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Privacy-Preserving Deep Action Recognition:
An Adversarial Learning Framework

and A New Dataset
Zhenyu Wu*, Haotao Wang*, Zhaowen Wang, Hailin Jin, and Zhangyang Wang

Abstract—We investigate privacy-preserving, video-based action recognition in deep learning, a problem with growing importance in
smart camera applications. A novel adversarial training framework is formulated to learn an anonymization transform for input videos
such that the trade-off between target utility task performance and the associated privacy budgets is explicitly optimized on the
anonymized videos. Notably, the privacy budget, often defined and measured in task-driven contexts, cannot be reliably indicated using
any single model performance because strong protection of privacy should sustain against any malicious model that tries to steal
private information. To tackle this problem, we propose two new optimization strategies of model restarting and model ensemble to
achieve stronger universal privacy protection against any attacker models. Extensive experiments have been carried out and analyzed.

On the other hand, given few public datasets available with both utility and privacy labels, the data-driven (supervised) learning
cannot exert its full power on this task. We first discuss an innovative heuristic of cross-dataset training and evaluation, enabling the
use of multiple single-task datasets (one with target task labels and the other with privacy labels) in our problem. To further address
this dataset challenge, we have constructed a new dataset, termed PA-HMDB51, with both target task labels (action) and selected
privacy attributes (gender, age, race, nudity, and relationship) annotated on a per-frame basis. This first-of-its-kind video dataset and
evaluation protocol can greatly facilitate visual privacy research and open up other opportunities. Our codes, models, and the
PA-HMDB51 dataset are available at: https:// github.com/ VITA-Group/ PA-HMDB51.

Index Terms—Visual privacy, action recognition, privacy-preserving learning, adversarial learning.

F

1 INTRODUCTION

SMART surveillance or smart home cameras, such as
Amazon Echo and Nest Cam, are now found in mil-

lions of locations to link users to their homes or offices
remotely. They provide the users with a monitoring service
by notifying environment changes, a lifelogging service,
and intelligent assistance. However, the benefits come at
the heavy price of privacy intrusion from time to time.
Due to the computationally demanding nature of visual
recognition tasks, only some can run on the resource-limited
local devices, which makes transmitting (part of) data to the
cloud necessary. Growing concerns have been raised [1]–[4]
towards personal data uploaded to the cloud, which could
be potentially misused or stolen by malicious third-parties.
This new privacy risk is fundamentally different from tra-
ditional concerns over unsecured transmission channels
(e.g., malicious third-party eavesdropping), and therefore
requires new solutions to address it. Many laws and regu-
lations in the United States and the European Union [5]–[8]
also bring up guidelines for handling Personally Identifiable
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Information.
We ask if it is possible to alleviate privacy concerns

without compromising user convenience. At first glance,
the question itself is posed as a dilemma: we would like
a camera system to recognize important events and assist
daily human life by understanding its videos while prevent-
ing it from obtaining sensitive visual information (such as
faces, gender, skin color, etc.) that can intrude individual
privacy. Thus, it becomes a new and appealing problem
to find an appropriate transform to obfuscate the captured
raw visual data at the local end, so that the transformed
data will only enable specific target utility tasks while
obstructing undesired privacy-related tasks. Recently, some
new video acquisition approaches [9]–[11] were proposed
to intentionally capture or process videos in extremely
low-resolution to create privacy-preserving “anonymized”
videos and showed promising empirical results.

This paper takes one of the first steps towards address-
ing this challenge of privacy-preserving, video-based action
recognition, via the following contributions:
• A General Adversarial Training and Evaluation Frame-

work. We address the privacy-preserving action recog-
nition problem with a novel adversarial training frame-
work. The framework explicitly optimizes the trade-off
between target utility task performance and the associated
privacy budgets by learning to anonymize the original
videos. To reduce the training instability (as discussed
in Section 3.1), we design and compare three different
optimization strategies. We empirically find one strategy
generally outperforms the others under our framework
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and provide intuition to its advantage.
• Practical Approximations of “Universal” Privacy Pro-

tection. The privacy budget in our framework cannot be
defined w.r.t. one model that predicts privacy attributes.
Instead, the ideal protection of privacy must be univer-
sal and model-agnostic, i.e., preventing every possible
attacker model from predicting private information. To
resolve this so-called “∀ challenge”, we propose two ef-
fective strategies, i.e., restarting and ensembling, to enhance
the generalization capability of the learned anonymiza-
tion to defend against unseen models. We leave it as our
future work to find better methods for this challenge.

• A New Dataset with Action and Privacy Annotations.
When it comes to evaluating privacy protection on com-
plicated privacy attributes, there is no off-the-shelf video
dataset with both action (utility) and privacy attributes
annotated, either for training or testing. Such a dataset
challenge is circumvented in our previous work [12] by
using the VISPR [13] dataset as an auxiliary dataset to
provide privacy annotations for cross-dataset evaluation
(details in Section 3.6). However, this protocol inevitably
suffers from the domain gap between the two datasets:
while the utility was evaluated on one dataset, the privacy
was measured on a different dataset. The incoherence in
utility and privacy evaluation datasets makes the obtained
utility-privacy trade-off less convincing. To reduce this
gap, in this paper, we construct the very first testing
benchmark dataset, dubbed Privacy Annotated HMDB51
(PA-HMDB51), to evaluate privacy protection and action
recognition on the same videos simultaneously. The new
dataset consists of 515 videos originally from HMDB51.
For each video, privacy labels (five attributes: skin color,
face, gender, nudity, and relationship) are provided on a
per-frame basis. We benchmark our proposed framework
on the new dataset and validate its effectiveness.

The paper is built upon our prior work [12] with multiple
improvements: (1) A detailed discussion and comparison on
three optimization strategies for the proposed framework;
(2) A much expanded experimental and analysis section;
and (3) most importantly, the construction of the new PA-
HMDB51 dataset, and the associated benchmark results.

2 RELATED WORK

2.1 Privacy Protection in Computer Vision
With pervasive cameras for surveillance or smart home
devices, privacy-preserving action recognition has drawn
increasing interests from both industry and academia.
Transmitting Feature Descriptors A seemingly reasonable
and computationally cheaper option is to extract feature
descriptors from raw images and transmit those features
only. Unfortunately, previous studies [14]–[18] revealed that
considerable details of original images could still be recov-
ered from standard HOG, SIFT, LBP, 3D point clouds, Bag-
of-Visual-Words or neural network activations (even if they
look visually distinctive from natural images).
Homomorphic Cryptographic Solutions Most classical
cryptographic solutions secure communication against
unauthorized access from attackers. However, they are not
immediately applicable to preventing authorized agents
(such as the back-end analytics) from the unauthorized

abuse of information, causing privacy breach concerns. A
few encryption-based solutions, such as Homomorphic En-
cryption (HE) [19], [20], were developed to locally encrypt
visual information. The server can only get access to the
encrypted data and conduct a utility task on it. However,
many encryption-based solutions will incur high computa-
tional costs at local platforms. It is also challenging to gen-
eralize the cryptosystems to more complicated classifiers.
Chattopadhyay et al. [21] combined the detection of regions
of interest and the real encryption techniques to improve
privacy while allowing general surveillance to continue.
Anonymization by Empirical Obfuscations An alternative
approach towards a privacy-preserving vision system is
based on the concept of anonymized videos. Such videos
are intentionally captured or processed by empirical obfus-
cations to be in special low-quality conditions, which only
allow for recognizing some target events or activities while
avoiding the unwanted leak of the identity information for
the human subjects in the video.

Ryoo et al. [9] showed that even at the extremely low
resolutions, reliable action recognition could be achieved
by learning appropriate downsampling transforms, with
neither unrealistic activity-location assumptions nor extra
specific hardware resources. The authors empirically veri-
fied that conventional face recognition easily failed on the
generated low-resolution videos. Butler et al. [10] used im-
age operations like blurring and superpixel clustering to get
anonymized videos, while Dai et al. [11] used extremely low
resolution (e.g., 16×12) camera hardware to get anonymized
videos. Winkler et al. [22] used cartoon-like effects with a
customized version of mean shift filtering. Wang et al. [23]
proposed a lens-free coded aperture (CA) camera system,
producing visually unrecognizable and unrestorable im-
age encodings. Pittaluga & Koppal [24], [25] proposed to
use privacy-preserving optics to filter sensitive information
from the incident light-field before sensor measurements
are made, by k-anonymity and defocus blur. Earlier work
of Jia et al. [26] explored privacy-preserving tracking and
coarse pose estimation using a network of ceiling-mounted
time-of-flight low-resolution sensors. Tao et al. [27] adopted
a network of ceiling-mounted binary passive infrared sen-
sors. However, both works [26], [27] handled only a limited
set of activities performed at specific constrained areas in
the room.

The usage of low-quality anonymized videos by obfus-
cations was computationally cheap and compatible with
sensor and bandwidth constraints. However, the proposed
obfuscations were not learned towards protecting any vi-
sual privacy, thus having limited effects. In other words,
privacy protection came as a “side product” of obfuscation,
and was not a result of any optimization, making the
privacy protection ability very limited. What is more, the
privacy-preserving effects were not carefully analyzed and
evaluated by human study or deep learning-based privacy
recognition approaches. Lastly, none of the aforementioned
empirical obfuscations extended their efforts to study deep
learning-based action recognition, making their task per-
formance less competitive. Similarly, the recent progress
of low-resolution object recognition [28]–[30] also put their
privacy protection effects in jeopardy.
Learning-based Solutions Very recently, a few learning-
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based approaches have been proposed to address privacy
protection or fairness problems in vision-related tasks [12],
[31]–[39]. Many of them exploited ideas from adversarial
learning. They addressed this problem by learning data
representations that simultaneously reduce the budget cost
of privacy or fairness while maintaining the utility task
performance.

Wu et al. [31] proposed an adversarial training frame-
work dubbed Nuisance Disentangled Feature Transform
(NDFT) to utilize the free meta-data (i.e., altitudes, weather
conditions, and viewing angles) in conjunction with associ-
ated UAV images to learn domain-robust features for object
detection in UAV images. Pittaluga et al. [33] preserved the
utility by maintaining the variance of the encoding or favor-
ing a second classifier for a different attribute in training.
Bertran et al. [34] motivated the adversarial learning frame-
work as a distribution matching problem and defined the
objective and the constraints in mutual information. Roy &
Boddeti [35] measured the uncertainty in the privacy-related
attributes by the entropy of the discriminator’s prediction.
Oleszkiewicz et al. [40] proposed an empirical data-driven
privacy metric based on mutual information to quantify the
privatization effects on biometric images. Zhang et al. [36]
presented an adversarial debiasing framework to mitigate
the biases concerning demographic groups. Ren et al. [37]
learned a face anonymizer in video frames while main-
taining the action detection performance. Shetty et al. [38]
presented an automatic object removal model that learns
how to find and remove objects from general scene images
via a generative adversarial network (GAN) framework.

2.2 Privacy Protection in Social Media/Photo Sharing

User privacy protection is also a topic of extensive inter-
est in the social media field, especially for photo sharing.
The most common means to protect user privacy in an
uploaded photo is to add empirical obfuscations, such as
blurring, mosaicing, or cropping out certain regions (usually
faces) [41]. However, extensive research showed that such
an empirical approach could be easily hacked [42], [43].
A recent work [44] described a game-theoretical system in
which the photo owner and the recognition model strive
for antagonistic goals of disabling recognition, and better
obfuscation ways could be learned from their competition.
However, their system was only designed to confuse one
specific recognition model via finding its adversarial per-
turbations. Fooling only one recognition model can cause
obvious overfitting as merely changing to another recog-
nition model will likely put the learning efforts in vain:
such perturbations cannot even protect privacy from human
eyes. The problem setting in [44] thus differs from our target
problem. Another notable difference is that we usually hope
to generate minimum perceptual quality loss to photos
after applying any privacy-preserving transform to them
in social photo sharing. There is no such restriction in our
scenario. We can apply a much more flexible and aggressive
transformation to the image.

The visual privacy issues faced by blind people were
revealed in [45] with the first dataset in this area. Concrete
privacy attributes were defined in [13] with their correla-
tion with image content. The authors categorized possible

private information in images, and they ran a user study to
understand privacy preferences. They then provided a siz-
able set of 22k images annotated with 68 privacy attributes,
on which they trained privacy attributes predictors.

3 METHOD

3.1 Problem Definition

Objective Assume our training data X (raw visual data
captured by camera) are associated with a target utility task
T and a privacy budget B. Since T is usually a supervised
task, e.g., action recognition or visual tracking, a label set
YT is provided on X , and a standard cost function LT (e.g.,
cross-entropy) is defined to evaluate the task performance
on T . Usually, there is a state-of-the-art deep neural network
fT , which takes X as input and predicts the target labels.
On the other hand, we need to define a budget cost function
JB to evaluate its input data’s privacy leakage: the smaller
JB(·) is, the less private information its input contains.

We seek an optimal anonymization function f∗A to trans-
form the original X to anonymized visual data f∗A(X ), and
an optimal target model f∗T such that:
• f∗A has filtered out the private information in X , i.e.,

JB(f
∗
A(X ))� JB(X )

• the performance of fT is minimally affected when
using the anonymized visual data f∗A(X ) compared to
when using the original data X , i.e.

LT (f
∗
T (f

∗
A(X )),YT ) ≈ minfT LT (fT (X ),YT )

To achieve these two goals, we mathematically formulate
the problem as solving the following optimization problem:

f∗A, f
∗
T = argmin

fA,fT

[LT (fT (fA(X )),YT ) + γJB(fA(X ))] (1)

Definition of JB and LT The definition of the privacy
budget cost JB is not straightforward. Practically, it needs
to be placed in concrete application contexts, often in a task-
driven way. For example, in smart workplaces or smart
homes with video surveillance, one might often want to
avoid disclosure of the face or identity of persons. Therefore,
to reduce JB could be interpreted as to suppress the success
rate of identity recognition or verification. Other privacy-
related attributes, such as race, gender, or age, can be simi-
larly defined too. We denote the privacy-related annotations
(such as identity label) as YB , and rewrite JB(fA(X )) as
JB(fB(fA(X )),YB), where fB denotes the privacy budget
model which takes (anonymized or original) visual data
as input and predicts the corresponding private informa-
tion. Different from LT , minimizing JB will encourage
fB(fA(X )) to diverge from YB . Without loss of generality,
we assume both fT and fB to be classification models and
output class labels. Under this assumption, we could choose
LT as the cross-entropy function and JB as the negative
cross-entropy function:

LT , H(YT , fT (fA(X )))
JB , −H(YB , fB(fA(X )))
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where H(·, ·) is the cross-entropy function. For convenience,
we also define another variable LB as −JB :

LB , −JB = H(YB , fB(fA(X )))

Two Challenges Such a supervised, task-driven definition
of JB poses at least two challenges: (1) Dataset challenge:
The privacy budget-related annotations, denoted as YB ,
often have less availability than target utility task labels.
Specifically, it is often challenging to have both YT and YB
available on the same X ; (2) ∀ challenge: Considering the
nature of privacy protection, it is not sufficient to merely
suppress the success rate of one fB model. Instead, we
define a privacy prediction function family

P : fA(X ) 7→ YB ,

so that the ideal privacy protection by fA should be reflected
as suppressing every possible model fB from P . That differs
from the common supervised training goal, where only one
model needs to be found to fulfill the target utility task
successfully.

We address the dataset challenge by two ways: (1) cross
dataset training and evaluation (Section 3.4); and more
importantly (2) building a new dataset annotated with both
utility and privacy labels (Section 5). We defer their discus-
sion to respective experimental paragraphs.

Handling the ∀ challenge is more challenging. Firstly, we
re-write the general form in Eq. (1) with the task-driven
definition of JB as follows:

f∗A, f
∗
T = argmin(fA,fT )[LT (fT (fA(X )),YT )+

γ supfB∈P JB(fB(fA(X )),YB)].
(2)

The ∀ challenge is the infeasibility to directly solve Eq. (2),
due to the infinite search space of fB in P . Secondly, we
propose to solve the following approximate problem by
setting fB as a neural network with a fixed structure:

f∗A, f
∗
T = argmin(fA,fT )[LT (fT (fA(X )),YT )+

γmaxfB JB(fB(fA(X )),YB)].
(3)

Lastly, we propose “model ensemble” and “model restart-
ing” (Section 3.5) to handle the ∀ challenge better and boost
the experimental results further.

Considering the ∀ challenge, the evaluation protocol for
privacy-preserving action recognition is more intricate than
traditional action recognition task. We propose a two-step
protocol (as described in Section 3.6) to evaluate f∗A and
f∗T on the trade-off they have achieved between target task
utility and privacy protection budget.
Solving the Minimax Solving Eq. (3) is still challenging
because the minimax problem is hard by its nature. Tra-
ditional minimax optimization algorithms based on alter-
nating gradient descent can only find minimax points for
convex-concave problems, and they achieve sub-optimal
solutions on deep neural networks since they are neither
convex nor concave. Some very recent minimax algorithms,
such as K-Beam [46], have been shown to be promising
in none convex-concave and deep neural network appli-
cations. However, these methods rely on heavy parameter
tuning and are effective only in limited situations. Besides,
our optimization goal in Eq. (3) is even harder than common
minimax objectives like those in GANs, which are often

interpreted as a two-party competition game. In contrast,
our Eq. (3) is more “hybrid” and can be interpreted as a
more complicated three-party competition, where (adopting
machine learning security terms) fA is an obfuscator, fT a
utilizer collaborating with the obfuscator, and fB an attacker
trying to breach the obfuscator. Therefore, we see no obvious
best choice from the off-the-shelf minimax algorithms to
ahieve our objective.

We are thus motivated to try different state-of-the-
art minimax optimization algorithms on our framework.
We tested two state-of-the-art minimax optimization algo-
rithms, namely GRL [47] and K-Beam [46], on our frame-
work and proposed an innovative entropy maximization
method to solve Eq. (3). We empirically show our entropy
maximization algorithm outperforms both state-of-the-art
minimax optimization algorithms and discuss its advan-
tages. In Section 3.3, we present the comparison of three
methods and hope it will benefit future research on similar
problems.

3.2 Basic Framework

Our framework is a privacy-preserving action recognition
pipeline that uses video data. It is a prototype of the in-
demand privacy protection in smart camera applications.
Figure 1 depicts the basic framework implementing the
proposed formulation (3). The framework consists of three
parts: the anonymization model fA, the target model fT ,
and the budget model fB . fA takes raw video X as in-
put, filters out private information in X , and outputs the
anonymized video fA(X ). fT takes fA(X ) as input and
carries out the target utility task. fB also take fA(X ) as input
and try to predict the private information from fA(X ). All
three models are implemented with deep neural networks,
and their parameters are learnable during the training pro-
cedure. The entire pipeline is trained under the guidance of
the hybrid loss of LT and JB . The training procedure has
two goals. The first goal is to find an anonymization model
f∗A that can filter out the private information in the original
video while keeping useful information for the target utility
task. The second goal is to find a target model that can
achieve good performance on the target utility task using
anonymized videos fA(X ). Similar frameworks have been
used in feature disentanglement [48]–[51]. After training,
the learned anonymization model can be applied on a local
device (e.g., smart camera), by designing an embedded
chipset responsible for the anonymization at the hardware-
level [37]. We can convert raw video to anonymized video
locally and only transfer the anonymized video through the
Internet to the backend (e.g., cloud) for target utility task
analysis. The private information in the raw videos will be
unavailable on the backend.

Specifically, fA is implemented using the model in [52],
which can be taken as a 2D convolution-based frame-level
filter. In other words, fA converts each frame in X into a
feature map of the same shape as the original frame. We
use state-of-the-art human action recognition model C3D
[53] as fT and state-of-the-art image classification models,
such as ResNet [54] and MobileNet [55], as fB . Since the
action recognition model we use is C3D, we need to split
the videos into clips with a fixed frame number. Each clip
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Fig. 1: Basic adversarial training framework for privacy-preserving
action recognition.

is a 4D tensor of shape [T,W,H,C], where T is the number
of frames in each clip and W , H , C are the width, height,
and the number of color channels in each frame respectively.
Unlike fT , which takes a 4D tensor as an input data sample,
fB takes a 3D tensor (i.e. a frame) as input. We average1

the logits over the temporal dimension of each video clip to
calculate JB and predict the budget task label.

3.3 Optimization Strategies
In the following algorithms, we denote θB as the pa-
rameters of fB . Similarly, fA and fT are parameter-
ized by θA and θT respectively. αA, αB , αT are learn-
ing rates used to update θA, θB , θT . thB and thT
are accuracy thresholds for the target utility task and
the privacy budget prediction. max iter is the max-
imum number of iterations. For simplicity concern,
we abbreviate LT (fT (fA(X )),YT ), JB(fB(fA(X )),YB),
and LB(fB(fA(X )),YB) as LT (θA, θT ), JB(θA, θB)2 and
LB(θA, θB) respectively. Acc is a function to compute ac-
curacy on the privacy budget and the target utility tasks,
given training data (X t, YtB and YtT ) and validation data
(X v , YvB and YvT ).

3.3.1 Gradient reverse layer (GRL)
We consider Eq. (3) as a minimax problem [56]:

θ∗A, θ
∗
T = argmin(θA,θT ) L(θA, θT , θ

∗
B)

θ∗B = argmaxθB L(θ
∗
A, θ
∗
T , θB)

where L(θA, θT , θB) = LT (θA, θT ) + γJB(θA, θB) =
LT (θA, θT )− γLB(θA, θB).

GRL [47] is a state-of-the-art algorithm to solve such a
minimax problem. The underlying mathematical gist is to
solve the problem by alternative minimization:

θA ← θA − αA∇θA(LT (θA, θT )− γLB(θA, θB)) (4a)
θT ← θT − αT∇θTLT (θA, θT ) (4b)
θB ← θB − αB∇θBLB(θA, θB) (4c)

1. AVERAGING the logits temporally gave a better performance in
privacy budget prediction of JB , compared with MAXING the logits.

2. Remember that JB is the negative cross-entropy by definition.

We denote this method as GRL in the following parts
and give the details in Algorithm 1.

Algorithm 1: GRL algorithm

1 Initialize θA, θT and θB ;
2 for t← 1 to max iter do
3 Update θA using Eq. (4a)
4 while Acc(X v,YvT ) ≤ thT do
5 Update θT using Eq. (4b)
6 end
7 while Acc(X t,YtB) ≤ thB do
8 Update θB using Eq. (4c)
9 end

10 end

3.3.2 Alternating optimization of two loss functions

The goal in Eq. (3) can also be formulated as alternatively
solving the following two optimization problems:

θ∗A, θ
∗
T = argmin(θA,θT ) LT (θA, θT ) (5a)

θ∗B , θ
∗
A = argminθB argmaxθA LB(θA, θB) (5b)

Eq. (5a) is a standard minimization problem which can
be solved by end-to-end training fA and fT . Eq. (5b) is a
minimax problem which we solve by state-of-the-art mini-
max optimization method “K-Beam” [46]. K-Beam method
keeps track of K different sets of budget model parameters
(denoted as {θiB}Ki=1) during training time, and alternatively
updates θA and {θiB}Ki=1.

Inspired by K-Beam method, we present the following
parameter update rules to alternatively solve the two loss
functions in Eq. (5):

θA, θT ← θA, θT − αT∇(θT ,θA)LT (θA, θT ) (6a)

j ← argmini∈{1,...,K} LB(θA, θ
i
B) (6b-A)

θA ← θA + αA∇θALB(θA, θ
j
B) (6b-B)

θiB ← θiB − αB∇θiBLB(θA, θ
i
B), ∀i ∈ {1, . . . ,K} (6c)

We denote this method as Ours-K-Beam in the follow-
ing parts and give the details in Algorithm 2, where d iter
is the number of iterations used in the step of maximizing
LB .

3.3.3 Maximize entropy

We empirically find that minimizing negative cross-entropy
JB , which is a concave function, causes numerical instabili-
ties in Eq. (4a). So, we replace JB with −HB , the negative
entropy of fB(fA(X )), which is a convex function3:

HB(fB(fA(X ))) , H(fB(fA(X ))),

where H(·) is the entropy function. Minimizing −HB is
equivalent to maximizing entropy, which will encourage
“uncertain” predictions. We replace JB in Eq. (4a) by −HB ,

3. This point discusses the convexity or concavity of different loss
functions when viewing them as the outermost function in the com-
posite function. Both loss functions are neither convex nor concave
w.r.t. model weights.
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Algorithm 2: Ours-K-Beam algorithm

1 Initialize θA, θT and {θiB}Ki=1;
2 for t← 1 to max iter do
3 /*LT step:*/
4 while Acc(X v,YvT ) ≤ thT do
5 Update θT , θA using Eq. (6a)
6 end
7 /*LB Max step:*/
8 Update j using Eq. (6b-A)
9 for t2 ← 1 to d iter do

10 Update θA using Eq. (6b-B)
11 end
12 /*LB Min step:*/
13 for i← 1 to K do
14 while Acc(X t,YtB) ≤ thB do
15 Update θiB using Eq. (6c)
16 end
17 end
18 end

abbreviate HB(fB(fA(X ))) as HB(θA, θB), and propose the
following new update scheme:

θA ← θA − αA∇θA(LT (θA, θT )− γHB(θA, θB)) (7a)
θT , θA ← θT , θA − αT∇θT ,θALT (θA, θT ) (7b)

θB ← θB − αB∇θBLB(θA, θB) (7c)

where LT and LB are still cross-entropy loss functions as
in Eq. (4). Unlike in Eq. (4b), where we only update θT
when minimizing LT , we train θT and θA in an end-to-
end manner as shown in Eq. (7b), since we find it achieves
better performance in practice. We denote this method as
Ours-Entropy in the following parts and give the details in
Algorithm 3.

Algorithm 3: Ours-Entropy algorithm

1 Initialize θA, θT and θB ;
2 for t← 1 to max iter do
3 Update θA using Eq. (7a)
4 while Acc(X v,YvT ) ≤ thT do
5 Update θT , θA using Eq. (7b)
6 end
7 while Acc(X t,YtB) ≤ thB do
8 Update θB using Eq. (7c)
9 end

10 end

3.4 Addressing the Dataset Challenge by Cross-
Dataset Training and Evaluation: An Initial Attempt

An ideal dataset to train and evaluate our framework would
be a set of human action videos with both action labels and
privacy attributes provided. On the SBU dataset, we can
use the actor pair as a simple privacy attribute. But when
we want to evaluate our method on more complex privacy
attributes, we run into the dataset challenge: To the best
of our knowledge, no existing datasets have both human

action labels and complex privacy attributes provided on
the same videos.

Given the observation that a privacy attributes predictor
trained on VISPR can correctly identify privacy attributes
occurring in UCF101 and HMDB51 videos (examples in the
Appendix C), we hypothesize that the privacy attributes
have good “transferability” across UCF101/HMDB51 and
VISPR. Therefore, we can use a privacy prediction model
trained on VISPR to assess the privacy leak risk on
UCF101/HMDB51.

In view of that, we propose to use cross-dataset training
and evaluation as a workaround method. In brief, we train
action recognition (target utility task) on human action
datasets, such as UCF101 [57] and HMDB51 [58], and train
privacy protection (budget task) on visual privacy dataset
VISPR [13], while letting the two interact via their shared
component - the learned anonymization model. More specif-
ically, during training, we have two pipelines: one is fA and
fT trained on UCF101 or HMDB51 for action recognition;
the other is fA and fB trained on VISPR to suppress multi-
ple privacy attribute prediction. The two pipelines share the
same parameters for fA. During the evaluation, we evaluate
model utility (i.e., action recognition) on the testing set of
UCF101 or HMDB51 and privacy protection performance
on the testing set of VISPR. Such cross-dataset training
and evaluation shed new possibilities on training privacy-
preserving recognition models, even under the practical
shortages of datasets that have been annotated for both
tasks. Notably, “cross-dataset training” and “cross-dataset
testing (or evaluation)” are two independent strategies used
in this paper; they can be used either together or sepa-
rately. Details of our three experiments (SBU, UCF-101, and
HMDB51) are explained as follows:
• SBU (Section 4.1): we train and evaluate our framework

on the same video set, by considering actor identity as
a simple privacy attribute. Neither cross-training nor cross-
evaluation is involved.

• UCF101 (Section 4.2): we perform both cross-training and
cross-evaluation, on UCF-101 + VISPR. Such a method
provides an alternative to flexibly train and test privacy-
preserving video recognition for different utility/privacy
combinations, without annotating specific datasets.

• HMDB51 (Section 5.5), we use cross-training on HMDB51
+ VISPR datasets similarly to the UCF-101 experiment;
but for testing, we evaluate both utility and privacy
performance on the same, newly-annotated PA-HMDB51
testing set. Therefore, it involves only cross-training, but not
cross-evaluation.

Beyond the above initial attempt, we further construct
a new dataset dedicated to the privacy-preserving action
recognition task, which will be presented in Section 5.

3.5 Addressing the ∀ Challenge by Privacy Budget
Model Restarting and Ensemble
To improve the generalization ability of learned fA over all
possible fB ∈ P (i.e., privacy cannot be reliably predicted
by any model), we hereby discuss two simple and easy-
to-implement options. Other more sophisticated model re-
sampling or model search approaches, such as [59], will be
explored in future work.
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3.5.1 Privacy Budget Model Restarting

Motivation The max step over JB(fB(fA(X )),YB) in
Eq. (3) leads to the optimizer being stuck in bad local
solutions (similar to “mode collapse” in GANs), that will
hurdle the entire minimax optimization. Model restarting
provides a mechanism to “bypass” the bad solution when
it occurs, thus enabling the minimax optimizer to explore
better solution.
Approach At certain point of training (e.g., when the privacy
budget LB(fB(fA(X )),YB) stops decreasing any further),
we re-initialize fB with random weights. Such a random
restarting aims to avoid trivial overfitting between fB and
fA (i.e., fA is only specialized at confusing the current fB),
without requiring more parameters. We then start to train
the new model fB to be a strong competitor, w.r.t. the
current fA(X ): specifically, we freeze the training of fA and
fT , and change to minimizing LB(fB(fA(X )),YB), until
the new fB has been trained from scratch to become a
strong privacy prediction model over current fA(X ). We
then resume adversarial training by unfreezing fA and fT ,
as well as switching the loss for fB back to the adversarial
loss (negative entropy or negative cross-entropy). Such a
random restarting can repeat multiple times.

3.5.2 Privacy Budget Model Ensemble

Motivation Ideally in Eq. (3) we should maximize the error
over the “current strongest possible” attacker fA from P
(a large and continuous fB family), over which search-
ing/sampling is impractical. Therefore we propose a pri-
vacy budget model ensemble as an approximation strategy,
where we approximate the continuous P with a discrete set
of M sample functions. Such a strategy is empirically veri-
fied in Section 4 and 5 to address the critical “∀ Challenge”
in privacy protection, i.e., enhancing the defense against
unseen attacker models (compared to the clear “attacker
overfitting” phenomenon when sticking to one fA during
training).
Approach Given the budget model ensemble Pt , {f iB}Mi=1,
where M is the number of fBs in the ensemble during
training, we turn to minimize the following discretized
surrogate of Eq. (2):

f∗A, f
∗
T = argminfA,fT [LT (fT (fA(X )),YT )+

γmaxfi
B∈Pt

JB(f
i
B(fA(X )),YB)]

(8)

The previous basic framework is a special case of Eq. (8)
with M = 1. The ensemble strategy can be easily combined
with restarting.

3.5.3 Combine Budget Model Restarting and Budget
Model Ensemble with Ours-Entropy

Budget Model Restarting and Budget Model Ensemble can
be easily combined with all three optimization schemes
described in Section 3.3. We take Ours-Entropy as an ex-
ample here. When model ensemble is used, we abbreviate
LB(f

i
B(fA(X )),YB) and HB(f

i
B(fA(X ))) as LB(θA, θ

i
B)

and HB(θA, θ
i
B) respectively. The new parameter updating

scheme is:

θA ← θA − αA∇θA(LT + γmaxθiB∈Pt
−HB(θA, θ

i
B)) (9a)

θA, θT ← θA, θT − αT∇(θA,θT )LT (θA, θT ) (9b)

θiB ← θiB − αB∇θiBLB(θA, θ
i
B), ∀i ∈ {1, . . . ,M} (9c)

That’s to say, we only suppress the model f iB with the
largest privacy leakage −HB , i.e., the “most confident”
one about its current privacy prediction, when updating
anonymization model. But we still update all M budget
models on the budget task. The formal description of Ours-
Entropy with model restarting and ensemble is given in
Algorithm 4, where {θiB}Mi=1 is reinitialized every rstrt iter
iterations. Likewise, GRL and Our-K-Beam can also be
combined with restarting and ensemble, whoses details are
shown in Appendix A.

Algorithm 4: Ours-Entropy algorithm (with model
restarting and model ensemble)

1 Initialize θA, θT and θB ;
2 for t← 1 to max iter do
3 if t ≡ 0 (mod rstrt iter) then
4 Reinitialize {θiB}Mi=1

5 end
6 Update θA using Eq. (9a)
7 while Acc(X v,YvT ) ≤ thT do
8 Update θT , θA using Eq. (9b)
9 end

10 for i← 1 to M do
11 while Acc(X t,YtB) ≤ thB do
12 Update θiB using Eq. (9c)
13 end
14 end
15 end

3.6 Two-Step Evaluation Protocol

The solution to Eq. (2) gives an anonymization model f∗A
and a target utility task model f∗T . We need to evaluate
f∗A and f∗T on the trade-off they have achieved between
target task utility and privacy protection in two steps: (1)
whether the learned target utility task model maintains sat-
isfactory performance on anonymized videos; (2) whether
the performance of an arbitrary privacy prediction model
on anonymized videos will deteriorate.

Suppose we have a training dataset Xt with target
and budget task ground truth labels YtT and YtB , and an
evaluation dataset Xe with target and budget task ground
truth labels YeT and YeB . In the first step, when evaluating the
target task utility, we should follow the traditional routine:
compare f∗T (f

∗
A(X

e)) with YeT to get the evaluation accuracy
on the target utility task, denoted as AT , which we expect to
be as high as possible. In the second step, when evaluating
the privacy protection, it is insufficient if we only observe
that the learned f∗A and f∗B lead to poor classification ac-
curacy on Xe, because of the ∀ challenge: the attacker can
select any privacy budget model to steal private information
from anonymized videos f∗A(X

e). To empirically verify that
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f∗A prohibits reliable privacy prediction for other possible
budget models, we propose a novel procedure:
• We randomly re-sample N privacy budget prediction

models Pe , {f iB}Ni=1 from P for evaluation. Note that
these N models used in evaluation Pe have no overlap
with the M privacy budget model ensemble Pt used in
training (i.e., Pe ∩ Pt = ∅).

• We train these N models Pe on anonymized training
videos f∗A(X

t) to make correct predictions on private
information, i.e., minfi

B
LB(f

i
B(f

∗
A(X

t)),YtB) for all i ∈
{1, . . . , N}. Note that f∗A is fixed during this training
procedure.

• After that, we apply each f iB on anonymized evaluation
videos f∗A(X

e) and compare the outputs f iB(f
∗
A(X

e))
with YeB to get privacy budget accuracy of the i-th budget
model.

• We select the highest accuracy among all N privacy bud-
get models and use it as the final privacy budget accuracy
ANB , which we expect to be as low as possible.

4 SIMULATION EXPERIMENTS

We show the effectiveness of our framework on privacy-
preserving action recognition on existing datasets.
Overview of Experiment Settings The target utility task
is human action recognition, since it is a highly demanded
feature in smart home and smart workplace applications.
Experiments are carried out on three widely used human
action recognition datasets: SBU Kinect Interaction Dataset
[60], UCF101 [57] and HMDB51 [58]. The privacy budget
task varies in different settings. In the SBU dataset exper-
iments, the privacy budget is to prevent the videos from
leaking human identity information. In the experiments on
UCF101 and HMDB51, the privacy budget is to protect vi-
sual privacy attributes as defined in [13]. We emphasize that
the general framework proposed in Section 3.2 can be used
for a large variety of target utility tasks and privacy budget
task combinations, not only limited to the aforementioned
settings.

Following the notations in Section 3.2, on all the video
action recognition datasets including SBU, UCF101 and
HMDB51, we set W = 112, H = 112, C = 3, and we set
T = 16 (C3D’s required temporal length and spatial reso-
lution). Note that the original resolution for SBU, UCF101
and HDMB51 are 640 × 480, 320 × 240 and 320 × 240,
respectively. We downsample video frames to resolution
160× 120. To reduce the spatial resolution to 112× 112, we
use random-crop and center-crop in training and evaluation,
respectively.
Baseline Approaches We consistently use two groups of
approaches as baselines across the three action recognition
datasets. These two groups of baselines are naive downsam-
ples and empirical obfuscations. The group of naive downsam-
ples chooses downsample rates from {1, 2, 4, 8, 16}, where 1
stands for no down-sampling. The group of empirical obfus-
cations includes approaches selected from different combi-
nations in {box, segmentation} × {blurring, blackening} ×
{face, human body}. Details are listed below:
• Naive Downsamle: Spatially downsample each frame.
• Box-Black-Face: Boxing and blackening faces.
• Box-Black-Body: Boxing and blackening bodies.

• Seg-Black-Face: Segmenting and blackening faces.
• Seg-Black-Body: Segmenting and blackening bodies.
• Box-Blur-Face: Boxing and blurring faces.
• Box-Blur-Body: Boxing and blurring bodies.
• Seg-Blur-Face: Segmenting and blurring faces.
• Seg-Blur-Body: Segmenting and blurring bodies.
Our Proposed Approaches The previous two groups
of baselines are compared with our proposed three ap-
proaches:
• GRL: as described in Section 3.3.1.
• Ours-K-Beam: as described in Section 3.3.2. We have tried
K = 1, 2, 4, 8.

• Ours-Entropy: as described in Section 3.3.3. In the privacy
budget model ensemble Pt, the M models are chosen
from MobileNet-V2 [61] family with different width mul-
tipliers. We have tried M = 1, 2, 4, 8.

All three approaches are evaluated with and without pri-
vacy budget model restarting.
Evaluation In the two-step evaluation (as described in
Section 3.6), we have used N = 10 different state-of-the-
art classification networks, namely ResNet-V1-{50,101} [54],
ResNet-V2-{50,101} [62], Inception-V1 [63], Inception-
V2 [64], and MobileNet-V1-{0.25,0.5,0.75,1} [55], asPe. Note
that Pe ∩Pt = ∅. All detailed numerical results reported in
following sections can be found in Appendix B.

4.1 Identity-Preserving Action Recognition on SBU:
Single-Dataset Training
We compare our proposed approaches with the groups of
baseline approaches to show our methods’ significant su-
periority in balancing privacy protection and model utility.
We use three different optimization schemes described in
Section 3.3 on our framework and empirically show all three
largely outperform the baseline methods. We also show
that adding the model ensemble and model restarting, as
described in Section 3.5, to the optimization procedure can
further improve the performance of our method.

4.1.1 Experiment Setting
SBU Kinect Interaction Dataset [60] is a two-person inter-
action dataset for video-based action recognition. 7 partici-
pants performed actions, and the dataset is composed of 21
sets. Each set uses different pairs of actors to perform all 8
interactions. However, some sets use the same two actors
but with different actors acting and reacting. For example,
in set 1, actor 1 is acting, and actor 2 is reacting; in set 4,
actor 2 is acting, and actor 1 is reacting. These two sets
have the same actors, so we combine them as one class to
better fit our experimental setting. In this way, we combine
all sets with the same actors and finally get 13 different actor
pairs. This dataset’s target utility task is action recognition,
which could be taken as a classification task with 8 different
classes. The privacy budget task is to recognize the actor
pairs of the videos, which could be taken as a classification
task with 13 different classes.

4.1.2 Implementation Details
In Algorithms 1-3, we set step sizes αT = 10−5, αB = 10−2,
αA = 10−4, accuracy thresholds thT = 85%, thB = 99%
and max iter = 800. In Algorithm 2, we set d iter to
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Fig. 2: Privacy-utility trade-off on SBU dataset. For Naive Downsample
method, a larger marker means a larger adopted down-sampling rate.
For Ours-K-Beam method, a larger marker means a larger K (number of
beams) in Algorithm 2. For Ours-Entropy and Ours-Entropy (restarting),
a larger marker means a larger M (number of ensemble models) in
Algorithm 4. Methods with “+” superscript are combined with model
restarting. Vertical and horizontal purple dashed lines indicate AN

B and
AT on the original non-anonymized videos, respectively. The black
dashed line indicates where AN

B = AT . Detailed experimental settings
and numerical results for each method can be found in Appendix B.

be 30. In Algorithm 4, we set rstrt iter to be 100. Other
hyper-parameters of Algorithm 4 are identical with those in
Algorithm 3. We set γ=2 in loss function (3) and use Adam
optimizer [65] to update all parameters.

4.1.3 Results and Analyses

We present the experimental results of our proposed meth-
ods and other baseline methods in Figure 2, which shows
the trade-off between the action recognition accuracy AT ,
and the actor pair recognition accuracy ANB . In order to in-
terpret this figure, we should note that a desirable trade-off
should incur maximal target accuracy AT (y-axis) and mini-
mal privacy budget accuracy ANB (x-axis). Therefore, a point
closer to the top-left corner represents an anonymization
model f∗A with more desirable performance. The magenta
dotted line suggests the target accuracy AT on original
unprotected videos. This can be roughly considered as the
AT upper bound for all privacy protection methods, under
the assumption that f∗A will unavoidably filter out some
useful information for the target utility task.

As we can see, Ours-K-Beams, Ours-Entropy, and GRL
all largely outperform the two groups of naive baselines.
{box, segmentation} × {blurring, blackening} × {face} and
naive downsample with a low rate (e.g. 2 and 4) can lead to
decent action accuracy, but the privacy budget accuracy ANB
is still very high, meaning these methods fail to protect pri-
vacy. On the other hand, {box, segmentation} × {blurring,
blackening} × {body} and naive downsample with a high
rate (e.g. 8 and 16) can effectively suppress ANB to a low
level, but AT also suffers a huge negative impact, which
means the anonymized videos are of little practical utility.
Our methods, in contrast, achieve a great balance between

utility and privacy protection. Ours-Entropy can decrease
ANB by around 30% with nearly no harm on AT .

Comparison of three methods K-Beam is a state-of-the-
art minimax optimization problem, and we apply it to solve
a sub-problem (i.e., Eq. (5b)) of our more complex three-
party competition game. Unfortunately, we empirically find
the K-Beam algorithm becomes more unstable when we
introduce a new competing party to the minimax opti-
mization problem. GRL is originally proposed for domain
adaptation. On our new visual privacy protection task, we
find it unstable and sensitive to model initialization. By
replacing the concave negative cross-entropy loss function
with the convex negative entropy, Ours-Entropy empirically
stabilizes the optimization and gives the best performance
among all three methods.

The results also show the effectiveness of model restart-
ing and model ensemble: model restarting can suppress ANB
much further, with no additional harm on AT , and model
ensemble with larger M also tends to improve the trade-off.

4.2 Action Recognition on UCF101 with Multiple Pri-
vacy Attributes Protected: Cross-Dataset Training and
Evaluation
4.2.1 Experiment Setting
UCF101 is an action recognition dataset with 13,320 real-life
human action videos collected from YouTube. It contains
videos of 101 different actions. We use the official train-test
split for this dataset. The target utility task T is to do human
action recognition on UCF101, which can be taken as a video
classification task with 101 classes.

VISPR is a dataset with 22,167 images annotated with 68
privacy attributes, e.g., semi-nudity, hobbies, face, race, gen-
der, skin color, and so on. Each attribute of an image is la-
beled as “present” or “non-present” depending on whether
the specific privacy attribute information is contained in
the image. Among the 68 attributes, there are 7 attributes
that frequently appear in both UCF101 datasets and the
smart home videos. Therefore we select these 7 attributes for
protection in our experiments. These 7 attributes are semi-
nudity, occupation, hobbies, sports, personal relationship,
social relationship, and safe. The privacy budget task B is to
predict privacy attributes on the VISPR dataset, which can
be taken as a multi-label image classification task (7 labels,
each is a binary classification task). We define ANB as class-
based mean average precision (cMAP) [13] to measure the
performance of this privacy budget task. The official train-
test split is used on the VISPR dataset.

4.2.2 Implementation Details
In Algorithm 4, we set step sizes αT = 10−5, αB = 10−2,
αA = 10−4, accuracy thresholds thT = 70%, thB = 99%,
max iter = 800 and rstrt iter = 100. We set γ = 0.5 in Eq.
(3) and use Adam optimizer to update all parameters. Val-
ues of K and M are identical to those in SBU experiments.

4.2.3 Results and Analyses
We present the experimental results in Figure 3. All naive
downsample and empirical obfuscation methods cause AT
to drop dramatically while ANB only drops a little bit, which
means the utility of videos is greatly reduced while the
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Fig. 3: Privacy-utility trade-off on UCF-101/VISPR Dataset. For Naive
Downsample method, a larger marker means a larger down sampling
rate is adopted. For Ours-K-Beam method, a larger marker means a
larger K (number of beams) in Algorithm 2. For Ours-Entropy and
Ours-Entropy (restarting), a larger marker means a larger M (number
of ensemble models) in Algorithm 4. Methods with “+” superscript
are combined with model restarting. Vertical and horizontal purple
dashed lines indicate AN

B and AT on the original non-anonymized
videos, respectively. The black dashed line indicates where AN

B = AT .
Detailed experimental settings and numerical results for each method
can be found in Appendix B.

private information is hardly filtered out. In contrast, with
the help of model restarting and model ensemble, Ours-
Entropy can decrease ANB by 7% while keeping AT as high
as that on the original raw videos, meaning the privacy
is protected at almost no cost on the utility. Hence, Ours-
Entropy outperforms all naive downsample and empirical
obfuscation baselines in this experiment. It also shows an
advantage over GRL and Ours-K-Beam.

4.3 Anonymized Video Visualization
We provide the visualization of the anonymized videos
on SBU, UCF101, and our new dataset PA-HMDB51 (see
Section 5) in Figure 4. To save space, we only show the
center frame of each anonymized video. The visualization
shows that the privacy attributes in the anonymized videos
are filtered out, but it is still possible to recognize the actions.

5 PA-HMDB51: A NEW BENCHMARK

5.1 Motivation
There is no public dataset containing both human action and
privacy attribute labels on the same videos to the best of our
knowledge. This poses two challenges. Firstly, the lack of
available datasets has increased the difficulty in employing
a data-driven joint training method. Secondly, this complica-
tion has made it impossible to directly evaluate the privacy-
utility trade-off achieved by a learned anonymization model
f∗A. To solve this problem, we annotate and present the very
first human action video dataset with privacy attributes la-
beled, named PA-HMDB51 (Privacy Annotated HMDB51).
We evaluate our method on this newly built dataset and
further demonstrate our method’s effectiveness.

Original M=1 M=1+ M=4+

Fig. 4: The center frame of example videos before (column 1) and after
(columns 2-4) applying the anonymization transform learned by Ours-
Entropy. The first row shows a frame from a “pushing” video in the
SBU dataset; the second row shows a frame from a “handstand” video
in the UCF101 dataset; the third row shows a frame from a “push-
up” video in the PA-HMDB51 dataset. Privacy attributes in the last two
rows include semi-nudity, face, gender, and skin color. Model restarting
and ensemble settings are indicated below each anonymized image. M
is the number of ensemble models. Methods with a “+” superscript are
combined with model restarting.

5.2 Selecting and Labeling Privacy Attributes

A recent work [13] has defined 68 privacy attributes which
could be disclosed by images. However, most of them sel-
dom make any appearance in public human action datasets.
We carefully select 7 privacy attributes that are most rel-
evant to our smart home settings out of the 68 attributes
from [13]. The 7 attributes we use are skin color, gender,
face (partial), face (complete), nudity, personal relationship,
and social circle. We further combine those 7 attributes into
5 to better fit the human action videos: combining “face
(partial)” and “face (complete)” into one attribute “face”
and combining “personal relationship” (only intimate rela-
tionships such as friends, couples or family members are
considered in our setting) and “social circle” (e.g. colleagues
and classmates) into “relationship”. To this end, we have
5 privacy attributes that widely appear in public human
action datasets and are closely relevant to our smart home
setting. The detailed description of each attribute, their pos-
sible ground truth values and their corresponding meanings
are listed in Table 1. Some annotated frames in our PA-
HMDB51 dataset are shown in Table 2 as examples.

Privacy attributes may vary during the video clip. For
example, in some frames we may see a person’s full face,
while in the next frames the person may turn around and
his/her face is no longer visible. Therefore, we decide to
label all privacy attributes for each frame.4

The annotation of privacy labels was manually per-
formed by a group of students at the CSE department of
Texas A&M University. Each video was annotated by at least
three individuals and then cross-checked.

4. A tiny portion of frames in some HMDB51 videos do not contain
any person. No privacy attributes are annotated for those frames.
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5.3 HMBD51 as the Data Source
Now that we have defined the 5 privacy attributes, we need
to identify a source of human action videos for annotation.
There are a number of choices available, such as [57], [58],
[66]–[68]. We choose HMDB51 [58] to label privacy at-
tributes since it consists of more diverse private information,
especially nudity/semi-nudity and relationship.

We provide a per-frame annotation of the selected 5
privacy attributes on 515 videos selected from HMDB51.
In this paper, we treat all 515 videos as testing samples5;
however, we do not exclude the future possibility of using
them for training. Our ultimate goal would be to create
a larger-scale version of PA-HMDB51 that allows for both
training and testing coherently on the same benchmark. For
now, we use PA-HMDB51 to facilitate better testing, while
still considering cross-dataset training as a rough yet useful
option to train privacy-preserving video recognition (before
the larger dataset becomes available).

5.4 Dataset Statistics
5.4.1 Action Distribution
When selecting videos from the HMDB51 dataset, we con-
sider two criteria on action labels. First, the action labels
should be balanced. Second (and more implicitly), we se-
lect more videos with non-trivial privacy labels. For ex-
ample, “brush hair” action contains many videos with a
“semi-nudity” attribute and “pull-up” action contains many
videos with a “partially visible face” attribute. Despite their
practical importance, these privacy attributes are relatively
less seen in the entire HMDB51 dataset, so we tend to select
more videos with these attributes, regardless of their action
classes. The resultant distribution of action labels is depicted
in Figure 5 (left panel), showing a relative class balance.

5.4.2 Privacy Attribute Distribution
We try to make the label distribution for each privacy
attribute as balanced as possible by manually selecting those
videos containing uncommon privacy attribute values in
original HMDB51 to label. For instance, videos with semi-
nudity are overall uncommon, so we deliberately select
those videos containing semi-nudity into our PA-HMDB51
dataset. Naturally, people are reluctant to release data that
contains privacy concerns to the public, so the privacy at-
tributes are highly unbalanced in any public video datasets.
Although we have used this method to reduce the data
imbalance, the PA-HMDB51 is still unbalanced. Frame-level
label distributions of all 5 privacy attributes are shown in
Figure 6.

5.4.3 Action-Attribute Correlation
If there is a strong correlation between a privacy attribute
and an action, it would be harder to remove the private
information from the videos without much harm to the ac-
tion recognition task. For example, we would expect a high

5. Labeling per-frame privacy attributes on a video dataset is ex-
tremely labor-consuming and subjective (needing individual labeling
then cross-checking). As a result, the current size of PA-HMDB51 is
limited. So far we have only used PA-HMDB51 as the testing set, and
we seek to annotate more data and hopefully expand PA-HMDB51 for
training as future work.
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Fig. 5: Left: action distribution of PA-HMDB51. Each column shows the
number of videos with a certain action. E.g., the last bar shows there
are 25 “brush hair” videos in the PA-HMDB51 dataset. Right: action-
attribute correlation in the PA-HMDB51 dataset. The color represents
ratio of the number of frames of some action containing a specific
privacy attribute value w.r.t. the total number of frames of the action.
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Fig. 6: Label distribution per privacy attribute in the PA-HMDB51. The
rounded ratio numbers are shown as white text (in % scale). Definitions
of label values (0, 1, 2, 3, 4) for each attribute are described in Table 1.

correlation between the attribute “gender” and the action
“brush hair” since this action is carried out much more often
by females than by males. We show the correlation between
privacy attributes and actions in Figure 5 (right panel) and
more details in Appendix D.

5.5 Benchmark Results on PA-HMDB51: Cross-Dataset
Training
5.5.1 Experiment Setting
We train our models using cross-dataset training on
HMDB51 and VISPR datasets as we did in Section 4.2, ex-
cept that we use the 5 attributes defined in Table 1 on VISPR

6. For “skin color” and “gender”, we allow multiple labels to coexist.
For example, if a frame showed a black person’s shaking hands with
a white person, we would label “black” and “white” for the “skin
color” attribute. In the visualization, we use “coexisting” to represent
the multi-label coexistence and we don’t show in detail whether it is
“white and black coexisting” or “black and yellow coexisting”. For the
rest three attributes, we label each attribute using the highest privacy-
leakage risk among all persons in the frame. For example, given a frame
where a group of people are hugging, if there is at least one complete
face visible, we would label the “face” attribute as “completely visible”.
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TABLE 1: Attribute Definition in the PA-HMDB51 Dataset

Attribute Possible Values & Meaning

Skin Color

0: Skin color of the person(s) is/are unidentifiable.
1: Skin color of the person(s) is/are white.
2: Skin color of the person(s) is/are brown/yellow.
3: Skin color of the person(s) is/are black.
4: Persons with different skin colors are coexisting.6

Face
0: Invisible (< 10% area is visible).
1: Partially visible (≥ 10% but ≤ 70% area is visible).
2: Completely visible (> 70% area is visible).

Gender
0: The gender(s) of the person(s) is/are unidentifiable.
1: The person(s) is/are male.
2: The person(s) is/are female.
3: Persons with different genders are coexisting.

Nudity
0: No-nudity w/ long sleeves and pants
1: Partial-nudity w/ short sleeves, skirts, or shorts
2: Semi-nudity w/ half-naked body

Relationship
0: Relationship is unidentifiable.
1: Relationship is identifiable.

TABLE 2: Example Annotated Frames in the PA-HMDB51 Dataset

Frame Action Privacy Attributes

Brush
hair

• skin color: white
• face: invisible
• gender: female
• nudity: semi-nudity
• relationship: unidentifiable

Situp

• skin color: black
• face: completely visible
• gender: male
• nudity: semi-nudity
• relationship: unidentifiable

instead of the 7 used in Section 4.2. The trained models
are directly evaluated on the PA-HMDB51 dataset7 for both
target utility task T and privacy budget task B, without any
re-training or adaptation. We exclude the videos in the PA-
HMDB51 from the HMDB51 to get the training set. Similar
to the UCF101 experiments, the target utility task T (i.e.,
action recognition) can be taken as a video classification
problem with 51 classes, and the privacy budget task B
(i.e., privacy attribute prediction) can be taken as a multi-
label image classification task with two classes for each
privacy attribute label. Notably, although PA-HMDB51 has
provided concrete multi-class labels with specific privacy
attribute classes, we convert them into binary labels during
testing. For example, for “gender” attribute, we have pro-
vided ground truth labels “male”, “female”, “coexisting”
and “cannot tell”, but we only use “can tell” and “cannot
tell” in our experiments, via combining “male”, “female”
and “coexisting” into the one class of “can tell”. This is
because we must keep the testing protocol on PA-HMDB51
consistent with the training protocol on VISPR (a multi-
label, “either-or” type binary classification task, so that our
models cross-trained on UCF101-VISPR can be evaluated
directly. We hope to extend training to PA-HMDB51 in the
future so that the privacy budget task can be formulated

7. We only use PA-HMDB51 as the testing set so far, since the current
size of PA-HMDB51 is limited for training.

and evaluated as a multi-label, multi-classification problem.
All implementation details are identical with the UCF101

case, except that we adjust thT = 0.7 and thB = 0.95.

5.5.2 Results and Analysis
The results on PA-HMDB51 are shown in Figure 7. Our
methods achieve much better privacy-utility trade-off
compared with baseline methods. When M = 4, our
methods can decrease privacy cMAP by around 8% with
little harm to utility accuracy. Overall, the privacy gains are
more limited compared to the previous two experiments,
because no (re-)training is performed; but the overall
comparison trends show the same consistency.

Asymmetrical Privacy Attributes Protection Cost Different
privacy attributes have different protection costs. After
applying the learned anonymization optimized by Ours-
Entropy (restarting, M=4) on PA-HMDB51, the drop in AP
of “face” is much more significant than “gender“, which
indicates that the “gender” attribute is much harder to
suppress than “face”. Such observation agrees that the
gender attribute can be revealed by face, body, clothing,
and even hairstyle. In future work, we will take such
cost asymmetry into account by using a weighted loss
combination of different privacy attributes or training
dedicated privacy protector for the most informative
private attribute.

Human Study on the Privacy Protection of Our
Learned Anonymization We use human study to evalu-
ate the privacy-utility trade-off achieved by our learned
anonymization transform. We take both privacy protection
and action recognition into account in the study. We empha-
size here that both privacy protection and action recognition
are evaluated on video level. There are 515 videos dis-
tributed on 51 actions in the PA-HMDB51. For each action
in the PA-HMDB51, we randomly pick one video for human
study. Among the 51 selected videos, we only keep 30
videos to reduce the human evaluation cost. There were 40
volunteers involved in the human study. In the study, they
were asked to label all the privacy attributes and the action
type on the raw videos and the anonymized videos. Accord-
ing to the experimental results (shown in Appendix E), the
actions in the anonymized videos are still distinguishable
to humans, but the privacy attributes are not recognizable
at all. This human study further justifies that our learned
anonymization transform can protect privacy and maintain
target utility task performance simultaneously.

6 CONCLUSION

We propose an innovative framework to address the newly-
established problem of privacy-preserving action recogni-
tion. To tackle the challenging adversarial learning process,
we investigate three different optimization schemes. To fur-
ther tackle the ∀ challenge of universal privacy protection,
we propose the privacy budget model restarting and en-
semble strategies. Both are shown to improve the privacy-
utility trade-off further. Various simulations verified the
effectiveness of the proposed framework. More importantly,
we collect the first dataset for privacy-preserving video
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larger K (number of beams) in Algorithm 2. For Ours-Entropy and
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B and AT on the original non-anonymized
videos, respectively. The black dashed line indicates where AN

B = AT .
Detailed experimental settings and numerical results for each method
can be found in Appendix B.

action recognition, an effort that we hope could engage a
broader community into this research field.

We note that there is much room to improve the pro-
posed framework before it can be used in practice. For
example, the definition of privacy leakage risk is core to
the framework. Considering the ∀ challenge, current LB
defined with any specific fB is insufficient; the privacy
budget model ensemble could only be viewed as a rough
discretized approximation of P . More elaborated ways to
model this ∀ challenge may lead to a further breakthrough
in achieving the optimization goal.
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from its local descriptors,” in CVPR, 2011.

[18] A. Mahendran and A. Vedaldi, “Visualizing deep convolutional
neural networks using natural pre-images,” IJCV, 2016.

[19] C. Gentry et al., “Fully homomorphic encryption using ideal
lattices.” in STOC, 2009.

[20] P. Xie, M. Bilenko, T. Finley, R. Gilad-Bachrach, K. Lauter, and
M. Naehrig, “Crypto-nets: Neural networks over encrypted data,”
arXiv, 2014.

[21] A. Chattopadhyay and T. E. Boult, “Privacycam: a privacy pre-
serving camera using uclinux on the blackfin dsp,” in CVPR, 2007.
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