.
Recall that the Kullback–Leibler (KL) divergence between two multivariate Gaussians is given by

DKL(N (µ1,Σ1)‖N (µ2,Σ2))

=
1

2

(
log

(
det(Σ2)

det(Σ1)

)
− n+ tr(Σ−1

2 Σ1) + 〈Σ−1
2 (µ2 − µ1),µ2 − µ1〉

)
,

where µ1, µ2 ∈ Rn.
Specializing to U ,V ∈ S′, with I = IΩ×Ω

DKL(UΩ + ZΩ‖VΩ + ZΩ) = DKL(N (UΩ, σ
2I)‖N (VΩ, σ

2I))

=
‖UΩ − VΩ‖2F

2σ2

≤ max
T ∈S′

2 ‖TΩ‖2F
σ2

=
2κ2

σ2
max
T ∈S
‖TΩ‖2F .

Suppose that A is as in the statement of the lemma. Define an algorithm A : RΩ → Rd1×···×dn so
that for any Y ∈ RΩ if there exists T ∈ S′ such that

‖H� (T − A(Y))‖F <
1

2
min

T 6=T ′∈S′
‖H� (T − T ′)‖F :=

ρ

2
,

then set A(Y) = T (notice that if such T exists, then it is unique), otherwise, set
A(Y) = A(Y).

Then by the Fano’s inequality, there is some T ∈ S′ so that

P
{
A(TΩ + ZΩ) 6= T

}
≥ 1− 2 maxT ∈S′ ‖TΩ‖2F

σ2 log(|S| − 1)
− log(2)

log(|S| − 1)

= 1− 2κ2 maxT ∈S ‖TΩ‖2F
σ2 log(|S| − 1)

− log(2)

log(|S| − 1)

≥ 1− 1

4
− 1

4
=

1

2
.

If A(TΩ + ZΩ) 6= T , then ‖H� (A(TΩ + ZΩ)− T)‖F > ρ/2, and so

P {‖H� (A(TΩ + ZΩ)− T)‖F ≥ ρ/2} ≥ P
{
A(TΩ + ZΩ) 6= T

}
≥ 1/2.

Finally, we observe that

ρ

2
=

1

2
min

T 6=T ′∈S′
‖H� (T − T ′)‖F =

κ

2
min
T 6=T ′∈S

‖H� (T − T ′)‖F ,

which completes the proof.

To understand the lower bound κ
2 minT 6=T ∈S ‖H�(T −T ′)‖F in (12), we construct a specific finite

subset S for the cone of Tucker rank r tensors in the following lemma.

Lemma B.8. There is some constant c so that the following holds. Let d1, · · · , dn > 0 and r1, · · · , rn >
0 be sufficiently large. Let K be the cone of Tucker rank r tensors with r = [r1 · · · rn], H be any CP
rank-1 weight tensor, and B be any CP rank-1 tensor with ‖B‖∞ ≤ 1. Write H = h1⊗⊗⊗ · · · ⊗⊗⊗ hn and
B = b1⊗⊗⊗ · · · ⊗⊗⊗ bn, and

w1 = (h1 � b1)(2), · · · ,wn = (hn � bn)(2).

26

Let

γ =

√√√√1

2

(
n∏
k=1

rk

)
log

(
8

n∏
k=1

dk

)
.

There is a set S ⊆ K ∩ γB∞ so that

1. The set has size |S| ≥ N , for

N = C exp

c ·min


n∏
k=1

rk(
n∏
k=1

(2rk(‖wk‖2/‖wk‖1)2 + 1)

)
− 1

,

n∏
k=1

rk,

n∏
k=1

rk(
n∏
k=1

(2‖wk‖2/‖wk‖1
√
rk log(rk) + 2‖wk‖∞/‖wk‖1rk log(rk) + 1)

)
− 1


 .

2. ‖TΩ‖F ≤ 2

√
n∏
k=1

rk‖BΩ‖F for all T ∈ S.

3.
∥∥∥H� (T − T̃)

∥∥∥
F
≥
√

n∏
k=1

rk ‖H� B‖F for all T 6= T̃ ∈ S.

Proof. Let Ψ ⊆ {±1}r1×···×rn be a set of random ±1-valued tensors chosen uniformly at random with
replacement, of size 4N . Choose iU ∈ {±1}di×ri to be determined below for all i = 1, · · · , n .

Let
S =

{
B � (C ×1

1U ×2 · · · ×n nU) : C ∈ Ψ
}
.

First of all, we would estimate ‖TΩ‖F and ‖T ‖∞. Please note that

E ‖TΩ‖2F = E
∑

(i1,··· ,in)∈Ω

B2
i1···in

 ∑
j1,··· ,jn

Cj1···jn1U(i1, j1) · · · nU(in, jn)

2

=

(
n∏
i=1

ri

)
‖BΩ‖2F ,

where the expectation is over the random choice of C. Then by Markov’s inequality,

P

{
‖TΩ‖2F ≥

(
4

n∏
i=1

ri

)
‖BΩ‖2F

}
≤ 1

4
.

We also have

‖T ‖∞ = max
i1,··· ,in

|Bi1···in |

∣∣∣∣∣∣
∑

j1,··· ,jn

Cj1···jn1U(i1, j1) · · · nU(in, jn)

∣∣∣∣∣∣ .
By Hoeffding’s inequality, we have

P


∣∣∣∣∣∣
∑

j1,··· ,jn

Cj1···jn1U(i1, j1) · · · nU(in, jn)

∣∣∣∣∣∣ ≥ t
 ≤ 2 exp

(
− 2t2∏n

k=1 rk

)
.

27

Using the fact that |Bi1···in | ≤ 1 and a union bound over all
n∏
k=1

dk values of i1, · · · , in, we conclude

that

P

‖T ‖∞ ≥
√√√√1

2

(
n∏
k=1

rk

)
log

(
8

n∏
k=1

dk

)
≤

(
n∏
k=1

dk

)
P


∣∣∣∣∣∣
∑

j1,··· ,jn

Cj1···jn1U(i1, j1) · · · nU(in, jn)

∣∣∣∣∣∣ ≥
√√√√1

2

(
n∏
k=1

rk

)
log

(
8

n∏
k=1

dk

)
≤ 1

4
.

Thus, for a tensor T ∈ S, the probability that both of ‖T ‖∞ ≤

√
1
2

(
n∏
k=1

rk

)
log

(
8

n∏
k=1

dk

)
and

‖TΩ‖F ≤ 2

√
n∏
k=1

rk‖BΩ‖F hold is at least 1
2 . Thus, by a Chernoff bound it follows that with probability

at least 1− exp(−CN) for some constant C, there are at least |S|4 tensors T ∈ S such that all of these

hold. Let S̃ ⊆ S be the set of such T ’s. The set guaranteed in the statement of the lemma will be S̃,
which satisfies both item 1 and 2 in the lemma and is also contained in K ∩ γB∞.

Thus, we consider item 3: we are going to show that this holds for S with high probability, thus
in particularly it will hold for S̃, and this will complete the proof of the lemma.

Fix T 6= T̃ ∈ S, and write∥∥∥H� (T − T̃)
∥∥∥2

F

=
∥∥∥H� B � ((C − C̃)×1

1U ×2 · · · ×n nU)
∥∥∥2

F

=
∑

i1,··· ,in

H2
i1···inB

2
i1···in

 ∑
j1,··· ,jn

(Cj1···jn − C̃j1···jn)1U(i1, j1) · · · nU(in, jn)

2

= 4
∑

i1,··· ,in

H2
i1···inB

2
i1···in

〈
ξ, 1U(i1, :)⊗ · · · ⊗ nU(in, :)

〉2
,

where ξ is the vectorization of 1
2 (C − C̃). Thus, each entry of ξ is independently 0 with probability 1

2
or ±1 with probability 1

4 each. Rearranging the terms, we have∥∥∥H� (T − T̃)
∥∥∥2

F
= 4ξT

(
1U ⊗ · · · ⊗ nU

)T
(D1 ⊗ · · · ⊗Dn)

(
1U ⊗ · · · ⊗ nU

)
ξ

= 4ξT
((

1UTD1
1U
)
⊗ · · · ⊗

(
nUTDn

nU
))
ξ

= 4ξT
(
⊗nk=1

(
kUTDk

kU
))
ξ, (13)

where Dk denotes the dk × dk diagonal matrix with wk on the diagonal.

To understand (13), we need to understand the matrix ⊗nk=1

(
kUTDk

kU
)
∈ R

n∏
k=1

rk×
n∏
k=1

rk
. The

diagonal of this matrix is

(
n∏
k=1

‖wk‖1

)
I. We will choose the matrix kU for k = 1, · · · , n so that the

off-diagonal terms are small.

Claim B.9. There are matrices kU ∈ {±1}dk×rk for k = 1, · · · , n such that:

28

(a) ∥∥∥∥∥∥(⊗nk=1

(
kUTDk

kU
))
−

 n∏
j=1

‖wj‖1

 I

∥∥∥∥∥∥
2

F

≤

(
n∏
k=1

(
2r2
k‖wk‖22 + rk‖wk‖21

))
−

n∏
k=1

(
rk‖wk‖21

)
.

(b) ∥∥∥∥∥∥(⊗nk=1(kUTDk
kU)

)
−

 n∏
j=1

‖wj‖1

 I

∥∥∥∥∥∥
2

≤ max

{
n∏

k=1

(2 ‖wk‖2
√

rk log(rk) + 2 ‖wk‖∞ rk log(rk) + ‖wk‖1)−
n∏

k=1

‖wk‖1 ,
n∏

k=1

‖wk‖1

}
.

Proof. By ([21] Claim 22), there exist matrices kU ∈ {±1}dk×rk such that:

(a)
∥∥kUTDk

kU
∥∥2

F
≤ 2r2

k ‖wk‖22 + rk ‖wk‖21 and

(b)
∥∥kUTDk

kU
∥∥

2
≤ 2 ‖wk‖2

√
rk log(rk) + 2 ‖wk‖∞ rk log(rk) + ‖wk‖1.

Using (a) and the fact that
∥∥⊗nk=1(kUTDk

kU)
∥∥2

F
=

n∏
k=1

∥∥kUTDk
kU
∥∥2

F
, we have

∥∥∥∥∥(⊗nk=1

(
kUTDk

kU
))
−

(
n∏
k=1

‖wj‖1

)
I

∥∥∥∥∥
2

F

=
∥∥⊗nk=1

(
kUTDk

kU
)∥∥2

F
−

∥∥∥∥∥
(

n∏
k=1

‖wj‖1

)
I

∥∥∥∥∥
2

F

≤

(
n∏
k=1

(
2r2
k‖wk‖22 + rk‖wk‖21

))
−

n∏
k=1

(
rk‖wk‖21

)
.

By (b) and the fact that
∥∥⊗nk=1(kUTDk

kU)
∥∥

2
=

n∏
k=1

∥∥kUTDk
kU
∥∥

2
(see [37]), we have

∥∥∥∥∥(⊗nk=1

(
kUTDk

kU
))
−

(
n∏
k=1

‖wk‖1

)
I

∥∥∥∥∥
2

≤ max

{
n∏
k=1

‖wk‖1,

(
n∏
k=1

(
2‖wk‖2

√
rk log(rk) + 2‖wk‖∞rk log(rk) + ‖wk‖1

))
−

n∏
k=1

‖wk‖1

}
.

Having chosen matrices kU for k = 1, · · · , n, we can now analyze the expression (13).

Claim B.10. There are constants c, c′ so that with probability at least

1− 2 exp

(
−c′′

n∏
k=1

rk

)
− 2 exp

−c′ ·min


n∏
k=1

(rk‖wk‖21)

n∏
k=1

(2rk‖wk‖22 + ‖wk‖21)−
n∏
k=1

‖wk‖21
,

29

n∏
k=1

rk,

n∏
k=1

(rk‖wk‖1)(
n∏
k=1

(2‖wk‖2
√
rk log(rk) + 2‖wk‖∞rk log(rk) + ‖wk‖1)

)
−

n∏
k=1

‖wk‖1


 ,

we have ∥∥∥∥∥H�
(
T − T̃

) n∏
k=1

‖wk‖1

∥∥∥∥∥
2

F

≥
n∏
k=1

(rk‖wk‖1) .

Proof. We break
∥∥∥H� (T − T̃)

∥∥∥2

F
into two terms:

∥∥∥H� (T − T̃)
∥∥∥2

F

= 4ξT
(
⊗nk=1

kUTDk
kU
)
ξ

= 4ξT

(
⊗nk=1

(
kUTDk

kU
)
−

(
n∏
k=1

‖wk‖1

)
I

)
ξ + 4

(
n∏
k=1

‖wk‖1

)
ξT ξ

:= (I) + (II).

For the first term (I), we will use the Hanson-Wright Inequality (see Theorem B.5). In our case, the

matrix F = 4

(
⊗nk=1

(
kUTDk

kU
)
−
(

n∏
k=1

‖wk‖1
)
I

)
. The Frobenius norm of this matrix is bounded

by

‖F‖2F ≤ 16

(
n∏
k=1

(
2r2
k‖wk‖22 + rk‖wk‖21

)
−

n∏
k=1

(
rk‖wk‖21

))
.

The operator norm of F is bounded by

‖F‖2

≤ 4 max

{
n∏
k=1

(2‖wk‖2
√
rk log(rk) + 2‖wk‖∞rk log(rk) + ‖wk‖1)−

n∏
k=1

‖wk‖1,
n∏
k=1

‖wk‖1

}
.

Thus, the Hanson-Wright inequality implies that

P {(I) ≥ t}

≤ 2 exp

−c ·min


t2

16
n∏
k=1

(2r2
k‖wk‖22 + rk‖wk‖21)− 16

n∏
k=1

(rk‖wk‖21)
,

t

4
n∏
k=1

‖wk‖1
,

t

4

(
n∏
k=1

(2‖wk‖2
√
rk log(rk) + 2‖wk‖∞rk log(rk) + ‖wk‖1)−

n∏
k=1

‖wk‖1
)

 .

Plugging in t = 1
2

n∏
k=1

rk‖wk‖1, and replacing the constant c with a different constant c′, we have

P

{
(I) ≥ 1

2

n∏
k=1

rk‖wk‖1

}

30

≤ 2 exp

−c′ ·min


n∏
k=1

rk(
n∏
k=1

(2rk(‖wk‖2/‖wk‖1)2 + 1)

)
− 1

,

n∏
k=1

rk, (14)

n∏
k=1

rk(
n∏
k=1

(2‖wk‖2/‖wk‖1
√
rk log(rk) + 2‖wk‖∞/‖wk‖1rk log(rk) + 1)

)
− 1


 .

Next we turn to the second term (II). We write

(II) = 4

(
n∏
k=1

‖wk‖1

)
ξT ξ = 2

n∏
k=1

(rk‖wk‖1) + 4

(
n∏
k=1

‖wk‖1

)(
‖ξ‖22 −

1

2

n∏
k=1

rk

)

and bound the error term 4

(
n∏
k=1

‖wk‖1
)(
‖ξ‖22 − 1

2

n∏
k=1

rk

)
with high probability. Observe that

‖ξ‖22 − 1
2

n∏
k=1

rk is a zero-mean subgaussian random variable, and thus satisfies for all t > 0 that

P

{∣∣∣∣∣‖ξ‖22 − 1

2

n∏
k=1

rk

∣∣∣∣∣ ≥ t
}
≤ 2 exp

−c′′t2n∏
k=1

rk


for some constant c′′. Thus, for any t > 0 we have

P

{∣∣∣∣∣4
(

n∏
k=1

‖wk‖1

)(
‖ξ‖22 −

1

2

n∏
k=1

rk

)∣∣∣∣∣ ≥ t
}
≤ 2 exp

 −c′′t2

16
n∏
k=1

(rk‖wk‖21)

 .

Thus,

P

{∣∣∣∣∣(II)− 2

n∏
k=1

(rk‖wk‖1)

∣∣∣∣∣ ≥ 1

2

n∏
k=1

rk‖wk‖1

}
≤ 2 exp

(
−c′′

64

n∏
k=1

rk

)
. (15)

Combing (14) and (15), we can conclude that with probability at least

1− 2 exp

(
−c
′′

n∏
k=1

rk

)
− 2 exp

−c′ ·min


n∏
k=1

rk(
n∏
k=1

(2rk(‖wk‖2/‖wk‖1)2 + 1)

)
− 1

,

n∏
k=1

rk,

n∏
k=1

rk(
n∏
k=1

(2‖wk‖2/‖wk‖1
√
rk log(rk) + 2‖wk‖∞/‖wk‖1rk log(rk) + 1)

)
− 1


 ,

the following holds∥∥∥H�
(
T − T̃

)∥∥∥2

F
= (I) + (II)

31

≥ 2

n∏
k=1

(rk‖wk‖1)− |II − 2

n∏
k=1

(rk‖wk‖1)| − (I)

≥
n∏
k=1

(rk‖wk‖1) =

(
n∏
k=1

rk

)
‖H� B‖2F .

By a union of bound over all of the points in S, we establish items 1 and 3 of the lemma.

Now we are ready to prove the lower bound in Theorem 3.4. First we give a formal statement for
the lower bound in Theorem 3.4 by introducing the constant C ′ to characterize the “flatness” of W.

Theorem B.11 (Lower bound for low-rank tensor when W is flat and Ω ∼ W). Let W = w1⊗⊗⊗ · · ·⊗⊗⊗
wn ∈ Rd1×···×dn be a CP rank-1 tensor so that all (i1, · · · , in) ∈ [d1]× · · · × [dn] with ‖W‖∞ ≤ 1, so
that

max
ik
|wk(ik)| ≤ C ′min

ik
|wk(ik)|, for all k = 1, · · · , n.

Suppose that we choose each (i1, · · · , in) ∈ [d1]× · · · × [dn] independently with probability Wi1···in
to form a set Ω ⊆ [d1]× · · · × [dn]. Then with probability at least 1− exp(−C ·m) over the choice of
Ω, the following holds:

Let σ, β > 0 and let Kr ⊆ Rd1×···×dn be the cone of the tensor with Tucker rank r = [r1 · · · rn].

For any algorithm A : RΩ → Rd1×···×dn that takes as input TΩ +ZΩ and outputs a guess T̂ for T , for
T ∈ Kr ∩ βB∞ and Zi1···in ∼ N (0, σ2), then there is some T ∈ Kr ∩ βB∞ so that

‖W(1/2) � (A(TΩ + ZΩ)− T)‖F
‖W(1/2)‖F

≥ c ·min


β√

log(8
n∏
k=1

dk)

,
σ√
|Ω|

√√√√ n∏
k=1

rk ·min


√√√√√ 1(

n∏
k=1

(1 + 2C ′2rk/dk)

)
− 1

,

1,

√√√√√ 1(
n∏
k=1

(2C ′
√
rk/dk log(rk) + 2C ′rk/dk log(rk) + 1)

)
− 1


 ,

with probability at least 1
2 over the randomness of A and the choice of Z. Above c, C are constants

which depend only on C ′.

Proof. Let m = ‖W(1/2)‖2F =
n∏
k=1

‖wk‖1, so that E|Ω| = m.

We instantiate Lemma B.8 with H = W(1/2) and B being the tensor whose entries are all 1. Let
S be the set guaranteed by Lemma B.8. We have

max
T ∈S
‖T ‖∞ ≤

√√√√1

2
log

(
8

n∏
k=1

dk

)
n∏
k=1

rk.

and

max
T ∈S
‖TΩ‖F ≤ 2

√√√√ n∏
k=1

rk‖BΩ‖F = 2

√√√√|Ω| n∏
k=1

rk.

32

We also have

‖W(1/2) � (T − T ′)‖F ≥

√√√√ n∏
k=1

rk‖W(1/2)‖F =

√√√√m

n∏
k=1

rk

for T 6= T ′ ∈ S. Using the assumption that wk are flat, the size of the set S is bigger than or equal
to

N = C exp

c ·min


n∏
k=1

rk(
n∏
k=1

(2rk(‖wk‖2/‖wk‖1)2 + 1)

)
− 1

,

n∏
k=1

rk,

n∏
k=1

rk(
n∏
k=1

(2‖wk‖2/‖wk‖1
√
rk log(rk) + 2‖wk‖∞/‖wk‖1rk log(rk) + 1)

)
− 1




≥ C exp

c ·min


n∏
k=1

rk(
n∏
k=1

(2C ′2rk/dk + 1)

)
− 1

,

n∏
k=1

rk,

n∏
k=1

rk(
n∏
k=1

(2C ′
√
rk log(rk)/dk + 2C ′rk log(rk)/dk + 1)

)
− 1




≥ exp

C ′′ ·min


n∏
k=1

rk(
n∏
k=1

(2C ′2rk/dk + 1)

)
− 1

,

n∏
k=1

rk,

n∏
k=1

rk(
n∏
k=1

(2C ′
√
rk log(rk)/dk + 2C ′rk log(rk)/dk + 1)

)
− 1


 ,

where C ′′ depends on c and C. Set

κ = min


β√

1
2 log(8

n∏
k=1

dk)
n∏
k=1

rk

,
σ
√
C ′′

8
√
|Ω|

√√√√√√√
n∏
k=1

dk

(
n∏
k=1

(dk + 2C ′2rk))−
n∏
k=1

dk

,
σ
√
C ′′

8
√
|Ω|

,

σ
√
C ′′

8
√
|Ω|

√√√√√√√
n∏
k=1

dk

(
n∏
k=1

(2C ′
√
dkrk log(rk) + 2C ′rk log(rk) + dk))−

n∏
k=1

dk

 .

Observe that
σ
√

log |S|
4 maxT ∈S ‖TΩ‖F ≥

σ
√

log(N)

4 maxT ∈S ‖TΩ‖F and

σ
√

log(N)

4 maxT ∈S ‖TΩ‖F

33

≥ σ
√
C ′′

8

√
|Ω|

n∏
k=1

rk

·min


n∏
k=1

rk(
n∏
k=1

(2C ′2rk/dk + 1)

)
− 1

,

n∏
k=1

rk,

n∏
k=1

rk(
n∏
k=1

(2C ′
√
rk log(rk)/dk + 2C ′rk log(rk)/dk + 1)

)
− 1


=

σ
√
C ′′

8
√
|Ω|
·min


√√√√√√√

n∏
k=1

dk

(
n∏
k=1

(dk + 2C ′2rk))−
n∏
k=1

dk

, 1,

√√√√√√√
n∏
k=1

dk

(
n∏
k=1

(2C ′
√
dkrk log(rk) + 2C ′rk log(rk) + dk))−

n∏
k=1

dk

 ≥ κ,
so this is a legitimate choice of κ in Lemma B.7. Next, we verify that κS ⊆ K ∩ βB∞. Indeed, we
have

κmax
S
‖T ‖∞ ≤ κ

√√√√1

2
log(8

n∏
k=1

dk)

n∏
k=1

rk ≤ β,

so κS ⊆ βB∞, and every element of S has Tucker rank r by construction.
Then Lemma B.7 concludes that if A works on Kr ∩ βB∞, then there is a tensor T ∈ Kr ∩ βB∞

so that

‖W(1/2) � (A(TΩ + ZΩ)− T)‖F
≥ κ

2
min
T 6=T ′∈S

‖W(1/2) � (T − T ′)‖F

≥ 1

2
min


β√

1
2 log(8

n∏
k=1

dk)
n∏
k=1

rk

,
σ
√
C ′′

8
√
|Ω|

√√√√√√√
n∏
k=1

dk

(
n∏
k=1

(dk + 2C ′2rk))−
n∏
k=1

dk

,
σ
√
C ′′

8
√
|Ω|

,

σ
√
C ′′

8
√
|Ω|

√√√√√√√
n∏
k=1

dk

(
n∏
k=1

(2C ′
√
dkrk log(rk) + 2C ′rk log(rk) + dk))−

n∏
k=1

dk


√√√√m

n∏
k=1

rk

= min


β
√
m√

2 log(8
n∏
k=1

dk)

,
σ
√
C ′′m

16
√
|Ω|

√√√√ n∏
k=1

rk ·min


1√(

n∏
k=1

(1 + 2C ′2rk/dk)

)
− 1

,

34

1,
1√(

n∏
k=1

(2C ′
√
rk/dk log(rk) + 2C ′rk/dk log(rk) + 1)

)
− 1



 .

Additionally, by Lemma B.3, we conclude that

‖W(1/2) � (A(TΩ + ZΩ)− T)‖F
‖W(1/2)‖F

≥ c̃ ·min


β√

log(8
n∏
k=1

dk)

,
σ√
|Ω|

√√√√ n∏
k=1

rk ·min


1√(

n∏
k=1

(1 + 2C ′2rk/dk)

)
− 1

,

1,
1√(

n∏
k=1

(2C ′
√
rk/dk log(rk) + 2C ′rk/dk log(rk) + 1)

)
− 1



 ,

where c̃ depends on the above constants.

Remark B.12. Consider the special case when T ∈ Rd1×d2 with d1 ≤ d2. Then we can consider
the reconstruction of S in Lemma B.8 with H = W(1/2), B being the tensor whose entries are all 1,
C ∈ {±1}r×d2 , 1U ∈ {±1}d1×r and 2U ∈ {±1}d2×d2 which implies that r1 = r and r2 = d2. Thus, we
have

‖W(1/2) � (A(TΩ + ZΩ)− T)‖F
‖W(1/2)‖F

≥ c̃ ·min

{
σ√
|Ω|

√
rd2,

β√
log(8d1d2)

}
,

which has the same bound as the one in ([21] Lemma 28).

Acknowledgements

The authors are supported by NSF CAREER DMS 1348721 and NSF BIGDATA 1740325. The
authors take pleasure in thanking Hanqin Cai, Keaton Hamm, Armenak Petrosyan, Bin Sun, and Tao
Wang for comments and suggestions on the manuscript.

References

[1] Evrim Acar and Bülent Yener. Unsupervised multiway data analysis: A literature survey. IEEE
Trans. Knowl. Data Eng, 21(1):6–20, 2008.

[2] Yonatan Amit, Michael Fink, Nathan Srebro, and Shimon Ullman. Uncovering shared struc-
tures in multiclass classification. In Proceedings of the 24th international conference on Machine
learning, pages 17–24. ACM, 2007.

[3] Morteza Ashraphijuo, Vaneet Aggarwal, and Xiaodong Wang. On deterministic sampling patterns
for robust low-rank matrix completion. IEEE Signal Process. Lett., 25(3):343–347, 2017.

35

[4] Morteza Ashraphijuo and Xiaodong Wang. Fundamental conditions for low-cp-rank tensor com-
pletion. J. Mach. Learn. Res., 18(1):2116–2145, 2017.

[5] Morteza Ashraphijuo, Xiaodong Wang, and Vaneet Aggarwal. Rank determination for low-rank
data completion. J. Mach. Learn. Res., 18(1):3422–3450, 2017.

[6] Boaz Barak and Ankur Moitra. Noisy tensor completion via the sum-of-squares hierarchy. In
Conference on Learning Theory, pages 417–445, 2016.

[7] Srinadh Bhojanapalli and Prateek Jain. Universal matrix completion. arXiv:1402.2324, 2014.

[8] Rasmus Bro et al. Parafac. tutorial and applications. Chemom. Intell. Lab. Syst., 38(2):149–172,
1997.

[9] HanQin Cai, Jian-Feng Cai, Tianming Wang, and Guojian Yin. Accelerated structured alter-
nating projections for robust spectrally sparse signal recovery. IEEE Transactions on Signal
Processing, 69:809–821, 2021.

[10] Jian-Feng Cai, Emmanuel J Candès, and Zuowei Shen. A singular value thresholding algorithm
for matrix completion. SIAM J. Optim, 20(4):1956–1982, 2010.

[11] T Tony Cai, Wen-Xin Zhou, et al. Matrix completion via max-norm constrained optimization.
Electron. J. Stat., 10(1):1493–1525, 2016.

[12] Emmanuel J Candes and Yaniv Plan. Matrix completion with noise. Proc. IEEE, 98(6):925–936,
2010.

[13] Emmanuel J Candès and Benjamin Recht. Exact matrix completion via convex optimization.
Found. Comput. Math., 9(6):717, 2009.

[14] J Douglas Carroll and Jih-Jie Chang. Analysis of individual differences in multidimensional
scaling via an n-way generalization of “eckart-young” decomposition. Psychometrika, 35(3):283–
319, 1970.

[15] Zehan Chao, Longxiu Huang, and Deanna Needell. Tensor completion through total variation
with initialization from weighted hosvd. In Proc. Information Theory and Applications, 2020.

[16] Sourav Chatterjee. A deterministic theory of low rank matrix completion. arXiv:1910.01079,
2019.

[17] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. A multilinear singular value decom-
position. SIAM J. Matrix Anal. Appl., 21(4):1253–1278, 2000.

[18] Armin Eftekhari, Dehui Yang, and Michael B Wakin. Weighted matrix completion and recovery
with prior subspace information. IEEE Trans. Inf. Theory, 64(6):4044–4071, 2018.

[19] Beyza Ermiş, Evrim Acar, and A Taylan Cemgil. Link prediction in heterogeneous data via
generalized coupled tensor factorization. Data Min. Knowl. Discov., 29(1):203–236, 2015.

[20] Zisen Fang, Xiaowei Yang, Le Han, and Xiaolan Liu. A sequentially truncated higher order singu-
lar value decomposition-based algorithm for tensor completion. IEEE Trans. Cybern., 49(5):1956–
1967, 2018.

[21] Simon Foucart, Deanna Needell, Reese Pathak, Yaniv Plan, and Mary Wootters. Weighted
matrix completion from non-random, non-uniform sampling patterns. IEEE Transactions on
Information Theory, 2020.

36

[22] Silvia Gandy, Benjamin Recht, and Isao Yamada. Tensor completion and low-n-rank tensor
recovery via convex optimization. Inverse Problems, 27(2):025010, 2011.

[23] Hancheng Ge, James Caverlee, Nan Zhang, and Anna Squicciarini. Uncovering the spatio-
temporal dynamics of memes in the presence of incomplete information. In Proceedings of the
25th ACM International on Conference on Information and Knowledge Management, pages 1493–
1502. ACM, 2016.

[24] David F Gleich and Lek-heng Lim. Rank aggregation via nuclear norm minimization. In Pro-
ceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 60–68. ACM, 2011.

[25] Donald Goldfarb and Zhiwei Qin. Robust low-rank tensor recovery: Models and algorithms.
SIAM J. Matrix Anal. Appl., 35(1):225–253, 2014.

[26] Eyal Heiman, Gideon Schechtman, and Adi Shraibman. Deterministic algorithms for matrix
completion. Random Structures & Algorithms, 45(2):306–317, 2014.

[27] Frank L Hitchcock. The expression of a tensor or a polyadic as a sum of products. J. Math.
Phys., 6(1-4):164–189, 1927.

[28] Frank L Hitchcock. Multiple invariants and generalized rank of a p-way matrix or tensor. J.
Math. Phys., 7(1-4):39–79, 1928.

[29] Prateek Jain and Sewoong Oh. Provable tensor factorization with missing data. In Advances in
Neural Information Processing Systems, pages 1431–1439, 2014.

[30] Teng-Yu Ji, Ting-Zhu Huang, Xi-Le Zhao, Tian-Hui Ma, and Gang Liu. Tensor completion using
total variation and low-rank matrix factorization. Information Sciences, 326:243–257, 2016.

[31] Henk AL Kiers, Jos MF Ten Berge, and Rasmus Bro. Parafac2—part i. a direct fitting algorithm
for the parafac2 model. J. Chemometrics, 13(3-4):275–294, 1999.

[32] Franz J Király, Louis Theran, and Ryota Tomioka. The algebraic combinatorial approach for
low-rank matrix completion. arXiv:1211.4116, 2012.

[33] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM Rev.,
51(3):455–500, 2009.

[34] Daniel Kressner, Michael Steinlechner, and Bart Vandereycken. Low-rank tensor completion by
riemannian optimization. BIT Numer. Math., 54(2):447–468, 2014.

[35] Pieter M Kroonenberg and Jan De Leeuw. Principal component analysis of three-mode data by
means of alternating least squares algorithms. Psychometrika, 45(1):69–97, 1980.

[36] Joseph B Kruskal. Rank, decomposition, and uniqueness for 3-way and n-way arrays. Multiway
data analysis, pages 7–18, 1989.

[37] P Lancaster and HK Farahat. Norms on direct sums and tensor products. Math. Comp.,
26(118):401–414, 1972.

[38] Troy Lee and Adi Shraibman. Matrix completion from any given set of observations. In Advances
in Neural Information Processing Systems, pages 1781–1787, 2013.

[39] Xutao Li, Yunming Ye, and Xiaofei Xu. Low-rank tensor completion with total variation for visual
data inpainting. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31,
2017.

37

[40] Yuanzhi Li, Yingyu Liang, and Andrej Risteski. Recovery guarantee of weighted low-rank ap-
proximation via alternating minimization. In International Conference on Machine Learning,
pages 2358–2367, 2016.

[41] Ji Liu, Przemyslaw Musialski, Peter Wonka, and Jieping Ye. Tensor completion for estimating
missing values in visual data. IEEE Trans. Pattern Anal. Mach. Intell., 35(1):208–220, 2012.

[42] Yuanyuan Liu, Fanhua Shang, Hong Cheng, James Cheng, and Hanghang Tong. Factor ma-
trix trace norm minimization for low-rank tensor completion. In Proceedings of the 2014 SIAM
International Conference on Data Mining, pages 866–874. SIAM, 2014.

[43] Zhang Liu and Lieven Vandenberghe. Interior-point method for nuclear norm approximation
with application to system identification. SIAM J. Matrix Anal. Appl., 31(3):1235–1256, 2009.

[44] Baburaj Madathil and Sudhish N George. Twist tensor total variation regularized-reweighted
nuclear norm based tensor completion for video missing area recovery. Information Sciences,
423:376–397, 2018.

[45] Cun Mu, Bo Huang, John Wright, and Donald Goldfarb. Square deal: Lower bounds and
improved relaxations for tensor recovery. In International conference on machine learning, pages
73–81, 2014.

[46] Sahand Negahban and Martin J Wainwright. Restricted strong convexity and weighted matrix
completion: Optimal bounds with noise. J. Mach. Learn. Res., 13(May):1665–1697, 2012.

[47] Juan Carlos Niebles, Chih-Wei Chen, and Li Fei-Fei. Modeling temporal structure of decom-
posable motion segments for activity classification. In European conference on computer vision,
pages 392–405. Springer, 2010.

[48] Daniel L Pimentel-Alarcón, Nigel Boston, and Robert D Nowak. A characterization of deter-
ministic sampling patterns for low-rank matrix completion. IEEE J. Sel. Topics Signal Process.,
10(4):623–636, 2016.

[49] Daniel L Pimentel-Alarcón and Robert D Nowak. A converse to low-rank matrix completion. In
2016 IEEE International Symposium on Information Theory (ISIT), pages 96–100. IEEE, 2016.

[50] Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based noise removal
algorithms. Physica D: nonlinear phenomena, 60(1-4):259–268, 1992.

[51] Alexander Shapiro, Yao Xie, and Rui Zhang. Matrix completion with deterministic pattern: A
geometric perspective. IEEE Trans. Signal Process., 67(4):1088–1103, 2018.

[52] Nicholas D Sidiropoulos, Lieven De Lathauwer, Xiao Fu, Kejun Huang, Evangelos E Papalexakis,
and Christos Faloutsos. Tensor decomposition for signal processing and machine learning. IEEE
Trans. Signal Process., 65(13):3551–3582, 2017.

[53] Qingquan Song, Hancheng Ge, James Caverlee, and Xia Hu. Tensor completion algorithms in
big data analytics. ACM Trans. Knowl. Discov. Data, 13(1), 2019.

[54] Panagiotis Symeonidis, Alexandros Nanopoulos, and Yannis Manolopoulos. Tag recommenda-
tions based on tensor dimensionality reduction. In Proceedings of the 2008 ACM conference on
Recommender systems, pages 43–50. ACM, 2008.

[55] Giorgio Tomasi and Rasmus Bro. Parafac and missing values. Chemom. Intell. Lab. Syst.,
75(2):163–180, 2005.

[56] Joel A Tropp. User-friendly tail bounds for sums of random matrices. Found. Comput. Math.,
12(4):389–434, 2012.

38

[57] Ledyard R Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika,
31(3):279–311, 1966.

[58] Yao Wang, Jiangjun Peng, Qian Zhao, Yee Leung, Xi-Le Zhao, and Deyu Meng. Hyperspectral
image restoration via total variation regularized low-rank tensor decomposition. IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing, 11(4):1227–1243, 2017.

[59] Zhaojun Wu, Qiang Wang, Jing Jin, and Yi Shen. Structure tensor total variation-regularized
weighted nuclear norm minimization for hyperspectral image mixed denoising. Signal Processing,
131:202–219, 2017.

[60] Jiawen Yao, Zheng Xu, Xiaolei Huang, and Junzhou Huang. Accelerated dynamic mri recon-
struction with total variation and nuclear norm regularization. In International Conference on
Medical Image Computing and Computer-Assisted Intervention, pages 635–642. Springer, 2015.

[61] Ali Zare, Alp Ozdemir, Mark A Iwen, and Selin Aviyente. Extension of PCA to higher order
data structures: An introduction to tensors, tensor decompositions, and tensor PCA. Proc. IEEE,
106(8):1341–1358, 2018.

39

	1 Introduction
	1.1 Contributions
	1.2 Organization

	2 Related Work, Background, and Problem Statement
	2.1 Matrix Completion
	2.2 Tensor Completion Problem
	2.2.1 Preliminaries and Notations
	2.2.2 CP-Based Method for Tensor Completion
	2.2.3 HOSVD-Based Method for Tensor Completion
	2.2.4 Tensor Completion Problem under Study

	3 Main Results
	3.1 General Upper Bound
	3.2 Results for Weighted HOSVD Algorithm
	3.2.1 General Upper Bound for Weighted HOSVD
	3.2.2 Case Study: When Lg

	4 Experiments
	4.1 Simulations for Uniform Sampling Pattern
	4.2 Simulation for Non-Uniform Sampling Pattern
	4.3 Test for Real Data
	4.4 The Application of Weighted HOSVD on Total Variation Minimization

	5 Conclusions
	A Proof for Theorem 1
	B Proof of Theorems 2 and 3
	B.1 General Upper Bound for Weighted HOSVD Algorithm
	B.2 Case Study: Lg
	B.2.1 Upper Bound
	B.2.2 Lower Bound

