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Abstract—As more and more visible light communication
(VLC) and visible light sensing (VLS) systems are mounted on
today’s light fixtures, how to guarantee the authenticity of the
visible light (VL) signal in these systems becomes an urgent
problem. This is because almost all of today’s light fixtures are
unprotected and can be openly accessed by almost anyone, and
hence are subject to tampering and substitution attacks. In this
paper, by exploiting the intrinsic linear superposition charac-
teristics of visible light, we propose VL-Watchdog, a scalable
and always-on signal-level spoofing detection framework that is
applicable to both VLC and VLS systems. VL-Watchdog is based
on redundant orthogonal encoding of the transmitted visible light,
and can be implemented as a small hardware add-on to an
existing VL system. The effectiveness of the proposed framework
was validated through extensive numerical evaluations against a
comprehensive set of factors.

Index Terms—spoofing detection, indoor VLC and VLS, multi-
link VLC, orthogonal encoding, denial of service

I. INTRODUCTION

Since the release of IEEE 802.15.7 standard in 2011 [1],
visible light (VL) technology has received a lot of interest
for both communication and sensing applications. Compared
with regular radio frequency (RF) based communication and
sensing, visible light communication (VLC) and visible light
sensing (VLS) enjoy several unique benefits, such as higher
spectrum bandwidth, higher transmission rate, higher energy
efficiency, license free and so on. Because of these nice
features, VLC/VLS has been considered to be a promising
and urgently-needed small-cell solution for offloading the
crowded RF bands in 5G systems and beyond. As more
and more VLC/VLS systems are mounted on today’s light
fixtures, how to guarantee the authenticity of the VL signal
in these systems becomes an urgent issue. This is due to the
fact that almost all of today’s light fixtures are unprotected
and can be openly accessed by almost anyone, and hence
are subject to tampering and substitution attacks. As will be
clear shortly in Section II-B, an attacker can easily replace
an authentic LED by a rogue LED under his control to inject
spoofed VL signal into user’s receiver. Unfortunately, most of
today’s VLS applications do not have a reliable built-in signal
authentication mechanism to detect these spoofed signals and
hence will mistakenly accept them as authentic sensing inputs,
leading to compromised sensing outcome. Similar situation
also arises in VLC. For example, the attacker may first block

the line of sight (LOS) of the authentic VLC link, and then
subsequently point a rogue LED transmitter to the user’s
receiver (typically a photo-diode) to inject spoofed data to
the user [2].
Ensuring the received signals are coming from the legitimate

transmitters (LEDs) is the key to address the above problem.
Conventionally, this is achieved either at the physical layer –
by authenticating the LED hardware, or at the link layer –
by authenticating the received data from the LEDs based on
cryptographic algorithms. Both methods have their own limi-
tations. In particular, a physical layer authentication method is
able to tell from which LEDs a received VL signal is coming
by identifying certain physical features pertinent to the LED
hardware, such as the light temperature color [3], or the polar-
ization angle [4]. For example, due to the subtle differences
in the material and manufacturing conditions, LEDs of the
same nominal color temperature actually illuminate light of
slightly different wavelengths (i.e., different colors), which
could be used as a fingerprint to identify different LEDs. The
physical layer methods provide always-on authentication at
the signal level, but require each LED to present sufficient
and measurable differences in its hardware, which is not
scalable in practice [5]. On the other hand, a link-layer data
authentication typically relies on cryptography and involves
extensive computation (e.g., encryption/decryption) over the
transmitted data [6]–[8]. While these cryptographic methods
are applicable to VLC applications, as will be clear shortly
in Section II-B, they are often irrelevant to VLS, because
typically sensing happens at the signal level, and no data (i.e.,
sequence of 0’s and 1’s) is transmitted in a VLS application.
In this paper, we present VL-Watchdog, a novel signal-

level always-on spoofing detection framework for VLC and
VLS systems. VL-Watchdog can be implemented as a small
hardware (receiver) add-on to an existing VL system. Once
deployed, the watchdog will persistently monitor the light
signals in the field to ensure they are sent only from authentic
(legitimate) sources. VL-Watchdog supports large-scale VL
systems, i.e., one with many smart LEDs, and does not assume
any physical or optical difference in the LED hardware.
Instead, VL-Watchdog is based on coding. It uses orthogonal
codes to encode the illumination of each legitimate LED, so
that the transmitted light of a legitimate LED is identifiable
by detecting the unique signal structure possessed by the
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Fig. 1. Indoor Multi-link VL channel
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Fig. 2. Spoofing attack scenario

received light. To the best of our knowledge, this is the first
signal-level always-on counter-spoofing mechanism applicable
to both VLC and VLS systems. Our main contributions are
summarized as follows:

• An orthogonal coding based signal-level always-on VL
spoofing detection framework VL-Watchdog is proposed.
Its optimal detection threshold is also derived by analysis.

• The performance of VL-Watchdog is evaluated based on
extensive numerical simulations by taking into account
a comprehensive set of parameters, including the num-
ber of orthogonal coding basis, the spoofing power to
noise ratio, spoofing detection window size, the spoofer’s
strategies in fabricating its spoofing signals, and random
perturbations from the application environment.

The reminder of this paper is organized as follows. The
multi-link VL system model and spoofing attack model are
introduced in Section II. Spoofing detection framework is
presented in Section III. Numerical evaluation is analyzed in
Section IV, followed by conclusions in Section V.

II. INDOOR VL SYSTEM MODEL AND SPOOFING ATTACK
MODEL

A. Indoor Multi-link VL System Model

We consider a typical multi-link VL channel as shown in
Figure 1, which is a general multi-link VL conceptual system
that could be used to represent many different applications,
such as visible light communication, visible light localization,
and visible light sensing. A photo-diode is used to pick up
the light and convert it into proportional current, which will
be demodulated to a received data Y . So, the Multi-link VL
channel in Figure 1 can be modelled as

Y =

n∑

i=1

hiSi + ω, (1)

where h is VL LOS channel gain that is calculated from
geometric attenuation when the light source is assumed to
follow a Lambertian radiation pattern [9], S is transmitted
signal, ω ∼ N(0, σ2) is the noise processes that are well-
modelled as signal-independent, zero-mean, additive, white
Gaussian noise (AWGN). The channel gain in this multi-link
VL channel model considers only LOS component and ignores
reflected components from nearby reflectors. It is valid for
most indoor scenarios, because regular building materials (e.g.,
plaster, wood, and plastic) of walls are diffusive reflectors
for light, a unique characteristic of VL channel presents that
the LOS component is much stronger than the non-LOS

components, leading to a neglectable multipath effect [10],
[11].

B. VL Spoofing Attack Model

Illuminating through an open space, the open nature of VL
makes its channel inherently susceptible to spoofing attacks.
To make our presentation more concrete, we describe the VL
spoofing attack model based on an important example VLS
application: Visible Light Human Posture Sensing (VLHPS)
[12], which is realized by analyzing complex shadow pattern
generated by human body from different light fixtures in the
environment. considering the VLHPS spoofing attack scenario
illustrated in Figure 2, where for simplicity only one legitimate
LED is shown. Suppose that the true posture of the user
is “moving to the right”, and hence the shadow generated
by the rogue LED becomes longer and longer with time.
However, because this shadow is mis-identified by the reverse
engineering algorithm as one generated by the legitimate LED,
it will be mis-mapped to a false posture sensing outcome of
“moving to the left”, because, based on the relative position
of the user and the legitimate LED, moving to the left is
the only possible posture under which a shadow generated by
the legitimate LED can become longer and longer with time.
Note that in this case cryptography-based counter measures are
irrelevant, because the attack happens at the signal level (i.e.,
the shadow) and no logical data is involved in the process.
From the above case study, it is clear that the major

reason that such spoofing attack can happen is because there
lacks an effective method to authenticate, at the very basic
signal level and on an always-on basis, that the received light
signals are indeed sent from legitimate devices. Cryptographic
authentication methods are either not relevant (because no
logical data is involved in the application) or not effective.
Considering the wide applications envisioned for VL in the
near future and the fact that most existing light fixtures are
un-protected, spoofing attack is a highly practical and urgent
issue to be addressed for VL systems.

III. PROPOSED SPOOFING DETECTION FRAMEWORK:
VL-WATCHDOG

In this section, we present VL-Watchdog, a novel signal-
level always-on spoofing detection framework for VLS and
VLC systems. In the following, we first introduce the intuition
behind VL-Watchdog and then present its orthogonal-coding
based design. Then we formulate the spoofing detection prob-
lem as a classical statistical hypothesis test, and determine the
test statistic and its optimal threshold by analyzing optimal
spoofing detection strategy of the watchdog under ambient
light noise.

A. Overview

In the proposed VL-Watchdog framework, signals illumi-
nated from legitimate LEDs are made orthogonal between each
other. VL-Watchdog determines the authenticity of received
signals by checking whether the expected orthogonality still
holds in the received signals. More specifically, consider
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a VL system that has n legitimate LEDs T1, . . . , Tn and
a m-dimensional signal space spanned by m base vectors
A1, . . . , Am, where m > n, and Ai is orthogonal with Aj for
any 1 ≤ i, j ≤ m and i �= j. From a geometric perspective,
a m-axis Cartesian coordinate system is used to represent the
space, where an axis i corresponds to the base vector Ai, for
1 ≤ i ≤ m. Let the whole set of all axes be denoted by
A

def
= (A1, . . . , Am).
At time t, a subset of n axes are selected from the whole

set A and are used to modulate the data bits sent by the n
legitimate LEDs, one for each LED. In the case of VLC, these
bits are the data to be communicated. Denote the n axes that
are selected at time t by the set R(t)

def
= (r1(t), . . . , rn(t)),

and R(t) ⊂ A. Without loss of generality, let us suppose
that axis ri(t) is used to modulate the data of Ti, so a bit
Si(t) ∈ (−1,+1) to be sent by Ti at time t will be modulated
as Si(t)Ari(t), for 1 ≤ i ≤ n. The signal Si(t)Ari(t) will be
transmitted by Ti over VL channel using intensity modulation.
R(t) is referred to as the transmission mode of the VL system
at time t.
Given the absence of any illegitimate transmissions, the re-

ceived signal at the VL-Watchdog at time t, say Y (t), is simply
a linear combination of Si(t)Ari(t)’s, for all 1 ≤ i ≤ n. Such
a received signal resides in the sub-space spanned by vectors
Ari(t)’s, where 1 ≤ i ≤ n, and therefore should be orthogonal
to any axis j that is not in R(t), i.e., ∀j ∈ A−R(t), which
is defined as spare basis. Such an orthogonality condition can
be efficiently checked by VL-Watchdog by projecting Y (t) to
each of the m axes and verifying that

{
Y (t) •Ai �= 0 if i ∈ R(t)
Y (t) •Ai = 0 if i ∈ A−R(t)

(2)

where the operator • denotes inner product between two
vectors.
Clearly, when an illegitimate LED presents, Y (t) will

include a component contributed by the spoofing signal. The
only way for the orthogonality condition in (2) to continue
to hold (so the attack can elude from being detected), is for
the spoofer to generate its signal at time t only in the sub-
space spanned by vectors Ari(t)’s. This requires the spoofer to
follow every orthogonal axis that is selected for modulation at
every moment of time. But this is difficult to achieve, as R(t)
appears to be a random process from the spoofer’s viewpoint,
especially when m is sufficiently greater than n.

B. Orthogonal Coding Based VL-Watchdog Design

VL-Watchdog implements the aforementioned Cartesian
coordinate system by using orthogonal coding. In particu-
lar, Walsh-Hadamard codes are used due to their simplicity
and great popularity in real-world applications [13]. Walsh-
Hadamard codes can be efficiently generated because they
correspond to rows of the Hadamard matrix. In particular,
given a Hadamard matrixH with size of m (2k, k = 1, 2, 3...),
up to m orthogonal codes, say C1, . . . ,Cm can be generated
as each row of H. From a geometric perspective, if the
Hadamard matrix expands to be a m dimensional space, each

pair of orthogonal codes represents two perpendicular vectors
in it, so the m orthogonal codes constitute the m orthogonal
basis in such a space.
In VL-Watchdog, the aforementioned base vector set A is

implemented as the set of orthogonal codes (C1, . . . ,Cm), so
an axis i in the Cartesian coordinate system is represented by
code Ci, for 1 ≤ i ≤ m. The modulation process is simply
implemented by convolving each transmitted signal with the
assigned orthogonal code, which will expand the transmitted
signal into a much higher frequency band (e.g., at 100 KHz
level). The same orthogonal code is used by VL-Watchdog to
perform the signal projection defined in (2).
For a VL system of n legitimate LEDs, the received signal

at VL-Watchdog at time t can be modelled as

Yj(t) =
n∑

i=1

hiSi(t)C(ri(t),j) + ωj for 1 ≤ j ≤ m (3)

where h is the VL LOS channel gain, S(t) is the signal bit
to be sent by each legitimate LED, Cij is the orthogonal
code chips from Ci and ri(t) is the selected orthogonal code
index from R(t) at time t, ω is the ambient light noise
and interference that could be well-modelled as AWGN. The
projection process mathematically constitutes a correlation of
the received signal with all the orthogonal codes. So, the de-
tected signal at VL-Watchdog at time t can be mathematically
calculated as

Si(t)
′ =

1

m
h−1
i

m∑

j=1

Yj(t)Cij

=

{
Si(t) +

1
mh−1

i

∑m
j=1 ωjCij if i ∈ R(t)

1
mh−1

i

∑m
j=1 ωjCij if i ∈ A−R(t)

(4)

Since there are non-zero projections on the complementary
subset of R(t) caused by AWGN interference in (4), a certain
threshold τ is essential to reduce the probability of false
detection.

C. Spoofing Detection under Noise

For a given indoor multi-link VL system, the proposed VL-
Watchdog aims to determine whether there is a spoofing attack
or not in a reasonable amount of time. Under the proposed VL-
Watchdog framework, any non-zero projection detected on the
spare basis could be only due to noise or spoofing. In order
to differentiate the spoofing attack from noise, we propose a
statistical hypothesis test based on the average signal power
projected on all spare basis during a given time window T that
consists of s time slots, say t1, . . . , ts, each with its randomly
assigned transmission mode R(t). More specifically, the null
hypothesis is given as

H0 : no spoofing (i.e., noise induced non-zero projection),

and the alternate hypothesis is given as

H1 : presence of spoofing (i.e., spoofing induced non-zero
projection).
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In this significance testing, the test statistic P is defined as the
average total signal power projected on all spare basis in each
time slot tj(j = 1, 2, . . . , s). So, the observed test statistic
Pobs can be mathematically expressed as

Pobs =
1

s

s∑

j=1

∑

i

|Si(t)
′|2, ∀i ∈ A−R(t). (5)

For a given hypothesis test threshold τ , the presence of
spoofing attack is declared under the condition:

Pobs > τ. (6)

The threshold τ plays an important role in the proposed
spoofing detection framework, and an optimal threshold τ
would maximize the spoofing detection accuracy of the VL-
Watchdog. According to the maximum a posteriori (MAP)
criteria, the optimal threshold τ is decided by the test statistic
distribution under the null hypothesis H0 and alternative
hypothesis H1, respectively, which can be analyzed as follows.
To calculate the test statistic distribution under the null

hypothesis H0, we model the noise as AWGN shown in (3),
whose amplitude projection on each spare basis i in A−R(t)
is i.i.d. and follows normal distribution, i.e.,

Si(t)
′ ∼ N(0,

σ2

m
), (7)

where σ2 is the average power of the AWGN. So the total
detected power P j

1 on all spare basis given the presence of
only noise in time slot tj can be calculated as

P j
1 =

∑

i∈A−R(t)

|Si(t)
′|2. (8)

Therefore the random variable P j
1

m
σ2 follows chi-square dis-

tribution with m− n degrees of freedom, i.e.,

P j
1

m

σ2
=
∑

i

(
Si(t)

′
√
m

σ

)2

∼ χ2(m− n) (9)

Therefore P j
1 follows Gamma distribution with a shape pa-

rameter of m−n
2 and a scale parameter of 2σ2

m , i.e., P j
1 ∼

Gamma(m−n
2 , 2σ2

m ). Over the time window T , the average
total detected power on all spare basis given the presence of
only noise, denoted by P1, can be calculated as

P1 =
1

s

s∑

j=1

P j
1 . (10)

So the random variable P1 follows Gamma distribution with
a shape parameter of s(m−n)

2 and a scale parameter of 2σ2

sm ,
i.e., P1 ∼ Gamma( s(m−n)

2 , 2σ2

sm ), and its probability density
function is given by

fP1
(x) =

σ2

sm

x
s(m−n)

2 −1e−
x
2

2
s(m−n)

2 Γ( s(m−n)
2 )

(11)

where Γ(•) denotes the gamma function. So, the detected test
statistic distribution for given H0 will be calculated as

fP |H0
(x|P1) = fP1

(x). (12)

To calculate the test statistic distribution under the alterna-
tive hypothesis H1, we consider a blind-guess spoofing strat-
egy, in which the attacker randomly chooses k(1 ≤ k ≤ m)
orthogonal codes from the whole base vector set A in each
time slot to generate its spoofing signal. Among the k chosen
orthogonal codes, let ξ denote the number of those that happen
to be in the spare basis set A−R(t) and k−ξ denote the rest
of the chosen codes that are in the transmission mode setR(t).
Clearly, ξ is a random variable that takes value from the set
0 ≤ ξ ≤ k. The attacker then equally allocates its transmission
power Ps onto the k chosen orthogonal codes to generate the
spoofing signal. In our following analysis, we first consider
the basic case that k is a deterministic number known to the
hypothesis test. Based on the result of this basic case, we will
then extend our analysis subsequently to the more general case
that k is a random variable.
1) The Case of Deterministic k: In this case, the probability

mass function of ξ in each time slot can be calculated as
Prob(ξ = ks) =
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C
ks
m−nCk−ks

n

Ck
m

, ks =

⎧
⎪⎨

⎪⎩

0, . . . , k; 1 ≤ k ≤ n

k − n, . . . , k; n < k < m− n

k − n, . . . ,m− n− 1; m− n ≤ k ≤ m
∑k

k′=m−n
Ck′−m+n

n

Ck′
m

, ks = m− n; m− n ≤ k ≤ m

(13)

where Cj
i = i!

(i−j)!j! is the binomial coefficient of i choose j.
Its expectation and variance can be calculated as

E(ξ) =

m−n∑

ξ=0

ξProb(ξ)

V ar(ξ) =
1

m− n+ 1

m−n∑

ξ=0

[ξ − E(ξ)]2

(14)

As the attacker is randomly selecting k orthogonal codes
in each time slot, ξ’s in time slots tj(j = 1, 2, . . . , s) are
i.i.d. Given a sufficiently large number of slots in the time
window T (e.g., greater than 10 slots in T ), according to the
central limit theorem, the average number of orthogonal codes
that are chosen by the attacker in a time slot but are not
in the underlying transmission mode set of that slot should
approximately follow a normal distribution, i.e.,

ξ ∼ N(E(ξ),
1

s
V ar(ξ)). (15)

Thus, the average total detected power on all spare basis given
the presence of spoofing in an arbitrary slot is given by P2 =
Ps

k ξ. Clearly, P2 also follows a normal distribution:

P2 ∼ N(
Ps

k
E(ξ),

P 2
s

sk2
V ar(ξ)) (16)

and its probability density function is

fP2
(x) =

1√
2πP 2

s

sk2 V ar(ξ)
e
− 1

2

sk2(x−Ps
k

E(ξ))2

P2
s V ar(ξ) . (17)

So, the test statistic distribution given H1 can be calculated as

fP |H1
(x|P1 + P2) = fP1+P2

(x) ≈ fP2
(x). (18)
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Here the approximation is due to the fact that the power
of spoofing signal is usually much stronger than that of the
AWGN (i.e., Ps

σ2 
 1), so noise power can be safely neglected
from the test statistic.
Given an equally-probable a priori distribution between H0

and H1, i.e., Prob(H0) = Prob(H1) = 0.5, the MAP criteria
downgrades to the maximum likelihood (ML) criteria. There-
fore the optimal detection threshold τo can be determined by
solving the following equation

fP |H1
(τo|P1 + P2)

fP |H0
(τo|P1)

= 1. (19)

In practice, because Ps 
 σ2, the solution to the above
equation always exists and is unique.
2) The Case of Random k: In this case, let pk denote the

probability by which the attacker selects k orthogonal codes
in a time slot, where 1 ≤ k ≤ m and

∑m
k=1 pk = 1. The

probability mass function of ξ in a time slot can be calculated
as

Prob(ξ = ks) =
m∑

k=1

pkProb(ξ = ks|k)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑n
k=1 pk

Ck
n

Ck
m
, ks = 0

∑ks+n
k=ks

pk
C

ks
m−nCk−ks

n

Ck
m

, 0 < ks < m− n

∑m
k=m−n pk

∑k
k′=m−n

Ck′−m+n
n

Ck′
m

, ks = m− n

(20)

Its expectation and variance can be calculated by substituting
(20) into (14). By following a similar derivation in the previous
deterministic case, we can calculate the test statistic distribu-
tion given H1 from (17) with the updated expectation and
variance in this random case. Therefore the optimal detection
threshold τo can be determined by solving (19) in this case.

IV. NUMERICAL EVALUATION
To evaluate the performance of VL-Watchdog, we resort

to simulations, which allow us to measure how the proposed
spoofing detector performs against a set of attack parameters.

A. Performance Metrics
We use the following spoofing detection rate PD, miss

detection rateMD, and false warning rate FW to characterize
the accuracy of the proposed VL-Watchdog detector:

PD =

∫ ∞

τo
fP |H1

(x|P1 + P2)dx,

MD =

∫ τo

−∞
fP |H1

(x|P1 + P2)dx,

FW =

∫ ∞

τo
fP |H0

(x|P1)dx.

(21)

where τo is the optimal detection threshold as defined in
(19). Based on these quantities, the precision and sensitivity
measures of the detector are defined as follows:

Precision =
PD

PD + FW
,Sensitivity =

PD

PD +MD
. (22)

The overall performance is measured by the F1 score [14],
which is defined as

F1 = 2
Precision× Sensitivity

Precision+ Sensitivity
=

2PD

2PD + FW +MD
. (23)

16 32 64 128
m

0.99
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0.994

0.996
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1

(a)

Precsision
Sensitivity
F1 score

5 6 7 8 9 101112131415
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1

(b)

5 6 7 8 9 101112131415
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1

(c)

1 2 3 4 5 6 7 8 910111213141516
k
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0.92

0.94

0.96

0.98

1

(d)

Fig. 3. Performance evaluation for spoofing detection under varying factors.

F1 score is calculated as harmonic mean between precision
and sensitivity and it represents the overall accuracy of the
detector.

B. Simulation Results

We simulate a multi-link VLC system with 8 legitimate LED
transmitters (n = 8). In each time window T , we assume
that a spoofer will present randomly with a 0.5 probability.
We are interested in evaluating how the VL-Watchdog will
perform against a set of parameters, including the number of
base vectors m, the spoofing power to noise ratio Ps

σ2 , the
number of time slots s within the given time window, and
the number of orthogonal codes k that the spoofer chooses in
fabricating its spoofing signal. In each simulation we vary the
value of one of the above parameters while keeping the others
constant. To this end, we assume the following default value
for the parameters in our simulation: m = 16, Ps

σ2 = 5, s =
5, and k = 8. The simulation results are shown in Figure 3.
1) Impact of the Number of Base Vectors: Figure 3(a)

shows the impact of the number of base vectors m on the
spoofing detection performance. We can see that there is an
optimal number of base vectors (m = 32), which is about
four times of the number of transmitters and it maximizes the
overall spoofing detection performance (F1 score). It could be
used to determine the optimal number of base vectors that
should be used for a given number of transmitters in a multi-
link VLC system. Additionally, there is a slight increase of
overall performance before the optimal m, which could be ex-
plained by the fact that adequate increase of spare basis would
benefit the overall performance. After the optimal m, we can
see that with the increase ofm, F1 score decreases rapidly and
the Sensitivity measurement drops off while the Precision
measurement maintains at approximately same level. It turns
out that the decline of the Sensitivity measurement is mainly
induced by the rapid decrease of PD, which leaves FW
almost unchanged. It is not surprising because as the increase
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of m, the average power assigned to each base vectors from
spoofing will decrease rapidly, which will make the spoofing
signal behaves much more similar with the background noise.
2) Impact of Spoofing Power: Figure 3(b) shows the impact

of the spoofing power to noise ratio Ps

σ2 on the spoofing
detection performance. As for the numerical simulation, we
fix the noise power σ2 = 1, so the spoofing power Ps

changes accordingly with the Ps

σ2 ratio. We can see from
the figure that with the increase of the Ps

σ2 ratio, the overall
spoofing detection performance degrades gradually, i.e., the
F1 score decreases gradually. We can also observe that the
Precision measurement remains almost unchanged while the
Sensitivity measurement decreases rapidly. It might be a little
surprising at first sight, but it would be still in line with our
intuition if we take a thorough consideration on (18). Although
the mean of the detected average spoofing power on spare
basis increases with Ps, the variance increases quadratically,
so the enlarged variance would eventually induce the decrease
of PD, which is represented as Sensitivity measurement in
the figure.
3) Impact of the Number of Time Slots: Figure 3(c) shows

the impact of the number of time slots s within a given time
window on the spoofing detection performance. We can see the
increase of the overall spoofing detection performance from F1

score with the increase of s, but it has a very limited impact
which is about 0.1%. In practice, as the power of spoofing
signal differs significantly from that of the background noise,
we can always expect using a large s would differentiate a
spoofing attack from noise with less randomness. It is worth
noting that once s exceeds a certain number, e.g., s ≥ 8 in
this case, it won’t impact the spoofing detection performance
anymore. This could be utilized to explore an minimum s as
we always prefer to detect a potential spoofer in an efficient
way, given the condition that the received power projection
process in VL-Watchdog is performed in each time slot.
4) Impact of the Number of Random Selections: In order

to simplify the calculation, we only simulate the deterministic
selection case, in which k is a random number but it’s
deterministic to be the same for all the s time slots. Figure 3(d)
shows the impact of the number of orthogonal codes k that
the spoofer chooses in fabricating its spoofing signal on the
spoofing detection performance. We can see an improvement
of the overall spoofing detection performance from F1 score
as the increase of k. It can be also observed that there is
a significant improvement of overall performance when k is
relative small and then the overall performance saturates once
k exceeds the number of transmitters (k > 8), which is in line
with the intuition that for a fixed m and n, with the increase
of k, there could be much more proportions of the average
spoofing power projected onto the spare basis to be detected
since it’s assumed that the spoofing power is equally assigned
to k orthogonal basis.

V. CONCLUSIONS

In conclusion, to secure the indoor multi-link VL system
from spoofing attack, we proposed a signal-level always-on

spoofing detection framework VL-Watchdog in this paper,
which piggybacks on the redundant orthogonal encoding. By
exploiting the intrinsic linear superposition properties of VL,
the transmission mode consisting of periodically changed
orthogonal codes was used to identify encoded data trans-
mitted by multiple LED transmitters in case of rogue LED
transmitters. The proposed VL-Watchdog was numerically
evaluated under different factors and it was proved to be effec-
tive. In terms of implementation, the proposed VL-Watchdog
can be easily integrated into the current VL system with a
small hardware add-on of minimum overhead under existing
infrastructure.
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