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a b s t r a c t 

With the deployment of new elements in the smart grid, traditional state estimation meth- 

ods are challenged by growing dynamics and system size. Artificial neural network (ANN) 

based AC state estimation has been shown to provide faster results than traditional meth- 

ods. However, researchers have discovered that ANNs could be easily fooled by adversarial 

examples. In this paper, we initiate a new study of adversarial false data injection attacks 

against ANN-based state estimation. By injecting a deliberate attack vector into measure- 

ments, the attacker can degrade the accuracy of ANN state estimation while remaining un- 

detected. We propose two algorithms to generate the attack vectors, a population-based 

algorithm (differential evolution or DE) and a gradient-based algorithm (sequential least 

square quadratic programming or SLSQP). The performance of these algorithms is evalu- 

ated through simulations on IEEE 9-bus, 14-bus, and 30-bus systems under various attack 

scenarios. Simulation results show that DE is more effective than SLSQP on all simulation 

cases. The attack examples generated by the DE algorithm successfully degrade the ANN 

state estimation accuracy with high probability (more than 80% in all simulation cases), de- 

spite having a small number of compromised meters and low injection strength. We further 

discuss the potential defense strategy to mitigate such attacks, which provides insights for 

robustness improvement in future research. 

© 2021 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

With the increase in residential and industrial power demand,
nowadays a regional or nationwide power outage often leads
to catastrophic consequences in the matter of public safety.
After the US Northeast Blackout in 2003, the US and Canada
reached a consensus to transition to a smart grid system,
which would be cleaner and more efficient, reliable, resilient
and responsive than a traditional grid. A smart grid is a com-
plex system that integrates a traditional power grid and infor-
mation technologies to enable inter-networking over power
grids. While transferring from the traditional power grid to
� A preliminary version of this work has been presented in SecureCom
∗ Corresponding author. 
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the smart grid provides many new attractive features such
as remote and automatic grid monitoring, control, and pric-
ing, it has also raised serious security challenges by opening
up the traditional power system to many potential attacks
in cyber space. For example, in the 2015 Ukraine power out-
age Lee et al. (2016) ; Liang et al. (2017) , the hacker success-
fully compromised the information systems of three energy
distribution companies and caused power disruption to over
225,000 customers lasting from 1 to 6 hours. Since then, cy-
ber attacks on smart grids have caught public’s attention and
become a realistic and growing concern for governments, ven-
dors, and customers. 
m’19, Orland, FL, Oct. 2019. 
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One of the key mechanisms in ensuring normal operation 

f a smart grid is state estimation, which provides the current 
tatus of the grid for the control center operators to take cor- 
ective action in order to prevent an accident from happening.
tate estimation aims to compute those system states (the 
omplex voltages at all buses Wood and Wollenberg (1996) ) 
hat are not directly measurable, based on the grid’s topology 
nd the meter’s power usage measurements collected from 

he supervisory control and data acquisition (SCADA) system.
onventionally, state estimation is formulated as a non-linear 
eighted least square (WLS) problem that minimizes the dis- 

ance between actual measurements and computed measure- 
ents from the estimated state. Such methods have several 

imitations. First of all, solvers to the problem, such as Gauss- 
ewton, are computationally heavy, sensitive to initial values,
nd may encounter convergence issues. In addition, the state 
stimation has to be computed periodically for every set of 
eter measurements collected in each meter reading cycle 

typically a 15-minute period) in order to obtain the current 
ystem status. Furthermore, a prior observability analysis is 
ften required to ensure the system is over-determined. This 
tate estimation scheme is further challenged by the grow- 
ng grid scale and unprecedented system dynamics brought 
y the increasing deployment of new elements in the smart 
rid, such as renewable generators, electric vehicles, and dy- 
amic pricing. 

In light of the above issues in existing state estimation 

ethods, artificial neural networks (ANNs) have received a lot of 
nterest as a new approach to smart grid state estimation, due 
o mainly two reasons: (1) computation cost can be ignored 

nce the model is trained. In particular, once the ANN state 
stimation model is trained offline based on historical data or 
imulated data, such a model can provide accurate estimation 

nline at minimal computation cost, eliminating the need for 
arrying out observability analysis prior to running the state 
stimation. (2) ANNs naturally fit into the non-linear nature of 
he state estimation problem. So far several efforts have been 

ade to adopt ANNs to state estimation. It has been estab- 
ished that the ANN-based state estimation provides results 

uch faster, and the accuracy is comparable or higher than 

hat of conventional state estimations. 
While the state estimation plays an important role in en- 

uring the normal operation of the smart grid, it has been well 
nown that the conventional state estimation methods are 
ulnerable to false data injection (FDI) attacks Liu et al. (2011) ,
hich is a data integrity cyber-attack and has been proven 

o be a real threat to the smart grid system. In particular, an 

dversary can corrupt the state variable by injecting carefully 
oordinated false data to meter measurements while evading 
he bad data detection. The injected false data may result in 

eneration re-dispatch Liang et al. (2016) or trigger a branch 

utage sequence that involves multiple branches and finally 
eads to a system failure Che et al. (2019) . 

Although FDI attacks to conventional state estimation 

ethods have been well understood in the literature, little is 
nown about the FDI attacks against ANN-based state estima- 
ion. As the ANN-based state estimation is expected to receive 

ore and more applications for the smart grid in the near fu- 
ure, and because the smart grid is a critical infrastructure of 
he society, it is necessary to garner a better understanding on 
he vulnerabilities of this new state estimation method of FDI 
ttacks, so as to identify possible threats and propose counter- 
easures to eliminate such threats before this new method 

an be applied in practice on a larger scale. Hence, we can re- 
uce the potential loss and increase the society’s confidence 

n the security feature of the new method. 
In contrast to existing FDI attacks that mainly rely on a 

inear DC power flow model, FDI attacks against an ANN- 
ased state estimation must accommodate a nonlinear AC 

ower flow model as the non-linearity is a fundamental 
eature of the ANN state estimation. As the ANN becomes 
 popular technique in the power system, there are sev- 
ral works demonstrating the effectiveness of adversarial at- 
acks on power system applications Chen et al. (2018, 2019) ; 
i et al. (2020) . Unfortunately, there has been few work analyz- 
ng the vulnerabilities and robustness of the ANN-based state 
stimation model. 

Meanwhile, in the area of image classification, researchers 
oticed that ANNs can be easily fooled by well-coordinated 

amples with small perturbations. This discovery has spurred 

 lot of efforts in exploring the insecurities of ANN by design- 
ng adversarial attacks. 

In this paper, we are interested in examining whether the 
bove vulnerability of ANN presenting in image classification 

roblem also exists in the state estimation problem in the 
mart grid. We create an FDI attack customized for the ANN- 
ased state estimation model. This attack can also be used 

o construct an upper bound on the robustness of the model.
urthermore, we attempt to develop algorithms that can sys- 
ematically generate contaminated measurements that max- 
mize the ANN-based state estimation error while eluding the 
etection by bad data detector. By doing so, we intend to estab- 

ish new understanding on the security vulnerabilities of the 
atest high-accuracy ANN-based state estimator. To the best 
f our knowledge, our work is the first in the literature that 
tudies the vulnerabilities and robustness of the ANN-based 

tate estimator by FDI attacks. 
Compared with its image classification counterpart, solv- 

ng our problem faces new and significant challenges. In addi- 
ion to the obvious difference in the application model, our 
roblem presents the following three novel features in its 
tructure. First of all, our problem has an optimization nature 
n the sense that we seek the optimal attack vector that maxi- 

izes the attack outcomes. In contrast, the goal of the image- 
lassification counterpart is just to find a feasible attack vec- 
or. Secondly, the attack model in our problem considers the 
ttacker’s access and resource constraints, in which the at- 
acker only has access to and can only manipulate a certain 

umber of meters. The attacker’s injection is also subject to 
hysical constraints on the smart grid system. In contrast, the 

mage-classification problem has no such constraints and the 
ttacker is allowed to change any pixel of the image. Lastly,
he output of state estimator is a vector of continuous values,
hereas that of the image-classification is discrete and cov- 

rs a limited number of pre-defined cases. Due to these funda- 
ental structural differences, the existing results from image- 

lassification ANN are not directly applicable to our problem,
nd therefore new solutions need to be developed. 

In this paper, we study the robustness of ANN-based state 
stimators by constructing adversarial FDI attacks. We first 
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create ANN-based state estimators as our target models, fol-
lowed by evaluating both model accuracy and bad data rate to
ensure the target models are sufficiently strong. We then use
the idea of adversarial example to formulate an optimization-
based FDI attack. In this model, an attacker attempts to maxi-
mize the state estimation error without being reported by the
bad data detector, subject to given resource and meter ac-
cess constraints. Two algorithms are subsequently proposed
to solve the above optimization to find the best false data
injection vector: differential evolution (DE) and sequential least
square quadratic programming (SLSQP). We extensively evaluate
our proposed attacks based on simulations on IEEE 9-bus, 14-
bus and 30-bus system models under various scenarios to ver-
ify their effectiveness. 

The main contributions of our work include the following
five-fold: 

• In creating the target ANN state estimator for large-scale
grid systems (e.g., 30-bus and above), a novel penalty term
is proposed for the loss function, which significantly im-
proves the accuracy of the ANN on modeling the voltage
phase angle for large-scale grids. 

• An optimization-based FDI attack formulation is proposed
for the ANN-based AC state estimation model, which
can accommodate various practical constraints on the at-
tacker, including their resource and meter accessibility. 

• We adapt two algorithms, DE and SLSQP, to solve the above
optimization, targeting at two different attack scenarios:
DE generates attack vectors for the scenario, in which the
attacker can compromise any k meters, while both DE and
SLSQP can accommodate for the scenario, in which the at-
tacker has only access to specific k meters. 

• The effectiveness of the proposed attack models is veri-
fied by extensive simulations on IEEE 9-bus, 14-bus, and
30-bus systems under various attack scenarios. Our results
show that the DE attack is successful with high probabil-
ity (more than 80% in all simulated cases), despite having
a small number of compromised meters and low false in-
jection level. 

• We adopt an adversarial training to defend against the
above attacks. It turns out the adversarial training could
lower the attack success rate, but would slightly impair the
model accuracy. 

The proposed algorithms provide a practical way for
systematically identifying key meters whose readings have
a higher weight in the state estimation, thus may serve
as a guide to the utility company to reach a more fo-
cused/concentrated protection against these key meters un-
der resource and budget constraints. Furthermore, our de-
fense strategy encourages building more robust ANN-based
state estimation models in the future. 

This remainder of the paper is organized as follows. In
Section 2 , we survey the ANN-based state estimation, false
data injection attack, as well as adversarial example. We then
provide a preliminary for state estimation and bad data de-
tection in Section 3 . We construct ANN-based state estima-
tion models as our attack targets, and evaluate their perfor-
mance in Section 4 . Subsequently, we introduce our adversary
model and attack formulation in Section 6 . Our two attack al-
gorithms, DE and SLSQP algorithms are presented in Section 6 .
The experimental analysis and the proposed defense are pre-
sented in Section 7 and Section 8 , respectively. 

2. Related work 

2.1. ANN-Based state estimation 

Various neural network architectures are explored for state
estimation in the smart grid, such as the feed-forward neu-
ral network Abdel-Nasser et al. (2018) , radial basis function
neural network Singh et al. (2004) , counter propagation net-
work and functional link network Kumar et al. (1996) . In
Onwuachumba and Musavi (2014) , Onwuachumba et al. pro-
posed a reduced ANN-based state estimation model, which
uses fewer measurements and no prior observability anal-
ysis is required. To adapt to the new features emerged in
smart grid, such as renewable generators and dynamic pricing,
the ANN-based state estimation for real-time and distributed
power systems is studied in Mestav et al. (2018) ; Mosbah and
El-Hawary (2015) ; Zamzam et al. (2019) ; Zamzam and
Sidiropoulos (2020) . 

2.2. False data injection attack 

Existing results on FDI attacks against conventional state es-
timations are inapplicable to the ANN-based state estimation
due to the following two reasons. First, most prior works on
FDI attacks are based on the Direct current (DC) power flow
model Esmalifalak et al. (2011) ; Hug and Giampapa (2012) ;
Liu et al. (2011) ; Sandberg et al. (2010) , which is a linear
approximation of the real-world alternate current (AC) power
flow model, and is usually used as a simplified version of
the AC power flow model. FDI attacks against AC models
are more complicated, and hence require a more sophisti-
cated attacker than DC models. The FDI attacks derived from
DC models may be ill-suited for AC models Rahman and
Mohsenian-Rad (2013) . In addition, works on constructing
FDI attacks against AC models are mainly targeting on WLS
state estimators Hug and Giampapa (2012) ; Jia et al. (2012) ;
Liang et al. (2014) ; Teixeira et al. (2011) ; Wang et al. (2015) , thus
cannot be directly applied to ANN-based state estimators. 

A considerable number of works have been proposed to de-
fend against FDI attacks. The authors in Bobba et al. (2010) ap-
proached the issue by identifying and protecting a set of
critical meters in order to detect FDI attacks. The authors
in Chakhchoukh et al. (2020) ; Li et al. (2017) ; Sedghi and
Jonckheere (2013) approached the issue from a statistical
method combined with physical laws of the power sys-
tem. Data-driven and machine learning based approaches
were proposed in Esmalifalak et al. (2017) ; Guo et al. (2019) ;
He et al. (2017) ; Yu et al. (2018) ; Zhang et al. (2019) . A Kalman
filter based detector was developed in Manandhar et al. (2014) .
Liu et al. developed a detection by using the sparsity of the at-
tacks Liu et al. (2014) . The authors in Li et al. (2015) proposed a
sequential detector and the authors in Huang et al. (2011) pro-
posed an adaptive CUSUM algorithm, in order to accelerate
the detection process. 
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Table 1 – Notations and definitions. 

Notations Definitions 

n, m Number of state variables/measurements 
x , x a , ̂  x Natural/compromised/estimated state variables, including voltage magnitude | V i | and phase angle θi at all buses, i = 1 , ., n 
P i ,Q i Real and reactive power injection at bus i . 
P i j , Q i j Real and reactive power injection at branch connecting bus i to bus j
z , z a Natural/compromised measurements, including real and reactive power injection of buses P i and Q i and branches P i j and Q i j 

h (·) A set of non-linear, deterministic functions that relate states to measurements h : x → z 
f (·) ANN-based state estimator that eliminates errors in measurements and output 
a Attack vector that injects to a given measurement z 
G i j + jB i j The i j -th element of the complex bus admittance matrix 
g i j + jb i j The admittance of the series branch connecting busses i and j
g s j + jb s j The admittance of the shunt branch connected at bus i 
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.3. Adversarial examples 

zegedy et al. were the first to propose the adversarial attack 
gainst deep neural networks Szegedy et al. (2014) . After that,
arious attack algorithms are proposed, such as the Fast Gra- 
ient Sign Method (FGSM) Goodfellow et al. (2014) , Fast Gra- 
ient Value (FGV) Rozsa et al. (2016) and DeepFool Moosavi- 
ezfooli et al. (2016) . Especially, in Su et al. (2019) , the deep

earning model can be fooled by adding one pixel perturba- 
ion to the image. Furthermore, the perturbations are shown 

o be transferable among ANN models, even if they are trained 

n different data sets, and preserve different architectures 
urakin et al. (2016) ; Liu et al. (2016) ; Tramèr et al. (2017) ;
ie et al. (2019) . 

Another branch of research studies the defense against 
dversarial examples. Papernot et al. used a distillation 

etwork to extract knowledge to improve the robustness 
apernot et al. (2016) . In the adversarial training, the adversar- 
al examples are generated in every training step, then they 
re injected to the training data set Goodfellow et al. (2014) ; 
uang et al. (2015) ; Madry et al. (2017) . And in the classi-
er robustifying, the authors in Abbasi and Gagné (2017) ; 
radshaw et al. (2017) put emphasis on how to design a robust 
rchitecture of the ANN. 

. Preliminaries 

n this section, we briefly introduce the state estimation and 

ad data detection. All notations used are defined in Table 1 . 

.1. State estimation 

n the AC power flow model, measurements are non-linearly 
ependent on state variables, as characterized by the follow- 

ng equation: 

 = h (x ) + e , 

here z and x denote a N m 

-dimension measurement vector 
nd a N n -dimension state vector, respectively, and e denotes 
 N m 

-dimension vector of normally distributed measurement 
rrors. h (x ) denotes a set of non-linear functions, by which 

he measurements are related to state variables, according to 
irchhoff’s circuit law: 

 i = V i 

N ∑ 

j=1 

| V j | (G i j cosθi j + B i j sinθi j ) , (1) 

 i = V i 

N ∑ 

j=1 

| V j | (G i j sinθi j − B i j cosθi j ) , (2) 

 ij = | V i | 2 
(
g si + g ij 

)
− | V i V j | 

(
g ij cos θij + b ij sin θij 

)
, (3) 

 i j = −| V i | 2 (b si + b i j ) − | V i V j | (g i j sinθi j − b i j cosθi j ) . (4) 

In an over-determined case, where we have more measure- 
ents than state variables (N m 

> N n ) , the state variables are
etermined from the WLS optimization over a residual func- 
ion J(x ) Wood and Wollenberg (1996) : 

ˆ  = arg min 

x 
J (x ) , where J (x ) = (z − h (x )) T W (z − h (x )) . (5)

ere, the weight matrix W is defined as diag{ σ−2 
1 , σ−2 

2 , . . . , σ−2 
N m 

} ,
nd σ 2 

i is the variance of the i -th measurement ( i = 1 , . . . , N m 

).
 is introduced to emphasize trusted measurements while 

e-emphasizing less trusted ones. 

.2. Bad data detection 

eter measurements may contain errors due to various rea- 
ons, such as transmission error, wiring failure or malicious 
ttack. Therefore, for data quality control purpose, a bad 

ata detection is usually introduced to identify measurements 
hose error exceeds a pre-defined threshold. The integration 

f the state estimation and the bad data detection can largely 
uppress the presence of bad data and ensure that the state 
stimation is based on only good data. Most bad data detec- 
ion schemes rely on the residual J( ̂ x ) as their decision vari- 
ble. In particular, given the assumption that e is normally 
istributed, it is shown that J(x ) follows a χ2 (K) distribution,
here K = N m 

− N n is the degree of freedom. Any mea- 
urements with a residual greater than the pre-determined 

hreshold τ is recognized as bad data: 
z is identified as bad data, if 

( ̂ x ) = (z − h ( ̂ x )) T W (z − h ( ̂ x )) > τ. (6)
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The threshold τ can be determined by a significant level α
in hypothesis testing, indicating the false alarms would occur
with probability α. 

4. ANN-Based AC state estimation 

The main difficulty in utilizing Eq. (5) directly to estimate
the AC state is that it requires solving a nonlinear optimiza-
tion problem. Instead of making any particular assumption
on the structure of h (·) , we adopt an empirical methodology
to characterize the non-linear state estimation function. In
particular, based on a sufficient number of empirical state-
measurement readings, we attempt to train an ANN model
that can accurately represent the states as a nonlinear func-
tion of the measurements. In the operational phase, this ANN
is expected to directly output a state estimation ˆ x for each in-
put of measurements z , without the need of solving the non-
linear optimization in Eq. (5) . In the following, we present our
procedure in generating the training data, defining the loss
function, training the ANNs, and testing the accuracy of the
trained ANN state estimators. 

4.1. Model training 

Although it would be more convincing by using actual data
from a real power grid, power companies use their own pro-
prietary data format, in which most of them are not accessible.
Therefore, lacking actual state-measurement data from a real
power grid, we follow the convention to present our results
based on computer simulations, as in previous studies (e.g.
Che et al. (2019) ; Chen et al. (2012) ; Liu et al. (2011) ). Simulation-
based evaluation would give valid results, because the simu-
lation data is generated according to realistic grid typologies
and well-established physical laws/mechanics that govern the
operation of the grids. In addition, simulation data provides
a wider range of the operational condition coverage. In par-
ticular, real meter data can only cover a limited set of oper-
ational conditions of the grids under which these actual data
are recorded, while the simulation data has a much wider cov-
erage on the grids’ operation conditions as these data can be
generated on demand, for any operation condition of interest.

The training and testing cases in our study are generated
by simulations over the IEEE test systems (9-bus, 14-bus, 30-
bus). A Matlab package, MATPOWER Zimmerman et al. (2011) ,
is used for data generation and power flow analysis. Note that
the use of simulation data in training does not affect the va-
lidity of the proposed ANN model. One can simply replace the
simulation data by actual data once they become available,
and then re-train the ANN by same procedure. 

Our state-measurement data are generated in the follow-
ing way. The state variable, consisting of the magnitude | V i |
and phase angle θi of the bus voltages, is a function of the
load of the power system, and changes within a small range.
To account for this dynamic behavior, we consider a series of
loads of the power grid ranging from 80% to 120%. For each
instance of loads, the state is calculated by power flow analy-
sis. According to the American National Standard for Code for
Electricity Metering ANSI (2008) , class 2 accuracy applies for
power grid measurements, which tolerates a ±2% error in a
measurement reading. In line with this specification, we add
an independent Gaussian noise ε to each measurement read-
ing ψ, so that the simulated measurement reading becomes
(1 + ε ) ψ, where ε ∼ N(0 , 0 . 67% 

2 ) . For each of the test systems,
10,000 and 1000 state-measurement pairs are generated for
training and testing, respectively. Note that all constant val-
ues are excluded from measurements and state variables. 

An ANN-based state estimation model is trained for each
of the test systems. Following Abdel-Nasser et al. (2018) ;
Jain et al. (2008) ; Menke et al. (2019) ; Mosbah and El-
Hawary (2015) , each ANN state estimation model possesses
a multi-layered perceptron (MLP) architecture, consisting of one
input layer, one or more hidden layers, and one output layer.
We use the mean WLS error as the loss function: 

loss (z , x ) = 

1 
N 

N ∑ 

i =1 

(z − h (x )) T W (z − h (x )) , (7)

where N is the number of training samples. 
Our experiments show that the accuracy on both voltage

magnitude and phase angle are satisfactory, yet the phase an-
gle accuracy is lower. There are several reasons behind this
phenomenon. First, the loss function only narrows the differ-
ence between the actual and estimated measurements. Being
different from conventional machine learning problems, the
state estimation requires the error to be minimized from both
measurement and state sides. Second, the voltage magnitudes
are strictly confined in a small range in order to provide a sta-
ble and consistent power supply. 

These trained models serve as the targets for our proposed
attacks. The inaccuracy in the state estimation, i.e., the de-
viation of the estimated state from the actual state, overlays
the goal of the FDI attack. So any estimation inaccuracy would
be counted as an attack success in the attack evaluation. To
eliminate such effect, we revise the loss function in order to
achieve high accuracies on both voltage magnitude and phase
angle. A new penalty term of the mean square error (MSE) be-
tween the actual state and the estimated state is added in
Eq. (7) , leading to a new loss function in Eq. (8) specially de-
signed for large-scale systems. In this new loss function, a
small constant c is added to balance both error terms so that
the gradient descent works on both terms simultaneously: 

loss (z , x ) = 

1 
N 

N ∑ 

i =1 

(z − h (x )) T W (z − h (x )) + c 
1 
N 

N ∑ 

i =1 

(x − ˆ x ) 2 . (8)

Empirically, we investigate the value of c spaced uniformly (on
a log scale) from c = 1 × 10 1 to c = 1 × 10 5 , and choose a c that
brings the best estimation accuracy. Our experiments show
that by adding this new penalty term, the voltage phase angle
estimation accuracy increases to an equivalent level as that of
the voltage magnitude. The proposed ANNs are implemented
in Python, using TensorFlow package with Keras as back-end.
The model architectures and parameters are given in Table 2 .

4.2. Model evaluation 

After the models are trained, we use testing data to evaluate
their performance. A good state estimation model should have
the following two properties: first, it should be able to provide
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Table 2 – ANN-based state estimator architectures and pa- 
rameters. 

9-bus 14-bus 30-bus 

Architecture 
Input Size 42 103 204 
Fully Connected + ReLU 64 128 256 
Output Size 14 22 53 
Parameter 
Learning Rate 0.001 0.001 0.001 
Decay Rate 1 × 10 −5 1 × 10 −5 1 × 10 −5 

Batch Size 64 64 64 
Epochs 300 500 1000 

Table 3 – Model evaluation on voltage magnitude. 

Test 
System 

MAE 
(p.u.) MARE 

Bad 

Data(%) 
Accuracy 
(%) 

9-bus 2 . 2 × 10 −5 2 . 4 × 10 −5 0 100 
14-bus 5 . 8 × 10 −5 5 . 6 × 10 −3 3 100 
30-bus 6 . 3 × 10 −5 6 . 5 × 10 −5 5 100 

Table 4 – Model evaluation on voltage angle. 

Test System MAE (rad) MARE Accuracy(%) 

9-bus 1 . 0 × 10 −4 1 . 6 × 10 −2 96 
14-bus 6 . 1 × 10 −3 2 . 6 × 10 −2 99 
30-bus 1 . 2 × 10 −4 1 . 3 × 10 −2 98 
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ccurate state estimation irrespective of the noise in the mea- 
urements; second, regular measurement noises should not 
rigger bad data alarms (i.e., low false alarm rate). Accordingly,
e evaluate the estimation accuracy of the ANNs by maxi- 
um absolute error (MAE) and the maximum absolute relative er- 

or (MARE) between the true and the estimated values, where 
ARE is simply MAE normalized w.r.t. the magnitude of the 

rue value. An estimation is considered accurate if the MARE 
f the voltage magnitude and the voltage phase angle do not 
xceed 1% and 5% , respectively. To evaluate the false alarm 

ate, we use a bad data significant level α = 0 . 01 . Table 3 and
able 4 summarize the performance evaluation for the trained 

NN models. It is clear from these tables that the proposed 

NN models are able to estimate states accurately, and have 
ow false alarm rate under regular measurement noises. 

. Adversarial model and attack formulation 

n this section, we present a detailed adversarial 
odel against the ANN-based state estimator, following 

uan et al. (2019) . This model characterizes the adversary 
y their goal, knowledge of the data and the target system,
nd resource and meter accessibility constraints. Based on 

his model, we formulate an optimization problem that the 
ttacker can use to decide their best attack strategy. 
.1. Adversarial model 

t is realistic and practical for an attacker to have the capabil- 
ty to compromise meters, given the fact that the meters are 
hysically distributed and lack protection. The goal of the at- 
acker is to launch an FDI attack, in which the attacker aims 
o inject a manipulated measurement vector, whose ultimate 
oal is to maximize the state estimation error while remain- 
ng undetected. The false data is injected to the compromised 

eters, then collected by the SCADA system, and eventually 
ent to the state estimation application. 

The attacker is assumed to have full knowledge of the 
opology and configuration of the power grid, such as the 
odal admittance matrix. Such information could be accessed 

r estimated from public database or historical records. In ad- 
ition, the attacker is also assumed to know everything about 
he ANN-based state estimation model, including the archi- 
ecture and parameters. These information could be obtained 

y an attacker either through breaking into the information 

ystem of the power grid (similar to the 2015 Ukraine case) 
r through training a shadow ANN that mimics the real ANN- 
ased state estimator on a substitute data set. We assume that 
he attacker also knows the threshold of the bad data detector.

Although these assumptions render a strong attacker that 
ay not always represent the practical cases, it enables us to 

valuate the robustness and vulnerabilities of the ANN-based 

tate estimators under the worst-case scenario, which pro- 
ides an upper bound on the impact of FDI attacks against the 
NN-based state estimation. 

In addition to the bad data detection threshold, the adver- 
ary also faces other constraints, including the set of meters 
hey have access to, the maximum number of meters they can 

ompromise, and the maximum amount of errors they can in- 
ect into the actual measurements without being detected. 

Note that in this paper we only consider the FDI attacks 
hat happen during the operational phase of the ANN-based 

tate estimator. In other words, the adversary is only able 
o tamper the measurement inputs after the ANN model is 
rained. It is not allowed to perturb either the training data or 
he trained model. The investigation of training data or model 
oisoning is out of the scope of this paper and will be studied

n our future work. 

.2. Attack formulation 

et z a be the measurement vector in the presence of FDI at- 
ack, then z a can be described as following: 

 a = z + a = h (x ) + a , (9) 

here a is a N m 

-dimension non-zero attack vector. Given the 
nput of a manipulated measurement z a , the state estimation 

utput by ANN-based state estimator f is as follows: 

ˆ  a = f ( z a ) = f ( z + a ) . (10) 

ccording to Eq. (6) , an adversary intending to elude bad data 
etection must satisfy the following condition: 

( ̂ x a ) = ( z a − h ( ̂ x a )) T W ( z a − h ( ̂ x a )) ≤ τ. (11)
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The error injected to the state estimation hence can be calcu-
lated by: 

ˆ x a − ˆ x = f ( z a ) − f (z ) . (12)

With the above notations, the problem of finding the best
adversarial injection a for a given measurement z can be for-
mulated as a constrained optimization: 

maximize 
a 

‖ ̂ x a − ˆ x ‖ p 
subject to ( z a − h ( ̂ x a )) T W ( z a − h ( ̂ x a )) < τ, 

‖ a ‖ 0 ≤ L, 

a l i ≤ a i ≤ a u i , i = 1 , . . . , N m 

, 

z min 
i ≤ z a i ≤ z max 

i , i = 1 , . . . , N m 

, 

(13)

where L is the maximum number of meters that the attacker
can compromise (so that they can tamper the meter reported
measurement), and [ a l i , a 

u 
i ] provides the lower and upper lim-

its of modification to the measurement of each compromised
meter, and [ z min 

i , z max 
i ] denotes the valid range for each mea-

surement, ensuring that the manipulated measurement is
still within the permitted range on that particular unit. The
strength of the measurement modification/manipulation de-
pends on the attacker’s resource and meter accessibility con-
straints, which have not been considered in previous works.
In our work, by limiting the measurement manipulation to a
subset of meters, the attacker can avoid injecting excessive
errors, which can be easily detected by a univariate analysis.
In addition, if the adversary knows where the high precision
meters are located, they can avoid injecting too much errors
into those meters and instead allocate the resource to other
meters to improve the overall attack outcome. 

The objective function in the optimization Eq. (13) requires
some distance metric ‖ · ‖ p to quantify the attack impact. In
this work, we evaluate the ANN-based state estimation by ex-
amining if the state estimation is misled by an injection vec-
tor whose values are limited to a noise level. The injection is
tiny itself, and its impact will be further cracked by the non-
linearity of the AC power model. Therefore, this distance met-
ric must be carefully chosen. In reality, the voltage magnitude
is always limited in a tight range in order to ensure the sta-
ble electricity supply, whereas the voltage phase angle varies
in a relatively large range. Hence, an erroneous estimation of
the latter may seriously affect the consistent operation of the
power grid, but cannot be easily detected. Therefore, instead
of targeting on the total difference contributed by both volt-
age magnitudes and the voltage phase angles, we define the
adversary’s objective function as the maximum change to the
voltage phase angles θ : 

‖ ̂ x a − ˆ x ‖ ∞ 

= max (| ̂ θa 1 − ˆ θ1 | , . . . , | ̂ θa n − ˆ θn | ) . (14)

6. Attack methodology 

In this section, we present two algorithms, DE and SLSQP, to
solve the proposed optimization Eq. (13) . 
6.1. Solving the proposed attack with DE 

As a population based stochastic optimization algorithm, DE
algorithm was first proposed in 1996 by Rainer et al. Storn and
Price (1997) . The population is randomly initialized within the
variable bounds. The main optimization process consists of
three operations: mutation, crossover, and selection. In each
generation, a mutant vector is produced by adding a target
vector (father) with a weighted difference of other two ran-
domly chosen vectors. Then a crossover parameter mixes the
father and the mutant vector to form a candidate solution
(child). A pair-wise comparison is drawn between fathers and
children, whichever is better will enter the next generation. 

We follow Su et al. (2019) to encode our measurement at-
tack vector into an array, which contains a fixed number of
perturbations, and each perturbation holds two values: the
compromised meter index and the amount to inject to that
meter. 

The use of DE and the encoding have the following three
advantages for generating attack vectors: 

• Higher probability of finding global optimum - In ev-
ery generation, the diversity introduced by the mutation
and crossover operations ensures the solution not to be
stuck in a local optimum, thus leads to a higher probabil-
ity of finding the global optimum Storn and Price (1997) ;
Su et al. (2019) . 

• Adaptability for multiple attack scenarios - DE can adapt to
different attack scenarios by our encoding method. On one
hand, by specifying the number of meters to compromise,
DE can search for both meter indices and injection amount.
On the other hand, by fixing the meter indices, DE can only
search for injection amount to these specified meters. 

• Parallelizibility to shorten attack time - The function eval-
uation of an ANN is computationally demanding. As the
smart grid scale increases, generating one attack vector
may take seconds to minutes. An attacker must finish
the attack vector generation and injection before the next
state estimation takes place. DE algorithm is paralleliza-
tion friendly, as it is based on a vector population. DE op-
erations can be mounted to a computer cluster, so as to
significantly expedite the computation for the attack vec-
tor. 

Next, we present how we adapt the DE algorithm to our
proposed attack: 

• Deal with duplicate meter indices - In our work, instead of
outputting the exact meter value, we select to output the
injection vector to narrow down search space. We use two
approaches to ensure the uniqueness of meter indices in
the solution. First, we generate meter indices without re-
placement in the population initialization. Second, we add
a filter in the crossover operation. This filter keeps the me-
ter indices unchanged if the newly selected meter index is
repetitive. 

• Ensure the measurement after injection is within range
- A valid measurement reading must satisfy z min 

i ≤ z i +
a i ≤ z max 

i , where z min 
i and z max 

i are the lower and upper
limit power permitted on z i . We use an intuitive approach
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by replacing z a = z + a with z a = min (max ( z a , z min ) , z max ) ,
where the min and max are element-wise operations. 

• Deal with the overall constraint - In addressing the con- 
straints, adding a penalty term into the original objective 
function has been one of the popular approaches. How- 
ever, they do not always yield satisfactory solutions since 
the appropriate multiplier for the penalty term is difficult 
to choose and the objective function may be distorted by 
the penalty term. Therefore, we use a heuristic constraint 
handling method proposed in Deb (2000) . A pair-wise com- 
parison is drawn between fathers and children in order to 
differentiate feasible solutions from infeasible ones. The 
three criteria of the pair-wise comparison are as the fol- 
lowing: 
1. If both vectors are feasible, the one with the best objec- 

tive function value is preferred. 
2. If one vector is feasible and the other one is not, the 

feasible one is preferred. 
3. If both two vectors are infeasible, the one with the 

smaller constraint violation is preferred. 
Essentially, the above comparison handles constraints in 

two steps: first, the comparison among feasible and in- 
feasible solutions provides a search direction towards the 
feasible region; then, the crossover and mutation oper- 
ations keep the search near the global optimum, while 
maintaining the diversity among feasible solutions. The 
pseudo code for the proposed attack using DE is presented 

in Algorithm 1 . 

lgorithm 1 DE attack. 

nput: measurement z , GEN MAX {maximum number of gener- 
ations}, N {population size}, f {objective function}, g {con- 
straint function}, CR {crossover rate} 

utput: injection vector a 
1: g = 0 
2: Population initialization a i, 0 for i = 1 , . . . , N. Meter indices 

are randomly select without replacement and injection 

amounts are randomly select within the univariate bound.
3: Evaluate the f (a i,g ) and constraint violation CV(a i,g ) = 

max (g(a i,g ) , 0) , for i = 1 , . . . , N
4: for g = 1 : MAX GEN do 
5: for i = 1 : N do 
6: Randomly select r 1 and r 2 
7: j rand = randint(1 , N m 

) 
8: for j = 1 : D do 
9: if ( rand j [0 , 1) < CR or j = j rand ) and the meter index

not repetitive with previous meter indices then 

0: u j i,g+1 = x j best,G + F (x j r 1 ,g − x j r 2 ,g ) 
1: else 
2: u j i,g+1 = x j i,G 
3: end if 
4: end for 
5: Evaluate f (u i,g+1 ) and CV(u i,g+1 ) 
6: Update the population if the child u i,g+1 is better than 

the father x i,g by above three criteria 
7: end for 
8: end for 
.2. Solving the proposed attack with SLSQP 

n some gradient-based attack algorithms in image classifi- 
ation( Carlini and Wagner (2017) ; Szegedy et al. (2014) ), a lo-
istic function is added to the objective function as a penalty 
erm and the multiplier for the penalty term is chosen by a 
ine search. These algorithms aim to find a feasible solution,
ot the optimal one. Therefore, we use a conventional opti- 
ization algorithm (SLSQP) Kraft (1988) . SLSQP is a variation 

n the SQP algorithm for non-linearly constrained gradient- 
ased optimization. In our SLSQP attack, we encode the solu- 
ion to a N m 

-dimension vector, in which the i -th element de-
otes the injection amount to the i -th meter. This encoding 
llows the attacker to generate attack vectors for a set of spec- 
fied meters by placing upper and lower bounds to the corre- 
ponding elements in the attack vector. To solve the proposed 

ptimization problem, we first construct the Lagrangian func- 
ion: 

 (a , λ) = f (a ) + λ · g(a ) , (15) 

here 

 

f (a ) = ‖ ˆ x a − ˆ x ‖ ∞ 

g(a ) = (z − h ( ˆ x a )) T W ( z a − h ( ˆ x a )) < τ. 
(16) 

n each iteration k, the above problem can be solved by trans- 
erring to a linear least square sub-problem in the following 
orm: 

max d ‖ ( D 

k ) 
1 / 2 

( L k ) T d + (( D 

k ) −1 / 2 ( L k ) −1 ∇ (a k ) ‖ 
ubject to ∇g(a k ) d + g(a k ) ≥ 0 , 

(17) 

here L k D 

k (L k ) T is a stable factorization of the chosen search
irection ∇ 

2 
zz L (z , λ) and is updated by BFGS method. 

By solving the QP sub-problem for each iteration, we can 

et the value of d 

k , i.e., the update direction for z k : 

 

k +1 = z k + αd 

k , (18) 

here α is the step size, which is determined by solving an 

dditional optimization. The step size ψ (α) := φ(a k + αd k ) with 

 

k and d k are fixed, can be obtained by a minimization: 

(a k ; r ) := f ( a k ) + max (r · g(a ) , 0) , (19)

ith r being updated by: 

 

k +1 := max ( 
1 
2 

(r k + | λ| , | λ| )) . (20)

The limit on the injection amount is achieved by setting a 
ound to the optimizing variable. The physical constraint for 
ranch limit is ensured by performing an element-wise min- 
ax operation as it is in the DE attack. 

. Attack evaluation 

n this section, we evaluate both FDI attacks on three IEEE test 
ystems: 9-bus, 14-bus, and 30-bus systems. The implementa- 
ion of our attacks is done in Python, using package TensorFlow 



c o m p u t e r s  &  s e c u r i t y  1 0 5  ( 2 0 2 1 )  1 0 2 2 6 5  9 

Fig. 1 – An example of a 5-meter attack on the 14-bus system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and SciPy . We run the experiments on a computer equipped
with a 3.5 GHz CPU and a 16 GB memory. 

Attack Scenarios: Depending on the attacker’s capabilities
and practical constraints, the attacker can launch an attack
under different scenarios. Inspired by Liu et al. (2011) , we con-
sider the following two attack scenarios to facilitate the eval-
uation: 

• Any k -meter attack - The attacker can access all meters,
but the number of compromised meters is limited by k . In
this scenario, the attacker may want to wisely allocate the
resource, by selecting meters and injection amount that
maximize the attack impact. 

• Specific k -meter attack - The attacker has the access to k
specific meters. For example, the attacker may only access
meters in a confined region. In this case, the attacker needs
to determine the injection amount to each meter to maxi-
mize the attack impact. 

We perform the experiments as follows. To fairly compare
the attack performance on different test systems, we choose
the percentage of compromised meters, R, to be 5% , 10% and
20% . For each R, we explore the attack performance under dif-
ferent injection levels: 2% , 5% and 10% . The injection level
is defined as the maximum injection strength in terms of
the proportion to the measurement. Each experiment runs on
1000 measurement instances, and is repeated for 10 times to
reduce randomness. 

We consider the following four metrics throughout eval-
uating the effectiveness of the attacks. We measure the MAE
and MARE that are injected to the voltage phase angle. We also
report the success rate, where the success is defined as an at-
tack producing more than 5% MARE to the voltage phase angle.
Moreover, since the smart grid is assumed to be a quasi-static
system and the state changes slowly over time, we want to in-
vestigate if the time between two state estimations allows an
adversary to mount the FDI attack on the smart grid. 

7.1. Any k meter attack 

Under this scenario, the attacker can access all meters and has
the freedom to choose any k meters to compromise. The way
we encode the attack vector in DE enables the search for bet-
ter target meters in every generation. In contrast, SLSQP only
allows us to put constraints on specific meter indices. There-
fore, only DE can be used to find the attack vector in any k -
meter attack. DE/x/y/z denotes a DE variant, in which x speci-
fies the vector to be mutated is chosen by “random” or “best”,
and y denotes the number of difference vectors, and z de-
notes the crossover scheme. We implement three DE variants
in our experiments: DE/best/1/bin, DE/current to best/1/bin and
DE/current to rand/1/bin , where bin denotes binomial. These
DE variants differ in the way of how the father vector is se-
lected and how the differential variation is formed. We find
that there is no significant difference among them. Hence,
DE /best / 1 /bin is used through all experiments: 

u i,G +1 = x best,G + F (x r 1 ,G − x r 2 ,G ) , 

where x r 1 ,G , x r 2 ,G are integers drawn from the current popula-
tion, and x best,G denotes the best individual in terms of objec-
tive function value in the current population. F is a real and
constant factor ∈ [0 . 5 , 1] , which controls the mutant intensity.

Fig. 1 shows an example of a 5% -meter attack on the 14-bus
system. Our DE attack injects error to one of voltage phase
angles while others keeping unchanged. In Fig. 1 (b) and (c),
for injection levels 10% and 20% , the maximum injections are
condensed at 5% and seldom go beyond 10% , due to the overall
constraint of bad data detection. 

Fig. 2 shows the attack impact with the change of R and
injection level. In general, the success probability and attack
impact increase as the attacker controls more resource. The
attacker achieves a high success rate ( 80% of simulation in-
stances) by compromising 10% of meters with injection level
10% . Especially for the 14-bus system, the attack achieves
100% success for any combination of R and injection level. 

Interestingly, for the 30-bus system, the impact of 10%
compromised meters surpasses that of 20% compromised me-
ters. Moreover, the performance of 20% of compromised me-
ters drops drastically as the injection level increases. A possi-
ble explanation for this is that, with the expansion of search
dimension and space, DE requires more generations to find a
satisfactory solution. 

We compare our proposed attack with a random attack,
where the injection vectors are generated from a uniform dis-
tribution. The success probability is reported on the same set
of instances with 1,000 attempts on each instance. The suc-



10 c o m p u t e r s  &  s e c u r i t y  1 0 5  ( 2 0 2 1 )  1 0 2 2 6 5  

Fig. 2 – Relative error and success rate of the any k -meter attack on 3 test systems with N = 400 and G MAX = 400 . 
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ess rate is compared with that of our DE attack on a log scale 
 Fig. 3 ). There is no significant difference between the impact 
f the DE attack and that of the random attack when the injec- 
ion level is low, in which the attack impact is limited. How- 
ver, if the attacker wants to achieve greater impact, our DE 
ttack outperforms the random attack by order of magnitude.
Fig. 4 shows the frequency of the meter indices presenting 
n the attack vectors. Because most of the meter frequencies 
re small, only the 7 meters with largest frequencies are pre- 
ented. Injection to meters with high frequency can introduce 
arge error to the state variable. Our DE attacks also help to 
dentify vulnerable meters, on which people can strengthen 
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Fig. 3 – Success rate of the DE attack and the random attack on a log scale. Solid lines refer to the DE attack and dashed lines 
refer to the random attack. 

Fig. 4 – Frequency of meters selected in the attack vectors. 

Table 5 – Average NFEs and execution time (in second) of 
the any k -meter attack on 3 test systems. 

Test System NFEs Time (s) 

9-bus 500–1500 0.25-0.45 
14-bus 500–3500 0.5-1.73 
30-bus 800–5600 1.5-2.7 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 – Convergence time (in second) comparison of the 
specific k -meter attack on 3 test systems. 

Test System DE (s) SLSQP (s) 

9-bus 0.12-0.4 0.036-0.6 
14-bus 0.06-0.6 0.14-1.0 
30-bus 0.3-3.0 0.26-2.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the physical protection, e.g., replace them with higher preci-
sion meters or lock them in boxes. 

7.2. Specific k meter attack 

To explore the effect of the population size and iteration
number, we evaluate the average number of function evalu-
ations (NFEs) before delivering a successful attack or when
no significant change in the solution is observed. In the
DE case, NFE is equal to the population size multiplied by
the number of generations. The NFEs and the correspond-
ing running time are shown in Table 5 . For all combinations
of systems and attack settings, the attacker can find a suc-
cessful attack vector in 3 seconds or conclude the attack is
infeasible. 

In this scenario, the attacker is able to compromise spe-
cific k meters due to the physical location restriction. DE and
SLSQP are implemented and compared under this attack sce-
nario. To search the injection amount to specific k meters, DE
specifies the indices of the k meters in population initializa-
tion and disables the meter index mutation operation, while
SLSQP only allows modifications to the k meters in the attack
vector. We randomly select 3 sets of meters such that R is 5% ,

10% and 20% , respectively. We perform the same set of experi-
ments using both DE and SLSQP algorithms and compare their
performance by the same metrics. 

In general, the DE algorithm outperforms the SLSQP algo-
rithm in effectiveness ( Fig. 5 ). This is not surprising, as the DE
brings in more diversity in every generation whereas SLSQP
only explores the neighbors in each iteration. 

Table 6 shows the convergence time of the DE attack with
10,000 NFEs and the SLSQP attack with 100 iterations. Both at-
tacks converge quickly within 3 seconds, which is feasible for
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Fig. 5 – Relative error and success rate of the specific k -meter attack on 3 test systems. 
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n attacker to finish before the next state estimation takes 
lace. A simple comparison of running time between them 

an be misleading, since the specific k meters engaged in our 
est are blindly chosen. The convergence time highly relies on 

he meters chosen to perform the attack. The participation of 
ulnerable meters would greatly shorten the attack time. In 
ddition, the execution time can be further shortened by ap- 
lying an early-stop criteria or parallel processing to the DE 
ttack, or adjusting the max iterations for the SLSQP. There- 
ore, taking no account of the running time, our experiments 
xhibit clear pattern that the DE attack is more effective than 

he SLSQP attack. 
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8. Potential defenses 

In this section, we are interested in how the proposed at-
tacks behave when a defense mechanism is specifically cus-
tomized/optimized to these attacks. Note, such a specialized
defense mechanism is in sharp contrast to the general defense
mechanisms considered in previous works, which do not as-
sume/exploit any knowledge or feature of the proposed at-
tacks. Putting the proposed attacks into the context of a strong
and specialized defense mechanism allows us to garner in-
sights on the limit of both the attacker and the defender in
a more realistic “sharpest-sword vs. strongest-shield” setting,
as in practice “maximum-effort” is commonly executed not
only by attackers but also by defenders, especially when it
comes to a mission-critical infrastructure such as the power
grid. In the following, we first review existing state-of-the-art
defense proposals against adversarial examples in image clas-
sification, and explain why some of them are not applicable to
our problems. Then, we propose an adversarial training based
defense mechanism to counter our proposed attacks. Several
techniques are also developed to optimize the proposed de-
fense. The performance of the proposed mechanism is evalu-
ated by simulations in Section 7 . 

Despite the significant number of works on the detection
against the FDI attack, most of the existing detection mech-
anisms are mainly built on the DC state estimations or tradi-
tional WLS state estimators. These detection methods achieve
high detection accuracy with low false alarm rate, but they are
not applicable to the ANN-based state estimator. The defense
strategy against the FDI attack on the AC ANN-based state es-
timation has not been intensively studied. 

In the image classification area, proactive countermea-
sures against adversarial examples aim to make the ANN
model more robust before the attacker gets a chance to gener-
ate adversarial examples. Mainstreaming proactive counter-
measures fall into three categories Yuan et al. (2019) : the de-
fensive distillation, adversarial training and classifier robusti-
fying. 

However, our problem has a different goal compared to the
image classification. Methods based on the probability of the
target class, such as the defensive distillation and classifier
robustifying, are not applicable. To propose the defense, we
need to address two challenges: (1) in contrast to an image
classification problem, our goal is to minimize the error in the
state space while keeping the residual in the measurement
space below a pre-defined threshold; (2) measurements con-
taminated by a small injection level are well-hidden as they
are nearly from the same distribution as clean measurements.
The defense should not be sensitive to adversarial injections,
yet measurements with regular noises should not trigger bad
data detection alarms. 

As stated in Jagielski et al. (2018) , there are two main-
stream methods to strengthen a regression model: the noise-
resilient regression and adversarial training. The idea behind
the noise-resilient regression is to enhance the model’s tol-
erance to noises, and identify and remove the outliers, while
not triggering bad data alarm nor losing accuracy. In the tar-
get model training process in Section 4 , we adopt the idea of
noise resilience by adding noises sampled from a certain dis-
 

tribution to the training data, so the model learns the distribu-
tion and is able to eliminate the effect of such noises. In addi-
tion, we minimize both the errors in state space and the mea-
surement space to improve the ANN-based state estimation
accuracy and narrow down the space left for attacks. While
these methods do provide robustness improvement against
noises and outliers, results in Section 7 show a noise-resilient
model is not resistant to our attacks. It is suggested that
an adversary can still generate noise-like injections to mis-
lead the state estimation. It turns out that introducing noises
to measurements and minimizing the training error in both
spaces do not make the model more robust to adversarial
injections. 

Among many proposed defenses against adversarial ex-
amples, the adversarial training Goodfellow et al. (2014) ;
Szegedy et al. (2014) has been one of the most effective meth-
ods Kurakin et al. (2016) ; Madry et al. (2017) . The adversarial
training attempts to minimize the impact of the injection in
the model training phase, rather than trying to identify and
mitigate them in the operational phase of the trained model.
This is achieved by a min-max formulation: 

θ = arg min 

θ

E (x,y ) ∼D 

[
max 
δ∈ S 

L (θ, x + δ, y ) 
]
, (21)

where D is the set of training data, L is the loss function, θ
is the parameter of the network, and S is a norm-constrained
ball centered at 0. In contrast to the regular training, the ad-
versarial training uses a min-max optimization, where the in-
ner maximization produces injection data based on the current
model and injects them into the training data set, while the
outer minimization minimizes the state estimation deviation on
the enlarged training data set, in which the injection data is
included. 

Inspired by Madry et al. (2017) and considering the unique-
ness of our problem, we propose a defense through an opti-
mization perspective with the goal of improving the robust-
ness while keeping the accuracy of the ANN-based state esti-
mation model: 

θ = arg min 

θ

c · E (x , z ) ∼D 

[
max 

δ
‖ ̃ x − x ‖ 

]
+ loss (z , x ) , (22)

where c > 0 is a suitably chosen constant, controlling the opti-
mization strength on each term. Compared to Eq. (21) , a train-
ing loss term is added to the optimization such that the model
accuracy is taken in to account. 

In the process of choosing a suitable c, since the value of
the first term is very small, a large c would make the opti-
mization emphasize on minimizing the risk of the FDI attack,
whereas a small c would cause a high false alarm rate. Em-
pirically, we found the best way to choose c is to balance the
model accuracy, bad data rate, and model robustness. We ver-
ify this by running the adversarial training model for values
of c spaced uniformly (on a log scale) from c = 1 × 10 2 to
c = 1 × 10 7 , on the 9-bus system customized for the 10% -
meter specific DE and SLSQP attacks respectively. The model
accuracy and bad data rate are evaluated on the test data set,
while the effectiveness of the adversarial training is evaluated
by the DE and SLSQP attacks. We plot the voltage angle accu-
racy, bad data rate and attack success rate as a function of c
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Fig. 6 – Sensitivity on the constant c . 
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Table 7 – Performance of the adversarial training against 
the specific 10% -meter attack with the injection level of 
10% . 

Without Adversarial Training 

θ Accu- 
racy(%) 

Bad 

Data(%) SLSQP(%) DE(%) 

9-bus 96 0 22 35 
14-bus 99 3 71 100 
30-bus 98 5 13 17 
SLSQP With Adversarial Training 

θ Accu- 
racy(%) 

Bad 
Data(%) 

Attack 
Suc- 
cess( % ) 

9-bus 91.7 9.7 3 
14-bus 93.3 13.5 5 
30-bus 92.4 14.9 2 
DE With Adversarial Training 

θ Accu- 
racy(%) 

Bad 
Data(%) 

Attack 
Suc- 
cess( % ) 

9-bus 85.2 30.2 3 
14-bus 86.8 34.5 7 
30-bus 80.3 40.2 1 

d  
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n Fig. 6 . We found both attacks show similar patterns. As c in-
reases, the attacks become rarely successful at the cost of the 
tate estimation model being more conservative. The conser- 
ativenss is mainly reflected by the model recognizing a grow- 
ng number of measurements with regular noises as bad data.
n practical state estimation applications, bad measurements 
re usually discarded and will not be used to estimate the cur- 
ent system status. Therefore, a high false alarm rate would 

ncrease the risk of system unobservability. Although the ad- 
ersarial trained state estimation model could identify more 
ata as bad data, this is a minor model degradation, which can 

e handily resolved by, for example, increasing the sampling 
ate. 

As claimed in Madry et al. (2017) , solving the optimization 

lone is not a sufficient condition for model accuracy and ro- 
ustness. What’s more, it requires both solving the optimiza- 
ion and the value of the objective function to be small. This is 
ecause in general, a smaller objective value implies a better 
odel. However, in our problem, that is not always true. Due 

o the presence of noise, a smaller objective value does not 
lways indicate a better model. Furthermore, obsessively pur- 
uing a small objective value may lead to overfitting. There- 
ore, we stop the training process when we observe the loss is 
onsistently smaller than the threshold. 

We then use the Adam optimizer to adversarially train 

tate estimation models on the 9-bus, 14-bus and 30-bus sys- 
ems with the same attack settings and meter indices as in 

ection 7.2 . According to our experiment results, the three sys- 
ems present similar patterns. To evaluate the effectiveness 
f the adversarial training across all test systems, we present 
he experiment results of the adversarial training for the 10% - 

eter specific attack with the injection level of 10% in Table 7 ,
n terms of voltage angle accuracy, bad data rate and attack 
uccess rate. While the adversarial training significantly re- 
uces the attack success rate, it achieves this benefit at the 
ost of an elevated bad data rate and a slight degradation (sev- 
ral percent) in model accuracy, for defenses against both the 
E and SLSQP attacks. 

The reason for the slightly degraded accuracy is that the 
dversarial training is done on an enlarged training data set,
n which the adversarial data is generated and added to the 
i
ata set as the training process goes on. At the individual level,
ne adversarial example may hide well in the actual data dis- 
ribution. But if looked at the whole population, the adversar- 
al data distribution may differ slightly from the actual data 
istribution. So the model learned from the adversarial data 
ay shift accordingly, causing a slightly decreased accuracy. 
It is also noted that the adversarial training with exam- 

les generated by DE has a higher bad data rate than the 
raining with examples generated by SLSQP. One possible ex- 
lanation is the high skewness in the residual distribution.

n the process of generating adversarial examples, while the 
LSQP finds adversarial examples in the neighbors, DE, being 
 stochastic method, always probes more possibilities to make 
se of the resource. Taking a closer look at the residuals of the
dversarial data, we can notice that the residual distribution 

s highly left skewed and it is highly condensed at the value 
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of the bad data detection threshold. Due to the skewness, it
takes the adversarial training more iterations to converge, yet
to a value just below the threshold. Such an unsteady conver-
gence is susceptible to distribution difference, therefore, data
from the true distribution are very likely to violate the bad
data threshold, resulting in an elevated bad data rate. Note
that such a drawback is not critical to the state estimation,
as it can be easily overcome by proportionally raising up the
sampling rate to compensate for those good data lost due to
the false alarm. 

In summary, our proposed adversarial training works well
in significantly reducing the attack success rate, but only at
the cost of a higher bad data rate and a slight degradation of
the model accuracy. 

9. Conclusions 

In this paper, we performed the first study of the adversar-
ial FDI attack against the ANN-based AC state estimation. We
first created target models that are sufficiently strong. Then
we formulated the adversarial FDI attack into an optimization
problem, followed by extensive evaluations under two attack
scenarios on IEEE 9-bus, 14-bus and 30-bus test systems, based
on the adaption of DE and SLSQP algorithms aiming to find
attack vectors. In the any k -meter attack, our results showed
that the DE attack achieves high success rate (more than 80%
in all simulated cases), despite having a small number of com-
promised meters and low false injection strength. The DE out-
performs SLSQP in the specific k -meter attack. Our findings
also showed the potential of the adversarial training in de-
fending against these attacks, and such approach can be fur-
ther explored to improve the ANN-based AC state estimation
model robustness. 
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