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Weighted Matrix Completion From Non-Random,
Non-Uniform Sampling Patterns

Simon Foucart, Deanna Needell , Member, IEEE, Reese Pathak,
Yaniv Plan, and Mary Wootters , Member, IEEE

Abstract— We study the matrix completion problem when the
observation pattern is deterministic and possibly non-uniform.
We propose a simple and efficient debiased projection scheme for
recovery from noisy observations and analyze the error under a
suitable weighted metric. We introduce a simple function of the
weight matrix and the sampling pattern that governs the accuracy
of the recovered matrix. We derive theoretical guarantees that
upper bound the recovery error and nearly matching lower
bounds that showcase optimality in several regimes. Our numer-
ical experiments demonstrate the computational efficiency and
accuracy of our approach, and show that debiasing is essential
when using non-uniform sampling patterns.

Index Terms— Matrix completion, nonuniform sampling.

I. INTRODUCTION

THE matrix completion problem is to determine a complete
d1 × d2 matrix M from a subset Ω ⊂ [d1] × [d2] of

its entries. A typical assumption that makes such a problem
well-posed is that the underlying matrix from which the entries
are observed is low-rank (or approximately low-rank). Matrix
completion has many applications, including collaborative fil-
tering [27], system identification [46], sensor localization [9],
[57], [58], rank aggregation [26], scene recovery in imag-
ing [17], [63], multi-class learning [1]–[3], and more. This
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is now a well-studied problem, and there are several main
approaches to its solution, such as low-rank projection [33],
[34] and convex optimization [13], [60], which have rigorous
provable recovery guarantees (see e.g. [13]–[15], [25], [29],
[33], [34], [36], [37], [40], [41], [48], [53], [54]).

Besides a low-rank assumption on the underlying matrix,
one also clearly needs to assume something on the sam-
pling pattern Ω. Theoretical guarantees for matrix completion
typically enforce that the sampling pattern is obtained from
(most often uniform) random sampling [8], [21], [22], [39],
[47], [61]. However, for many applications, the sampling
pattern may not be uniformly random, and indeed may not
be reasonably modeled as random at all.

In this paper, we study the problem of matrix completion
with deterministic sampling, that is when Ω is fixed arbitrarily.
This version of the problem has been studied before [7], [23],
[31], [43], [44], although much less extensively than the case
with random sampling.

For some sampling patterns Ω, recovering the entire matrix
M accurately from observations indexed by Ω may not be
possible: for example, consider the case where Ω only has
support on the left half of the matrix. Thus, we use an appro-
priate weighted error metric of the form �H ◦ (M̂ − M)�F ,
where M̂ is the recovered matrix, and H is an appropriate
weight matrix. Informally, the weight matrix H allows us to
quantify which entries can be recovered accurately and which
cannot.

Our work extends a great deal of prior work which
assumes uniform sampling of matrix entries and considers
an unweighted error metric. This corresponds to taking H
to be the all-ones matrix; note that for uniformly sampled
entries, this choice of H is a rank-1 matrix which approximates
the matrix 1Ω ∈ {0, 1}d1×d2 . We generalize these results
to (almost) any rank-1 matrix H which approximates 1Ω.

More precisely, we show that when H satisfies certain
conditions with respect to the sampling pattern Ω, which can
be easily verified, a simple “debiased projection” algorithm
performs well. Moreover, this algorithm is extremely efficient.
We also establish lower bounds that show that our debiased
projection algorithm is nearly optimal in several situations.
Finally, we include numerical results that demonstrate the
efficacy and advantages of our approach.

A. Background and Motivation

Given a sampling pattern Ω, we write 1Ω to denote the
matrix whose entries are 1 on Ω and zero elsewhere, so that
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the entries of MΩ = 1Ω ◦ M are equal to those of M on Ω,
and are equal to 0 on Ωc. Above, ◦ denotes the (entrywise)
Hadamard product.

While most work on matrix completion has been in the case
where Ω is random (and usually uniform), there has been some
work on the deterministic case, summarized in Section IV. Our
starting point is the work [7], [31], [44], which shows that
when 1Ω ∈ {0, 1}d1×d2 is “close” to an appropriately scaled
version of the all-ones matrix (more precisely, when 1Ω is the
adjacency matrix of an expander graph) and the matrix M is
sufficiently incoherent, it is possible to efficiently recover an
estimate M̂ so that �M̂ − M�F is small.

Of course, as noted above, there are some sampling patterns
so that we cannot hope to recover M̂ with small error
�M̂ − M�F . As a simple (and extreme) example consider
sampling the entire left half of a matrix. We can exactly
recover the left half of M, but we learn nothing about the
right half of M.

Thus, our goal will be to find a weight matrix H so
that we can recover M̂ so that

∥∥∥H ◦ (M̂ − M)
∥∥∥

F
is small,

compared to �H�F . In the first example above where 1Ω

is close to the all-ones matrix, we would choose H to be
the all-ones matrix; in the second example where Ω samples
only the left half of the matrix, we would choose H to be
the matrix with ones on the left half and zeros on the right
half.

More precisely, we are motivated by the following question.
Question 1: Given a sampling pattern Ω, and noisy obser-

vations MΩ + ZΩ, for what rank-one weight matrices H can
we efficiently find a matrix M̂ so that

∥∥∥H ◦ (M̂ − M)
∥∥∥

F
is

small compared to �H�F ? And how can we efficiently find
such weight matrices H, or certify that a fixed H has this
property?

The notion of using a weighted error metric in this con-
text is not new [31], [43]. However, the difference between
Question 1 and previous work is that we consider only rank-
1 weight matrices. While this sacrifices some generality, as dis-
cussed in more detail in Section IV, this allows us to achieve
faster algorithms that also tolerate noise, and additionally
allows us to prove lower bounds.

B. Our Results

The goal of this paper is to answer Question 1. Our method
is a simple weighted (which we refer to as “debiased")
projection algorithm that performs well precisely when the
quantity λ =

∥∥H− H(−1) ◦ 1Ω

∥∥ is small; here and through-
out, �·� denotes the usual spectral norm and H(−1) denotes the
Hadamard (entry-wise) inverse. The parameter λ is efficient
to compute, and moreover our algorithms are efficient. More
precisely, we give two algorithms, one for exactly low-rank
matrices and one for “approximately” low-rank matrices. Our
algorithm for approximately low-rank matrices runs in essen-
tially the time it takes to compute an SVD. Our algorithm
for approximately low-rank matrices can be implemented by
solving a semidefinite program. In addition, we derive lower
bounds that show that our approach is nearly optimal in several
situations.

To illustrate our upper and lower bounds, we consider two
extreme cases, depending on the magnitude of λ.

Case 1: when λ is small. First, we illustrate our upper
and lower bounds in a case where λ is small. More precisely,
we consider the following case study: choose a rank-1 matrix
H, and let (i, j) ∈ Ω with probability H2

ij . In this case, when
the error matrix Z has standard deviation σ of roughly the
same order of magnitude as the entries of M, we prove match-
ing upper and lower bounds that show that the error guarantee
for our algorithm is nearly optimal, up to logarithmic factors
in d and polynomial factors in r.

We stress that in this example above, even though we
imagine drawing Ω at random, our results are still uniform:
that is, we draw Ω once and fix it, and then prove that our
algorithm works deterministically for all M.

In addition to being a good way to showcase our results
when λ is small, we believe that this particular case study is
interesting for two reasons.

• First, this case study models a natural situation where the
sampling distribution is not very uniform. For example,
suppose that the matrix M represents preferences of users
for items. There are some prolific users that rate many
items, and there are some popular items that are rated
by many users. In this case, it is reasonable to expect
that the sampling pattern arises as above from the rank-
1 matrix H which is the outer product of the vectors
indicating how prolific each user is and how popular
each item is. Another similar example is in survey design,
where an important batch of questions may be asked more
frequently than other questions.

• Second, this setting has applications to proportional
sampling. More precisely, we show in Section VII-D
how our results for this case study can be used to do
matrix completion for incoherent matrices by sampling
proportional to leverage scores. We recover results that
are qualitatively similar to the results of [18]. Unlike that
work, our results hold more generally for approximately-
low-rank matrices, although as discussed more below in
Section IV, the two works are incomparable.

Case 2: when λ is large. Second, we illustrate our bounds
in settings where λ is large; we focus on symmetric sam-
pling patterns Ω for which 1Ω has a large gap between the
largest and second-largest eigenvalues. In this setting our upper
bounds are not very strong, since they depend on the parameter
λ. However, we prove lower bounds which show that some
dependence on λ is required. While we are not able to get a
lower bound that matches our upper bound in the dependence
on λ, we are able to show that the error must necessarily
increase as λ increases, which suggest that our approach is
qualitatively correct. To the best of our knowledge, this is the
first lower bound showing that any dependence on a parameter
like λ is necessary, despite the fact that previous works present
upper bounds with some dependence on a parameter like
this.

Finally, we present empirical results using both real and
synthetic sampling patterns that show that debiasing is essen-
tial when the sampling pattern is non-uniform. We show-
case reduction in recovery errors compared with standard
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(non debiased) approaches as we vary the sampling pattern
constructed via regular graphs.

C. Organization

The rest of the paper is organized as follows. In Section II
we instantiate notation, formalize the problem setup, and
record several useful results that our theory will utilize.
We establish our main results in Section III and relate our
work to existing work in Section IV. Sections V and VI give
generalized upper and lower bounds, respectively, which are
specialized to important settings in Sections VII and VIII.
We display numerical results in Section IX.

II. SET-UP AND PRELIMINARIES

In this section we set notation and our formal problem
statement.

A. Notation

We begin by setting notation. For an integer d, we use [d]
to mean the set {1, . . . , d}. Throughout the paper, bold capital
letters (X) represent matrices, and bold lowercase letters (x)
represent vectors. Entries of a matrix X or a vector x are
denoted by Xi,j or xi respectively. For a set Ω ⊆ [d1] × [d2]
and a matrix X ∈ R

d1×d2 , we use XΩ to denote the matrix
which is equal to X on entries in Ω and 0 otherwise.

We use �X�∞ = maxi,j |Xi,j | to denote the entry-wise

�∞ norm for matrices, �X�F =
√∑

i,j X2
i,j to denote the

Frobenius norm, and �X� to denote the spectral norm of X.
We define the max-norm by

�X�max := min
X=UV�

�U�2,∞�V�2,∞.

Letting Bmax be the max-norm unit ball, Bmax := {X ∈
R

d1×d2 : �X�max ≤ 1}, Grothendiek’s inequality [32,
Chapter 10] shows that Bmax is close to a polytope with
vertices rank-1 matrices with ±1-valued entries. Concretely,
letting F be the set of such matrices, F := {uvT : u ∈
{+1,−1}d1, v ∈ {+1,−1}d2}, Grothendieck’s inequality
states that conv(F) ⊂ Bmax ⊂ KG · conv(F), where KG ≤
1.783 is Grothendiek’s constant. Given a rank-r matrix M
with �M�∞ ≤ γ, we have that �M�max ≤ √

rγ (see [52,
Corollary 2.2]). In this sense, the max norm serves as a
proxy for the rank of a flat matrix that is robust to small
perturbations.

We use Kr to denote the cone of rank-r matrices. We use
B∞, Bmax, BF respectively to denote the unit balls for the
corresponding norm.

B. Formal Set-Up

We now describe our formal set-up. Suppose that M ∈
R

d1×d2 is a unknown matrix. In this paper, we will assume
either that M is in Kr ∩ βB∞—that is, M is “flat” and
has low rank—or that M is in β

√
rBmax—that is, M is

“approximately” low-rank.
Remark 2 (Assumptions of “Flatness”): It is not hard

to see that some assumption of “flatness” is required for

matrix completion. Indeed, if the matrix M could be arbitrary,
then there could be some arbitrarily large entry Mi,j so
that (i, j) 
∈ Ω, and it would be impossible to obtain any
nontrivial guarantee on the reconstruction error. There have
been several notions of “flatness” introduced in the literature.
One is incoherence, (as in, e.g., [14], [33], [53]), which says
that if M = VΣUT for U,V ∈ R

d×r, then the rows u of U
and v of V have �u�2, �v�2 ≤ μ0 r/d and �u,v� ≤ μ1

√
r/d.

Another notion, which we use here and is also used in [20],
is that �M�∞ is bounded. Notice that the standard incoherence
assumption implies that �M�∞ ≤ �M�(μ0 r/d)2. We quan-
tify “approximately low-rank” using the max-norm, which also
has some notion of “flatness” built into it by definition. This
assumption of flatness has also been used in the context of
matrix completion, e.g., in [11].

Fix a sampling pattern Ω ⊆ [d1] × [d2] and a rank-1
matrix W.1 Our goal will be to design an algorithm that
gives provable guarantees for a worst-case M, even if it is
adapted to Ω. Our algorithm will observe MΩ + ZΩ, where
Zi,j ∼ N (0, σ2) are i.i.d. Gaussian random variables. From
these observations, the goal is to learn something about M.
Notice that, depending on Ω, it might not be possible to
estimate M well in a standard metric (like the Frobenius
norm). Instead, in this paper, we are interested in learning
M with small error in a weighted Frobenius norm; that is,
we’d like to develop efficient algorithms to find a matrix M̂
so that ⎛⎝∑

i,j

Wij(Mij − M̂ij)2

⎞⎠1/2

=
∥∥∥W(1/2) ◦ (M − M̂)

∥∥∥
F

is small for some matrix W of interest. On the other hand,
we will also prove lower bounds that demonstrate for which
(Ω,W) combinations certain error bounds are not possible.

When measuring weighted error, it is important to normalize
appropriately in order to understand what the bounds mean.
In our setting, we will always report error normalized by∥∥W(1/2)

∥∥
F

: that is the goal is that∥∥∥W(1/2) ◦ (M − M̂)
∥∥∥

F∥∥W(1/2)
∥∥

F

=

⎛⎝∑
i,j

Wij∑
i′,j′ Wi′j′

(Mij − M̂ij)2

⎞⎠1/2

is small. Written out this way, it is clear that this gives a
weighted average of the per-entry squared error. In light of
the discussion above, we formally define our problem below.
Ideally, the error function δ will tend to zero as |Ω| grows.

Remark 3 (Universality): We emphasize that the require-
ment in the problem above is a universal one. That is,

1In the introduction we discussed a rank-1 weight matrix H which plays
the role of W(1/2). Stating the results that way is easier to parse in an
introduction, but it will be more convenient for the proofs to state the formal
problem in terms of W.
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Problem: Weighted Universal Matrix Completion

Parameters:
• Dimensions d1, d2

• A sampling pattern Ω ⊂ [d1] × [d2]
• Parameters σ, β, r > 0
• A rank-1 weight matrix W ∈ R

d1×d2 so that Wij > 0
for all i, j.

• A set K (which for us will either be Kr ∩ βB∞ or
β
√

rBmax)

Goal: Design an efficient algorithm A with the following
guarantees:

• A takes as input entries MΩ + ZΩ so that Zij ∼
N (0, σ2) are i.i.d.

• A runs in polynomial time
• With high probability over the choice of Z, A returns

an estimate M̂ of M so that⎛⎝∑
i,j

(
Wij∑

i′,j′ Wi′j′

)
(Mij − M̂ij)2

⎞⎠1/2

=

∥∥∥W(1/2) ◦ (M − M̂)
∥∥∥

F∥∥W(1/2)
∥∥

F

≤ δ(d1, d2, Ω, r, σ, β)

for all M ∈ K , where δ is some function of the problem
parameters.

for a fixed sampling pattern, the algorithm A must work
simultaneously for all relevant matrices M.

Remark 4 (Strictly Positive W): Notice that the requirement
that Wij be strictly greater than zero (rather than possibly
equal to zero) is without loss of generality. Indeed, if Wij = 0
for some (i, j), then either the i’th row or the j’th column of
W are zero, and we can reduce the problem to a smaller one
by ignoring that row or column.

III. RESULTS

In this section, we state informal versions of our results.
We assume that d1 = d2 = d to make the results easier
to parse, although most of our results extend to rectangular
matrices.2 We present more detailed statements of our results
later in the paper.

A. General Results

Our main upper bounds give two algorithms for weighted
universal matrix completion. These are formally stated in
Theorems 15 and 16, and we give an informal version below.
Our bounds will depend on two parameters of the sampling
pattern Ω and the weight matrix W. For a fixed W and Ω,
define

λ =
∥∥∥W(1/2) − W(−1/2) ◦ 1Ω

∥∥∥ (1)

2The only exception are Theorems 33 and 32 which are in terms of the
eigenvalues of 1Ω. For these bounds we assume that 1Ω is square and
symmetric.

μ2 = max{max
i

⎛⎝∑
j

1(i,j)∈Ω

Wij

⎞⎠ , (2)

max
j

(∑
i

1(i,j)∈Ω

Wij

)
}. (3)

The parameter λ is a measure of how “close” 1Ω is to the
matrix W. Indeed, if 1Ω happens to be rank 1 and 1Ω = W,
then λ = 0.

The parameter μ measures how “close” 1Ω is to W, as well
as capturing how “lopsided” they are. If 1Ω = W then μ2 is
just the max column or row weight of Ω. However, if W is
very different from 1Ω, for example, by putting not very much
weight on a row that is heavily sampled by Ω, then μ will be
larger.

We study two algorithms. The first, which applies when
M is exactly rank k, is a simple debiased projection-based
method. More precisely, we will estimate a rank-r matrix M
from the observations YΩ = MΩ + ZΩ by

M̂0 =

W(−1/2) ◦ argminrank(X)=r

∥∥∥X − W(−1/2) ◦ (YΩ)
∥∥∥ .

Note that computing this solution only requires computing
a (truncated) SVD followed by a matrix Hadamard product,
so it is quite computationally efficient (cubic or better) [19].
In Theorem 15, we will show the following.

Theorem 5 (General Upper Bound for Rank-k Matrices,
Informal): Let W ∈ R

d×d be a rank-one matrix with strictly
positive entries, and fix Ω ⊆ [d]×[d]. Suppose that M ∈ R

d×d

has rank r and �M�∞ ≤ β, and let Y = M + Z where the
entries of Z are i.i.d. N (0, σ2). Then with probability at least
1 − 1/d over the choice of Z,∥∥∥W(1/2) ◦ (M − M̂0)

∥∥∥
F∥∥W(1/2)

∥∥
F

� βrλ + σμ
√

r log(d)∥∥W(1/2)
∥∥

F

.

The second algorithm applies when M ∈ β
√

rBmax is
approximately low-rank. Let

M̂1 = W(−1/2) ◦ argmin�X�max≤β
√

r∥∥∥X − W(−1/2) ◦ (MΩ + ZΩ)
∥∥∥ .

We note that this estimator can be computed using semi-
definite programming (SDP). Recall that the max-norm of a
d1 × d2 matrix is SDP-representable [42], [60]:

�X�max = inf{t : there exists W s.t. W � 0, (4)

W12 = X, diag(W) ≤ t},
for any X ∈ R

d1×d2 . Above, the auxillary variable W is a
d × d matrix, where d = (d1 + d2). Further, it has the block
decomposition:

W =
(
W11 W12

WT
12 W22

)
.

Above, W11 ∈ R
d1×d1 and W22 ∈ R

d2×d2 . Define the
function f : R

d1×d2 × R+ → R
d1×d2 by

f(X0, ε) := argmin�X�max≤γ �X − X0� .
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In view of representation (4), we see that f(X0, ε) = W�
12,

where

W� = argmin
W

{
�W12 − X0� :

W � 0, diag(W) ≤ ε
}
.

Note that the operator norm satisfies �X� ≤ t if and only if
XT X � t2I and t ≥ 0. Using Schur complements, we see
that f(X0, ε) = W�

12, where

(t�,W�) = argmin
t,W

{
t :

(
tI W12−X0

WT
12−XT

0 tI

)
� 0, (5)

W � 0, diag(W) ≤ ε
}
.

Thus, we see that f(X0, ε) may be computed by solving an
SDP over the positive semidefinite cone in R

(d+1)×(d+1). It is
well-known that SDPs are polynomial-time solvable; moreover
since our estimator can be expressed as

M̂1 = W−1/2 ◦ f(W−1/2 ◦ (MΩ + ZΩ), β
√

r),

we see that solving the SDP implied by (5) is the dominant
cost. We mention in passing that there are other techniques that
permit computing this estimator without using semidefinite
programming (see section 4 in [11] and references therein).

Theorem 6 (General Upper Bound for Approximately
Rank-r Matrices, Informal): Let W ∈ R

d×d be a rank-one
matrix with strictly positive entries, and fix Ω ⊆ [d] × [d].
Suppose that M ∈ R

d×d has �M�max ≤ β
√

r and let
Y = M + Z where the entries of Z are i.i.d. N (0, σ2). Then
with probability at least 1 − 1/d over the choice of Z,∥∥∥W(1/2) ◦ (M − M̂1)

∥∥∥
F∥∥W(1/2)

∥∥
F

�

√
β

(
βrλ + σμ

√
r log(d)∥∥W(1/2)
∥∥

F

)1/2

.

Notice that the only difference between the two guaran-
tees is that the average weighted per-entry error bound for
approximately low-rank matrices is the square root of the
error bound for exactly rank-r matrices. As we will see below,
this translates into the following fact: if we want the average
weighter per-entry error to be at most ε, then the number of
samples required for the exactly rank-r case will scale like 1/ε,
while the number of samples required for the approximately
rank-r case will scale like 1/ε2. This quantitative behavior has
been observed before (eg, in [20]), and we will also show that
this dependence on ε is necessary.

Remark 7 (Computable Parameters): We note that both λ
and μ are quite easy to compute. This is valuable because it
means that, given a sampling pattern Ω and a desired weight
matrix W(1/2), one can quickly compute the guarantees given
by Theorems 5 and 6. In contrast, common deterministic
conditions which guarantee accurate recovery under random
samples (for example the restricted eigenvalue condition [48])
are not in general computationally easy to verify.

Remark 8 (Exact Recovery): One may hope to recover
exactly low-rank matrices with zero error when σ = 0. While

this is possible under stronger assumptions, the mild flatness
assumption that we make is not sufficient for exact recovery
even if M is exactly low rank (this has been noted previously
in the work [48, Section 3.4]). For example, suppose that M =
βe1 eT

1 , i.e., it has one non-zero entry with value β in the upper
left corner. Then M is not recoverable if the top left entry is
not sampled, and the proposed recovery methods would return
the zero matrix, giving a small error.

The bounds above are a bit difficult to parse: how should
we think of λ and μ? As we will see below, it depends on the
setting, and in particular on whether or not 1Ω is “close” to W.
In order to understand the bounds below, we specialize them
to two cases. In the first, we consider Ω which by construction
are “close” to W, so that λ is small. In the second, we consider
sampling patterns Ω that are “far” from W.

B. Case Study: When λ Is Small

First, we study the case when λ is small (that is, when W is
close to 1Ω). Suppose that W has entries in (0, 1]. We’d like
to consider a “typical” Ω that is close to W, so we study a
random sampling pattern Ω so that (i, j) ∈ Ω with probability
Wij , independently for each (i, j). Below, we will use the
shorthand “Ω ∼ W” to describe Ω that is sampled in this
way.

We emphasize that even though Ω is drawn at random in this
thought experiment, the goal is to understand our bounds for
deterministic sampling matrices Ω. That is, the upper bounds
are still uniform (they hold simultaneously for all appropriate
matrices M), and this model is just a way to generate matrices
Ω so that λ is small, on which to test our uniform bounds.
We will show that for most Ω that are close to W (in the
above sense), the upper bound above is nearly tight. In this
random setting, an essential difference between our results
and much of the prior art is computability of parameters.
A key sufficient condition for good matrix completion is
the restricted eigenvalue condition [48], which holds with
high probability in the random setting. However, we believe
there are no known polynomial time methods to compute the
parameters involved in the restricted eigenvalue condition, and
so in general it cannot be verified under model uncertainties.
In contrast, the parameters proposed in this paper are easily
computable.

In order to make sure that an Ω drawn from this ensemble
is actually close to W, we also need to assume that the entries
of W are not too small; in particular, that they are not smaller
than 1/d; otherwise, it is not hard to see that the parameters
λ and μ can become large. In this model, this means we are
assuming that there are at least

√
d observations in Ω per row

or column.
Our results in this setting show that, under these assump-

tions, our upper bounds above are nearly tight in the setting
when β ≈ σ (that is, when the noise is on the same order
as the entries of M). The formal results are given in Theo-
rems 25 and 26 (upper bounds for rank k and approximately
rank k respectively) and in Theorems 28 and 29 (lower
bounds). We summarize these informally below.

We begin with our results for exactly rank-r matrices.
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Theorem 9 (Results for Rank-r Matrices When Ω ∼ W,
Informal): Let W ∈ R

d×d be a rank-1 matrix so that for all
i, j, 1/d ≤ Wij ≤ 1. Choose Ω ∼ W as described above.

Upper bound: With probability at least 1 − O(1/d) over
the choice of Ω, the following holds. There is an algorithm A
so that for any rank-r matrix M with �M�∞ ≤ β, A returns
M̂ = A(MΩ + ZΩ) so that with probability at least 1 − 1/d
over the choice of Z,∥∥∥W(1/2) ◦ (M − M̂)

∥∥∥
F∥∥W(1/2)

∥∥
F

�

σ

√
rd

|Ω| log(d) + β

√
r2 d

|Ω| log(d).

Lower bound: On the other hand, with probability at least

1 − e−O(�W(1/2)�2

F
) over the choice of Ω, for any algorithm

that only sees the values MΩ + ZΩ and returns M̂, there
is some rank r matrix M with �M�∞ ≤ β so that with
probability at least 1/2 over the choice of Z,∥∥∥W ◦ (M − M̂)

∥∥∥
F∥∥W(1/2)

∥∥
F

�

min

{
σ

√
rd

|Ω| log(d)
, β

√
d

|Ω| log3(d)

}
.

If additionally we assume that W is “flat” in the sense that
the largest entry is no larger than a constant times the smallest
entry, then we may conclude the stronger result that∥∥∥W(1/2) ◦

(
M − M̂

)∥∥∥
F∥∥W(1/2)

∥∥
F

� min

{
σ

√
rd

|Ω| ,
β√

log(d)

}
In particular, is σ is on the order of β, the upper and lower

bounds are approximately the same (up to logarithmic factors
and factors of r).

Next, we state our results for approximately rank-r matrices.
Theorem 10 (Results for Approximately Rank-r Matrices

When Ω ∼ W, Informal): Let W ∈ R
d×d be a rank-1 matrix

so that for all i, j, 1/d ≤ Wij ≤ 1. Choose Ω ∼ W as
described above.

Upper bound: With probability at least 1 − O(1/d) over
the choice of Ω, the following holds. There is an algorithm
A so that for any d × d matrix M ∈ β

√
rBmax, A returns

M̂ = A(MΩ + ZΩ) so that with probability at least 1 − 1/d
over the choice of Z,∥∥∥W(1/2) ◦ (M − M̂)

∥∥∥
F∥∥W(1/2)

∥∥
F

� β

(
r2 d

|Ω|
)1/4

log1/2(d)

+
√

βσ

(
rd

|Ω|
)1/4

log1/4(d).

Lower bound: On the other hand, suppose additionally that
W is “flat,” in the sense that the sense that the largest entry
is no larger than a constant times the smallest entry. Then

with probability at least 1 − e−O(�W(1/2)�2

F
) over the choice

of Ω, for any algorithm that only sees the values MΩ + ZΩ

and returns M̂ , there is some M ∈ β
√

rBmax so that with
probability at least 1/2 over the choice of Z,∥∥∥W(1/2) ◦

(
M̂ − M

)∥∥∥
F∥∥W(1/2)

∥∥
F

�
√

βσ

(
rd

|Ω|
)1/4

.

Again, this lower bound is tight up to logarithmic factors
and factors of r in the case that σ ≈ β and W is reasonably
“flat.”

C. Case Study: When λ Is Large

Next we focus on the case when λ is large. We assume
the sampling pattern is symmetric so we may consider real
eigenvalues. In order to prove lower bounds here, we make a
few assumptions, in particular that the top two eigenvectors of
1Ω are “flat,” in the sense that the largest element is no larger
than a constant times the smallest.

Example 1: Our running example is the following extreme
sampling pattern:

1Ωt :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 · · · 0 0 1 1
1 1 1 1 · · · 0 0 0 1
1 1 1 1 · · · 0 0 0 0
0 1 1 1 · · · 0 0 0 0
0 0 1 1 · · · 0 0 0 0
...

. . .
...

0 0 0 0 · · · 1 1 0 0
0 0 0 0 · · · 1 1 1 0
0 0 0 0 · · · 1 1 1 1
1 0 0 0 · · · 1 1 1 1
1 1 0 0 · · · 0 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ {0, 1}d×t (6)

where there are t ones per row and t is odd. That is, 1Ωt is
the symmetric circulant matrix whose first row is

z = (1, 1, . . . , 1︸ ︷︷ ︸
(t+1)/2

, 0, 0, . . . , 0, 0, 1, 1, . . . , 1︸ ︷︷ ︸
(t−1)/2

).

It is well-known that the eigenvectors of 1Ωt are given by
the rows of the discrete cosine transform (in particular, they
satisfy the flatness condition above) and that the eigenvalues
are given by the elements of Fz where F is the discrete Fourier
transform. In particular, the largest eigenvalue of 1Ωt is t, and
the second largest is

λ2(1Ωt) =
(t+1)/2∑

�=−(t−1)/2

ω� = ω(1−t)/2

(
ωt+1 − 1

ω − 1

)
,

where
ω = e−2πi/d

is a primitive d’th root of unity. Now, we may compute

|λ2(1Ωt)| =
∣∣∣∣ωt+1 − 1

ω − 1

∣∣∣∣ =

√
1 − cos(2tπ/d)
1 − cos(2π/d)

,

which is at least√
1 − cos(2tπ/d)
1 − cos(2π/d)

≥ t
(
1−c(t/d)2

)
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for some constant c (using the Taylor expansion for cosine to
bound both terms). In particular, it is quite close to λ1 = t.
This means that even if we choose W to be the rank-1 matrix
that is as close as possible to 1Ωt (which in this case would
be W = t

d11T ), we still have

λ =
∥∥∥W(1/2) − W(−1/2) ◦ 1Ω

∥∥∥
=

∥∥∥∥∥
√

t

d
11T −

√
d

t
1Ωt

∥∥∥∥∥
=

√
d

t
λ2 = Θ(

√
dt).

Thus, λ is quite large.
Now, returning the the general case (provided that the

top eigenvectors of 1Ω are flat), suppose that we do choose
W to be the best rank-1 approximation to 1Ω. This is a
reasonable choice because it is an easy-to-compute matrix
which intuitively makes λ small. Under these assumptions, it is
not hard to work out what happens to the upper bound, which
we do in Theorem 32. We are also able to prove a lower bound
in Theorem 33. We informally record these results below.

Theorem 11 (Bounds for Rank-k Matrices so That 1Ω Is
Balanced and Has a Big Spectral Gap, Informal): Fix Ω ∈
[d] × [d]. Suppose that W is the best rank-1 approximation
to 1Ω and suppose that W is flat in the sense that the largest
entry is no larger than a constant times the smallest entry.
Suppose also that the second eigenvector of 1Ω is flat in the
same sense. Suppose that the entries of Z are i.i.d. N (0, σ2).

Suppose that M ∈ R
d×d has rank r and �M�∞ ≤ β, and

let Y = M + Z where the entries of Z are i.i.d. N (0, σ2).
Upper bound: There is an algorithm A so that for any rank-

r matrix M with �M�∞ ≤ β, A returns M̂ = A(MΩ + ZΩ)
so that with probability at least 1− 1/d over the choice of Z,∥∥∥W(1/2) ◦ (M − M̂)

∥∥∥
F∥∥W(1/2)

∥∥
F

� rβ

(
λ1

λ2

)
+ σ

√
r log(d)

λ1
.

Lower bound: On the other hand, for any such algorithm
A that only sees the values MΩ + ZΩ and returns M̂, there
is some rank r matrix M with �M�∞ ≤ β so that with
probability at least 1/2 over the choice of Z,∥∥∥W(1/2) ◦ (M − M̂)

∥∥∥
F∥∥W(1/2)

∥∥
F

�

min

{
β√

r log(d)
, σ

√
r

λ1 − λ2

}
.

We note that the lower bound and the upper bound do
not match. However, the lower bound does capture some
dependence on the gap between λ1 and λ2, and in particular
the bounds match when this gap is very small. In particular,
if λ2 = λ1−O(1) and σ ≈ β then the upper bound essentially
reads ∥∥∥W(1/2) ◦ (M − M̂)

∥∥∥
F∥∥W(1/2)

∥∥
F

� rβ,

which is trivial given that estimating M̂ = 0 will result in
a weighted per-entry error bound of at most β. However,

the lower bound shows that in this case a non-trivial guarantee
is impossible: it essentially reads∥∥∥W(1/2) ◦ (M − M̂)

∥∥∥
F∥∥W(1/2)

∥∥
F

� β√
r log(d)

.

Thus, in this extreme case, the upper and lower bounds match
up to polynomial factors in r and log(d).

Example 2: Returning to our example of Ωt above, we see
that

λ1 − λ2 = O

(
t3

d2

)
for some constant t. This is O(1) when t = d2/3. Thus
we conclude from the analysis above that for this particular
sampling pattern Ωd2/3 , one cannot recover even a rank-1
matrix M in the presence of Gaussian noise significantly better
than by just guessing M̂ = 0. We note that in this case,
the number of observations is d5/3, which in the uniform
sampling case would be more than enough to recover a rank-1
matrix.

IV. RELATED WORK

There are two lines of work that are related to ours. The
first is a line of work on deterministic or universal matrix
completion. In this line of work, one asks: what guarantees can
one get for a sampling pattern Ω that are simultaneously valid
on all matrices M. (Notice that this question is interesting
even if Ω is random to begin with: there is a big difference
between the universal guarantee that “with high probability, Ω
is good for all M,” and the randomized guarantee that “for all
M, Ω is good with high probability.”)

The second is a line of work where Ω is sampled randomly,
but from biased distributions. Our first case study (when
Ω is drawn according to a weight matrix H) does give
universal guarantees, but our results are also interesting from
the perspective of sampling from biased distributions.

We briefly review both of these areas in more detail below.

A. Deterministic/Universal Matrix Completion

The works of Heiman et al. [31], Bhojanapalli and Jain [7]
and Li et al. [44] relate the sampling pattern Ω to a graph
whose adjacency matrix is given by 1Ω. Those works show
that as long as this pattern is suitably close to an expander
graph—in particular, if the deterministic sampling pattern
is sufficiently uniform—then efficient recovery is possible,
provided that the matrix M is sufficiently incoherent.

There are also works which aim to understand when there
is a unique (or only finitely many) low-rank matrices M
that can complete MΩ as a function of the sampling pattern
Ω. For example, [49] gives conditions on Ω under which
there are only finitely many low-rank matrices that agree with
MΩ, [56] give a condition under which the matrix can be
locally uniquely completed. The works [4] generalizes these
results to the setting where there is sparse noise added to the
matrix. The works [6], [50] study when rank estimation is
possible as a function of a deterministic Ω, and [5] studies
when a low-rank tensor can be uniquely completed. Recently,
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[16] gave a combinatorial condition on Ω which characterizes
when a low-rank matrix can be recovered up to a small error
in the Frobenius norm from observations in Ω and showed
that nuclear norm minimization will approximately recover M
whenever it is possible.

So far, all the works mentioned are interested in when
recovery of the entire matrix (as measured by un-weighted
Frobenius norm) is possible. In our work, we are also inter-
ested in the case when such recovery is not possible. To that
end, we introduce a weighting matrix H to capture this.
See [35] for an interesting alternative, that uses an algebraic
approach to answer when an entry can be completed or not.

The notion of weights has been studied before. The
work [31] of Heiman et al. shows that for any weighting
matrix H, there is a deterministic sampling pattern Ω and
an algorithm that observes MΩ and returns M̂ so that∥∥∥H ◦ (M − M̂)

∥∥∥
F

is small. Their algorithm can be informally
described as finding the matrix with the smallest γ2-norm that
is correct on the observed entries. Lee and Shraibman [43]
start with this framework, and study the more general class of
algorithms that find the “simplest” matrix that is correct on the
observed entries, where “simplest” can mean of smallest norm,
smallest rank, or a broad class of definitions. We note that this
algorithm is not efficient in general (e.g. if “simple” is taken to
mean low-rank), although again if “simple” is taken to mean,
e.g., the γ2 norm, then this algorithm takes polynomial time
by solving a semidefinite program. That work gives a way of
measuring which deterministic sampling patterns Ω are good
with respect to a weight matrix H. Similar to our work, they
introduce a parameter which measures the distance between
the weight matrix H and the sampling pattern Ω. They show
that if this parameter is small, then the entries of the matrix can
be recovered with appropriate weights. Moreover, they show,
given Ω, how to efficiently compute a weight matrix H so that
the performance of the algorithm is optimal. Unlike our work,
their parameter is a bit more complicated, and is obtained by
solving a semidefinite program involving Ω.

To summarize, there are a few main differences between
our work and previous work:

• We are interested in cases where it may not be easy to
estimate M in Frobenius norm from the noisy samples
MΩ+ZΩ, which was the goal in [7], [44]. (And certainly
we may not be able to uniquely recover M, as is the goal
in [6], [50]).

• Our algorithms are extremely simple, compared to, say,
solving multiple semidefinite programs as in [43]. In par-
ticular, we focus on debiased projection-based algorithms.
These algorithms are extremely simple (computationally
and intuitively) and are provably optimal in some cases
when there is noise or when M need not be exactly low-
rank. However, in the non-noisy exactly low-rank case,
our algorithm need not recover the matrix exactly; the
algorithm of [7] is able to do this.

• We are interested in rank-1 weighting patterns. This is
more restrictive than the works [31], [43], but allows
us both to obtain more efficient algorithms and to prove
lower bounds.

B. Weighted Matrix Completion and Matrix Completion
From Biased Samples

Weighted matrix completion has appeared in several works
(see e.g. [22], [31], [43], [48]) under the assumption of
random biased sampling. The connection between weighting
and biased sampling is most easily expressed in the supervised
learning setup. Indeed, let D ∈ R

d×d encode a random
distribution over matrix indices so that

0 ≤ Di,j ≤ 1, and
∑
i,j

Di,j = 1.

Let one observation take the form Yi,j = Mi,j + Zi,j where
(i, j) is sampled randomly according to D and suppose you
are given m independent observations of this form (allowing
repetition of matrix entries). Considering squared loss func-
tion, the excess risk of an estimator M̂ is

E

[
(M̂i,j − Yi,j)2 − (Mi,j − Yi,j)2

]
=

∑
i,j

Di,j(M̂i,j − Mi,j)2

=
∥∥∥D1/2 ◦ (M̂ − M)

∥∥∥2

F
.

Bounding the excess risk then gives a weighted error bound
for the estimator.

In [48], the authors consider the case when rank(D) = 1,
which almost corresponds with the random model given in
our Section III-B. They identify a certain restricted eigenvalue
condition which holds with high probability under the random
model. In the random model, there error bounds are similar
to the ones in our paper. However, the restricted eigenvalue
condition is not known to be verifiable in polynomial time.
They also give a lower bound, essentially matching ours, but
under the assumption of uniformly random sampling.

Several other papers consider random sampling without
making the assumption that rank(D) = 1. In [38], the authors
consider nuclear-norm minimization in the case when the
sampling distribution is not uniform. They give unweighted
error bounds which degrade (as they should) as the sampling
distribution becomes less uniform. In [11], the authors allow
general sampling distribution and consider the least squares
estimator under a max-norm constraint. By bounding the
Rademacher complexity of the max-norm ball, they bound the
excess risk. They are also able to extend this to the binary
setup [12]. Much of this analysis was based on previous works
analyzing the max norm [24], [62].

Although our focus is not on random sampling patterns,
as we discuss below in Section III-B, our analysis does
imply some interesting consequences for that setting as well.
In particular, one may consider the random model Ω ∼ W by
which we mean that the pattern Ω is obtained by sampling
the (i,j)th entry with probability Wij . In [48], the authors
consider this random model for a rank-1 matrix W and show
that when W ◦ M is (nearly) low rank and not too spiky,
the solution M̂ of a semidefinite program (SDP) yields a small
error

∥∥∥W(1/2) ◦ (M − M̂)
∥∥∥

F
. They also provide a theoretical

lower bound for this setting, although unlike our results below,
theirs becomes trivial when the spectral gap is large. In our
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work however, we focus on efficient projective algorithms
for recovery rather than SDPs. In addition, we are able to
provide uniform results in the sense that they hold with high
probability for all matrices.

Other works that consider the random model Ω ∼ W
include [61], where in fact like our work, the authors also con-
sider the loss function

∥∥∥W(1/2) ◦ (M − M̂)
∥∥∥

F
, but without

assuming W is low-rank. There, the authors consider random
but non-uniform sampling pattern distributions (rather than
fixed patterns as in our work), and establish lower bounds for
this model using trace-norm minimization. In fact, [59] shows
that the trace norm is a good proxy for the rank in terms of
sampling guarantees in the sense that if there does happen to
be a matrix M∗ that is close to M in this weighted Frobenius
norm, then (computationally intractable) minimization with
rank constraints can recover M̂ approximately as close to M
as M∗ is, using on the order of rn samples via Ω ∼ W.
In some sense, our results can be viewed as a generalization to
those of [61], in that our lower bounds hold for any algorithm
and the random model can be viewed as generating a special
case of our result.

Our results can also be viewed as generalizations of those
that use alternative sampling strategies adapted for e.g. coher-
ence matrices. In [18], the authors show that by sampling
according to leverage scores, one can recover coherent matri-
ces using nuclear norm minimization. Our setting can be cast
in this framework, which discuss in detail in Section VII-D.
However, this again isn’t our main focus, as we are focusing
on efficient algorithms and establishing universal and uniform
lower bounds. Nonetheless, one can construct appropriate
weight matrices W that yield sampling distributions related
to the leverage scores. See Section VII-D for comparison and
more discussion.

Other works that incorporate non-uniform sampling
include [47], which proposes a graph-theoretic algorithm for
matrix completion when the entries are power-law distributed.
Lastly, [45] proposes a so-called isomeric property for sam-
pling patterns, viewed as a generalization of low-rankness, that
guarantees (exact) matrix completion. There, the authors show
that uniform sampling implies the isomeric condition, but this
condition is a weaker assumption than uniformity, and propose
a Schatten quasi-norm induced method for recovery. We again
take a different approach than these works, focusing on simple
recovery and universal bounds.

V. GENERAL UPPER BOUNDS

In this section we prove general upper bounds for weighted
recovery of low-rank, or approximately low-rank, matrices
from deterministic sampling patterns. We first record a few
theorems that we will use in our analysis.

A. Useful Theorems

We will use the Matrix-Bernstein Inequality (Theo-
rem 1.4 in [64]).

Theorem 12: Let Xi ∈ R
d×d for i = 1, . . . , n be indepen-

dent, random, symmetric matrices, so that

EXi = 0 and �Xi� ≤ R almost surely.

Then for all t ≥ 0,

P

{∥∥∥∥∥∑
i

Xi

∥∥∥∥∥ ≥ t

}
≤ d · exp

( −t2/2
σ2 + Rt/3

)
where

σ2 =

∥∥∥∥∥∑
i

E(X2
i )

∥∥∥∥∥ .

We will also use the following bound about sums of random
matrices with Gaussian coefficients (Theorem 1.5 in [64])

Theorem 13: Let Xi ∈ R
d1×d2 for i = 1, . . . , n be any fixed

matrices, and let g1, . . . , gn be independent standard normal
random variables. Define

σ2 = max

{∥∥∥∥∥∑
i

XiXT
i

∥∥∥∥∥ ,

∥∥∥∥∥∑
i

XT
i Xi

∥∥∥∥∥
}

.

Then for all t > 0,

P

{∥∥∥∥∥∑
i

giXi

∥∥∥∥∥ ≥ t

}
≤ (d1 + d2) · exp

(−t2

2σ2

)
.

We will also need the Hanson-Wright Inequality (see,
e.g., [55]).

Theorem 14 (Hanson-Wright Inequality): There is some
constant c > 0 so that the following holds. Let ξ ∈ {0,±1}d

be a vector with mean-zero, independent entries, and let F be
any matrix which has zero diagonal. Then

P

{
|ξT Fξ| > t

}
≤ 2 exp

(
−c · min

{
t2

�F�2
F

,
t

�F�

})
.

B. Bounds for Rank-r Matrices

Theorem 15 (General Upper Bound for Rank-r Matrices):
Let W = wuT ∈ R

d1×d2 have strictly positive entries, and
fix Ω ⊆ [d1] × [d2]. Suppose that M ∈ R

d1×d2 has rank r.
Suppose that Zij ∼ N (0, σ2) and let

M̂ = W(−1/2) ◦ argminrank(X)=r∥∥∥X − W(−1/2) ◦ (MΩ + ZΩ)
∥∥∥ .

Then with probability at least 1−1/(d1 +d2) over the choice
of Z, ∥∥∥W(1/2) ◦ (M − M̂)

∥∥∥
F

≤ 2
√

2rλ �M�∞ + 4
√

2σμ
√

r log(d1 + d2),

where λ and μ are as in (1) and (2), respectively.
Proof: Let Y = M+Z. Observe that M, M̂ are both rank

r and hence W(1/2) ◦ (M − M̂) is at most rank 2r. Thus,∥∥∥W(1/2) ◦ (M − M̂)
∥∥∥

F
≤

√
2r

∥∥∥W(1/2) ◦ (M − M̂)
∥∥∥

≤ √
2r

∥∥∥W(1/2) ◦ M̂ − W(−1/2) ◦ YΩ

∥∥∥
+
√

2r
∥∥∥W(1/2) ◦ M − W(−1/2) ◦ YΩ

∥∥∥
≤ 2

√
2r

∥∥∥W(1/2) ◦ M − W(−1/2) ◦ YΩ

∥∥∥ ,

using the definition of M̂ in the final line. Then we bound∥∥∥W(1/2) ◦ M − W(−1/2) ◦ YΩ

∥∥∥
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≤
∥∥∥W(1/2) ◦ M − W(−1/2) ◦ MΩ

∥∥∥
+

∥∥∥W(−1/2) ◦ ZΩ

∥∥∥
=

∥∥∥M ◦
(
W(1/2) − W(−1/2) ◦ 1Ω

)∥∥∥
+

∥∥∥W(−1/2) ◦ ZΩ

∥∥∥
≤ �M�max · λ +

∥∥∥W(−1/2) ◦ ZΩ

∥∥∥
≤ √

r �M�∞ λ +
∥∥∥W(−1/2) ◦ ZΩ

∥∥∥ ,

using the fact that M is rank r and hence �M�max ≤√
r �M�∞. Thus we conclude that∥∥∥W(1/2) ◦ (M − M̂)

∥∥∥
F

(7)

≤ 2
√

2rλ �M�∞ + 2
√

2r
∥∥∥W(−1/2) ◦ ZΩ

∥∥∥ ,

and it remains to bound the second term. We have

W(−1/2) ◦ ZΩ =
d1∑

i=1

d2∑
j=1

1(i,j)∈ΩZij√
Wij

eieT
j ,

where ei is the i’th standard basis vector. We may apply
Theorem 13 with

Xij =
1(i,j)∈Ω√

Wij

eieT
j .

We have∥∥∥∥∥∥
∑
i,j

XijXT
ij

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∑

i

⎛⎝∑
j

1(i,j)∈Ω

Wij

⎞⎠ eieT
i

∥∥∥∥∥∥
= max

i

∑
j

1(i,j)∈Ω

Wij
≤ μ2

and similarly∥∥∥∥∥∥
∑
i,j

XT
ijXij

∥∥∥∥∥∥ = max
j

∑
i

1(i,j)∈Ω

Wij
≤ μ2

and by Theorem 13, for any t > 0,

P

{∥∥∥W(−1/2) ◦ ZΩ

∥∥∥ ≥ t
}
≤ 2(d1 + d2) exp

( −t2

2σ2μ2

)
.

We conclude that with probability at least 1− 1
d1+d2

, we have∥∥∥W(−1/2) ◦ ZΩ

∥∥∥ ≤ 2σμ
√

log(d1 + d2).

Plugging this into (7) proves the theorem.

C. Bounds for Approximately Rank-r Matrices

In this section we prove a bound analogous to Theorem 15
for the case when M ∈ β

√
rBmax is only approximately low

rank. We use the same simple projection algorithm, except this
time we project onto the max norm ball instead of onto the
cone of rank r matrices.

Theorem 16 (General Upper Bound for Approximately
Rank-r Matrices): There is a constant C so that the following
holds. Let W = wuT ∈ R

d1×d2 have strictly positive entries,

and fix Ω ⊆ [d1] × [d2]. Suppose that M ∈ R
d1×d2 has

�M�max ≤ β
√

r. Suppose that Zij ∼ N (0, σ2) and let

M̂ = W(−1/2) ◦ argmin�X�max≤β
√

r∥∥∥X − W(−1/2) ◦ (MΩ + ZΩ)
∥∥∥ .

Then with probability at least 1−1/(d1 +d2) over the choice
of Z,∥∥∥W(1/2) ◦ (M − M̂)

∥∥∥
F

≤ C ·
∥∥∥W(1/2)

∥∥∥1/2

F

(
β
√

rλ +
√

βσ
(
μ2 r log(d1 + d2)

)1/4
)

where λ and μ are as in (1) and (2), respectively.
Proof: Let Y = M + Z, and let Q = M − M̂. Then we

have ∥∥∥W(1/2) ◦ (M − M̂)
∥∥∥2

F
= �W ◦ Q,Q� (8)

≤ �Q�max �W ◦ Q�max∗ .

The first factor we can bound by

�Q�max ≤ 2β
√

r,

by the assumption on M and the definition of M̂. For
the second factor, we have

�W ◦ Q�max∗ ≤ KG max
a∈{±1}d1 ,b∈{±1}d2

〈
abT ,W ◦ Q

〉
= KG max

a∈{±1}d1 ,b∈{±1}d2

〈
abT ◦ W(1/2),W(1/2) ◦ Q

〉
≤ KG max

a∈{±1}d1 ,b∈{±1}d2

∥∥∥abT ◦ W(1/2)
∥∥∥
∗

∥∥∥W(1/2) ◦ Q
∥∥∥

= KG

∥∥∥W(1/2)
∥∥∥
∗

∥∥∥W(1/2) ◦ Q
∥∥∥

= KG

∥∥∥W(1/2)
∥∥∥

F

∥∥∥W(1/2) ◦ Q
∥∥∥

where in the last line we have used the fact that W(1/2) is
rank 1 and so the nuclear norm is equal to the Frobenius norm.
Then we bound∥∥∥W(1/2) ◦ Q

∥∥∥ =
∥∥∥W(1/2) ◦ (M − M̂)

∥∥∥
≤

∥∥∥W(1/2) ◦ M − W(−1/2) ◦ YΩ

∥∥∥
+

∥∥∥W(1/2) ◦ M̂ − W(−1/2) ◦ YΩ

∥∥∥
≤ 2

∥∥∥W(1/2) ◦ M − W(−1/2) ◦ YΩ

∥∥∥
≤ 2

∥∥∥(
W(1/2) − W(−1/2) ◦ 1Ω

)
◦ M

∥∥∥
+ 2

∥∥∥W(−1/2) ◦ ZΩ

∥∥∥
≤ 2

(
�M�max λ + 2σμ

√
log(d1 + d2)

)
,

using in the last line the analysis from the proof of Theo-
rem 15. The putting it together with (8), we have∥∥∥W(1/2) ◦ (M − M̂)

∥∥∥2

F
≤ �Q�max �W ◦ Q�max∗

≤ 2β
√

rKG

∥∥∥W(1/2)
∥∥∥

F

· 2
(
β
√

rλ + 2σμ
√

log(d1 + d2)
)

.
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Taking the square root and choosing C appropriately com-
pletes the proof.

VI. GENERAL LOWER BOUNDS

As we will see in our case studies in Sections VII and VIII,
the upper bounds from Section V are tight in some situations.
In order to prove lower bounds in those specific settings,
in this section we give general lower bounds which can be
specialized to both the exactly rank-r and the approximately-
rank-r settings. Our lower bounds all rest on Fano’s Inequality,
which we recall below.

Theorem 17 (Fano’s Inequality): Let F = {f0, . . . , fn} be
a collection of densities on X , and suppose that A : X →
{0, . . . , n}. Suppose there is some β > 0 so that for any
i 
= j, DKL (fi � fj) ≤ β. Then

max
i

PX∼fi {A(X) 
= i} ≥ 1 − β + log(2)
log(n)

.

The following lemma specializes Fano’s inequality to our
setting.

Lemma 18: Let K ⊂ R
d1×d2 , and let X ⊂ K be a finite

subset of K so that |X | > 16. Let Ω ⊆ [d1] × [d2] be a
sampling pattern. Let σ > 0 and choose

κ ≤ σ
√

log |X |
4 maxX∈X �XΩ�F

,

and suppose that
κX ⊆ K.

Let Z ∈ R
d1×d2 be a matrix whose entries Zi,j are i.i.d.,

Zi,j ∼ N (0, σ2). Let H ⊆ R
d1×d2 be any weight matrix.

Then for any algorithm A : R
Ω → R

d1×d2 that takes as
input XΩ + ZΩ for X ∈ K and outputs an estimate X̂ to X,
there is some M ∈ K so that

�H ◦ (A(MΩ + ZΩ) − M�F

≥ κ

2
min

X	=X′∈X
�H ◦ (X − X
)�F

with probability at least 1/2.
Proof: Consider the net

X 
 = {κX : X ∈ X}
which is a scaled version of X . By assumption, X 
 ⊆ K .

Recall that the KL divergence between two multivariate
Gaussians is given by

DKL (N (μ1, Σ1) �N (μ2, Σ2))

=
1
2

log
detΣ2

detΣ1
−n + tr(Σ−1

2 Σ1)

+
1
2

〈
Σ−1

2 (μ2 − μ1), μ2 − μ1

〉
.

Specializing to U,V ∈ X 
, with I = IΩ×Ω,

DKL (UΩ + ZΩ �VΩ + ZΩ)

= DKL

(N (UΩ, σ2I) �N (VΩ, σ2I)
)

=
�UΩ − VΩ�2

F

2σ2

≤ max
X′∈X ′

�X
�F

σ2

=
κ2 maxX∈X �X�2

F

σ2
.

Suppose that A is as in the statement of the lemma. Define
an algorithm A : R

Ω → R
d1×d2 so that A(Y) = X for the

unique X ∈ X 
 so that

�H ◦ (X −A(Y))�F

<
1
2

min
X	=X′∈X ′

�H ◦ (X − X
)�F := ρ/2

if it exists, and A(Y) = A(Y) otherwise.
Then by Fano’s inequality (Theorem 17), there is some M ∈

X 
 so that

P
{A(MΩ + ZΩ) 
= M

}
≥ 1 − maxX∈X ′ �XΩ�2

F

σ2 log(|X | − 1)
− log(2)

log(|X | − 1)

= 1 − κ2 maxX∈X �XΩ�2
F

σ2 log(|X | − 1)
− log(2)

log(|X | − 1)

≥ 1 − 1
4
− log(2)

log(|X | − 1)
≥ 1/2,

using the assumption that |X | ≥ 16 as well as the fact that

κ ≤ σ
√

log |X |
4 maxX∈X �XΩ�F

≤ σ
√

log(|X | − 1)
2 maxX∈X �XΩ�F

.

If A(MΩ +ZΩ) 
= M, then �H ◦ A(MΩ + ZΩ)�F > ρ/2,
and so

P {�H ◦ A(MΩ + ZΩ) − M�F ≥ ρ/2}
≥ P

{A(MΩ + ZΩ) 
= M
} ≥ 1/2.

Finally, we observe that

ρ

2
=

1
2

min
X	=X′∈X ′

�H ◦ (X− X
)�F

=
κ

2
min

X	=X′∈X
�H ◦ (X − X
)�F ,

which completes the proof.
Our lower bounds in Sections VII and VIII will follow from

Lemma 18 by choosing an appropriate net. Below we prove a
general lemma about picking a net, which we will use multiple
times in subsequent proofs.

Lemma 19: There is some constant c so that the following
holds. Let r, d1, d2 > 0 be sufficiently large, and suppose that
d1 ≥ d2. Let K be the cone of rank-r matrices. Let H be any
rank-1 weight matrix, and let A be any rank-1 matrix with
�A�∞ ≤ 1. Write H = hgT and A = abT , and let

z = (g ◦ b)(2) v = (h ◦ a)(2).

Let
γ = c

√
r log(d1d2)

There is a net X ⊆ K ∩ γB∞ ∩ rBmax so that:
1) The net has size |X | ≥ N , for

N = 2e exp (c · MIN) ,
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where MIN is the minimum of the quantities:

�v�2
1 �z�2

1

�v�2
2 �z�2

2

, (9)

�v�1 �z�1

�v�∞ �z�2

√
r log(r)

,

�v�1 �z�1

�v�∞ �z�∞ r log(r)
,

r2 �v�2
1

r �v�2
2

.

2) �XΩ�F ≤ √
c · r �AΩ�F for all X ∈ X .

3) �H ◦ (X − X
)�F ≥ √
r �A ◦ H�F for all X 
= X
 ∈

X .

Remark 20: We do not need the assumption that d1 ≥ d2

for the statement of Lemma 18 to be true; however, the result
is stronger if d1 ≥ d2, because in the cases we consider below
(where A, H are “flat enough”), then the term in the minimum
is dominated by r2�v�2

1
r�v�2

2
≈ rd1. If d2 ≥ d1, then we may switch

the roles of d1 and d2 in the proof below and obtain a bound
that depends on d2.

Proof: Let L ⊂ {±1}d1×r be a set of random ±1-valued
matrices chosen uniformly at random with replacement, of size
4N .

Choose R ∈ {±1}d2×r to be determined below. Let �i, for
i ∈ [d1], denote the rows of L, and similarly let ri for i ∈ [d2]
denote the rows of R. Let

X =
{
A ◦ LRT : L ∈ L}

.

(We note that if one wishes to prove a similar lemma for
d2 > d1, then we should make the net by choosing R at
random and fixing L.)

We begin by estimating the first requirement on �XΩ�F ,
and also the requirement that �X�∞ ≤ γ and �X�max ≤ r
for all X ∈ X . We have

E �XΩ�2
F = E

∑
i,j∈Ω

Aij ��i, rj�2 = r �AΩ�2
F ,

where the expectation is over the random choice of L. By
Markov’s inequality, P

{
�XΩ�2

F > 4r �AΩ�2
F

}
≤ 1/4. We

also have

�X�∞ = max
i,j∈[d1]×[d2]

|Aij || ��i, rj� |.

Now, for each i, j, ��i, rj� satisfies

P {| ��i, rj� | ≥ t} ≤ exp
(−2t2

r

)
by Hoeffding’s inequality. Using the fact that |Aij | ≤ 1 by
assumption and a union bound over all d1d2 values of i, j,
we conclude that

P

{
�X�∞ >

√
r log(4d1d2)/2

}
≤ 1/4.

Finally, by definition the matrices X ∈ X satisfy �X�max ≤ r,
by writing

X = (DaL)(DbR)T

and observing that each row of DaL has �2 norm at most
�a�∞√

r ≤ √
r and similarly for each row of DaR.

By a union bound, for one matrix X ∈ X , the probability
that all of �X�max ≤ r, �X�∞ ≤ √

r log(4d1d2)/2 and
�XΩ�2

F ≤ 4r �AΩ�2
F is at most 1/2. Thus, by a Chernoff

bound it follows that with high probability, at least 1 −
exp(−CN) for some constant C, there are at least |X |/4
matrices X ∈ X so that all of these hold. Let X̃ ⊂ X be
the set of such X’s. The net guaranteed in the statement of
the theorem will be X̃, which in the favorable case satisfies
both items 1 and 2 in the lemma, and also is contained in
K ∩ γB∞.

Thus, we turn our attention to item 3: we will show that this
holds for X with high probability, and so in particular it will
hold for X̃ , and this will complete the proof of the lemma.

Fix X 
= X
 ∈ X , and write

�H ◦ (X − X
)�2
F = �H ◦ A ◦ (L − L
)R�2

F

=
∑

i,j∈[d1]×[d2]

H2
ij A2

ij

〈
�i − �
i, rj

〉2

= 4
∑

i,j∈[d1]×[d2]

H2
ij A2

ij �ξi, rj�2

where we define ξi = 1
2 (�i − �
i). Thus, each entry of ξi is

independently 0 with probability 1/2 or ±1 with probability
1/4 each. Rearranging the terms and recalling the definitions
of v and z above, we have

�H ◦ (X − X
)�2
F = 4

d1∑
i=1

viξ
T
i RT DzRξi, (10)

where Dz denotes the d2 × d2 diagonal matrix with z on the
diagonal.

In order to understand (10), we need to understand the
matrix RT DzR ∈ R

r×r. The diagonal of this matrix is �z�1 I.
We will choose the matrix R so that the off-diagonal terms
are small. More precisely, we will choose R according to the
following claim.

Claim 21: There is a matrix R ∈ {±1}d2×r so that:
(a)

∥∥RT DzR − �z�1 I
∥∥2

F
≤2 r2 �z�2

2 and
(b)

∥∥RT DzR − �z�1 I
∥∥ ≤

2
(
�z�2

√
r log(r) + �z�∞ r log(r)

)
.

Proof: Choose R at random. We will show that both
(a) and (b) above happen with probability strictly greater than
1/2, so by a union bound there exists a choice for R which
satisfies both.

First, for (a), we compute

E
∥∥RT DzR − �z�1 I

∥∥2

F
=

∑
i	=j

E(eiRTDzRej)2

= r(r − 1) �z�2
2 ,

which implies by Markov’s inequality that

P

{∥∥RT DzR − �z�1 I
∥∥2

F
> 2r2 �z�2

2

}
<

1
2
.

For (b), we write

RT DzR − �z�1 I =
d2∑

i=1

zi(rirT
i − I),
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which is a sum of mean-zero independent random matrices,
so we apply the matrix Bernstein Inequality (Theorem 12).
We have for any t > 0,

P

{∥∥∥∥∥∑
i

zi(rirT
i − I)

∥∥∥∥∥ > t

}

≤ r exp

(
−t2/2

r �z�2
2 + rt �z�∞ /3

)
,

using the fact that
∥∥zi(rirT

i − I)
∥∥ ≤ �z�∞ (r − 1) ≤ �z�∞ r

for all i, and that∥∥∥∥∥E

∑
i

z2
i (rirT

i − I)2
∥∥∥∥∥ =

∥∥∥∥∥∑
i

z2
i (r − 1)I

∥∥∥∥∥ ≤ r �z�2
2 .

Choosing t as in (b) in the statement of the claim finishes the
proof.

Having chosen this matrix R, we can now analyze the
expression (10).

Claim 22: There are constants c, c
 and MIN defined as in
(9) so that with probability at least

1 − 2 exp (−c · MIN)−e · exp

(
−c
r �v�2

1

�v�2
2

)
,

we have
�H ◦ (X − X
)�2

F ≥ r �v�1 �z�1 .

Proof: We break the left hand side up into two terms:

�H ◦ (X − X
)�2
F = 4

∑
i

viξ
T
i RTDzRξi

= 4
∑

i

viξ
T
i (RT DzR − �z�1 I)ξi

+ 4 �z�1

∑
i

vi �ξi�2
2

:= (I) + (II)

For the first term (I), we will use the Hanson-Wright
Inequality (Theorem 14). In our case, the matrix F is a
block-diagonal matrix consisting of d1 blocks which are r×r,
where the i’th block is equal to 4 vi(RT DzD−�z�1 I). The
Frobenius norm of this matrix is bounded by

�F�2
F = 16

∑
i

v2
i

∥∥RT DzD − �z�1 I
∥∥2

F

≤ 32 r2 �v�2
2 �z�2

2 .

The operator norm of F is bounded by

�F� = �v�∞
∥∥RT DzD − �z�1 I

∥∥
∞

≤ 2 �v�∞
(
�z�2

√
r log(r) + �z�∞ r log(r)

)
.

Thus, the Hanson-Wright inequality implies that

P {(I) > t} ≤ 2 exp (−c · MIN’) ,

where MIN’ is the minimum of the quantities

t2

32 r2 �z�2
2 �v�2

2

,

t

�v�∞
(
�z�2

√
r log(r) + �z�∞ r log(r)

) .

Plugging in t = r�z�1�v�1
2 , and replacing the constant c with

a different constant c
, we have

P

{
(I) >

r �z�1 �v�1

2

}
≤ 2 exp (−c
 · MIN) (11)

Next we turn to the second term (II). We write

(II) = 4 �z�1

∑
i

vi

(
�ξi�2

2 −
r

2

)
+ 2r �z�1 �v�1

and bound the error term 4 �z�1

∑
i vi

(
�ξi�2

2 − r/2
)

with

high probability. Observe that for each i, �ξi�2
2 − r/2 is a

mean-zero subgaussian random variable, which satisfies for
all t > 0 that

P

{
| �ξi�2

2 − r/2| > t
}
≤ exp

(−c

 · t2
r

)
for some constant c

. Thus by a version of Hoeffding’s
inequality (e.g., Proposition 5.10 in [65]), for any t > 0 we
have

P

{∣∣∣∣∣∑
i

vi �ξi�2
2 −

�v�1 r

2

∣∣∣∣∣ > t

}
≤ e · exp

(
−c


 · t2
r �v�2

2

)
for some other constant c


. Thus,

P

{
|(II) − 2r �z�1 �v�1| >

r �v�1 �z�1

2

}
= P

{
4 �z�1

∣∣∣∣∣∑
i

vi

(
�ξi�2

2 −
r

2

)∣∣∣∣∣ >
r �v�1 �z�1

2

}

= P

{∣∣∣∣∣∑
i

vi

(
�ξi�2

2 −
r

2

)∣∣∣∣∣ >
r �v�1

8

}

≤ e · exp

(
−c


r2 �v�2

1

8r �v�2
2

)
. (12)

In the favorable case of both (11) and (12), we conclude
that

�H ◦ (X − X
)�2
F = (I) + (II)

≥ 2r �z�1 �v�1 − |(II) − 2r �z�1 �v�1| − |(I) |
≥ r �z�1 �v�1 ,

as desired.
Now a union bound over all of the points in X establishes

items 1 and 3 of the lemma, along with the observation that
�z�1 �v�1 = �H ◦ A�2

F .

VII. CASE STUDY: WHEN λ IS SMALL

The point of this section is to examine our general bounds
from Sections V and VI in the case when the parameter
λ =

∥∥W(1/2) − W(−1/2) ◦ 1Ω

∥∥ is small. One case where this
happens is the following.

Let W ∈ R
d1×d2 be a rank-1 matrix so so that every entry

of W satisfies

Wij ∈
[

1√
d1d2

, 1
]

.

Authorized licensed use limited to: UCLA Library. Downloaded on September 09,2021 at 22:55:49 UTC from IEEE Xplore.  Restrictions apply. 



FOUCART et al.: WEIGHTED MATRIX COMPLETION FROM NON-RANDOM, NON-UNIFORM SAMPLING PATTERNS 1277

Now we’d like to consider some Ω that is “close” to W in the
sense that λ is small. One way to get such an Ω is to draw it
randomly so that (i, j) ∈ Ω with probability Wij . As we will
show below, in this case W ≈ 1Ω, and in particular λ will be
small.3

We emphasize that even though Ω is drawn at random in this
thought experiment, the goal is to understand our bounds for
deterministic sampling matrices Ω. That is, the upper bounds
are still uniform (they hold simultaneously for all appropriate
matrices M), and this model is just a way to generate matrices
Ω so that λ is small, to test our uniform bounds on. We will
show that for most Ω that are close to W (in the above sense),
our upper and lower bounds from Sections V and VI nearly
match.

A. Upper Bounds

In this section we specialize Theorem 15 to the case where
Ω is drawn randomly proportional to W, as discussed above.

We begin with some bounds on the parameters λ and μ in
this case.

Lemma 23: Let W = wuT ∈ R
d1×d2 be a rank-1 matrix so

that for all i, j ∈ [d1]×[d2], Wij ∈ [1/
√

d1d2, 1]. Suppose that
Ω ⊆ [d1] × [d2] so that for each i ∈ [d1], j ∈ [d2], (i, j) ∈ Ω
with probability Wij , independently for each (i, j). Then with
probability at least 1 − 3/(d1 + d2) over the choice of Ω,
we have

λ ≤ 2
√

d1 + d2 log(d1 + d2)

and
μ ≤ 2

√
(d1 + d2) log(d1 + d2),

where λ and μ are as in (1) and (2).
Proof: Fix i ∈ [d1]. Bernstein’s inequality yields

P

⎧⎨⎩
d2∑

j=1

1(i,j)∈Ω

wiuj
− d2 > 2

√
2(d1 + d2) log(d1 + d2)

⎫⎬⎭
≤ 1

(d1 + d2)2
.

Hence, by taking a union bound,

P

⎧⎨⎩max
i∈[d1]

d2∑
j=1

1(i,j)∈Ω

wiuj
> 4(d1 + d2) log(d1 + d2)

⎫⎬⎭
≤ d1

(d1 + d2)2
≤ 1

d1 + d2
.

A similar argument gives the bound

P

{
max
j∈[d2]

d1∑
i=1

1(i,j)∈Ω

wiuj
> 4(d1 + d2) log(d1 + d2)

}
S ≤ 1

d1 + d2
.

Combining these two inequalities we have

μ ≤ 2
√

(d1 + d2) log(d1 + d2) (13)

3The reason that we make the assumption that the entries of W are not
too small is so that λ will be small with high probability. Otherwise, this
distribution is not a good case study for the “small λ” case.

with probability at least 1 − 2/(d1 + d2).
To bound λ = �W(−1/2) ◦ (W − 1Ω)�, put γij =

(1/
√

wiuj)(wiuj − 1(i,j)∈Ω), Xij = γijeieT
j , and write

S := W(−1/2) ◦ (W − 1Ω) =
d1∑

i=1

d2∑
j=1

Xij .

Set ν := max(�ESST �, �EST S�). Note that

ESST =
d1∑

i=1

⎛⎝ d2∑
j=1

Eγ2
ij

⎞⎠ eieT
i .

Since Eγ2
ij = 1 − wiuj ≤ 1, the display above gives

�ESST � ≤ d2. Similarly, �EST S� ≤ d1, and so ν ≤ d1 +d2.
Furthermore, with probability 1, |γij | ≤ 2(d1 d2)1/4 ≤√

d1 + d2 so �Xij� ≤ √
d1 + d2 almost surely. Then,

the matrix Bernstein Inequality (Theorem 12) gives

P

{
λ ≥ 2

√
d1 + d2 log(d1 + d2)

}
≤

(d1 + d2) exp
(
− 2(d1 + d2) log2(d1 + d2)

ν + 2(d1 + d2) log(d1 + d2)/3

)
≤ 1

d1 + d2
.

Thus,
λ ≤ 2

√
d1 + d2 log(d1 + d2), (14)

with probability at least 1 − 1/(d1 + d2).
Let m =

∥∥W(1/2)
∥∥

F
. It is easy to see that m = E|Ω| as

well, and below we show that |Ω| is very close to m with high
probability.

Lemma 24: Let m =
∥∥W(1/2)

∥∥
F

. There is some constant
C so that with probability at least 1 − 2 exp(−C · m),

||Ω|−m| ≤ m/4.

Proof: We have

||Ω|−m| =

∣∣∣∣∣∣
∑
i,j

(
1(i,j)∈Ω − Wij

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
i,j

(
1(i,j)∈Ω − E1(i,j)∈Ω

)∣∣∣∣∣∣ ,
which is the sum of mean-zero independent random varables.
By Bernstein’s inequality,

P {||Ω|−m| ≥ m/4} ≤ 2 exp

(
−m2/32

�w�2
2 �u�2

2 + m/12

)
.

Now using the assumption that w and u are flat, we have

�w�2
2 �u�2

2 ≤ (C
)4

d1d2
�w�2

1 �u�2
1

=
(C
)4 m2

d1d2
≤ (C
)4 m,

which proves the claim after choosing C = 1
32((C′)4+12 .

With these computations out of the way, we may apply
Theorems 15 and 16 in this setting. Theorem 25 follows
immediately from Theorem 15 and Lemmas 23 and 24.
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Theorem 25: Let W = wuT ∈ R
d1×d2 be a rank-1 matrix

so that for all i, j ∈ [d1]× [d2], Wij ∈ [1/
√

d1d2, 1]. Suppose
that Ω ⊆ [d1]× [d2] so that for each i ∈ [d1], j ∈ [d2], (i, j) ∈
Ω with probability Wij , independently for each (i, j). Then
with probability at least 1−4/(d1 +d2) over the choice of Ω,
the following holds.

There is an algorithm A so that for any rank-r matrix M
with �M�∞ ≤ β, A returns M̂ = A(MΩ + ZΩ) so that with
probability at least 1 − 1/d over the choice of Z,∥∥∥W(1/2) ◦ (M − M̂)

∥∥∥
F∥∥W(1/2)

∥∥
F

≤ 8β

√
r2(d1 + d2)

|Ω| log(d1 + d2)

+ 16σ

√
r(d1 + d2)

|Ω| log(d1 + d2).

Proof: Plugging in Lemma 23 to Theorem 15 shows that∥∥∥W(1/2) ◦ (M − M̂)
∥∥∥

F

≤ 4r
√

d1 + d2 log(d1 + d2) �M�∞
+ 8σ

√
r(d1 + d2) log(d1 + d2).

The result follows by using �M�∞ ≤ β, and by normalizing
and using Lemma 24 to replace

∥∥W(1/2)
∥∥

F
with |Ω|.

Similarly, Theorem 26 below follows immediately from
Theorem 16 and Lemmas 23 and Lemma 24.

Theorem 26: There is some constant C so that the following
holds. Let W = wuT ∈ R

d1×d2 be a rank-1 matrix so that
for all i, j ∈ [d1] × [d2], Wij ∈ [1/

√
d1d2, 1]. Suppose that

Ω ⊆ [d1] × [d2] so that for each i ∈ [d1], j ∈ [d2], (i, j) ∈ Ω
with probability Wij , independently for each (i, j). Then with
probability at least 1 − 4/(d1 + d2) over the choice of Ω,
the following holds.

There is an algorithm A so that for d1 × d2 matrix M ∈
β
√

rBmax, A returns M̂ = A(MΩ + ZΩ) so that with
probability at least 1 − 1/(d1 + d2) over the choice of Z,∥∥∥W(1/2) ◦ (M − M̂)

∥∥∥
F∥∥W(1/2)

∥∥
F

≤ Cβ

(
r2(d1 + d2)

m

)1/4

log1/2(d1 + d2)

+ C
√

βσ

(
r(d1 + d2)

m

)1/4

log1/4(d1 + d2).

B. Lower Bound for Exactly Rank r Matrices

In this section, we will prove a lower bound in the case
where Ω is drawn proportionally to W. We begin with a
warm-up result for “flat” weight matrices W.

Lemma 27 (Lower Bound for Low-Rank Matrices When W
is Flat and Ω ∼ W): Let W = wuT ∈ R

d1×d2 be a rank-
1 matrix with strictly positive entries and with �W�∞ ≤ 1.
Suppose that there is some constant C
 so that

max
i

|wi| ≤ C
 min
i

|wi| and max
i

|ui| ≤ C
 min
i

|ui|.

Suppose that Ω ⊆ [d1]×[d2] so that for each i ∈ [d1], j ∈ [d2],
(i, j) ∈ Ω with probability Wij , independently for each (i, j).
Then with probability at least 1−exp(−C ·m) over the choice
of Ω, the following holds:

Let σ > 0, let 0 < r <
(

min{d1,d2}
log(d1d2)

)1/3

, and let K ⊂
R

d1×d2 be the cone of rank r matrices. For any algorithm
A : R

Ω → R
d1×d2 that takes as input XΩ +ZΩ and outputs a

guess X̂ for X, for X ∈ K ∩βB∞ and Zij ∼ N (0, σ2) there
is some M ∈ K ∩ βB∞ so that

1∥∥W(1/2)
∥∥

F

·
∥∥∥W(1/2) ◦ (A(MΩ + ZΩ) − M)

∥∥∥
F

≥ c min

{
σ

√
r max{d1, d2}

|Ω| ,
β√

log(d1d2)

}
with probability at least 1/2 over the randomness of A and
the choice of Z. Above, c, C are constants which depend only
on C
.

Proof: Suppose without loss of generality that d1 ≥ d2,
and that log d1 and log d2 are integers (if not, replace them
by their floors.) Let m =

∥∥W(1/2)
∥∥

F
= �w�1 �u�1, so that

E|Ω| = m.
Next, we instantiate Lemma 19 with H = W(1/2) and A =

11T . In the language of that lemma, we have

v = (h ◦ a)(2) = h(2) = w

z = (g ◦ b)(2) = g(2) = u.

Let X be the net guaranteed by Lemma 19. We have

max
X∈X

�XΩ�F ≤ √
cr �AΩ�F =

√
cr|Ω| =

√
c
rm (15)

for some constant c
, using Lemma 24. We also have∥∥∥W(1/2) ◦ (X − X
)
∥∥∥

F
≥ √

r
∥∥∥W(2)

∥∥∥
F

=
√

rm (16)

for all X 
= X
 ∈ X , using the definition of m. We have

max
X∈X

�X�∞ ≤ c
√

r log(d1d2). (17)

And finally, again using the assumption that w and u are flat,
the size of the net is (as in (9)),

N = 2e exp (c · MIN)

≥ 2e exp
(

c

(C
)4
MIN”

)
where MIN” is the minimum over the quantities

d1d2,
d1

√
d2√

r log(r)
,

d1d2

r log(r)
, r d1

which yields N ≥ exp(C

rd1).

In the last line we have used the assumption that r is not
too large compared to d2, and a suitable choice of C

 which
depends on c and C
.

Now we can use this net in Lemma 18. We choose

κ = min

{
c

σ

√
d1

m
,

β

c
√

r log(d1d2)

}
,

where c

 = 1
4

√
C

/c
 depends on previous constants.

Authorized licensed use limited to: UCLA Library. Downloaded on September 09,2021 at 22:55:49 UTC from IEEE Xplore.  Restrictions apply. 



FOUCART et al.: WEIGHTED MATRIX COMPLETION FROM NON-RANDOM, NON-UNIFORM SAMPLING PATTERNS 1279

Observe that by (17) we have

σ
√

log |X |
4 maxX∈X �XΩ�F

≥ σ
√

C

rd1

4
√

c
rm
≥ κ,

so this is a legitimate choice of κ in Lemma 18.
Next, we verify that κX ⊆ Kr ∩ βB∞. Indeed, we have

κ max
X∈X

�X�∞ ≤ κc
√

r log(d1d2) ≤ β,

so κX ⊆ βB∞, and every element of X has rank r by
construction.

Then Lemma 18 concludes that if A must work on Kr ∩
βB∞, then there is a matrix M ∈ Kr ∩ βB∞ so that∥∥∥W(1/2) ◦ (A(MΩ + ZΩ) − M)

∥∥∥
F

≥ κ

2
min

X	=X′∈X

∥∥∥W(1/2) ◦ (X − X
)
∥∥∥

F

≥ 1
2

min

{
c

σ

√
d1

m
,

β

c
√

r log(d1d2)

}
√

rm

=
1
2

min

{
c

σ

√
rd1,

β
√

m

c
√

log(d1d2)

}
,

using (16). Normalizing by
∥∥W(1/2)

∥∥
F

and applying
Lemma 24 completes the proof.

Next, we use Lemma 27 to prove a bound that does not
require that the W be flat; that is, Theorem 28 below is similar
to Lemma 27, but we will not require the “flatness” assumption
that maxi |wi| ≤ C
 mini |wi| or maxi |ui| ≤ C
 mini |ui|.
However, we do have to impose an additional restriction that
the entries of u and w are not smaller than 1/

√
d1 and 1/

√
d2

respectively; this is the same restriction we have for the upper
bounds.

Our final lower bound for the case when λ is small is the
following.

Theorem 28 (Lower Bound for Rank-k Matrices When
Ω ∼ W): Let W = wuT ∈ R

d1×d2 be a rank-1 matrix
with �W�∞ ≤ 1, so that∥∥∥w(−1)

∥∥∥
∞

≤
√

d1 and
∥∥∥u(−1)

∥∥∥
∞

≤
√

d2.

Let d =
√

d1d2. Suppose that Ω ⊆ [d1] × [d2] so that for
each i ∈ [d1], j ∈ [d2], (i, j) ∈ Ω with probability Wij ,
independently for each (i, j). Let m = �w�1 �u�1, so that
E|Ω| = m. Then with probability at least 1 − exp(−C · m)
over the choice of Ω, the following holds:

Let σ, β > 0, let 0 < r <
(

min{d1,d2}
log2(d)

)1/3

, and let Kr ⊂
R

d1×d2 be the cone of rank r matrices. For any algorithm
A : R

Ω → R
d1×d2 that takes as input XΩ +ZΩ and outputs a

guess X̂ for X, for X ∈ K ∩βB∞ and Zij ∼ N (0, σ2) there
is some M ∈ Kr ∩ βB∞ so that

1∥∥W(1/2)
∥∥

F

�W ◦ (A(MΩ + ZΩ))�F

≥ c min

{
σ

√
r max{d1, d2}

m log(d)
, β

√
d

m log3(d)

}
.

with probability at least 1/2 over the randomness of A and
the choice of Z. Above, c, C are constants which depend only
on C
.

Proof: Suppose without loss of generality that d1 ≥ d2.
Write

w = (w1,w2, . . . ,wlog(d1)/2) where wi ∈ R
si ,

so that all entries of wi are in [2−i, 21−i] for all i. (Here,
we assume without loss of generality that the coordinates
of w are arranged in decreasing order). Notice that this is
possible because the maxi |wi| ≤ 1 and mini |wi| ≥ 1√

d1
by

assumption. Similarly write

u = (u1,u2, . . . ,ulog(d2)/2) where ui ∈ R
ti ,

so that all entries of ui are in [2−i, 21−i].
Now there is some i and j so that

si ≥ 2d1

log(d1)
tj ≥ 2d2

log(d2)
.

Now consider W̃ = wiuT
j ∈ R

si×tj , and let Ω̃ be the
restriction of Ω the the si rows and tj columns corresponding

to W̃ . Notice that �wi�∞ ≤ 2
∥∥∥w(−1)

i

∥∥∥−1

∞
and �uj�∞ ≤

2
∥∥∥u(−1)

j

∥∥∥−1

∞
by definition. Now we may apply Lemma 27 to

the problem of recovering an si× tj matrix, and conclude that
there is some matrix M ∈ R

si×tj so that∥∥∥W̃ ◦ (A(MΩ̃ + ZΩ̃))
∥∥∥

F
≥

c min

⎧⎨⎩σ

√
r max{d1, d2}

log(d1d2)
,

∥∥∥W̃(1/2)
∥∥∥

F
β√

log(d1d2)

⎫⎬⎭ .

Now, we observe that

∥∥∥W̃(1/2)
∥∥∥

F
=

√
�wi�1 �uj�1 ≥

√
4
√

d1d2

log(d1) log(d2)
,

using the fact that both wi and uj have entries no smaller than
1/

√
d1 and 1/

√
d2 respectively. Thus, normalizing appropri-

ately, we conclude

1∥∥W(1/2)
∥∥

F

�W ◦ (A(MΩ + ZΩ))�F

≥ 1∥∥W(1/2)
∥∥

F

∥∥∥W̃ ◦ (A(MΩ̃ + ZΩ̃))
∥∥∥

F

≥ c min{σ

√
r max{d1, d2}
m log(d1d2)

,

β

√ √
d1d2

m log(d1) log(d2) log(d1d2)
}.

The theorem follows after simplifying with the definition
d =

√
d1d2.
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C. Lower Bound for Approximately Rank r Matrices

In Theorem 25 that for rank r matrices it was sufficient
for m =

∥∥W(1/2)
∥∥

F
= E|Ω| to grow like 1/δ2 in order to

guarantee that the per-entry normalized error is at most δ.
However, our upper bound for approximately rank-r matrices
(Theorem 26) requires m to grow like 1/δ4. In this section,
we show that this dependence is necessary.

As with the previous section, we begin by focusing on flat
matrices. Unfortunately, our lower bounds do not seem to
extend in the same way to non-flat matrices without losing
the correct dependence on the error. Thus, we state a result in
the approximately low-rank setting only for flat matrices.

Theorem 29 (Lower Bound Approximately Low-Rank Matri-
ces When W Is Flat and Ω ∼ W ): Let W = wuT ∈ R

d1×d2

be a rank-1 matrix with �W�∞ ≤ 1. Suppose that there is
some constant C
 so that

max
i

|wi| ≤ C
 min
i

|wi| and max
i

|ui| ≤ C
 min
i

|ui|.
Suppose that Ω ⊆ [d1]×[d2] so that for each i ∈ [d1], j ∈ [d2],
(i, j) ∈ Ω with probability Wij , independently for each (i, j).
Let m = E|Ω|. Then with probability at least 1−exp(−C ·m)
over the choice of Ω, the following holds:

Let σ, β > 0, and suppose that

β

σ
≤ min{d1, d2}1/3 · max{d1, d2}1/2

√
rm log2/3(d1d2)

.

Let K = β
√

rBmax be the max-norm ball of radius β
√

r.
For any algorithm A : R

Ω → R
d1×d2 that takes as input

XΩ + ZΩ and outputs a guess X̂ for X, for X ∈ K and
Zij ∼ N (0, σ2) there is some M ∈ K so that

1∥∥W(1/2)
∥∥

F

·
∥∥∥W(1/2) ◦ (A(MΩ + ZΩ) − M)

∥∥∥
F

≥ c
√

σβ

(
d

m

)1/4

,

with probability at least 1/2 over the randomness of A and
the choice of Z. Above, c, C are constants which depend only
on C
.

Proof: The proof proceeds similarly to that of Lemma 27,
except we will use Lemma 19 with a different choice of r:
intuitively, we will choose a net consisting of higher-rank
matrices that have smaller �∞ norm, but still have bounded
max-norm.

Choose a parameter

s =
⌊

β

σ

√
mr

d1

⌋
.

Without loss of generality, suppose that d1 ≥ d2. Let
m =

∥∥W(1/2)
∥∥2

F
= �w�1 �u�1 = E|Ω|. We will instantiate

Lemma 19 with H = W(1/2), A = 11T , and as in Lemma 27,
this choice implies that v = w, z = u in the language
of Lemma 19. However, unlike in the Lemma 27, we will
instantiate Lemma 19 with s in the place of the “r” parameter.
Following the same analysis as before, this yields a net of size
at least N ≥ exp(C

sd1), with

max
X∈X

�XΩ�F ≤
√

c
sm,

∥∥∥W(1/2) ◦ (X − X
)
∥∥∥

F
≥ √

sm,

max
X∈X

�X�max ≤ s.

Above, we have used our condition on β/σ to ensure that

s ≤
(

min{d1,d2}
log(d1d2)

)1/3

, the analog of our condition on r in
Lemma 27. Now choose

κ = min

{
c

σ

√
d1

m
,
β
√

r

s

}
.

As before, we have

σ
√

log |X |
4 maxX∈X �XΩ�F

≥ σ
√

C

sd1

4
√

c
sm
≥ κ,

so this is a legitimate choice for κ. We also have

κX ⊆ κsBmax ⊆ β
√

rBmax,

and so this net does indeed live in K .
Thus, Lemma 18 concludes that if A must work on K , then

there is a matrix M ∈ K so that∥∥∥W(1/2) ◦ (A(MΩ + ZΩ) − M)
∥∥∥

F

≥ κ

2
min

X	=X′∈X

∥∥∥W(1/2) ◦ (X − X
)
∥∥∥

F

≥ 1
2

min

{
c

σ

√
d1

m
,
β
√

r

s

}
√

sm

=
1
2

min
{

c

σ
√

d1 s, β

√
rm

s

}
.

Now normalizing by
∥∥W(1/2)

∥∥
F

=
√

m and plugging in our
choice of s, we have∥∥W(1/2) ◦ (A(MΩ + ZΩ) − M)

∥∥
F∥∥W(1/2)

∥∥
F

≥ c


 · min

{
σ

√
d1 s

m
, β

√
r

s

}

= c



√

σβ

(
d1 r

m

)1/4

,

as desired.

D. Application: Proportional Sampling

In this section, we show how to apply Theorem 26 to
recover results similar to some of those in [18]. In that work,
the authors show how to do matrix completion on coherent
low-rank matrices, assuming that the observations are drawn
from an appropriately biased distribution: more precisely, they
show that if entries are sampled with a probability that is based
on the leverage scores of the matrix,4 then matrix completion
is possible. That work proposes a two-stage matrix completion
scheme, which first samples from uniformly random entries
to estimate the SVD M ≈ ŨΣ̃ṼT , and then uses this to

4The leverage scores of a matrix M ∈ R
d1×d2 with SVD UΣVT are the

values ‖eT
i U‖2 and ‖eT

j V‖2 for i ∈ [d1], j ∈ [d2]
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approximate the leverage scores and sample according to this
approximation.

Even though the focus of this work is deterministic matrix
completion, Theorem 26 does apply to the randomized setting
as well, and this allows us to recover results similar to those
of [18]. More precisely, we show below that given any matrix
X, if we define W appropriately, then we can ensure that
M = W(−1/2) ◦X has small max norm, and so by sampling
proportional to the entries of W, we can use Theorem 26 to
obtain error bounds on

�W(1/2) ◦ (M − M̂)�F = �X− W(1/2) ◦ M̂�F .

Thus, if we have a good enough estimate of X to do the
sampling, we may use our algorithm from Theorem 26 to
obtain M̂ and then set X̂ = W(1/2) ◦ M̂.

The sampling procedure that results ends up being slightly
different than the leverage scores, but it can still be approxi-
mated in a two-stage algorithm using an approximate SVD
M ≈ ŨΣ̃ṼT . The main difference between this and the
corresponding theorem in [18] is that their work applies to
exactly rank-r matrices, while the result below applies to any
matrix, and is stated in terms of (�X�∗ · �X�−1

F )2, a proxy
for the rank.

Corollary 30: For a d1 × d2 matrix X with SVD X =
UΣVT and an integer m, define

Wi,j =
�eT

i UΣ(1/2)�2
2�eT

j VΣ(1/2)�2
2

�X�2
∗

m.

There is a randomized algorithm A with query access to a
d1 × d2 matrix X so that the following holds.

Suppose that X is any matrix so that Wi,j ∈ [1/
√

d1d2, 1].
Then with probability at least 1 − 4

d1+d2
, A queries at most

m ≥ C

ε4

( �X�∗
�X�F

)4

(d1 + d2) log2(d1 + d2),

entries of X, and returns X̂ so that∥∥∥X − X̂
∥∥∥

F
≤ ε �X�F ,

where C is some absolute constant. Moreover, A queries
entries of X independently, querying Xi,j with probability
proportional to Wi,j .

Remark 31: We remark that Corollary 30 suggests one
potential application of our work that may be an interesting
future direction to analyze and develop rigorously. Indeed,
a natural approach to take advantage of this result would
be to truncate the Wi,j entries if they happen to be larger
than 1, leading to a possible “two-stage” scheme within this
framework. Also, we note that our results are incomparable to
those in [18], as discussed in Section IV, the focus of [18] is
instead to recover coherent matrices using adapted sampling
patterns.

Before we prove the corollary, we interpret it. We observe
that the ratio (�X�∗ · �X�−1

F )2 is a proxy for the rank of X,
in the sense that if X is actually rank r, then this quantity is at
most r by the Cauchy-Schwarz inequality. Thus, Corollary 30
says that if X is not too coherent (in the sense that the Wi,j

are between 1/
√

d1d2 and 1), there is some way to sample

m ≈ r2 ·(d1+d2) entries of matrix X with (�X�∗ �X�−1
F )2 ≤

r and use these entries to accurately reconstruct X.
Proof: Let X = UΣVT be the SVD of X. Then let m be

as in the statement of the corollary, and let W be the matrix
so that

Wi,j =
�eT

i UΣ(1/2)�2
2�eT

j VΣ(1/2)�2
2

�X�2
∗

m.

Notice that W is rank 1. Let

M = W(−1/2) ◦ X.

Then we may write

M = W(−1/2) ◦ UΣVT =
�X�∗√

m
D1UΣVT D2,

where D1 is a d1 × d1 diagonal matrix with (i, i)-th entry
1

�eT
i UΣ(1/2)�2

and D2 is a d2 × D2 diagonal matrix with

(j, j)-th entry 1
�eT

j VΣ(1/2)�2
. By construction, every row of

D1UΣ(1/2) has �2-norm at most 1, and every row of
D2VΣ(1/2) has �2 norm at most 1, and so we conclude
that

�M�max ≤ �W(−1/2) ◦ X�max =
�X�∗√

m
.

Now, we define the algorithm A as follows: sample (i, j) ∈
[d1]× [d2] with probability Wi,j , independently for each (i, j).
Then estimate X̂ is given by

X̂ = W(1/2) ◦ M̂,

where M̂ is the estimate guaranteed by Theorem 26.5

First, we observe that the expected number of samples taken
by A is∑

i,j

Wi,j =
∑
i,j

�eT
i UΣ(1/2)�2

2�eT
j VΣ(1/2)�2

2

�X�2
∗

m

=
m · �UΣ(1/2)�2

F�VΣ(1/2)�2
F

�X�2
∗

≤ m,

where above we used the fact that

�UΣ(1/2)�2
F �VΣ(1/2)�2

F = �X�2
∗ .

To see this, notice that

�UΣ(1/2)�2
F�VΣ(1/2)�2

F

=

(∑
�

|σ�| �Ue��2
2

) (∑
r

|σr | �Ver�2
2

)
=

∑
�,r

|σ�||σr |

=

(∑
�

|σ�|
)2

= �X�2
∗ ,

5Looking into the proof of that theorem, we see that we should take

X̂ = argmin‖Z‖max≤ ‖X‖∗√
m

‖Z − W(−1) ◦ XΩ‖.
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using the fact that U and V are orthogonal matrices and hence
have columns of unit norm.

Next, we observe that by Theorem 26 (with σ = 0), we have

�X− X̂�F = �W(1/2) ◦ (M − M̂)�F

≤ C�W(1/2)�F�M�max

(
d1 + d2

m

)1/4 √
log(d1 + d2)

≤ C
√

m · �X�∗√
m

·
(

d1 + d2

m

)1/2 √
log(d1 + d2)

= C · �X�F

( �X�∗
�X�F

) (
d1 + d2

m

)1/4 √
log(d1 + d2).

In particular, if

m ≥
C4

( �X�∗
�X�F

)4

(d1 + d2) log2(d1 + d2)

ε4
,

then
�X− X̂�F ≤ ε · �X�F ,

as claimed. After adjusting the constant C this implies the
corollary.

VIII. CASE STUDY: WHEN λ IS LARGE

The point of this section is to examine our general bounds
from Sections V and VI in the case when the parameter
λ =

∥∥W(1/2) − W(−1/2) ◦ 1Ω

∥∥ is large, and to show that
some dependence on this parameter is necessary. We will not
be able to obtain tight bounds on the dependence on λ, but we
will be able to obtain upper and lower bounds that have similar
qualitative dependence on λ in some parameter regimes.
We leave it as an interesting open problem to understand the
“correct” dependence on λ.

While this seems like a difficult challenge in general, we are
able to make progress when 1Ω happens to be the adjacency
matrix of a connected graph. In this case, λ is directly related
to the spectral gap of the underlying graph, and there are many
tools available to study it. Thus, our results below apply to this
special case.

A. Upper Bound

In this section we specialize our upper bound, Theorem 15,
to the case where λ is large.

Theorem 32 (Upper Bound for Rank-r Matrices in Terms of
λ1 and λ2): Let Ω ⊆ [d]×[d] be such that 1Ω is the adjacency
matrix of a connected, undirected graph on d vertices. Let
v1,v2 be the eigenvectors of 1Ω corresponding to the top two
largest eigenvalues (by magntitude), λ1, λ2. Suppose that there
is some constant C so that

max
i

|(v1)i| ≤ C min
i

|(v1)i|,
max

i
|(v2)i| ≤ C min

i
|(v2)i|

Let σ > 0 and let W denote the best rank-1 approximation to
1Ω.

Suppose that M ∈ R
d×d has rank r. Suppose that Zij ∼

N (0, σ2) and let

M̂ = W(−1/2)◦

argminrank(X)=r

{∥∥∥X− W(−1/2) ◦ (MΩ + ZΩ)
∥∥∥}

.

Then with probability at least 1− 1/2d over the choice of Z,

1∥∥W(1/2)
∥∥

F

∥∥∥W(1/2) ◦ (M − M̂)
∥∥∥

F

≤ c

⎛⎝r

(
λ2

λ1

)
+ σ

√
r log(d)

λ1

⎞⎠ ,

where c is a constant that depends only on C.
Proof: To apply Theorem 15, we must compute λ, μ and∥∥W(1/2)

∥∥
F

in terms of λ1. We can explicitly write W =
λ1v1vT

1 , since λ1 is the largest eigenvalue of 1Ω. Of course,
since 1Ω defines the adjacency matrix of a connected graph, v1

has strictly positive entries (by the Perron-Frobenius Theorem)
and hence Wij > 0 for all i, j. Let W̄ = minij Wij , so that,
using our assumption Wij ∈ [W̄ , CW̄ ] for all i, j.

Since W̄ is rank-1,

λ1 = �W� = �W�F =
√∑

ij

W 2
ij ∈ [W̄d, CW̄d].

Rearranging, this means

W̄ ∈
[

λ1

Cd
,
λ1

d

]
.

Then we compute

λ =
∥∥∥W(1/2) − W(−1/2) ◦ 1Ω

∥∥∥
≤ 1√

W̄
|λ2| ≤

√
Cd

λ1
|λ2|

and

μ2 = max

⎧⎨⎩max
i

∑
j

Ωij

Wij
, max

j

∑
i

Ωij

Wij

⎫⎬⎭
≤ 1

W̄
max

i
�ri�0

≤ Cd

λ1
max

i
�ri�0

where ri is the i’th row of 1Ω, and � · �0 denotes the number
of nonzero entries. Now we have, for all i,

�ri,v1� = λ1(v1)i ∈ [λ1v̄, Cλ1v̄],

where v̄ = mini(v1)i > 0. We also have

�ri,v1� =
d∑

j=1

(ri)j(v1)j ∈ [v̄�ri�0, Cv̄�ri�0],

and together these imply that

λ1

C
≤ �ri�0 ≤ Cλ1

for all i. Thus, we can simplify the bound on μ2 to

μ2 ≤ Cd

λ1
max

i
�ri�0 ≤ C2 d.
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Finally, we bound (as C ≥ 1)∥∥∥W(1/2)
∥∥∥

F
=

√∑
i,j

Wij ∈
[
d
√

W̄ , Cd
√

W̄
]

⊆
[

1
C

√
λ1 d, C

√
λ1 d

]
.

Plugging all of these bounds into Theorem 15 proves the
theorem (and c = 4

√
2C2 suffices).

B. Lower Bound

Theorem 33: Let Ω ⊆ [d] × [d] be such that 1Ω is
symmetric and corresponds to the adjacency matrix of a
connected undirected graph on d vertices. Let v1 and v2 be
the first and second eigenvectors of 1Ω, (normalized so that
�v1�2 = �v2�2 = 1) with corresponding eigenvalues λ1 and
λ2. Suppose that

max
i

|(v1)i| ≤ C min
i

|(v1)i|,
max

i
|(v2)i| ≤ C min

i
|(v2)i|.

Let W = λ1v1vT
1 be the best rank-1 approximation to 1Ω.

Let σ > 0, let 0 < r < d1/3/ log2/3(d), and let K ⊂ R
d×d

be the cone of rank r matrices. For any algorithm A : R
Ω →

R
d×d that takes as input XΩ +ZΩ and outputs a guess X̂ for

X, for X ∈ K ∩ βB∞ and Zij ∼ N (0, σ2), there is some
M ∈ K ∩ βB∞ so that

1∥∥W(1/2)
∥∥

F

∥∥∥W(1/2) ◦ (A(MΩ + ZΩ) − M)
∥∥∥

F

≥ c min

{√
1

λ1 − λ2
· σ√r,

β√
r log(d)

}
Proof: By the Perron-Frobenius theorem, v1 � 0, aka,

it has all strictly positive entries. Since v1 ⊥ v2, v2 must
have some negative entries. Without loss of generality, suppose
that the coordinates are ordered so that the entries of v2 are
decreasing, and write

v2 = (h,−g)

where h,g � 0, h ∈ R
s and g ∈ R

t. (This defines s, t so that
s + t = d). Write v1 = (a,b) for a ∈ R

s, b ∈ R
t according

to the same partition of coordinates, and write

1Ω =
(

B0 B
BT B1

)
so that B0 ∈ R

s×s, B1 ∈ R
t×t and B ∈ R

s×t. Notice that by
orthogonality,

0 = �v1,v2� = �a,h� − �b,g�
and so

�a,h� = �b,g� .

Let
α := 2 �a,h� = 2 �b,g� = �a,h� + �b,g� .

Claim 34:

hT Bg ≤ α(λ1 − λ2)
4

.

Proof: Let x = (h,g), so that x � 0. Then

xT 1Ωx = hT B0h + gT B1g + 2hTBg

and

λ2 = vT
2 1Ωv2 = hT B0h + gT B1g − 2hT Bg,

so
xT 1Ωx = λ2 + 4hTBg.

Observing that α = �x,v1�, we have

x = αv1 +
(√

1 − α2
)

z,

for some vector z that satisfies z ⊥ v1. Then

λ2 + 4hT Bg = xT 1Ωx

= α2vT
1 1Ωv1 + (1 − α2)zT 1Ωz

+ 2α
√

1 − α2vT
1 1Ωz

= α2vT
1 1Ωv1 + (1 − α2)zT 1Ωz

≤ α2λ1 + (1 − α2)λ2,

from which we conclude that

4hT Bg ≤ α2(λ1 − λ2),

as desired. Above, we have used the fact that vT
1 1Ωz =

λ1 �v1, z� = 0 since v1 ⊥ z.
Now define

W = λ1v1vT
1

to be the best rank-1 approximation to 1Ω. Choose

A =
1√�h�∞ �g�∞

(
(h,0)(0,g)T

)(1/2)

and
H = W(1/2) =

√
λ1

(
(a,b)(a,b)T )

)(1/2)
.

Then we may compute

�H ◦ A�2
F =

1
�h�∞ �g�∞

λ1 �a,h� �b,g�

=
λ1α

2

4 �h�∞ �g�∞
and

�AΩ�2
F =

1
�h�∞ �g�∞

s∑
i=1

t∑
j=1

Bijhigj

=
hT Bg

�h�∞ �g�∞
≤ α2(λ1 − λ2)

4 �h�∞ �g�∞
using the claim. Now we apply Lemma 19 with this choice of
A. In the language of that lemma, we have

z =
(

λ1

�h�∞ �g�∞

)
(h ◦ a,0),

v =
(

λ1

�h�∞ �g�∞

)
(0,g ◦ b).
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By our assumption, there is some constant C so that
maxi |hi| ≤ C mini |hi|, and the same for g,a,b. Thus, as in
the proof of Lemma 27, Lemma 19 guarantees a net X so that

|X | ≥ 2e exp(C
rd),

for some constant C
 (which depends on C) and so that, for
some constant c, for all X ∈ X we have

�XΩ�F ≤ cα
√

r(λ1 − λ2)√�h�∞ �g�∞
,

for all X 
= X
 ∈ X we have

�H ◦ (X− X
)�F ≥
√

rλ1α√�h�∞ �g�∞
,

and finally for all X ∈ X we have

�X�∞ ≤ c
√

r log(d).

Now we want to apply Lemma 18, and we choose

κ = min

⎧⎨⎩c


(σ

α

) √
rd �h�∞ �g�∞

λ1 − λ2
,

β

c
√

r log(d)

⎫⎬⎭ .

for some constant c

 to be chosen below. Observe that

σ
√

log |X |
4 maxX∈X �X�F

=
σ
√

C
rd
√�h�∞ �g�∞

2α
√

λ1 − λ2

≥ κ

for an appropriate choice of c

 =
√

C
/2, so this is a
legitimate choice of κ for Lemma 18. We conclude that for
any algorithm A that works on K∩βB∞, there is some matrix
M ∈ K ∩ βB∞ so that∥∥∥W(1/2) ◦ (A(MΩ + ZΩ) − M)

∥∥∥
F

≥ κ

2
min

X	=X′∈X
�H ◦ (X − X
)�F

≥ 1
2

min

⎧⎨⎩c


(σ

α

)√
rd

�h�∞ �g�∞
λ1 − λ2

,
β

c
√

r log(d)

⎫⎬⎭
·
√

λ1α2

�h�∞ �g�∞

≥ c


 min

{√
λ1

λ1 − λ2
σ
√

rd, β

√
λ1α2

�h�∞ �g�∞ r log(d)

}
for some constant c


.

Claim 35: Under the assumptions on v1,v2, we have

1
C2 d

≤ �h�∞ �g�∞ ≤ C2

d
,

and
α ≥ 1

C2
.

Proof: First, we observe that since v1,v2 have �2-norm 1
and have entries that are all about the same magnitude, up to
a factor of C, we must have every entry of v1 and v2 in the
interval

[
1

C
√

d
, C√

d

]
. (Indeed, if one entry of v1 is larger than

C/
√

d, then all entries are larger than 1/
√

d, which contradicts
the requirement on the 2-norm, and similarly if the smallest

entry is smaller than 1/(C
√

d); the same holds for v2). This
immediately implies the claim about �h�∞ �g�∞ since v2 =
(h,−g).

Next, we recall that

α = �h, a� + �g,b� = 2 �h, a� = 2 �g,b� ,

and using the observation above about the size of the entries
of v1,v2, we have

α ≥ s

C2 d
+

t

C2 d
=

1
C2

.

Using the claim, we bound α, �h�∞ �g�∞ in the second
term above, and conclude that there is some M so that∥∥∥W(1/2) ◦ (A(MΩ + ZΩ) − M)

∥∥∥
F

≥ c



 min

{√
λ1

λ1 − λ2
· σ

√
rd, β

√
dλ1

r log(d)

}
for some other constant c



. This completes the proof, after
normalizing by∥∥∥W(1/2)

∥∥∥
F

=
√

λ1 �v1�2
1 ≤ C

√
dλ1.

IX. EXPERIMENTS

In this section, we illustrate the results of numerical exper-
iments for our debiased projection method,

M̂debias :=

W(−1/2) ◦ argminrank(X)=r�X− W(−1/2) ◦ M�F . (18)

In this section, we refer to this algorithm as a debiased,
low-rank projection. This is in contrast to a standard (see
section 2.5 of [51]) low-rank projection,

M̂standard := argminrank(Y)=r

∥∥Y − p−1M
∥∥

F
. (19)

Above, p := |Ω|/d1d2. We report the performance of these two
procedures for various synthetic and data-derived sampling
patterns.

The purpose of these experiments is to highlight the effect
of debiasing. To make this comparison, we mainly compare
our debiased low-rank projection algorithm to the standard
low-rank projection algorithm described above. In section IX-
C, we compare our debiased max-norm projection algorithm
against other potentially biased algorithms based on convex
minimization.

A. Data-Derived Sampling Patterns

In our first experiments, we use sampling patterns taken
from the Jester joke corpus [28], and the Movielens 100k
dataset [30]. In the first dataset, users rate jokes; in the second,
users rate movies. We take d1 to be the number of users
enrolled in the dataset, and d2 to be the number of rated
items (e.g., jokes or films). For the Jester dataset, we have
d1 = 73, 421 and d2 = 100, For the Movielens dataset,
we have d1 = 997 and d2 = 538. We take Ω ⊆ [d1]×[d2] to be
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Fig. 1. Average errors of our debiased algorithm, versus standard low-projection procedure on Jester sampling pattern and standard Gaussian data. Error
bars denote standard deviations over 30 samples of the noise; each line (and error bar) is averaged over 30 trials.

Fig. 2. Average errors of our debiased algorithm, versus standard low-rank projection procedure on Movielens sampling pattern and standard Gaussian data.
Error bars denote standard deviations over 30 samples of the noise; each line (and error bar) is averaged over 30 trials.

the observed indices in each dataset. In particular, (i, j) ∈ Ω
whenever user i rates item j. With 1Ω =

(
1(i,j)∈Ω

)
1≤i≤d1
1≤j≤d2

,

in the following experiments we take W to be the best rank-
1 approximation to 1Ω, W := argminrank(U)=1�1Ω −U�. In
the examples we present, Wij ≥ 0 for all i, j.

To produce Figures 1 and 2 below, we generate synthetic
low-rank matrices, and use the sampling patterns from the
real-life data described above. We consider ranks r between
1 and 10. For N = 50 trials, we construct random rank r
matrices X1, . . . ,XN ∈ R

d1×d2 , with independent standard
normal entries. For each matrix Xi, we average over T = 25
tests, testing our algorithm versus the the standard projection
algorithm (e.g., truncated SVD) on Yi,1, . . . ,Yi,T , where
Yi,j = 1Ω◦(Xi+Zi,j), where Zi,j ∈ R

d1×d2 has independent
standard normal entries. We measure error using the weighted
Frobenius norm. In particular, with X̂ an estimate of X,
we report

�W(1/2) ◦ (X− X̂)�F

�W(1/2)�F
and

�X− X̂�F√
d1d2

.

In the sequel, we refer to these as the weighted error and
unweighted error, respectively.

We remark that although we only provide guarantees
on the performance in the weighted Frobenius norm, our
procedures exhibit good empirical performance (relative to

standard projection procedures) even in the usual Frobenius
norm.

B. Synthetic Sampling Patterns

For both of the experiments below, we focus on various
synthetic constructions of Ω in order to demonstrate how the
performance of debiased projection depends on the parameters
of the sampling pattern.

For d and r specified below, we always construct random
data as follows. For N = 15, we pick matrices X1, . . . ,XN ∈
R

d×d with for n = 1, . . . , N ,

Xn = UnVT
n , Un,Vn ∈ R

d×r,

(Un)ij , (Vn)ij
iid∼ N (0, 1).

We describe two experiments below. The first one is moti-
vated by the first case study, when Ω ∼ W, and the second
is motivated by the second case study when the spectral gap
is large.

1) Sampling Ω ∼ W: In the following experiment, we sim-
ulate our first case study, sampling Ω ∼ W for a rank-1 matrix
W. For simplicity, we take the weight matrix W = wwT to
be symmetric. We also take d = 1000 and r = 10.

We choose several different W’s with different levels
of “flatness,” to show how the performance of our algo-
rithm depends on the flatness of W. More precisely, let
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Fig. 3. (Left) Weighted error for various Ω ∼ W as described above. Shading indicates a single standard deviation, across the draws Ωt ∼ W. (Right)
Entries of w for various choices of y and m = 77, 045.

m ∈ [4 d log d, d2/4] and y ∈ [
√

2/d,
√

log d/d]. For each
m and y, we construct sampling patterns, Ω1, . . . , ΩT , with
T = 15 in the following manner. We select W with w given
by

w =
(
f(y, m, d)1d/2, y1d/2

)
,

where f(y, m, d) =
2
√

m

d
− y. (20)

Above, f(y, m, d) is chosen such that �w�1 =
√

m, and
hence E [|Ω|] = m, when Ω ∼ W. Thus, a larger value of
y corresponds to a “flatter” matrix W.

With such choices of w, Wij ∈ (0, 1], and we draw Ωt ∼
W for t = 1, . . . T . For each t, we run the standard truncated
SVD algorithm and our debiased projection procedure on
Yn,t = 1Ωt ◦(Xn +Zn,t), for n = 1, . . . , N and t = 1, . . . , T .
Here, (Zn,t)ij ∼ N (0, 1) for 1 ≤ i, j ≤ d. We repeat this
experiment for various m and y in the intervals above. The
range of y is chosen to ensure that the plots of weighted error
above are over the same range of m, while still respecting
the constraints on W (i.e. that it have nonnegative entries in
[1/

√
d, 1]).

Figure 3 indicates that under the experimental conditions
given above, the SVD procedure has worse performance as
w becomes flatter, while as expected our debiased procedure
has improved performance as w becomes flatter. The debiased
projection algorithm out-performed the standard projection in
all cases.

2) Dependence on Spectral Gap: The following experiment
demonstrates how the performance of the debiased projection
algorithm depends on the spectral gap of 1Ω.

To construct sampling patterns of various spectral gaps,
we consider graph products on k = 50 vertices. For regulari-
ties ρ ∈ [2, 20], we construct two graphs Gρ, G̃ρ on k vertices
that are ρ-regular.

The graph Gρ is constructed such that each vertex v ∈
{0, . . . , k−1} is adjacent to the vertices v
 ≡ v+t mod k, t =
0, 1, . . . , ρ. Notice that Gρ is the same graph as is considered
in Example 1, and the spectral gap is quite small. The second
graph will be a random ρ-regular graph, so the spectral graph

Fig. 4. Weighted error for sampling patterns taken from the adjacency
matrices of graph products of low- and high-spectral gap, regular graphs.
Shading indicates a single standard deviation over the draws �Gρ.

is with high probability large. More precisely, for T = 15 and
trials t = 1, . . . , T , the graph G̃

(t)
ρ is constructed as a random

ρ-regular graph [10].
In order to consider graphs with a range of λ, we consider

three distributions on graphs: Gρ ⊗ Gρ (which has a small
spectral gap), Gρ ⊗ G̃

(t)
ρ (which has an intermediate spectral

gap) and G̃
(t)
ρ ⊗ G̃

(t)
ρ (which has a large spectral gap).

For t = 1, . . . , T , we let Ωt be the sampling pattern induced
by each of these three graphs, and we draw observations
Yn,t = 1Ωt ◦ (Xn,t + Zn,t) as in the previous set of experi-
ments. As before, we carry out both our debiased projection
and truncated SVD on the Yt. In these experiments, we take
the rank of the data to be r = 10. The results are shown
in Figure 4. Figure 4 shows that, as expected, the debiased
projection algorithm performs better when the spectral gap is
smaller. This is also true of standard projection, although the
effect is less pronounced. As ρ increases (that is, as Ω becomes
denser), the debiased projection algorithm out-performs the
standard projection algorithm.

C. Comparison With Max-Norm Projection

In this section, we continue our empirical evaluation of
our matrix completion procedures, by comparing debiased
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Fig. 5. Average errors of debiased and standard SVD and max-norm projection procedures and nuclear norm minimization on Jester sampling pattern and
standard Gaussian data.

Fig. 6. Average errors of debiased and standard SVD and max-norm projection procedures and nuclear norm minimization when Ω ∼ W for spiky sampling
patterns. Larger values of y denote less spiky sampling patterns. The top row indicates when Z has N(0, 1) entries, the bottom row indicates when Z has
N(0, 100) entries.

SVD (18), standard SVD (19), as well as our debiased
max-norm projection procedure (21) and a max-norm projec-
tion without debiasing (23), given below.

M̂debiased−MNP = W(−1/2) ◦ argmin�X�max≤B∥∥∥X − W(−1/2) ◦ (MΩ + ZΩ)
∥∥∥ , (21)

M̂standard−MNP = argmin�X�max≤B (22)∥∥X − p−1(MΩ + ZΩ)
∥∥ . (23)

Above, p := |Ω|/d1d2. Just as we use the true rank of X
for our SVD experiments, we use the true max-norm of X as

our choice of B for our implementations of algorithms (21)
and (23). Finally, we also implement for comparison a nuclear
norm minimization procedure:

M̂NNM = argmin�(MΩ+ZΩ)−XΩ�F ≤δ�X�∗.
Above, �·�∗ denotes the nuclear norm. Following [13], we take
δ = σ

√
m +

√
8m, when Z has iid N(0, σ2) entries.

1) Jester Sampling Pattern: We repeat our experiment as
described in section IX-A, with the following modifications.
First, we set d = d1 = d2 = 100, and instead of
using the entire sampling pattern, we sample d columns
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and d rows (uniformly at random) to construct a random
d × d-submatrix of the original Jester sampling pattern
for these experiments. We do this to keep the amount of
computation manageable, as the max-norm projection and
nuclear norm minimization require solving a semidefinite
program, whereas the SVD-based procedures as used in
section IX-A only require a single SVD computation.
We present our experimental results in Figure 5.

Consistent with our previous experimental results presented
in section IX-A, we see in Figure 5 that our debiased
SVD procedure tends to outperform standard SVD in the
weighted error metric and when the rank is low enough,
in the unweighted error metric. When the rank is quite
low, our procedure even outperforms the significantly more
computationally expensive estimate given by nuclear norm
minimization. We remark that nuclear norm minimization
is a fundamentally different approach than our projection
procedures. Specifically, nuclear norm minimization has a
parameter δ used to bound the fidelity of the approximation
on Ω. Moreover, it does not explicitly constrain rank. On the
other hand, the SVD approaches and max-norm projection are
constrained to matrices of low rank or and approximately low
rank.

2) Spiky Patterns: Sampling Ω ∼ W: We repeat our
experiment as described in section IX-B.1, with the follow-
ing modifications. First, we set d = d1 = d2 = 100,
and instead of using the entire sampling pattern, we sam-
ple a random d × d-submatrix of the original Jester sam-
pling pattern for these experiments. We do this to keep
the amount of computation manageable, as the max-norm
projection and nuclear norm minimization require solving
an semidefinite program, whereas the SVD-based procedures
as used in section IX-A only require a single SVD com-
putation. Secondly, we select a slightly broader range of
spikiness parameters (denoted by y as in (20)). Finally,
we also compare to multiple noise levels. Specifically we
run the experiment with noise matrices Z with iid N(0, 1)
and N(0, 100) entries. We present our experimental results in
Figure 6.

Figure 6 shows that our debiasing procedures generally lead
to lower error. Specifically, debiased SVD always outperforms
standard SVD in the weighted error metric, and debiased
max-norm projection outperforms its non-debiased counterpart
when the sampling patterns are very spiky or the noise
level is high. Finally, we see that nuclear norm minimization
performs well, though is more competitive with our projection
based procedures in the high-noise setting. As mentioned
previously, nuclear norm minimization is a fundamentally
different approach than the other rank-based projection algo-
rithms we present, in addition to being more computation-
ally expensive than the SVD-based approaches presented
above.
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