IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 4, AUGUST 2021

1853

The Value of Traded Target Information
in Security Games

Jing Hou™, Li Sun™, Tao Shu

Abstract— Ample evidence has confirmed the importance of
information in security. While much research on security game
has assumed the attackers’ limited capabilities to obtain target
information, few studies consider the possibility that the infor-
mation can be acquired from a data broker, not to mention
exploring the attackers’ profit-seeking behaviors in the shrouded
underground society. This paper studies the role of information in
the security problem when the target information is sold by a data
broker to multiple attackers. We formulate a novel multi-stage
game model to characterize both the cooperative and competitive
interactions of the data broker and attackers. The attackers’
competition with correlated purchasing and attacking decisions
is modeled as a two-stage stochastic model, and the bargaining
process between the data broker and the attackers is analyzed in
a Stackelberg game. The study contributes to the literature by
exploring the behaviors of the attackers with labor specialization,
and providing quantitative measures of information value from
an economic perspective. The proposed frameworks characterize
both the attackers’ competitive equilibrium solutions and the data
broker’s pricing strategies under different market parameters.
We also show how factors such as the quality of information,
the heterogeneity in attackers’ utilities, and their cooperative
purchasing strategy would have an impact on the results.

Index Terms—Security, information market, game theory,
economics.

I. INTRODUCTION

ARGET information is undoubtedly a crucial factor

of security problems in various attacks against critical
infrastructures such as transportation and computer networks.
Attackers conduct surveillance to gain awareness of targets’
vulnerabilities and security operations, based on which to
decide where to attack and how much effort to take in
attacking [1], [2]. In reality, most often attackers have lim-
ited observation capabilities such that they may have only
little or partial information about the target’s vulnerability [3].
However, in some situations, the attackers do not necessarily
need to observe by themselves to gain the information. The
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widespread use of and thus an immense demand for potential
target information in hacker communities has spawned a
data brokers industry [4]. The data brokers in crime society
are specialists in collecting target information (e.g., software
vulnerabilities, snippets of code, credit card numbers, and
compromised accounts) and sell them in black markets in
exchange for financial gain [5]. For example, users of the
underground forums regularly engage in the buying, selling
and trading of illegally obtained information to support crim-
inal activities [6]. As a report [7] published by TrendMicro
states: “Underground hackers are monetizing every piece of
data they can steal or buy and are continually adding ser-
vices so other scammers can successfully carry out online
and in-person fraud.” The Shadow Brokers, which trades in
compromised network data and exploits, is a representative of
such a data broker as a hacker group. In June 2017, the com-
puter virus NotPetya was able to spread by leveraging a
vulnerability leaked by the Shadow Brokers [8]. More recently,
Facebook, accused of privacy violations that could provide
“material support” for terrorism potentially, was reported to
face multibillion-dollar FTC fine [9]. Indeed, data brokers,
as a boon to the cybercrime economy [10], have become an
indispensable member of the illegally evolved supply chain
called “cybercrime-as-a-service” [11].

While we do not have a clear picture of the information trad-
ing behaviors in the underground society, security researchers
are taking more interest in exploring hacker communities.
Initial studies of security experts have reached a consensus
that one major motivation of hackers is profit-related (others
include fame and skill improvement etc.) [12]. Our aim in
this paper is to study the profit-driven attacking behaviors in
a hacker community, with a particular emphasis on the role
of target information provided by a data broker in security
using economic analysis. More precisely, we would like to
understand the value of traded target information—both for
the sellers of this information and for the attackers that buy it.
Through an economic analysis of the attacking behaviors with
information trading, we would be able to provide a simple
glimpse of complex social structure and to better understand
the phenomenon of hacking. This knowledge would provide
insights for arriving at effective solutions to information-
leakage-induced security problems.

We consider one or multiple attackers that have limited
observation capabilities on the potential target. They can
approach a data broker that holds the vulnerability of the
target. The target vulnerability determines how much effort
the attackers need to take in order to launch a successful
attack. Without the information, the attacker may choose not
to act, fail, or exert more effort than needed. The attackers
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could benefit from purchasing the information by launching
a more targeted attack with less effort. Here we care about
the value of the information for the attackers and how the
data broker should price the information if they can obtain
it, but how the data broker could obtain the information is
beyond our focus. Besides, we talk about the scenario of
multiple attackers when the target value can be shared among
them if they all deliver successful attacks. The assumption of
competition among attackers through dividing up the value
of a single asset is appropriate when they share the benefits of
private goods as illegal resource access (e.g., spectrum or other
network resource utilization) and monopoly privileges (e.g.,
stealing electronically stored information about consumers’
personal data for market exploration). Similar assumptions
can be found in [13], which adopts a rent-seeking model of
security games where the asset value is divided among the
attackers and the defender. We are interested in whether there
is a positive or negative network externality in the information
market due to the competition among the attackers, that is,
would the existence of more potential buyers increase the
value of the data broker’s information or decrease it. We also
analyze an independent attacking scenario when the target is a
type of “public good” and each successful attacker can obtain
the whole target value regardless of other attackers’ attacking
behaviors. A comparison study is conducted between the
competition and the independent scenario to better illustrate
the impacts of the competition between attackers.

With the observation of the hierarchical and competitive
structure in attacker behaviors, we present and study a multi-
stage model of the information market. In Stage I, the data
broker determines the information price. In Stage II, the attack-
ers decide whether to buy or not. In Stage III, after obtaining
the target information, the attackers decide whether to attack
the target or not. The composed game provides an integrated
view of a security problem with competing attackers and target
information trading. The research questions we aim to answer
include: (a) How would the attacker change its attacking
decision once it has bought some detailed information about
the target’s vulnerability from the data broker? (b) How does
the competition between the attackers affect their information
purchasing decision and attacking decisions? (c) For different
attacker models (homogeneous/heterogeneous attackers), what
are the conditions under which the attackers would benefit
from the existence of the traded information? How does the
value of information differ for different attackers? (d) Is it
beneficial for the data broker to set a low price such that
all attackers would buy the information? Or should the data
broker enhance the price when there are more potential buyers
rather than one? (e) How are the decisions affected when the
data has lower quality (only partial information is available
for trading)? Besides, we extend our model by taking the
cooperative purchasing strategy into consideration, pertaining
to two related questions: (f) when and how much do the
attackers benefit from cooperative purchasing? (g) how does
the cooperative purchasing strategy affect the risks of the target
and the information price?

The problems are challenging due to the following two
reasons. First, there is a lack of a systematic or quantitative
framework to evaluate the information in a competitive crime
community. Although it is intuitive that the more information,
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the better for the attackers, questions are still unexplored
as what is the highest price that the attacker can accept?
Does an attacker always benefit from buying the information
if other attackers also buy it? Or is the information more
valuable if other attackers do not buy it? To the best of our
knowledge, this is the first paper that tries to provide a unified
quantitative framework of the security information market
comprised of one data broker and multiple attackers. We will
provide insights regarding the impacts of target information
trading on various parties: the increased attacking probability
of the target, the expected utility increase for the attackers, and
the profit through selling the information for the data broker.

Second, the attacker behaviors are interdependent across

multiple stages. On one hand, the attacking decisions, includ-
ing whether or not to attack, and with how much effort, are
affected by the attackers’ knowledge of the target. On the other
hand, whether or not to buy the information is determined by
how much utility gain can be expected from attacking. The
competition among multiple attackers makes these decisions
even more complex. This is different from most competition
analyses when a product can be sold to only one buyer and the
game ends after the purchasing is done. Therefore, the struc-
ture of the game varies across the stages. We will model the
game among the attackers as Bayesian games, to capture their
limited observability, and model their purchasing-attacking
decision process as a stochastic game. Besides, from the data
broker’s perspective, the purchasing probability of the buyer
is not only determined by the competition game equilibrium
among the attackers but also affected by the target value and
the price. We will use a Stackelberg game to model the pricing
and purchasing decisions of the players.

Our main contributions can be summarized as follows.

o While most traditional security game models assume that
target information is obtained through attackers’ self-
observation and learning, we consider an information
market in hacker communities and propose a game-
theoretic framework, which captures the multi-stage cor-
related behaviors of attackers. This information market
model better fits the practice of profit-seeking hacker
communities with labor specialization. Our results show
how the traded information would benefit or hurt the
attackers when they are competing and heterogeneous.
We also show that in this information channel, informa-
tion accuracy is more valuable for a more attractive target.

e Much previous work focuses on interactions between a
defender and a single or multiple independent attack-
ers, without consideration of the competition/cooperation
among the attackers or the role of other players that assist
in attacking. We incorporate the strategic interactions
between multiple attackers as in a Bayesian and stochastic
game, and between the attackers and the data broker as
in a Stackelberg game. Our analysis indicates that the
value of information for the attackers could be weakened
by their competition, and interestingly, the data broker
might benefit from the competition between attackers.
Besides, it is beneficial for the attackers to cooperate in
purchasing only when the price is not high. We also show
that, with the assistance of a data broker, the target suffers
from higher risks even when the information price is too
high to benefit the attackers. The risk is increased in a
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certain range confined by both the price and the target
value.

o We provide the equilibrium solutions and characterize
the conditions for the existence and uniqueness of the
equilibrium under different target values. We show that
if the target is not attractive enough, there may be multi-
ple pure-strategy equilibria in the attackers’ competition
game. Whether there is a strictly dominant pure-strategy
is determined by the target value, the target vulnerability,
and the information price. Furthermore, in the subgame-
perfect Nash equilibrium where the strategies are mutual
best responses [14], it is not wise for the data broker to
set a price low enough to attract all the buyers if the target
is attractive enough to the attackers.

The remainder of this paper is organized as follows.
Section II reviews the related literature. Section III intro-
duces the model setups. In Section IV and V, we study the
single attack model and the competition model, respectively.
In Section VI, we provide an extension model with low
information accuracy. Then cooperative purchasing is incor-
porated in Section VII. In Section VIII, we discuss the case
of independent attackers. We extend our model to account for
heterogeneous attackers in Section IX. The paper is concluded
in Section X.

II. RELATED WORK

Much of the research on security game has assumed that the
attacker makes a perfect observation of the defense policy over
potential targets and therefore been able to explore the value
of commitment for the defender in a Stackelberg game frame-
work [15]. Realizing that this assumption rarely holds in real-
world domains, existing studies are turning their interests into
the scenario of incomplete, inaccurate, or uncertain informa-
tion. Some work has proposed the version of the security game
with bounded memory [16] or imperfect observations [17].
Others have assumed that the target information gained by
the attackers can be learned more accurately by conducting a
period of surveillance [18], [19]. A more recent study which
discusses the defender’s strategic revelation of its commitment,
further shows the importance of target information [20]. How-
ever, none of the above studies considers the possibility of
purchasing information from a data broker in black markets.
The value and the impacts of such an information service
have hardly been addressed. Although there is already a study
evaluating the value of customer information for the retailers in
the consumer market [4], their results cannot be applied to the
security problem because the target in the security problem
may not be exclusive to the attackers as the set supply of
merchandise is to the consumers.

Our paper focuses on the information market in the context
of the hacker community. The hacker community is both
devastating and prevalent because it facilities cooperation and
allows for specialization among attackers, leading to more
advanced and more economically efficient attacks. We can
discern a growing interest among researchers in the enigmatic
hacker community. Some studies have focused on the organi-
zation of the community, such as identifying the key actors [5],
discovering the types of collaborative attack patterns [21]
and evaluating its sustainability [9]. Others provide a window
into the society by microscopically analyzing the behaviors
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of the attackers, mostly addressing their cooperation in the
form of a coalition. Current studies assume that the attackers
are heterogeneous with respect to non-task-specific efficiency,
resource allocation, or skill sets, and a coalition is formed
for more attacks or to gain higher total utility [22]-[24]. But
the format of collusion with labor specialization, especially
the information service, which is universal in the hacker
community, has not been fully explored. More specifically,
the questions are not studied yet about how the attackers would
benefit from information assistance, and what is the bargaining
process that determines their reward allocations. The answers
to these questions are crucial to investigate why and how infor-
mation service is provided in the hacker community, as well
as when such a cooperation is formed among profit-driven
attackers. Besides, the competition among attackers for the
limited resource pool is another factor that impacts the attack-
ing decisions and rewards, while it is usually ignored in the
existing research, except in [13]. In an attempt to fill the gap in
the current literature on the incentives of complex behaviors
in the hacker society, this research takes into consideration
both the cooperation among attackers specialized in different
tasks and competition among similar attackers. Specifically,
we analyze the interactions between a data broker and two
competing and/or cooperative attackers through a multi-stage
game approach. The value of information is derived and the
impacts of such information service are evaluated.

Part of the work has been presented at the EAI SecureComm
2019 conference, Orlando, FL. Compared to the conference
version [25], this paper considers significantly extended mod-
els and provides more comprehensive numerical analysis with
more insightful results, including the model of heteroge-
neous attackers, the incorporation of cooperative purchasing,
the results with independent attackers, and more analyses on
the value of traded information under different model setups.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider two attackers trying to attack one potential
target. The attackers have limited ability to obtain the vulner-
abilities (or the protection level set by the defender) about
the target. But they can purchase the information from a
data supplier, who has full or partial knowledge about the
target’s vulnerabilities. The data supplier first sets a price
for the information. Given the price, the attackers determine
whether or not to make the purchase. Afterward (when the
information has been revealed to the attackers), they need to
decide whether to attack the target. All the players are profit-
motivated. The notations used in the paper are given in Table I.

If an attacker successfully attacks the target, its expected
reward is v > 0; otherwise, it receives a payoff of zero.
The value of v (also called the target value), reflecting the
target attractiveness to the attackers, is common knowledge to
all the players. We restrict our model to the target resource
whose consumption by one agent would reduce consumption
by others. That is, when multiple attackers successfully attack
the target, they equally split the target value. In a two-
attacker case, each gets a payoff of %v. This assumption
relies on the fact that the target pool in reality is finite and
attackers compete for a common asset pool [26]. Note that
it holds in two realistic scenarios: Firstly, one circumstance
is a case where the ‘first-winner-takes-all” [27]. That is,
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TABLE I
LIST OF NOTATIONS

Notation  Explanation

v Target value

e; Attacker ¢’s attacking effort (z,7 € {A, B})

c() Attacking cost (C(e) = e)

6 Target protection level (minimum attacking effort)
fi Attacker ¢’s expected utility

Information price

gottack Attacker 7’s attacking probability

qz’“y Attacker 7’s information purchasing probability

s Data broker’s expected profit

Uj Expected reward of a single successful attacker %

Ui j Attacker 7’s expected reward with successful attackers ¢, j

the first attacker who mounts a successful attack receives the
entire reward v, and the following attackers receive nothing.
Considering the equal probability of being the first one to
be successful, the expected reward of an attacker is %v in
a two-attacker case. Secondly, the target is assumed to be a
quasi-public asset or display a negative network effect, whose
value can diminish as more people use it. With the attackers
being homogeneous, each attacker gets an equal share of the
target value. This assumption of homogeneous attackers with
equal share rule has been widely used in the security games
literature ( [26]-[28]). Apart from simplifying the analysis and
exposition of our results, this model setup allows us to isolate
the effect of the attacker heterogeneity and to highlight the
effects of competition among attackers. We will relax these
assumptions to analyze a more general case of heterogeneous
attackers in Section IX.

We define the success of an attacker as follows: if the
attacker’s effort e in attacking is greater than or equal to
the target’s protection level by its defender (or owner), we say
the attacker succeeds in the attack. The problem is, the attacker
itself is not aware of the exact value of the target protection
level, which determines the minimum level of effort for
a successful attack. With a slight abuse of notation, let 6
denotes the target protection level (from the other side: the
target vulnerability) or the minimum attacking effort needed.
A smaller value of # indicates lower surveillance and thus
less effort to launch a successful attack. Let us suppose the
attackers only know the distribution of #, which is uniformly
distributed on [0, 1] (normalized with respect to a sufficiently
large upper bound that denotes the maximum possible defense
capability of the defender). If an attacker’s effort e is less
than the actual value of 6, then it will fail. Note that our
model focuses on the single-period attacking games where
the attackers make one-shot decisions at the beginning with
little information about the target vulnerability, and leaves
out the multi-round attack problem where the information
available to attackers could be updated from their observations
in each round. As in [29], [30], and [31], for such a single-
period attack game, the probability of a successful attack is
assumed to be conditional on the attacker’s strategic deci-
sion in terms of effort or investment allocation made before
mounting the attack. This setup helps us to concentrate on the
value of information acquired in black markets. The single-
period framework can be justified by the fact that with the
increasingly fierce confrontation in cyberspace, the process of
cyber defense is typically characterized by rapid and frequent
security patch upgrades, and as a result the effective lifespan of
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a fully disclosed vulnerability is short, shrinking the window of
opportunity for the attacker [32], [33]. Therefore, in practice,
there is often a small chance for multi-round attacks to take
place, and the attack deployment decision can be made often
only once. For example, a typical scenario that falls into this
situation in practice is that after the first round of an attack,
the vulnerability of the target being exploited by the attack
is revealed to the defender, which will subsequently apply a
security patch to fix that vulnerability, hence mitigating future
rounds of the attack. The single-period setting also applies
to the case where the duration of the target is short and
hence it is impractical to mount multi-round attacks, such
as eavesdropping on specific information that is transmitted
once on a wireless network or jamming to disrupt a specific
data transmission [33]. For those attacks that can be launched
for multiple stages or rounds, our model applies to the first
stage/round where little target information has been obtained,
and the expected gain of a successful attack denotes the
expected future gain for the next few rounds. While our
model does not cover the cases of attackers’ learning behaviors
and advanced persistent threats, our model of profit-driven
attackers purchasing information in black markets covers a
significant fraction of realistic security concerns induced by
information leakage.

Measured in both the success probability of an attack and
the expected payoff, the attacker’s total utility function with
its attacking effort e is written as

f:lezg(e)*v—(](@). (1)

Here 1.>¢(e) is an indicator function, defined as: 1.>¢(e) =
1if e > 0, else 1.>9(e) = 0. C(e) is the attacking cost that
increases with the effort e. We will assume C(e) = e for
simplicity. Although this assumption represents a simple linear
function between the effort and the cost, it is reasonable and
would not affect the major insights obtained from our analysis.

The data supplier is a broker who collects and sells data
about the target vulnerability or the target owner’s protection
level. This information tells how much effort is needed to
launch a successful attack for the attackers, i.e., the actual
value of #. An attacker who buys the information could launch
a targeted attack with exactly the minimum level of effort
needed. In Section VI, we all also study the situation when the
data broker only has partial information about the target, which
means that the information could only tell a more accurate
range of € than the attacker has. We are interested in how the
data broker sells the data and what is the information value,
and ignore the details of how the broker acquires the data.

We provide a framework for analyzing how the attacker’s
optimal information purchasing and attacking decisions could
be made in the face of the competition and uncertainty about
the target vulnerabilities. The attacker’s objective is to maxi-
mize the expected benefit from an attack (taking into account
the attacker’s target valuation, the success probability of an
attack, and the cost involved in purchasing and attacking).
The data broker sets the information price to maximize the
expected profit (taking into account the purchasing probability
of the attackers).

The model’s timing proceeds as follows:

Step 1: The data broker determines and broadcasts the
information price p.
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Step 2: The attackers decide whether to buy the informa-
tion or not. After the payments are made, the data broker
delivers the target information to the buyer(s).

Step 3: With the information available, the attackers decide
how much effort will be taken in attacking (zero effort means
not to attack).

Step 4: After the attack, the corresponding utilities are
gained by the attackers.

IV. SINGLE ATTACKER MODEL

As a benchmark, we introduce the model where a monopo-
list attacker will extract all surplus from successfully attacking
the target. Considering the sequential-move nature of the
bargaining process between the attacker and the data broker,
a two-stage Stackelberg game [14] is employed to analyze
the decisions of the players. In practice, the data broker (the
Stackelberg game leader) considers what the best response of
the attacker (the follower) is (note that the follower’s best
response to an action of the leader is a piece of known infor-
mation to the leader), i.e. whether it will buy the information
once it has been informed of the price. The data broker then
picks a price that maximizes its expected profit, anticipating
the predicted response of the follower. The attacker actually
observes this and in equilibrium makes an optimal purchasing
decision as a response. The subgame-perfect Nash equilibrium,
normally deduced by “backward induction” [14], is obtained
in the following analysis. First, for a given information price,
we derive the attacker’s optimal purchasing and attacking deci-
sions. Second, with the prediction of the attacker’s response,
the data broker’s optimal price is analyzed.

A. Optimal Decisions of the Attacker

The attacker needs to make the decision of whether to buy
the target information from a data broker, by comparing the
two expected utilities as follows.

1) Not Buy Information: If the attacker does not buy the
information from the data broker, its expected utility function
with effort level e is

f(e):/oevde—ezve—e.

So the optimal solution is e = 1 with f =v —1if v > 1 and
e=0with f=0if v <1.

2) Buy Information: If the attacker decides to buy the
information € at price p and to attack the target, it would
attack with exactly the effort 6.

Case 1: v >1

The attacker would always attack since ¢ < v in this case,
and its expected utility function is

2

1
1
f= [ w-0io-p=v-3-» )
0
Case 2: v <1
Only when 6 < v would it attack. Then we have
v 1 9
f= | =000 —p=3v*—p. @
0

We can derive the attacker’s optimal purchasing decision by
comparing (3) and (4) with (2): When v > 1, if v — 3 —p >
v—1,0rp< %, then the attacker would buy the information,
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I 11
N ~ 1
1.5 buy, p=5 not buy,
attack attack
= 1
buy,
attacl v
wh * 2
05w¥<e P32V not buy,
not attack
0
0 0.5 1 1.5 2

P

Fig. 1. The optimal decisions of single attacker.

otherwise it prefers not to buy the information. When v < 1,
if %1)2 —p>0o0rp< %vz, then the attacker would buy the
information, otherwise it prefers not to buy the information.
Fig. 1 plots the regions of the attacker’s optimal decisions
with different values of information price and target value. The
attacker buys the target information only in regions I and III.
On the other hand, in region II, the attacker would attack with
the greatest effort e = 1; while in region IV, the attacker would
neither buy nor attack. Specifically, the value of information
for the attacker lies in region I where it helps to deduce the
effort taken, or region III where an attack is profitable when
0 < v. In other words, the value of the information for the
attacker is an expected utility increase of v — % —p—(v—1)=
i—pifv>landp<ioriv’—pifv<1landp<iv’

Besides, what the defender (or target owner) cares about is
whether or not the attacker would choose to attack the target
and with how much effort (i.e., successful or not). When no
information is available to the attacker, it would not attack
the target as long as v < 1. But when a data broker sells
the information with a price low enough, the target would be
successfully attacked even if v < 1. Therefore, the target is
affected by the information trading in region III, which implies
the importance of protecting the target information especially
when the target value is not high for the attackers.

B. Optimal Pricing Decisions of the Data Broker

We assume that when the attackers are indifferent to whether
to buy or not to buy, they always choose to buy in favor of less
uncertainty. If v < 1, the information price cannot be set to
be larger than p = %1}2, otherwise no profit can be gained by
the data broker. Therefore, the Stackelberg game equilibrium
strategy of the data broker is given as follows:

1 if v <1,
pr=12 (5)
5 if v > 1.
Under this price, the attacker’s equilibrium strategy is to buy
the information and mount the attack when 6 < wv. The
corresponding expected profit of the data broker, denoted as
T, is %02 when v < 1 and % when v > 1. We can see that the
information value for the data broker increases with the target
value until the target becomes attractive enough to the attacker
that it would attack anyway even without the information.

V. COMPETITION MODEL
In this section, we consider the scenario when there are
two attackers (A and B) that could buy the same data of
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Fig. 2. Hierarchical game structure.

a target from the data broker. The attackers make decisions
independently. Following the work of [4], we restrict our
attention to the case where the data set is sold only in one
time-block at Step 2 and this trade information is common
knowledge (i.e., the data broker is willing to publicize its
total sales quantity). The interactions between the data broker
and two attackers are formulated in a three-stage hierarchical
order of decision making, as shown in Fig. 2. Stage I: the
data broker, as the leader in the Stackelberg game, sets the
information price. Stage II: the attackers, as the followers, play
a simultaneous game of purchasing. Stage III: the attackers
make their attacking decisions with the information available
when they play a simultaneous game of attacking. Similar
to Section IV, We use backward induction to derive the
equilibrium outcomes: we first derive the attackers’ optimal
attacking decisions and their expected utilities assuming they
have or have not bought the information, and then analyze their
optimal purchasing decisions. Finally, we obtain the optimal
pricing decisions for the data broker.

A. Games of Attacking

For given purchasing decisions from two attackers,
the attacking game is denoted by a tuple (@, S,U). Set @
contains two players: {attacker A, attacker B}. Set S contains
the strategies available to players: {attack, not attack} for
each player. Set U contains the players’ utility functions,
which depend on the informational structure—that is, on which
attackers purchase information. In the following analysis,
we will characterize the solutions for the attacking game under
different sets of purchasing decisions. We will use the solution
concept of Nash equilibrium where no player can increase its
own expected payoff by changing its strategy while the other
player keeps its strategy unchanged.

1) Neither Buys Information: We first consider the situation
when neither of the attackers decides to buy the information
from the data broker. Whether or not the attackers would attack
is determined by the value of the target. Therefore, we analyze
the results of the attacking games with different values of v.

Case 1: v > 2

If both attackers decide to attack, with effort e4 and ep
respectively, we suppose ey < ep without loss of generality.
Then attacker A’s expected utility is fa(ea) = gv [;* df —
ea = ( %U — 1)ea, and attacker B’s expected utility is
felep) = v [ dO + vf:f df — ep. To maximize fa(ea),
we have e4 = ep = 1. If only one attacker attacks, its optimal
decision is e = 1 when f = v — 1, and the other attacker
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TABLE II

PAYOFF TABLE FOR GAME OF ATTACKING WHEN NEITHER OF THE
ATTACKERS HAS THE INFORMATION

attack not attack
attack %v—l, %v—l v—1,0
not attack 0v—1 0,0
TABLE III

PAYOFF TABLE FOR GAME OF ATTACKING WHEN BOTH ATTACKERS BUY
THE INFORMATION

attack not attack
attack %v—@—p,%v—@—p v—0—p, —p
not attack -pv—0—p —p, —p

has zero utility. The payoffs matrix of the game when neither
of them has bought the information is illustrated in Table II
(with attacker A’s strategies listed in rows and attacker B’s
strategies listed in columns). The only strictly dominant pure-
strategy equilibrium can be analyzed as (attack, attack) with
utility f = 1v — 1 for both attackers.

Case 2: 1 <v <2

There are two pure-strategy Nash equilibria: (attack, not
attack) and (not attack, attack). In such situations we will focus
on the mixed-strategy Nash equilibrium solution [34], in which
the player assigns a positive probability to every pure strategy.
We suppose attacker A chooses to attack w.p. ¢4!*** and
attacker B attacks w.p. ¢%**°*. Then in mixed-strategy Nash
equilibrium, fp(attack) = ¢5/"**(v—1)+(1—¢%***) (v—
1) = fp(not attack) = 0, and a similar equation holds for
attacker A. Therefore, ¢4ttacF = ggftack — 2’”;1, and the
expected utility for both attackers is f = (22=2)(21) (v —
1) +2=L(1 -2 (v —1) =0.

Case 3: v <1

By using a similar analysis as above, we can derive that the
only strictly dominant pure strategy is (not attack, not attack)
with utility f = 0 for both attackers.

2) Both Buy Information: When both attackers buy informa-
tion from the data broker, they will make the attacking decision
after they obtain the information. Therefore, the attacking
game is influenced by two factors: the target value and the
minimum effort needed for a successful attack.

Case 1: v > 2

The attackers always benefit from attacking even if they split
the value v since %v > . Therefore, it is straightforward to
derive that the only strictly dominant pure strategy is (attack,
attack), and their expected utility is

[t 11
ff/o(§u—9)d9—pf§u—§—p. (6)

Case 2: 1 <v <2

If both attackers decide to attack after they get the informa-
tion 6, they both get a utility of %v — 6 —p. If only one attacker
attack, then it gets a utility of v—6—p, while the other one gets
—p. Their payoffs for this game are listed in Table III. When
%v —6 > 0, the only pure-strategy Nash equilibrium is (attack,
attack). When %0—0 < 0, in mixed-strategy Nash equilibrium,
we have ¢4/1%°F = ggftack = 2(1—£) and the expected utility
for both attackers is —p. Therefore, the expected utility of each
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TABLE IV

PAYOFF TABLE FOR GAME OF ATTACKING WHEN ONLY ATTACKER A
BUYS THE INFORMATION

attack not attack
attack %U—&—p,%v—l v—p—260,0
not attack —p,v—1 —p, 0

attacker is

% v 1 1
f:/‘ﬂw—HM&+/
0 2 1y

2

0df — p = évQ —p. 7

Case 3: v <1

If & > v, neither of the attackers would attack. If 6 < v,
the attacker gets a utility of %v — 6 — p when both of them
attack, and v—60—p when only one attacker attacks. Therefore,
the only pure-strategy Nash equilibrium is (attack, attack)
when 1v — @ > 0, and in mixed-strategy Nash equilibrium
when v — 6 < 0, the attacker would attack w.p. ¢4/**°* =
gtk = 2(1— %) and have an expected utility of —p. To sum
up, the expected utility of each attacker is f = %vz - p.

3) Only One Attacker Buys Information: Without loss of
generality, we consider the scenario where only attacker A
buys the information. The payoffs for this game are listed
in Table IV. It is important to note that attacker A’s payoff
function is its private information since the exact value of 6 is
not available to attacker B, and only its probability distribution
is commonly known (with € uniformly distributed on [0,1]).
Therefore, the attacking game can be formulated as a Bayesian
game with incomplete information [35]. We will analyze the
Bayesian Nash equilibrium [35], where each attacker makes
the decision to maximize its expected payoff. In this case,
attacker A makes the decision after obtaining the value of
from the data broker, while attacker B maximizes its expected
payoff based on the distribution of 6.

Case 1: v > 2

If both attackers decide to attack, then attacker B’s utility
function is fg(es) = [;” 3vdf — ep = (3v — 1)63, with
ep =1 whenv > 2. Attacker A’s utility is therefore 2 5v—0—p.
If only attacker A attacks, then f4 =v —p — 6, and fB=0.
Else if only attacker B attacks, then f4 = —p, and fp = v—1.
Therefore, the only pure-strategy Nash equilibrium is (attack,
attack) with fa = %v -p—53 Land fp = U - 1.

Case 2: 1 <v <2

In this case, attacker B knows that if %U — 6 > 0, attacker
A will certainly attack; that is, the probability of attacker A
attacking is greater than or equal to the probability of 1 sv—02>

0: g4ttack > fﬂ df = Lv. If we assume attacker B would

attack w.p. q“““c’C then its expected utility is g%4fteck x qaitack «
(21] _ 1) + qatta(k (1 q%tmck) (1} _ 1) attack ( —1-

é,uq%ttack) SiIlCG qattack > 1’U we havev 1_l,Uqattack < 0
Therefore, to maximize attacker B’s expected utility, g3tk =
0. Because attacker B always chooses not to attack, attacker

A would attack. To sum up, the expected utilities are: f4 =
v—p—3,and fp =0.
Case 3: v <1

Attacker B would not choose to attack even when attacker A
does not attack. In this case, attacker A chooses to attack only
when 6 > v. Therefore, f4 = [, (v—p—0 d9+f p)df =
sv® —p, and fp = 0.
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TABLE V
PAYOFF TABLE FOR GAME OF PURCHASING WHEN v < 1

buy not buy
buy évap, —vzfp %vibp,o
not buy O,Ev2 —p 0,0
TABLE VI

PAYOFF TABLE FOR GAME OF PURCHASING WHEN 1 < v < 2

buy not buy
buy %U2—p,%v2—p v—%—p,O
not buy 0,0 — % —p 0,0
TABLE VII

PAYOFF TABLE FOR GAME OF PURCHASING WHEN v > 2

buy not buy
buy | gv—5-pgv—g-p|gv—5-pgv—1
not buy %v—l,%v—%—p %v—l,%v—l

B. Games of Purchasing

In the game of purchasing, the attackers decide whether to
buy the information or not. Their joint strategies determine the
specific payoff matrix of the attacking game to be played in the
next stage. For example, if both attackers purchase the infor-
mation, they will play the attacking game shown in Table IIT; if
only one attacker makes the purchase, they will play the game
in Table IV. Note that only the distribution of # is known
to both attackers before making their purchasing decisions.
Therefore, the whole decision process of the attackers can be
modeled as a stochastic game, in which there are multiple
players and the next state of the game depends on the joint
action of the players [36]. In this subsection, we will derive
the Nash equilibrium of the purchasing game under different
values of v, as shown in Tables V,VI, and VII, where the
attackers’ payoffs are their expected utilities based on the
equilibrium of the corresponding attacking games determined
by their purchasing strategies.

Case : v <1

According to the payoffs in Table V, if p < v2 the only
pure-strategy Nash equilibrium is (buy, buy). If 8112 <p<
502 there are two pure-strategy Nash equilibria: (buy, not
buy) or (not buy, buy). In mixed strategy equilibrium, assume
attacker A buys the information w.p. qb“ and attacker B

buys w.p. ¢%Y. We have fp(buy) = qfﬁ{”’(1 2o+ -

qzuy)(é 2 - 1) = fg(not buy) = 0, and a similar equation
1,2

holds for attacker A. Therefore, ¢}, = ¢ = 5%’@? , and

the expected utility for both attackers is 0. If p > %02, the only
pure-strategy Nash equilibrium is (not buy, not buy).

Case 2: 1 <v <2

According to the payoffs in Table VI, if p < v2 the only
pure- strategy Nash equilibrium is (buy, buy). If v? <p<
v — 5, there are two pure-strategy Nash equlhbrla (buy, not
buy) or (not buy, buy). In mixed strategy equilibrium, we have
qzuy %“y v:ilz If p > v — %, the only pure-strategy
Nash equilibrium is (not buy, not buy)

Case 3: v > 2

According to the payoffs in Table VII,
we have v — 1 —p < v —
Nash equilibrium is (not buy, not buy). If p <

: 1
it p > 3,

1, and the only pure-strategy

%, we
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Fig. 3. Optimal purchasing decisions of two attackers.
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Fig. 4. Regions where attacking probability of the target is increased.

have %v — % —p> %'u — 1, and the only pure-strategy Nash
equilibrium is (buy, buy).

Fig. 3 shows the equilibrium purchasing decisions under
different values of price p and target value v.

By integrating the results in the game of purchasing with
those in the game of attacking, We can now analyze the
impacts of information trading for the target. We already know
that if no information is available, when v > 2, both attackers
attack; when 1 < v < 2, each attacker attacks w.p. 2”;1,
and when v < 1, no one attacks. While if the information is
leaked and can be bought by the attackers at price p from a data
broker, Fig. 4 summarizes the seven regions in parameter space
with the shaded areas are where more possible attacks result
from the information trading. The light grey region is where
the attacking probability is definitely increased since the price
is low enough that both attackers buy the information. The
dark grey region is where an increase in attacking probability
is possible, which is determined by the attackers’ purchasing
behaviors. The increase in risks due to the information leakage
and trading can be shown in Table VIII. The results imply that,
when the value is highly attractive (v > 2), the attackers would
launch the attack even without the information, and therefore
the defender needs more defense effort; when v < 2, if the
defender protects the information to the extent that the cost of
acquiring and hence the price of information is high enough,
the attack risk will not be increased, even if the information
is leaked and traded.

One can also obtain the value of information for the attack-
ers. If no information is available, when v > 2, both attackers
obtain an expected utility of %’U — 1; otherwise, both attackers
get zero expected utility. If the target information can be
bought, we could represent the value of information for the
attackers as the amount of increase in the attacker’s expected
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TABLE VIII
ATTACKING PROBABILITY INCREASE WITH INFORMATION TRADING

Region Attacking probability increase
LIV, VII | O
il min[Z — 1, Z(1 — 9)]
11 Z(1—6) wp. 3, 2 —1wp. q1(1—q1)
v min[1,2(1 — 2)]
VI 1 when v > 6 w.p. g2(1 — g2), 2(1 — %) w.p. g2

utility. If v > 2 and p < %, there is an expected utility
increase of % —p;ifv<2andp< %v2, there is an increase
of %vQ — p. Fig. 5(a) shows the value of traded information
for the attacker, which increases with the target value and
decreases with the price. The results indicate that, in the mixed
equilibrium of the competition game between the attackers,
they are expected to benefit from the information only when
p < %vQ forv < 2orp < % for v > 2. However, even
if the information does not benefit the attackers as the price
increases, the target is expected to be attacked more likely
with information leakage & trading (in regions III and VI of
Fig. 4).

C. Optimal Pricing Decisions of the Data Broker

Now we further analyze the data broker’s selling strategy
in maximizing its profit. Intuitively, it could set either a low
price such that both attackers buy or a high price that attackers
buy with a certain probability. We show in Proposition 1 that
its choice of pricing strategy depends on the attractiveness of
the target.

Proposition 1: The Stackelberg game equilibrium strategies
are determined by the target value for the attackers. When the
target is not attractive enough, it is not wise for the data broker
to set a price low enough to attract two buyers. Specifically,
at the equilibrium:

a) if v < 1, information is sold to the attackers at a price of

p* = 102, resulting each attacker making the purchase w.p.
2/3;
b) else if 1 < v < 2, information is sold at p* = 22=1, with

1
a purchase probability of # from each attacker;

— 1,2
c¢) otherwise, both attackers bu4y the information at p* = %
Fig. 5(b) shows the data broker’s optimal pricing strategy

and corresponding expected profit 7*. It indicates that the
information value for the broker, represented as its expected
profit, increases with the target value when v < 2, but when
the target is attractive enough for the attackers (v > 2),
the information value decreases to a certain value and remains
unchanged.

If we compare the data broker’s expected profit in the single-
attacker scenario with that in the multi-attacker scenario,
we find that, counter-intuitively, the data broker does not
always benefit from having more potential buyers due to the
competition between the attackers. Specifically, if the target
value is small (v < 1.24), the data broker is expected to earn
more when there is only one potential buyer; while if the target
value is large (v > 1.24), the information value is larger for
the data broker when there are more attackers.

VI. EXTENSION: PARTIAL INFORMATION MODEL

We consider now the possibility that the data supplier can
only obtain partial information about the target, i.e., whether
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Fig. 5. Value of traded information in competitive scenarios.

6 belongs to [0,0.5] or [0.5, 1], but it cannot provide the exact
value of #. We analyze how this new informational structure
affects the attackers’ purchasing and attacking decisions and
model the price of information with low data quality.

A. Games of Attacking

We also start with the competition game of attacking given
different purchasing decisions.

1) Neither Buys Information: When neither of the attackers
buys the information, the equilibrium results are the same as
those in Section V-A.

2) Both Buy Information: When both attackers buy the
information, two cases are considered:

Case 1: 6 € [0,0.5]

If both of them attack, each obtalns an expected utility of

f05 fvx2dd — 1 —p=1(v—1)—p;else 1fonly one
attacks then it obtams an expected utility of f = fo vk
2d0 — s —p=v — 5 — p. Therefore, if v > 1, both of them
would attack if 5 <w < 1, the attacker would attack w.p.
g4ltack = gyftaeck = 2v=1 and the expected utility for both
attackers is —p; otherwise, neither would attack.

Case 2: 0 € [0.5,1]

If both of them attack, each obtains an expected utility of
f= v — 1 — p; else if only one attacks, then it obtains an
expected utility of f = v — 1 — p. Therefore, if v > 2, both of
them would attack; if 1 < v < 2, g4ttack = gyftack — 2”7_1,
and the expected utility for both attackers is —p; otherwise,
neither would attack.

Considering the two cases ¢ € [0,0.5] and 6 € [0.5, 1] with
equal probabilities for the attackers before they buy and obtain
the information, the expected utility for the attacker when both
buy the information is: f = 2(3(v—1)—p)+3(3v—1-p) =
sv—2—pifv>2 f=10v-1)—pifl <v <2 and
f=-pifv <1,

3) Only One Attacker Buys Information: For attacker B who
does not buy the information, if both attackers attack, it is
expecting a utility of %v — 1; if it attacks but attacker A does
not attack, its expected utility is v — 1.

Therefore, if v > 2, attacker B decides to attack. In this
case, if attacker A gets that 6 € [0,0.5], it would also attack,
resulting an expected utility of %v — % — p, and if A gets
that 0 € [0.5,1], it would attack with an expected utility of
10 —1—p We thus have fa = 2(3v — 3 —p) + 2 (3v -
l—p)=2v-3—-pand fp = Jv—1LIf1<v <2
attacker B knows that when 6 € [0,0.5], attacker A would
certainly attack, i.e., there is a higher probability that attacker
A attacks. Therefore, attacker B would choose not to attack.
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TABLE IX

PAYOFF TABLE FOR GAME OF PURCHASING WHEN % < v <
PARTIAL INFORMATION

1 UNDER

buy not buy
buy —p, —p v—1-p0
not buy | 0, %v—%—p 0,0
TABLE X

PAYOFF TABLE FOR GAME OF PURCHASING WHEN 1 < v < 2 UNDER

PARTIAL INFORMATION

buy not buy
buy iv—i—p,iv—i—p v—%—p,o
not buy O,v—%—p 0,0
TABLE XI

PAYOFF TABLE FOR GAME OF PURCHASING WHEN v > 2 UNDER PARTIAL
INFORMATION

buy notbuy
p,3v—35—p | gu—2—p Tuo—1
% % p %v—l —v—l

buy L)

—3_
24
not buy SV —

1,

Expecting this result, attacker A chooses to attack. We thus
have f4 = %(v—%—p)+%(v—.1—p) =v-3—p and
fe = 0. If v < 1, attacker B decides not to attack. In this
case, if attacker A gets that 6 € [0,0.5], it would only attack
when v > %, and if A gets that 6 € [0 5,1], it would not

27
attack. Therefore we have f4 = éllv — =D 1f <wv <1,
fA—Olf’US and fp = 0.

B. Games of Purchasing

From the equilibrium analysis above, we know that if
v < %, neither attacker would attack and therefore has
no incentive to buy the information. Besides, the following
three cases are considered according to different values of v.
Tables IX, X and XI list the payoffs of two attackers in the
game of purchasing.

Case 1: % <v<l1

The only equilibrium is (not buy, not buy).

Case 2: 1 <v <2

If lv—l—p > 0, both attackers would buy; if lv—l—p <0

and v — § — p > 0, in mixed strategy equilibrium, ¢, buy
qn = v;y T ,elself4v———p<0andv———p<0

neither attacker decides to buy the information.

Case 3: v > 2

If v — 2 —p > v — 1, both attackers would buy; else,
neither of the attackers buys the information.

Fig. 6 plots the attackers’ optimal purchasing decisions of
partial information in different ranges of v and p. The impact
of partial information trading on the target is less than that
of full information trading: the attacking probability increases
only in the following two situations: (1) 1 < v <2,p < v—i
and 0 < 0.5: both attackers would attack the target; and 2)
l<wv<2and4i V-7 <p<v-— Z both attackers would
attack if they buy the 1nformat10n and find that < 0.5, or the
only one attacker who buys the information would attack.

As for the value of partial information to the attackers, when
v > 2 and p < }1, there is an expected utility increase of

—p; when 1 < v <2andp < v -2 the attackers are
—p, as illustrated

expected to have a utility increased by I 1)— <
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Fig. 7. Value of traded information with partial information.

in Fig. 7(a). Moreover, by comparing Fig. 3 and Fig. 6, we see
that, for a lower-value target (v < 1), if the defender takes
some effort to ensure that only partial information could be
leaked, the attacking probability may decrease to zero.

C. Optimal Pricing Decisions of the Data Broker

Due to lower data quality, we are expecting a lower price
compared to the scenario when full information is traded.
Specifically, we have:

Proposition 2: In Stackelberg game equilibrium under par-
tial information, the strategies of the players are:

a) if v < 1, the attackers would not buy the information at
any price;

b) else if 1 < v < 2, information is sold at p* = %v -3,

. o 20—2 .
with a purchase probability of 5. —= for each attacker; )

c) otherwise, both attackers buy the information at p* = I

One can now compare the results (shown in Fig. 7(b)) under
partial information with those under full information. We could
find that the price for partial information is % lower when
1 < v <2and % lower when v > 2. That is, information
accuracy is more valuable for the data broker or the attackers
for a more attractive target.

VII. EXTENSION: COOPERATIVE PURCHASING

In this section, we are considering the cooperation between
two attackers. Since the information can be reproduced with a
negligible marginal cost, it is possible for two buyers to share
the purchasing cost by sharing a copy of the data. We will call
the process cooperative purchasing where two attackers only
pay a total price p to the broker and share the information.

Naturally, there are several questions when cooperative pur-
chasing behavior is of concern: (1) when would the attackers
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TABLE XII

PAYOFF TABLE FOR GAME OF ATTACKING UNDER
COOPERATIVE PURCHASING

attack not attack
attack %U—@—%p, %’U—@—%p ’U—e—%p,—%p
not attack —%p, v —0 — %p _%p, —%p

engage in cooperative purchasing? (2) how much will the
attackers benefit from the cooperation? (3) will cooperative
purchasing increase the risks of the target? and (4) if the data
broker takes the possibility of cooperation between buyers into
consideration, how would it set the price?

The new timeline of the process is: after the data broker
announces the price, the attackers first decide whether to
engage in cooperative purchasing. If not, each attacker will
decide whether or not to buy the information by itself. Then
with the information available, the attackers decide how much
effort will be taken in attacking. The corresponding utilities are
gained after the attack. We first analyze the attackers’ attacking
decisions after cooperative purchasing, and then compare the
expected utilities with those in Section V to figure out when
it is beneficial for them to cooperate; finally, the optimal price
is derived for the data broker.

The payoffs for the game of attacking when they buy
information cooperatively are listed in Table XII. It is straight-
forward to derive that when v > 2, the only strictly dominant
pure strategy is (attack, attack) with an expected profit of
= %(v — 1 — p) for each attacker; when v < 2, we have
qittack = gaftack — min[2(1 — %), 1], with f = %1)2 — %p.

By comparing the expected profits with those obtained
without cooperative purchasing, it is found that cooperative
purchasing benefits the attackers only when the information
price is lower than min[1, 2v?]. We summarize the attackers
optimal purchasing decisions in Fig. 8, which shows that the
attackers engage in cooperative purchasing only in re%ion I

and the attacker buys the information w.p. ¢ = ¢%¥ =

1
v—5—p

11 in region II. The expected profit of an attacker is

1
E(v—l—p) ifv>2
_J1 1 1
f_ §U2_§p 1f’l)§2&p<§'l)2 (8)
0 otherwise.

The benefit, defined as the expected utility improvement
through cooperative purchasing, can be derived as

1 1 1

—p ifo>2&p<-orv<2&p< 02

2 2 8
Af={1 Ll resonlopan

2 2” 2 =P

Lo

1 1
gv —3P ifv§2&p<§v2.

©)

The results indicate that, only when the price is not high
p < in for v < 2, and p < 1 for v > 2), it is beneficial
for the attackers to cooperate. We can also see a potential
increase in the attacking probability resulted from cooperative
purchasing when 1 < v < 2 and %vQ <p< %v2: an increase
of min[1,2(1 — £)] = 2(1 — 1) wp. (1 —qa)*.
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Fig. 8. Optimal decisions of competing attackers under cooperative
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Taking the changes in the attackers’ purchasing behaviors
into consideration, the data broker’s optimal price is:

Proposition 3: In Stackelberg game equilibrium with the
consideration of cooperative purchasing, the data broker’s
optimal price of the target information is given as:

L
— 9 f <2
N v fv=2,

p = (10)
1 if v > 2.

At this price, the attackers always engage in cooperative
purchasing.

Proposition 3 indicates that the data broker enhances its
price when the target value is large (v > 1) if cooperative
purchasing is considered. However, the data broker’s expected
profit gets decreased a little bit when the target value v < 2
due to the cooperative purchasing.

VIII. ALTERNATIVE SETUP: INDEPENDENT MODEL

In this section, we consider the case where the attackers do
not compete for the target value, i.e., each successful attacker
receives a utility v in the case of multiple attackers instead of
splitting the target value. This is referred to as the independent
attack scenario in the following analysis. This assumption is
suitable for the situation when the target is a type of “public
good” that is non-rival (i.e., the consumption by one agent
does not reduce consumption by others) [13]. We first analyze
the optimal decisions of the attackers and the data broker; then
a comparison between the results with those in Section V is
made in order to investigate the impacts of competition.

Since there is no competition between the attackers,
the model reduces to a standard Stackelberg game between
the data broker and the attackers, with no simultaneous game
between the attackers. In Section IV, we have derived that a
single attacker would buy the information if the target value
is high that v > 1 and the price satisfies p < £, or if v < 1
and p < %1)2. When there are two attackers, their purchasing
and attacking decisions are the same as shown in Fig. 1. The
value of information for the attacker is illustrated in Fig. 9(a).
If we compare the results above with those of the competition
model in Section V, we conclude that, under the same target
value and information price, it is less likely for the attackers
to make the purchase in the competitive scenario. This result
is consistent with our intuition and implies that the value of
information for the attackers is weakened by their competition.

Similarly, the data broker’s optimal price is p* = %Ug

if v < 1, and p* = % if v > 1, as shown in Fig. 9(b).
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A comparison of the results with those in Fig. 5(b) shows us
some interesting observations: first, when v < 1.5, the price is
lower in a competitive scenario than in a independent scenario
since the data broker needs to improve sales; while when
1.5 < v < 2, the price is higher in competitive scenario
for larger marginal profit; and when v > 2, the price is the
same for both competitive and independent scenario since both
attackers would buy the information as long as p < % The
data broker’s corresponding expected profit for a two-attacker
case without competition is v? if v < 1 and 1 if v > 1.
Interestingly, the data broker benefits from the competition
between attackers if 1.86 < v < 2, when the optimal price
in the independent scenario is much higher than that in the
competitive scenario.

If we take cooperative purchasing into consideration, Fig. 10
shows the attackers’ optimal decisions under different values
of p and v. Compared with the results shown in Fig. 8
of the competitive scenario, cooperative purchasing benefits
the attackers in more cases related to different values of
p and v in the independent scenario. The phenomenon can
be explained as follows: intuitively, it is always beneficial
to reduce purchasing cost when there is no competition in
attacking; however, in the competitive scenario, the attackers
face a risk of having to split the target value under cooperative
purchasing. Therefore the final purchasing decision needs to
be made by considering the trade-off between less purchasing
cost and the increased competitive risk.

IX. EXTENSION: HETEROGENEOUS ATTACKERS
In this section, we discuss the robustness of our insights to
an alternative modeling assumption, where the heterogeneous
attackers do not split the target value but their utilities could
be compromised by their competition. Specifically, attackers
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TABLE XIII

PAYOFF TABLE FOR GAME OF ATTACKING WITH HETEROGENEOUS
ATTACKERS WHEN ONLY ATTACKER A BUYS INFORMATION

attack not attack
attack uap—0—p,upa—1 | ug—60—p,0
not attack —p, ug — 1 —p, 0

A and B are heterogeneous in that the benefits they derive
from the same target could be different.
We denote the expected reward of attacker 4 as u;(v) if only
i successfully attacks the target with a value of v, and u;;(v) if
both attackers succeed (i, j € {4, B}), where u;;(v) < u;(v),
A(v) # up(v) and uap(v) # upa(v). The equilibrium
solutions of the game are determined by all the values of w;
and u;; (4,7 € {A, B}). The game analysis process is similar
to that for homogeneous attackers but the analytical solutions
include a larger number of cases. Due to the page limit,
we present one representative case to illustrate each game and
briefly discuss the impacts of the attacker heterogeneity on the
equilibrium results. In our numerical example, we investigate
a situation involving a high-profit attacker and a low-profit
attacker and examine how each player would benefit from the
information trading.

A. Games of Attacking

In the games of attacking, considering whether each value
of u; and wu;; is larger than 1 (the largest value of ), we will
have 9 cases. Next we take a nontrivial case as an example
where ua(v) > 1, up(v) > 1, uap(v) < 1, upa(v) < 1 and
present the following equilibrium results.

1) Neither Buys Information: When nobody buys the infor-
mation, attacker i would attack w.p. g#teck = u“__ul (1,5 €
A, B), and the expected utility is O for both attackers.

2) Both Buy Information: Attacker ¢ will launch the attack
when u;; > 6. If both uap and up4 are smaller than 6, then
attacker i would attack w.p. g@tteck = ur:f

3) Only One Attacker Buys Information: This is a game
with asymmetric information. When only attacker A buys
the information, the payoffs are listed in Table XIII. We can
derive that, if A; = uAB(uBA — uB) + (uB — 1) > 0,
then g¥t** = 1, and fa = iu}z —p, fg = A1 Else if
A; <0, then q““‘w’C =0 and qa““’C Prob(us > 60) =1,
fa=wua—5—p, fg = 0. The detailed analysis is provided in
the supplementary materials. Similarly, when only attacker B
buys the information, if Ay = upa(uap—ua)+(ua—1) >0,
then ¢4/"** = 1, and fp = Ju%, — p, fa = Ao Else if
AQ < O then qaftack =0 and qaftack _ 1 fB =ug— % —p,

fa=0.

B. Games of Purchasing

Based on the equilibrium results above, we have four cases
in games of purchasing depending on the values of Aj, As:
(A1 <0, Az > 0), (A1 >0, Az <0), (A1 <0, Ay <0),
and (A > 0, Ay > 0). Suppose uap < upa without loss of
generality, Table XIV lists the payoffs for the case of (A; < 0,
As < 0) as an example.

According to Table XIV, if (3u%
and (T

buy

buy w.p. ¢4 =

—p)(ua—5—p) <0
—p)up — 3 —p) < O, attacker A chooses to
uA—3—p

uA—%_%uiB

, and attacker B buys w.p.
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TABLE XIV

PAYOFF TABLE FOR GAME OF ATTACKING WITH HETEROGENEOUS
ATTACKERS WHEN A1 < 0, A2 <O0ANDuap <upga

(T =upauap +up(upa —uap) — su%,)
buy not buy
buy [ ful,—p.T—p | ua—3-p0
not buy O,uB—%—p 0,0
—_ 1 2
4 . p= E:AE 1
) - p=3
(buy, buy)
3 |
~ (not buy, not buy)
© 5 m
only B buys
1
T
p= Euzza
0

0 0.2 0.4 0.6 0.8 1
D

Fig. 11. Optimal purchasing decisions of heterogeneous attackers.
buy _ uB— ﬁ —p
qp~ = —1—7- Otherwise, there is only one pure-strategy
B—2

Nash equlhbrlum

As an illustration purpose, we consider attacker B to be
able to benefit more from attacking the target than attacker
A. Fig. 11 shows the equilibrium purchasing decisions when
ug = 0.7v, up = v, uap = 0.25v, and ugpg = 0.85v. Our
results show that if the price is low enough (in region I, p <
1u? p), both attackers purchase the information. The risk of
the target, in terms of the attacking volume, is increased by
the information trading in both regions I and III under some
conditions (ug > 0 if v < 1, uap > 6 otherwise). These
observations are consistent with those in our base model.

We compare the results with those shown in Fig. 3 and find
that attacker B, the high-profit attacker, has more tendency
to buy the information than attacker A. In region III, only
attacker B buys the information. An intuitive explanation is:
the target is less attractive and therefore the information is
of less value to attacker A who lacks the incentive to engage
in information trading. Besides, Fig. 12(a) plots the value of
traded information for the attackers under different target value
when p = 1—16. It is interesting to find that: If the target value
is small (v < 1.414), only attacker B benefits from the traded
information since the marginal gain for attacker A is too low
to make the purchase. As the target value increases, attacker A
benefits more from the information, while attacker B benefits
less in the range of 1.414 < v < 4. If 2.697 < v < 4,
the existence of the traded information even hurts attacker
B. This is because attacker A is more likely to mount the
attack with the traded information, resulting in the competition
between the attackers and therefore a decrease in attacker B’s
expected utility. If the target value is large enough (v > 4),
both attackers benefit from the traded information since they
would launch attacks even without the information.

C. Optimal Pricing Decisions of the Data Broker

The changes in the attackers’ purchasing behaviors lead to
a different pricing policy of the data broker, as illustrated
in Fig. 12(b). In the example, if v < 1, information is sold at
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p* = $v%if 1 < v < 2.828 (when u? 5 < 0.5), p* = 0.5;
else, p* = %u%B. It is seen that, when v is large enough that
u? 5 > 0.5, the data broker lowers the price in order to attract
both attackers; otherwise, the data broker tends to win only
the higher-profit attacker. Similar to the case of homogeneous
attackers, the data broker benefits from having more potential
buyers if the target value is large (v > 2.828).

As for the impact of competition on the optimal price, one
can notice that, if the target value is not small (2.828 < v < 4),
the attackers benefit from their competition in terms of having
a lower information price set by the data broker to attract both
attackers; while if v < 1.428, attacker A would face a higher
price due to the competition because attacker B could accept
a higher price than attacker A. This result is different from
our base model, where the competition decreases the price for
the low-value target (v < 1.5) and increases it for the high-
value target (1.5 < v < 2). That being said, the impact of
attackers’ competition on the information price is complicated
by several factors including both the attackers’ heterogeneity
and the target value.

X. CONCLUSION

We have studied a security problem with target information
trading from an economic perspective. The interaction between
a data broker and two attackers is formulated as a Stackelberg
game where the data broker acts as the leader setting the
price with the consideration of possible responses from the
attackers. The competition between two attackers is modeled
as a type of stochastic game. We have evaluated the value
of the information from the perspectives of different players
respectively, which is related to the acceptable price and
the expected utility increase for the attackers, the changes
in the attacking probabilities for the target, as well as the
data broker’s optimal selling strategy. We discover several
interesting insights into the information market in the hacker
community. For example, if the target is not so attractive,
the information value for the attackers will be weakened by
their competition, but the data broker might benefit from their
competition under some conditions. However, the data broker
does not always benefit from having more potential buyers
considering the competition between the attackers, especially
when cooperative purchasing is expected under a low target
value. In the case of heterogeneous attackers, the data broker
prefers to set a high price to attract only the high-profit
attacker when the target value is not high. Besides, information
accuracy is more valuable of a more attractive target for the
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attackers and the data broker. Our results also provide some
insights to the defense strategy: to protect the information from
leakage would avoid attacks if the target value is low enough,
but when the target is highly attractive, more effort should be
taken into the protection of the target itself than the protection
of the information.

Several future research directions are worth exploring. First,
as an application of the model proposed in this paper, it will be
worthwhile to investigate a specific type of attack (e.g. eaves-
dropping, spoofing, or denial of service) and evaluate the value
of a specific type of security information (e.g. users’ activity
data) to be traded in a black market. Second, the situation
where the data broker does not reveal its total sales quantity is
a problem that the attackers may encounter. Therefore, another
direction is to extend the game model between the attackers
to account for incomplete information. Third, one implicit
assumption in our model is that the data broker charges
attackers the same price for the information. For heterogeneous
attackers, it is instructive to consider the selling strategy of
price discrimination and characterize the conditions under
which price discrimination is profitable. Another important
future research direction is to take collaborative attack or com-
bined efforts of attackers into consideration. In this situation,
one can incorporate cooperative game theory to study how the
attackers coordinate their efforts and share their joint payoff
and investigate how their collaborative behaviors could have
an impact on the information value.
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