

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 Efficiency is Doing Things Right: High Throughput, Automated, 3D Methods in the Modern Era
19 of Otolith Morphometrics
20

21 Micah J. Quindazzi^a, Adam P. Summers^b, Francis Juanes^a

22 ^a Department of Biology, University of Victoria, Victoria, BC, V8P 5C2 Canada

23 ^b Department of Biology, University of Washington, Friday Harbor, WA, 98250 USA

24
25 *Corresponding author: m.j.quindazzi@gmail.com [Orcid ID: 0000-0002-5468-4861]

47 **Abstract**

48
49 The morphometrics of fish otoliths have been commonly used to investigate population
50 structures and the environmental impacts on ontogeny. These studies can require hundreds if not
51 thousands of otoliths to be collected and processed. Processing these otoliths takes up valuable
52 time, money, and resources that can be saved by automation. These structures also contain
53 relevant information in three dimensions that is lost with 2D morphometric methods from
54 photographic analysis. In this study, the otoliths of three populations of Coho Salmon
55 (*Oncorhynchus kisutch*) were examined with manual 2D, automated 2D, and automated 3D
56 otolith measurement methods. The automated 3D method was able to detect an 8% difference in
57 average otolith density, while 2D methods could not. Due to the loss of information in the z-axis,
58 and the longer processing time, 2D methods can take up to 100 times longer to reach the same
59 statistical power as automated 3D methods. Automated 3D methods are faster, can answer a
60 wider range of questions, and allow fisheries scientists to automate rather monotonous tasks.

61
62
63 Keywords: μ CT, otoliths, morphometrics, 3D
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

79 **Introduction**

80

81 Morphometrics is the study of the variation of size and shape. While biologists have used
82 morphometrics for centuries, the use of quantitative morphometrics of structures within
83 organisms is more recent. The first wave of quantitative morphometrics was used for taxonomic
84 and correlation studies (Thompson 1917; Phillips 1948). By the 1960s, multivariate analyses,
85 such as Principal Components Analysis (PCA), allowed for a second wave of quantitative
86 morphometric studies that not only compared the correlation between two variables, but allowed
87 for multiple correlations and covariations to be tested in one model (Sokal 1965). The third wave
88 of quantitative morphometrics is known as geometric morphometrics; it uses outlines or
89 landmarks to compare variation of forms across homologous points and to preserve the attributes
90 of shape lost by prior methods (Adams et al. 2004). This era of quantitative morphometrics
91 developed the use of 2D or 3D landmark points related to biologically significant regions of a
92 structure to more accurately assess the differences in overall shape (Rohlf and Marcus 1993).
93 Newer technologies, like high-resolution X-ray microcomputed tomography (HRXMT) and 3D
94 Slicer, provide biologists with a new set of tools. These developments have led to the possibility
95 of high throughput, automated, 3D morphometrics.

96 For many biological systems measuring all three dimensions is not important to capture
97 the extent of morphological variation. If the specimen can be oriented so that there is minimal
98 information contained in the z-axis, then 2D analyses are perfectly adequate and can be
99 automated with existing tools like ShapeR (Libungan and Pálsson 2015). Butterfly wings are a
100 great example of a structure where a 2D analysis would likely capture the vast majority of the
101 morphological variation. However, in many cases there is no orientation that sufficiently reduces
102 the information in the third dimension, and so it becomes important to capture that geometric

axis as an axis of variation. For example, when examining sculpin heads Buser et al. (2018) found that 2D and 3D morphospaces were quite different, with one clade diverging in the 2D but not the 3D analysis. They also found mouth size correlated with the importance of highly mobile prey items only when the z-axis was included. Though a 3D analysis will cover more of the morphological variation over 2D analysis, 2D analysis is still commonly used because getting 3D data is both expensive and time consuming (Cardini 2014; Afanasyev et al. 2017). In recent years, methods to collect 3D information from samples have become cheaper and easier to use, with techniques such as photogrammetry and computed tomography (CT). One method of getting 3D data from samples is HRXMT, which involves taking radiographs of samples at multiple angles to then produce a 3D volume. The 3D volume produced is accurate down to the scale of μm , though the newest models are accurate down to 200nm (Hipsley et al. 2020). This method is also referred to more simply as microcomputed tomography (μCT). In the past 5 years μCT scanners have gotten cheaper; free, open source software has been developed; and new workflows are being documented to streamline the data collection process (Buser et al. 2020). Furthermore, new techniques for high throughput μCT scanning decrease cost per specimen drastically especially since many materials can be reused in subsequent analyses (Hipsley et al. 2020).

Otoliths play a sensory role for the fish, and they serve many purposes for the ichthyologist. They are usually composed of aragonite (calcium carbonate) and organic material, and are nearly three times as dense as the body of fish; thus pressure waves can be detected by the fish as the otoliths move relative to the surrounding tissue (Degens et al. 1969; Popper and Lu 2000). The mineral and organic material form alternating bands in the form of daily rings or other periodic patterns tied to individual growth, and it is this feature that is often exploited by

126 biologists (Pannella 1971; Geffen 1982). Mineral deposition can be impacted by many factors,
127 including temperature, somatic growth, and genetics (Mosegaard et al. 1988; Conover 1990).
128 This deposition causes differences in otolith microstructure which accumulate into differences in
129 otolith macrostructure over time. Here we are not interested in chemical or microstructural
130 differences in otoliths, but rather the emergent macrostructural differences that arise among
131 different populations of fishes that can be detected through otolith morphometrics.

132 Otolith morphometrics have been used by fisheries scientists as a tool for body size
133 determination, species determination, and stock discrimination within a species (Campana and
134 Casselman 1993; Waessle et al. 2003). Generally, otolith morphometric studies have used simple
135 linear analyses, such as otolith length (Waessle et al. 2003), or more complex 2D analyses, such
136 as elliptical Fourier analysis and overall otolith shape (Campana and Casselman 1993; Tracey et
137 al. 2006). Otolith differences correlate well with genetic differences, and therefore provide a
138 cheap and robust method for studying stock discriminations within a species (Afanasyev et al.
139 2017). More recently, researchers have used 3D shape analyses to detect differences in the
140 overall volume and density of otoliths, as well as the 3D contour of the otoliths (Bignami et al.
141 2013; Marti-Puig et al. 2016; Radford et al., 2021). While 2D analyses are generally useful for
142 body size determination and stock discrimination, they will miss crucial details, such as changes
143 in sulcus depth and morphology that would be identified in a 3D full shape analysis (Schulz-
144 Mirbach et al. 2011). Traditional morphometric methods are also limited in terms of throughput;
145 the researcher generally must analyze samples one at a time and pay special attention to
146 orientation, photo quality, and extraneous factors that can impact the quality of the analysis.
147 Automated 3D methods can be done in bulk, they will generally produce the same quality of
148 image, and the researcher will have to pay less direct attention to the measurement process to get

149 useable results. To alleviate the concerns over costs, fisheries managers do not even need to
150 invest in the technology themselves, as there are plenty of facilities that can conduct bulk μ CT
151 scans for little to no cost outside of the shipment of samples. Essentially, automated 3D methods
152 account for relevant z-axis information contained within otoliths that are not accounted for by 2D
153 methods, and in a fraction of the time without much direct involvement in the collection of the
154 morphometric data by fisheries scientists.

155 The goals of this study were four-fold, to: 1) develop a technique for rapidly,
156 quantitatively, μ CT scanning hundreds of otoliths per hour; 2) use free, open source software to
157 measure the dimensions and the density of the otoliths; 3) compare μ CT scan based dimensional
158 measurements to microscopy based measurements both for accuracy and time spent per
159 specimen; 4) determine whether there are population based differences in otolith dimensions and
160 density.

161

162 **Material and Methods**

163 *Sample Collection*

164 Sagittal otoliths (hereafter ‘otoliths’) were collected from Coho Salmon (*Oncorhynchus*
165 *kisutch*) from the Big Qualicum, Chilliwack, and Quinsam hatcheries (British Columbia,
166 Canada). Coho Salmon were selected from fish euthanized for multiple broodstock egg takes
167 from October 30th until December 19th, 2018. Since our collections were opportunistically
168 collected from fish euthanized for the primary purpose of broodstock egg takes, no animal care
169 approval was required for this study. For each Coho Salmon the sex, origin (hatchery/wild), and
170 the fork length (FL) were recorded. Otolith pairs were removed, washed with deionized water,
171 and cleaned of any excess organic material and moisture. They were then stored dry in pairs.

172 Twelve aragonitic otolith pairs were selected for this analysis from each hatchery; six of the
173 otolith pairs were from hatchery fish, and the other six were from wild fish. There was an equal
174 distribution of males and females in each of these groups. One set of otoliths from the Chilliwack
175 hatchery was removed due to a break in one of the otoliths before all the analyses could be
176 completed.

177 ***Otolith Measurements***

178 Otoliths were submerged in a plastic petri dish filled with Super-Q deionized water. The
179 distal side of the otoliths was viewed against a black background using an Olympus SZX16
180 stereoscope (Olympus, Shinjuku, Tokyo) at 20x magnification. Whole otolith photographs were
181 captured by an Olympus DP26 camera (Olympus, Shinjuku, Tokyo) using the software Olympus
182 cellSens Standard (Olympus, Shinjuku, Tokyo). Manual measurements of the Feret length
183 (hereafter called otolith length) and Feret width (hereafter called otolith width) of the otoliths
184 were collected by measuring the image within cellSens Standard to the nearest 5 μ m.
185 Measurements were replicated three times to examine variation among measurements. Otoliths
186 were weighed with a Mettler Toledo ME104 analytical balance (Mettler Toledo, Columbus,
187 Ohio) to the nearest 0.1 mg.

188 Photographs of the otoliths were then analyzed using the R package ShapeR. This R
189 package automatically recorded the length, width, perimeter, and area of the otoliths to the
190 nearest nanometer, but this was rounded to the nearest 5 μ m as this was the resolution of the
191 image. Average superficial density (g/cm²) was calculated for each Coho Salmon by dividing the
192 combined weight by the total surface area of both otoliths. While ShapeR is generally used to

193 investigate overall 2D shape differences between stocks using elliptical Fourier analysis, this was
194 not examined within this study.

195 Three sample holders were 3D printed with an Ultimaker S5 (Ultimaker, Netherlands)
196 using Ultimaker Tough PLA (Ultimaker, Netherlands; Fig 1 A). Each holder was a plastic
197 cylinder which had 24 wells spaced out equidistantly from one another, into which the otolith
198 pair from one fish was placed (Fig 1 B). The three holders were attached to each other by
199 winding thin plastic packing film around them. The stack of three holders were μ CT scanned
200 with a Bruker SkyScan 1173 micro-source CT (μ CT) scanner (MicroPhotonics, Allentown,
201 Pennsylvania) with a 1mm aluminum filter at 60 μ A and 133mV. The resolution of the CT scan
202 was 13.8 μ m. The projections were processed into slice data with the Bruker proprietary software
203 nRecon (Bruker, Germany), then visualized and analyzed with the free, open-source software 3D
204 Slicer (www.slicer.org). Otoliths are the only material in the CT scan with a significant density,
205 far above the plastic sample holder or the background air. Due to this substantial difference in
206 density, the automatic threshold detection algorithm within 3D Slicer will set an appropriate
207 threshold based around the density of the otoliths. Setting a manual threshold is possible, but this
208 likely would not impact the results of this study. First, a bounding box is created using the
209 automatic threshold with all of the samples contained within it. Next, under the “Island” function
210 we can split islands into segments (Fig 1 C). This entails splitting every disconnected, radio-
211 dense, 3D volume into its own segment (Fig 1 D). 3D Slicer can then calculate the volume,
212 diameters in all 3 dimensions (length, width, thickness), mass, average density, centroid, and xyz
213 extents by using the “SegementStatistics” tool. The length measured is also the Feret length, but
214 width is measured as the longest distance between two tangential lines perpendicular to the Feret

215 length, and thickness is the shortest distance between two tangential lines perpendicular to the
216 Feret length.

217

218 Average otolith density was determined from μ CT scans by dividing the combined
219 volume of both otoliths by the combined mass. Since all of the otoliths were scanned at the same
220 time with constant settings, the densities are comparable among these data. Otolith μ CT scanning
221 was conducted at the Friday Harbor labs (Washington, USA). Otolith scans and the resulting
222 segmentations are available on OpenScience Framework.

223 Average otolith morphometrics, rather than left and right otolith morphometrics, were
224 used for this study as individual Coho Salmon were used as the unit of replication.

225

226 ***Data Analysis***

227 Data were analyzed with R-studio (RStudio Team, 2015; R Core Team, 2020). Linear
228 regression models were generated for comparisons between the different types of morphometric
229 measurements estimated by each method. Analyses of variance (ANOVA) was used to determine
230 the impacts of hatchery, sex, origin (hatchery stock or wild stock), and the interactions between
231 these factors, on the otolith morphometrics of each Coho Salmon. Nonsignificant interactions
232 were removed from models, and nonsignificant factors were combined. Models reported in this
233 study were plotted through the “ggplot2” package (Wickham 2016).

234 Power analyses were conducted to compare the models of hatchery vs. otolith superficial
235 density (g/cm^2) and hatchery vs. otolith density (g/cm^3). A power curve simulation was run using
236 the R package simr (Green and MacLeod 2016) to estimate how many samples would be needed
237 to achieve the same statistical power across both methods (keeping power and alpha constant).

238 Power was set at 80% and alpha was set at 0.05. We ran 1000 power curve simulations for both
239 datasets. To reach the parameters indicated for superficial density, we extended the model by 150
240 samples. We also qualitatively compared the time usage across methods.

241 **Results**

242

243 **Samples**

244 Coho Salmon ranged in FL from 52.8 to 82 cm. Average Coho Salmon FLs were
245 different among hatcheries ($F (2,32) = 4.342$, $p = 0.022$) and a post-hoc Tukey test revealed this
246 was driven by a difference between the Quinsam and Chilliwack fish, with Quinsam Coho being
247 7.5 cm larger on average. The differences in average FL among hatcheries was accounted for in
248 all further analyses. If FL was not a significant term within the model, it was dropped from the
249 model. On average, male Coho were 4.8 cm longer than female Coho. However, the sex of the
250 Coho itself had no significant impact on any aspect of otolith shape/size. The origin of the Coho,
251 i.e. whether they were hatchery or wild, had no discernable impact on the average FL ($t (33) =$
252 1.188, $p = 0.243$). Sex and origin were included in the initial steps of the following models, but
253 they were nonsignificant in every model so they were dropped from the final models reported on
254 in this study.

255

256 **Otolith Measurements**

257 Thirty-five Coho otolith pairs were measured in total, 11 from the Chilliwack hatchery,
258 and 12 each from the Big Qualicum and Quinsam hatcheries (Table 1). The manual
259 measurements of the otoliths showed some variation between measurements, with the standard
260 error (SE) of length measurements being $5.97\mu\text{m}$ and the SE of width measurements $12.7\mu\text{m}$.

261 When accounting for FL, otolith length and width did not differ across the hatcheries (F_{length}
262 ($2,31$) = 0.11 , $p_{length} = 0.896$; F_{width} ($2,31$) = 0.173 , $p_{width} = 0.842$), and both metrics were closely
263 related to each other ($R_{adj}^2 = 0.419$, $p < 0.001$; Fig 2). Average otolith length and width were
264 correlated with Coho Salmon FL ($R_{adj}^2 = 0.298$, $p < 0.001$; $R_{adj}^2 = 0.335$, $p < 0.001$), with width
265 having a slightly stronger relationship (Fig 3). When accounting for FL, otolith mass was not
266 significantly different across hatcheries (F ($2,31$) = 0.910 , $p = 0.413$), or origin (t (33) = 0.268 , p
267 = 0.790), and while there was no directional asymmetry, on average the otoliths pairs differed in
268 mass by 3.4%. Otolith mass asymmetry was not different across hatcheries (F ($2,32$) = 0.960 , $p =$
269 0.394 , $df = 2$) or origin (t (33) = -0.758 , $p = 0.454$).

270 The average manual otolith length and width measurements were nearly identical to the
271 length and width measurements produced automatically by ShapeR ($R_{adj}^2 > 0.999$, $p < 0.001$ for
272 all length width measurements). ShapeR will produce the same values as long as the image and
273 settings are the same. Along with the otolith length and width, ShapeR also provided values for
274 the otolith perimeter and area. When accounting for FL, otolith perimeter and area did not vary
275 across hatcheries ($F_{perimeter}$ ($2, 31$) = 0.150 , $p_{perimeter} = 0.861$; F_{area} ($2,31$) = 0.563 , $p_{area} = 0.575$) or
276 origin ($t_{perimeter}$ (33) = 0.249 , $p_{perimeter} = 0.805$; t_{area} (33) = 0.022 , $p_{area} = 0.983$). Otolith area
277 provided a stronger relationship with Coho Salmon FL than either length or width ($R_{adj}^2 = 0.418$,
278 $p < 0.001$). The superficial otolith density was not significantly different among hatcheries (F
279 ($2,32$) = 0.476 , $p = 0.626$), although it was highest overall in the Quinsam hatchery (Fig 4).

280 The μ CT scanner added volumetric and density data along with all other morphometric
281 values measured previously ($R_{adj}^2 > 0.999$, $p < 0.001$ for all four measurements). Measurements
282 produced by the μ CT scanner will have no variation as long as the same image and settings are
283 used. We note that non-CT based measures of volume are quite difficult to do on otoliths that are

284 this small. There was one density measurement from the Chilliwack hatchery that appeared as an
285 outlier, with CH18-225 having an average otolith density of 2.105 g/cm^3 . This observed density
286 was far outside reported values for aragonite and may be a potential outlier. We report results of
287 the 3D data with and without the potential outlier. When accounting for FL, otolith volume was
288 not significantly different across hatcheries ($F(2,31) = 0.726, p = 0.492$ with potential outlier;
289 $F(2,30) = 0.537, p = 0.590$ without potential outlier). Otolith density was significantly different
290 across hatcheries ($F(2,32) = 26.31, p < 0.001$ with potential outlier; $F(2,31) = 67.73, p < 0.001$
291 without potential outlier), with Quinsam having the densest otoliths at 2.735 g/cm^3 on average
292 (Fig 5). The mass measured by the μ CT scanner was significantly correlated to weights collected
293 by hand ($R_{\text{adj}}^2 > 0.999, p < 0.001$).

294 The difference in strength between the 2D and 3D analyses was investigated by
295 comparing the statistical power of superficial density and real density analyses. The superficial
296 density data were extended by 150 otolith pairs per hatchery to reach a power of 80%, as the
297 power of the initial analysis based on 11-12 pairs per hatchery was only 12.6%. Regardless of
298 whether or not CH18-225 was included, the 2D superficial density metric reached 80% power at
299 around ~ 110 -130 otolith pairs per hatchery (Fig 6), while the 3D density metric reached the same
300 alpha and power values at around 3-4 otolith pairs per hatchery (Fig 7).

301

302 ***Time Usage***

303

304 Time usage was not strictly quantified in this analysis, but rather approximations are
305 provided based on experience. Otolith photography can vary between 1-5 minutes per otolith
306 depending on the condition of the otoliths being examined. Otoliths must be correctly oriented

307 with all extraneous organic particles removed. The otolith length and width can be manually
308 measured within 1 minute per otolith depending on how the photo was taken and how easy it is
309 to discern the correct measurement axes. ShapeR takes roughly 1 minute to produce the otolith
310 length, width, perimeter, area, and the shape file for an otolith. ShapeR also fails to recognize the
311 outline of the otolith roughly 10% of the time (8 in the initial run during this study), resulting in
312 further time spent on editing the photo or settings to produce an accurate outline. On average, it
313 takes 3 minutes to conduct either a manual measurement or a 2D automatic measurement. In
314 contrast, all 70 otoliths were μ CT scanned in 45 minutes, resulting in an otolith being completed
315 every ~40 seconds. On average, 4.5 otoliths are imaged and measured by the μ CT scanner for
316 every otolith analyzed by hand or with ShapeR.

317

318 **Discussion**

319 When measuring otoliths by hand, there are a few problems to overcome. Observers need
320 to distinguish the Feret measurement axes to measure correctly, there is inherent measurement
321 error, and it can be time consuming. Here we can see that an experienced researcher can
322 generally keep repeatability rates to about the limit of detection, but for less skilled observers
323 there is greater room for error. Conducting a study with many otoliths is a monotonous task that
324 can result in errors. And yet, with all of these problems, only a limited amount of information
325 can be collected. In this study, otolith length and width were correlated with the fork length of
326 the Coho but these relationships did not differ between stocks. This of course is not
327 surprising for anyone who has worked with otolith morphometrics, as sample sizes tend to need
328 to be in the hundreds, if not thousands (Campana & Casselman, 1993; Waessle et al., 2003;
329 Hüssy et al., 2016). To increase the amount of information collected by hand, it is possible to use

330 software such as ImageJ (National Institutes of Health, Bethesda, Maryland) to measure the
331 otolith perimeter and area. However, conducting otolith morphometrics manually is inefficient
332 given the technology available to fisheries scientists today.

333 Automated 2D measurements of otolith length, width, perimeter, and area can be
334 captured by ShapeR in about a fifth of the time it would take an experienced observer to produce
335 them without nearly as many issues with repeatability or reproducibility. ShapeR can be run in
336 the background allowing researchers to focus on other tasks. Another advantage of ShapeR over
337 manual measurements is the automatic production of Fourier and Wavelet coefficients to
338 distinguish species and populations within a species. This method has proved to be a useful tool
339 for fisheries scientists investigating differences between stocks (Libungan and Pálsson 2015;
340 Song et al. 2019). We were not surprised to find that with our 2D morphometric data, we were
341 unable to find differences between sex, hatchery, or origin as our sample size was not large
342 enough to detect these differences, if they exist. While ShapeR is certainly useful, it is still
343 limited in comparison to the 3D Slicer by its processing speed and the limitations inherent to 2D
344 analyses.

345 The automated 3D μ CT scanner was an order of magnitude faster at measuring the set of
346 35 otolith pairs compared to either of the other two techniques (manual 2D and automated 2D).
347 While both the ShapeR and the μ CT scanner can measure otoliths while the researcher works on
348 other tasks, it is still preferable to have a method which produces results faster. ShapeR produces
349 output errors frequently enough that fisheries scientists are almost guaranteed to encounter them
350 in any sample set run. In this study for example, four of the 70 photos had to be rerun in ShapeR
351 due to output errors. As a consequence, ShapeR data will almost always require some reanalysis,

352 further adding analysis time. There appears to have been a single measurement error in the 3D
353 measurements, but it did not impact any of the findings in the study.

354 In the sample set used in the study, there was a significant difference in the density of
355 otoliths, with Coho from Quinsam hatchery having otoliths that were roughly 8% denser on
356 average than fish from the other two hatcheries. In contrast, the 2D analysis comparing
357 superficial density had more variability in terms of the observations around the means as the z-
358 axis was not captured and thus showed no differences across hatcheries. While it is not surprising
359 that there were no differences between hatcheries found in either the manual 2D or automated
360 2D methods, it is very surprising that such a clear difference between hatchery populations was
361 noted by the 3D method with such few samples. Similar conclusions have been noted before
362 when comparing the results of 2D and 3D morphometrics; if there is relevant z-axis information
363 lost in the conversion to 2D, then 3D methods are more accurate in representing the overall
364 structure (Meyer et al. 2009; Buser et al. 2018). The 2D conversion of 3D data will essentially
365 mask the differences among populations if relevant z-axis information is not accurately
366 represented.

367 When comparing data quality and quantity, 3D otolith morphometrics allow fisheries
368 scientists to collect more data from their otoliths, such as otolith volume and density (as seen in
369 this study and Radford et al., 2021) and whole otolith contour analyses (as seen in Marti-Puig et
370 al. 2016). Both methods may have been able to approach a similar conclusion, that there are
371 differences in otolith densities between Coho hatchery populations, but in order to have
372 equivalent statistical power, we would need to process otoliths from roughly 30 times more fish
373 in the 2D analysis. This does not exactly mean that the 3D method will produce significant
374 results in 3-4 fish every time, but that where there are differences in populations, the 3D method

375 will likely require far fewer samples than any 2D method attempting to reduce the z-axis to
376 produce similar data. The lack of statistical power compounds with the extra time 2D manual and
377 2D automatic methods take, and so processing this many more otoliths would take over 100
378 times as long. These results are based on our sample set; it is possible that these results will vary
379 based on species and the differences among populations of the species. Regardless, if our sample
380 set is representative, and if there is a significant difference that involves z-axis information,
381 automated 3D methods are clearly better. Even if there is not a significant difference that
382 involves z-axis information in another dataset, automated 3D methods are still better than rival
383 2D methods as processing time is about 4.5 times faster. This method should be applicable to the
384 vast majority of fish species as the general form of otoliths is well conserved. There are some
385 fish species, such as the California Flashlightfish (*Protomyctophum crockeri*), that have more
386 squat otoliths, so both ShapeR and 3D Slicer would misinterpret the width as the length since is
387 the longest dimension (Lowry, 2011). However, these issues could be easily accounted for with
388 some diligence on the part of the researcher.

389 The difference in densities across these hatcheries is interesting as otolith density plays a
390 role in how fish hear (Oxman et al. 2007). These otoliths all looked aragonitic under a dissecting
391 microscope, yet none of them were near the commonly cited value of $2.93\text{g}/\text{cm}^3$, and in fact all
392 but one population had average otolith densities lower than the reported value for vateritic
393 otoliths, $2.65\text{g}/\text{cm}^3$ (Campana and Thorrold 2001). There are a couple of possible explanations. It
394 may be that since organic matter is incorporated into the otolith at roughly 0.2-10% of the otolith
395 by mass (Degens et al. 1969), this may vary across the different populations, which could cause a
396 difference in density. While the regulation of otolith increment formation is not well understood
397 (Thomas and Swearer 2019), it is possible that there is a difference in a regulatory pathway that

398 causes differences in increment formation between populations which manifests as differences in
399 otolith density at the macroscopic level. Another possibility is that there may be differences in
400 raising conditions that may lead to some of these populations experiencing increased CO₂ levels,
401 thus experiencing a more acidic environment. This has been found to impact the volume and
402 mass of fish otoliths (Bignami et al., 2013). However, there was no difference in otolith density
403 between hatchery and wild fish within each hatchery, which may indicate that there is some
404 baseline genetic basis for the difference, as hatcheries tend to use wild fish as part of their
405 broodstock and hatchery fish do interbreed with the wild fish outside of the hatchery. Whatever
406 the case may be, this result has implications for the hearing and behavior of these Coho, as well
407 as the use of methodologies that assume generalizations about otolith composition, such as Laser
408 Ablation Inductively Coupled Plasma Mass Spectrometry (Brophy et al. 2003). We would not
409 have found this result as easily, if at all, without the use of a 3D analysis.

410 The future of otolith morphometrics is in high throughput, automated, 3D, quantitative
411 morphometric analyses. Other advancements in the field could come by machine learning to
412 automate the collection of landmarks, thus allowing for geometric morphometric analyses.
413 Otoliths contain relevant z-axis information, therefore reducing an analysis to two dimensions
414 loses biologically relevant data. Using the method(s) put forward here will result in more and
415 better data every time. Fisheries scientists would have the ability to run hundreds of otoliths a
416 day, answer a wider range of questions, and free themselves from repetitive methods that can be
417 accomplished by machines. While the startup cost of μ CT scanning equipment is great, there are
418 facilities that are able to run CT scans at very low costs. Throughout this study, the use of
419 automated 3D μ CT scanners produced more data, with more statistical power, faster and more

420 efficiently than alternative methods; other methods for otolith morphometrics may simply be
421 outdated.

422

423 **Acknowledgements**

424 The Watershed Enhancement Managers, Aaron Burgoyne, Edward Walls, and Jeremy Mothus
425 are acknowledged here for access to each hatchery. The Whiteley Center at the Friday Harbor
426 Labs is thanked for the time to “hatch” these ideas.

427

428 **Figure Captions**

429

430 Figure 1. A: One of the three sample holders that were 3D printed with an Ultimaker S5
431 (Ultimaker, Netherlands) using Ultimaker Tough PLA (Ultimaker, Netherlands). 15 wells
432 existed in each holder. B: Otolith holder with 24 Coho otoliths as viewed when CT scanned. One
433 pair of otoliths per fish was put in each individual well. Scale bar indicates 10mm. C: Otoliths
434 segmented into individual otoliths using the "Islands" function in 3D Slicer (www.slicer.org).
435 Scale bar indicates 10mm. D: View of the sulcus side of one of the Coho otoliths. Scale bar
436 indicates 2.5mm.

437

438 Figure 2. Linear relationship between the average otolith length and width of Coho Salmon from
439 the Big Qualicum, Chilliwack, and Quinsam hatcheries from the year 2018 ($n = 35$). The line
440 represents a linear regression line with the grey area indicating standard error.

441

442 Figure 3. Linear relationship between the Coho Salmon FL and average otolith width of Coho
443 Salmon from the Big Qualicum, Chilliwack, and Quinsam hatcheries from the year 2018 (n =
444 35). The line represents a linear regression line with the grey area indicating standard error.

445

446 Figure 4. Boxplots showing the average otolith superficial density of Coho Salmon from the Big
447 Qualicum (BQ; n = 12), Chilliwack (CH; n = 11) and Quinsam (Q; n = 12) hatcheries. Outliers
448 are indicated by black dots. No significant differences were detected across hatcheries (see text
449 for details).

450

451 Figure 5. Boxplots showing the average otolith density of Coho Salmon from the Big Qualicum
452 (BQ; n = 12), Chilliwack (CH; n = 10) and Quinsam (Q; n = 12) hatcheries. CH18-225 is not
453 included in this figure as it was identified as a potential outlier. Significant differences were
454 detected across hatcheries (see text for details).

455

456 Figure 6. Power curve simulation of ANOVA of superficial otolith density (g/cm²) of fish from
457 the Big Qualicum, Chilliwack, and Quinsam hatcheries based upon the data of the 35 otolith
458 pairs in this study. Observations were extended to 150 otolith pairs per hatchery. Power was set
459 at 80% and alpha was set at 0.05. These conditions were met between 110-130 Coho Salmon per
460 hatchery.

461

462 Figure 7. Power curve simulation of ANOVA of otolith density (g/cm³) of fish from the Big
463 Qualicum, Chilliwack, and Quinsam hatcheries based upon the data of the 35 otolith pairs in this

464 study. Power was set at 80% and alpha was set at 0.05. These conditions were met between 3-4
465 Coho Salmon per hatchery.

466

467 **Competing interests**

468 The authors declare there are no competing interests.

469

470 **Contributors' statement**

471 MJQ: Substantial contributions to the conception and design of the work, collection of all 2D
472 data, data analysis and interpretation, drafting and revision of the manuscript, agreement to be
473 accountable for all aspects of the work, and final approval of the version to be published.

474

475 APS: Substantial contributions to the conception and design of the work, collection of all 3D
476 data, revision of the manuscript, and final approval of the version to be published.

477

478 FJ: Substantial contributions to the conception and design of the work, principal investigator,
479 revision of the manuscript, and final approval of the version to be published.

480

481 **Funding Statement**

482 Funding for this research was provided by NSERC, the Pacific Salmon Foundation, CFI/BCKDF
483 and the Liber Ero Foundation.

484

485

486 **References**

487

488 Adams, D. C., Rohlf, F. J., and Slice, D. E. 2004. Geometric morphometrics: ten years of
489 progress following the 'revolution'. *Ital. J. Zool.* **71**:5-16. doi:10.1080/11250000409356545.

490

491 Afanasyev, P. K., Orlov, A. M., and Rolsky, A. Y. 2017. Otolith shape analysis as a tool for
492 species identification and studying the population structure of different fish species. *Biol. Bull.*
493 **44**:952-959. doi:10.1134/S1062359017080027.

494

495 Bignami, S., Enochs, I. C., Manzello, D. P., Sponaugle, S., and Cowen, R. K. 2013. Ocean
496 acidification alters the otoliths of a pantropical fish species with implications for sensory
497 function. *Proc. Natl. Acad. Sci. USA.* **110**(18):7366-7370. doi:10.1073/pnas.1301365110.

498

499 Brophy, D., Danilowicz, B. S., and Jeffries, T. E. 2003. The detection of elements in larval
500 otoliths from Atlantic herring using laser ablation ICP-MS. *J. Fish Biol.* **63**:990-1007.
501 doi:10.1046/j.1095-8649.2003.00223.x.

502

503 Buser, T. J., Sidlauskas, B. L., and Summers, A. P. 2018. 2D or not 2D? Testing the utility of 2D
504 vs. 3D landmark data in geometric morphometrics of the sculpin subfamily Oligocottinae
505 (Pisces; Cottoidea). *Anat. Rec.* **301**(5):806-818. doi:10.1002/ar.23752.

506

507 Buser, T. J., Boyd, O. F., Cortés, Á., Donatelli, C. M., Kolmann, M. A., Luparell, J. L.,
508 Pfeiffenberger, J. A., Sidlauskas, B. L., and Summers, A. P. 2020. The natural historian's guide
509 to the CT galaxy: step-by-step instructions for preparing and analyzing computed tomographic

510 (CT) data using cross-platform, open access software. *Integr. Org. Biol.* **2**(1):1-28.

511 doi:10.1093/iob/obaa009.

512

513 Campana, S. E., and Casselman, J. 1993. Stock discrimination using otolith shape analysis. *Can.*
514 *J. Fish. Aquat. Sci.* **50**:1062-1083. doi:10.1139/f93-123

515

516 Campana, S. E., and Thorrold, S. R. 2001. Otoliths, increments, and elements: keys to a
517 comprehensive understanding of fish populations? *Can. J. Fish. Aquat. Sci.* **58**:30-38.

518 doi:10.1139/f00-177

519

520 Cardini, A. 2014. Missing the third dimension in geometric morphometrics: how to assess if 2D
521 images really are a good proxy for 3D structures? *Hystrix* **25**:73–81. doi:10.4404/hystrix-25.2-
522 10993

523

524 Conover, D. O. 1990. The relation between capacity for growth and length of growing season:
525 evidence for and implications of countergradient variation. *Trans. Am. Fish. Soc.* **119**:416-430.

526 doi: 10.1577/1548-8659(1990)119<0416:TRBCFG>2.3.CO;2.

527

528 Degens, E. T., Deuser, W. G., and Haedrich, R. L. 1969. Molecular structure and composition of
529 fish otoliths. *Mar. Biol.* **2**:105-113. doi:10.1007/BF00347005.

530

531 Geffen, A. 1982. Otolith ring deposition in relation to growth rate in herring (*Clupea harengus*)
532 and turbot (*Scophthalmus maximus*) larvae. *Mar. Biol.* **71**:317-326. doi:10.1007/BF00397048.

533

534 Green, P., and MacLeod, C. J. 2016. SIMR: an R package for power analysis of generalized
535 linear mixed models by simulation. *Methods Ecol. Evol.* **7**:493-498. doi: 10.1111/2041-
536 210X.12504.

537

538 Hipsley, C. A., Aguilar, R., Black, J. R., and Hocknull, S. A. 2020. High-throughput micro CT
539 scanning of small specimens: preparation, packing, parameters and post-processing. *Sci. Rep.*
540 **10**:13863. doi:10.1038/s41598-020-70970-7.

541

542 Hüssy, K., Mosegaard, H., Albertsen, C. M., Nielsen, E. E., Hemmer-Hansen, J., & Eero, M.
543 (2016). Evaluation of otolith shape as a tool for stock discrimination in marine fishes using
544 Baltic Sea cod as a case study. *Fish. Res.* **174**:210-218. doi:10.1016/j.fishres.2015.10.010.

545

546 Libungan, L. A., and Pálsson, S. 2015. ShapeR: an R package to study otolith shape variation
547 among fish populations. *PloS One.* **10**(3). doi:10.1371/journal.pone.0121102.

548

549 Martí-Puig, P., Danés, J., Manjabacas, A., and Lombarte, A. 2016. New parameterisation method
550 for three-dimensional otolith surface images. *Mar. Freshw. Res.* **67**:1059-1071.
551 doi:10.1071/MF15069.

552

553 Meyer, M. G., Fauver, M., Rahn, J. R., Neumann, T., Patten, F. W., Seibel, E. J., and Nelson, A.
554 C. 2009. Automated cell analysis in 2D and 3D: A comparative study. *Pattern Recognit.*
555 **42**(1):141-146. doi:10.1016/j.patcog.2008.06.018.

556

557 Mosegaard, H., Svedäng, H. and Taberman, K. 1988. Uncoupling of somatic and otolith growth
558 rates in Arctic char (*Salvelinus alpinus*) as an effect of differences in temperature response. *Can.*
559 *J. Fish. Aquat. Sci.* **45**:1514-1524. doi:10.1139/f88-180.

560

561 Oxman, D. S., Barnett-Johnson, R., Smith, M. E., Coffin, A., Miller, D. L., Josephson, R., and
562 Popper, A. N. 2007. The effect of vaterite deposition on sound reception, otolith morphology,
563 and inner ear sensory epithelia in hatchery-reared Chinook salmon (*Oncorhynchus*
564 *tshawytscha*). *Can. J. Fish. Aquat. Sci.* **64**(11):1469-1478. doi:10.1139/f07-106.

565

566 Pannella, G. 1971. Fish otoliths: daily growth layers and periodical patterns. *Science* **173**:1124-
567 1127. doi:10.1126/science.173.4002.1124.

568

569 Phillips, J. B. 1948. Comparison of calculated fish lengths based on scales from different body
570 areas of the sardine, *Sardinops caerulea*. *Copeia*. **1948**(2):99-106. doi:10.2307/1438411.

571

572 Popper, A. N., and Lu, Z. 2000. Structure-function relationships in fish otolith organs. *Fish. Res.*
573 **46**:15-25. doi:10.1016/S0165-7836(00)00129-6.

574

575 Radford, C. A., Collins, S. P., Munday, P. L., and Parsons, D. 2021. Ocean acidification effects
576 on fish hearing. *Proc. Roy. Soc. B.* **288**:20202754. doi:10.1098/rspb.2020.2754.

577

578 R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for
579 Statistical Computing, Vienna, Austria. Available from <https://www.R-project.org/>.

580

581 Rohlf, F. J., and Marcus, L. F. 1993. A revolution morphometrics. Trends Ecol. Evol. **8**:129-132.
582 doi:10.1016/0169-5347(93)90024-J

583

584 RStudio Team. 2015. RStudio: Integrated Development for R. RStudio, Inc., Boston,
585 Massachusetts. Available from <https://www.rstudio.com>.

586

587 Schulz-Mirbach, T., Heß, M., and Plath, M. 2011. Inner ear morphology in the Atlantic molly
588 *Poecilia mexicana*—first detailed microanatomical study of the inner ear of a cyprinodontiform
589 species. PLoS One, **6**(11):e27734. doi:10.1371/journal.pone.0027734.

590

591 Sokal, R. R. 1965. Statistical methods in systematics. Biol. Rev. **40**(3):337-389.
592 doi:10.1111/j.1469-185X.1965.tb00806.x.

593

594 Song, J., Zhao, B., Liu, J., Cao, L., and Dou, S. 2019. Comparative study of otolith and sulcus
595 morphology for stock discrimination of yellow drum along the Chinese coast. J. Ocean.
596 Limnol. **37**:1430-1439. doi:10.1007/s00343-019-8056-6.

597

598 Thomas, O. R., and Swearer, S. E. 2019. Otolith biochemistry—a review. Rev. Fish. Sci.
599 Aquac. **27**:458-489. doi:10.1080/23308249.2019.1627285.

600

601 Thompson, D. W. 1917. On Growth and Form. Cambridge University Press, Cambridge, United
602 Kingdom.

603

604 Tracey, S. R., Lyle, J. M., and Duhamel, G. 2006. Application of elliptical Fourier analysis of
605 otolith form as a tool for stock identification. *Fish. Res.* **77**:138-147.
606 doi:10.1016/j.fishres.2005.10.013.

607

608 Waessle, J. A., Lasta, C. A., and Favero, M. 2003. Otolith morphology and body size
609 relationships for juvenile Sciaenidae in the Río de la Plata estuary (35-36° S). *Sci. Mar.*
610 **67**(2):233-240. doi:10.3989/scimar.2003.67n2233.

611

612 Wickham, H. 2016. *ggplot2: Elegant graphics for data analysis*. Springer-Verlag, New York,
613 New York.

Table 1. Ranges and averages of various otolith morphometric relationships from the three hatcheries in this study. The average value for each cell is bolded and surrounded by parentheses. With the exception of otolith volume, the following are the average values of the left and right otoliths. Volume is presented here as the total volume. All values have been rounded to three significant figures. Sample sizes for each hatchery are 12 for Big Qualicum, 11 for Chilliwack, and 12 for Quinsam.

Hatchery	Length	Width	Perimeter	Area	Superficial	Total	Density
	(mm) ^a	(mm) ^a	(mm) ^a	(mm ²) ^a	Density (g/cm ²) ^a	Volume (cm ³) ^b	(g/cm ³) ^b
0.960*10 ⁻²							
Big	5.41 - 6.26	3.15 - 3.57	14.2 - 16.0	11.6 - 14.1	0.100 - 0.127	- 1.43*10 ⁻²	2.11 - 2.69
Qualicum	(5.76)	(3.33)	(15.1)	(12.8)	(0.109)	(1.10*10 ⁻²)	(2.52)
0.971*10 ⁻²							
Chilliwack	5.39 - 6.13	3.08 - 3.65	14.0 - 16.0	11.5 - 14.1	0.102 - 0.120	- 1.25*10 ⁻²	2.45 - 2.61
	(5.72)	(3.32)	(15.0)	(12.7)	(0.109)	(1.11*10 ⁻²)	(2.50)
0.847*10 ⁻²							
Quinsam	5.13 - 6.38	3.08 - 3.70	13.8 - 16.6	10.9 - 15.2	0.103 - 0.123	- 1.36*10 ⁻²	2.70 - 2.76
	(5.75)	(3.35)	(15.1)	(13.0)	(0.111)	(1.06*10 ⁻²)	(2.73)

a) Values drawn from ShapeR dataset

b) Values from microCT scan dataset

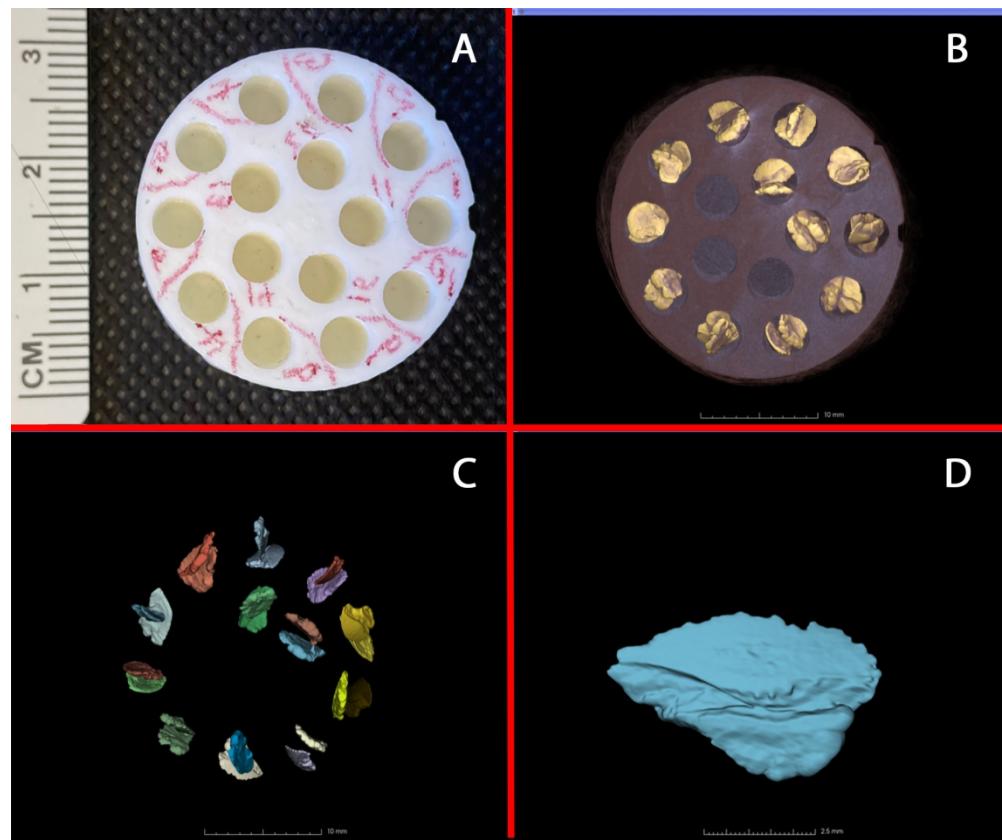


Figure 1. A: One of the three sample holders that were 3D printed with an Ultimaker S5 (Ultimaker, Netherlands) using Ultimaker Tough PLA (Ultimaker, Netherlands). 15 wells existed in each holder. B: Otolith holder with 24 Coho otoliths as viewed when CT scanned. One pair of otoliths per fish was put in each individual well. Scale bar indicates 10mm. C: Otoliths segmented into individual otoliths using the "Islands" function in 3D Slicer (www.slicer.org). Scale bar indicates 10mm. D: View of the sulcus side of one of the Coho otoliths. Scale bar indicates 2.5mm.

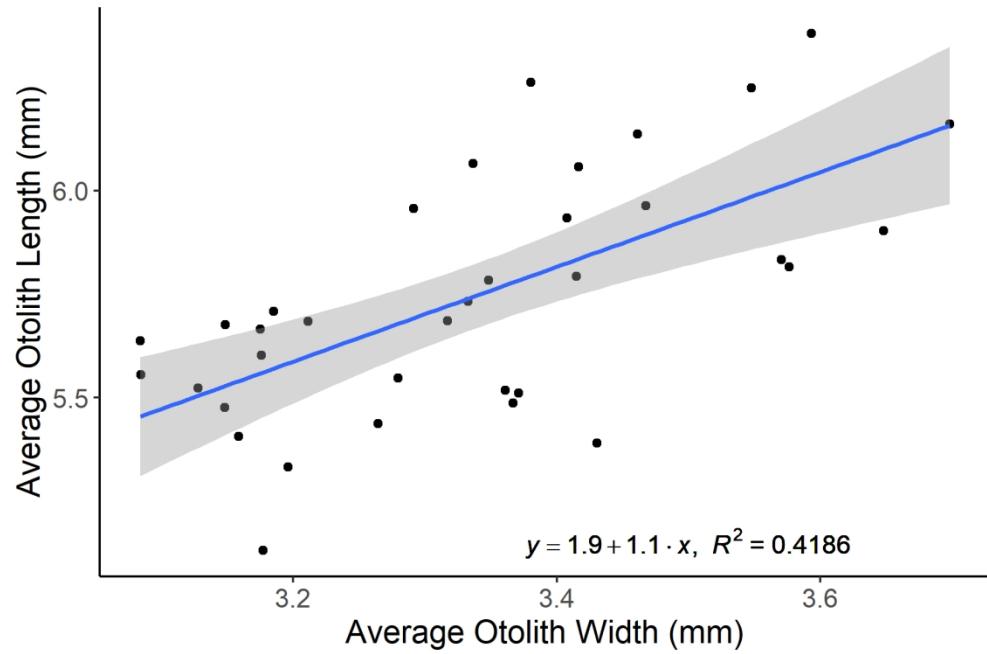


Figure 2. Linear relationship between the average otolith length and width of Coho Salmon from the Big Qualicum, Chilliwack, and Quinsam hatcheries from the year 2018 ($n = 35$). The line represents a linear regression line with the grey area indicating standard error.

152x101mm (300 x 300 DPI)

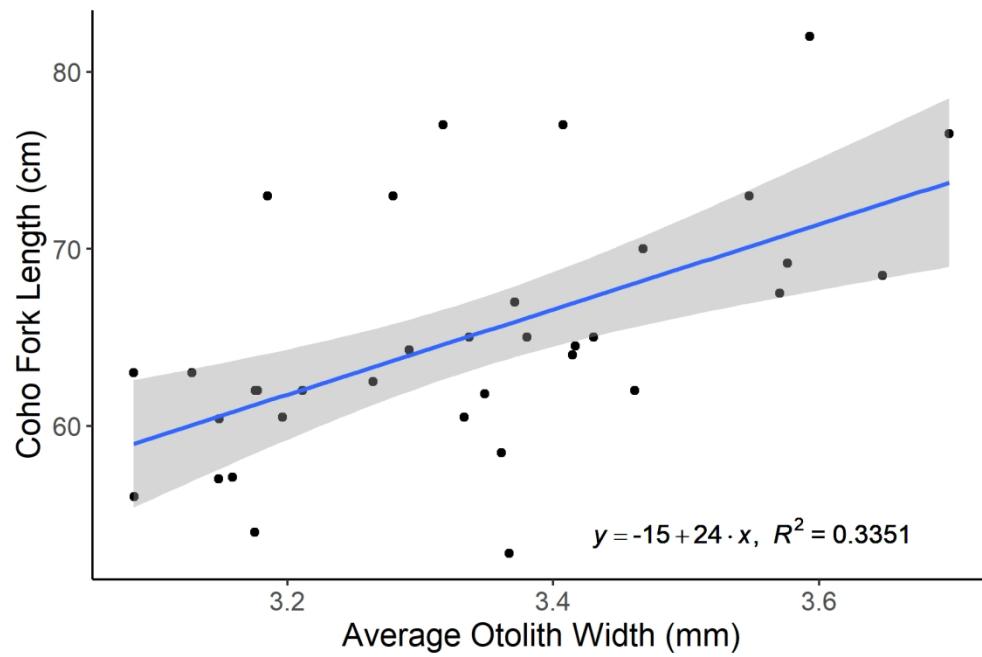


Figure 3. Linear relationship between the Coho Salmon FL and average otolith width of Coho Salmon from the Big Qualicum, Chilliwack, and Quinsam hatcheries from the year 2018 ($n = 35$). The line represents a linear regression line with the grey area indicating standard error.

152x101mm (300 x 300 DPI)

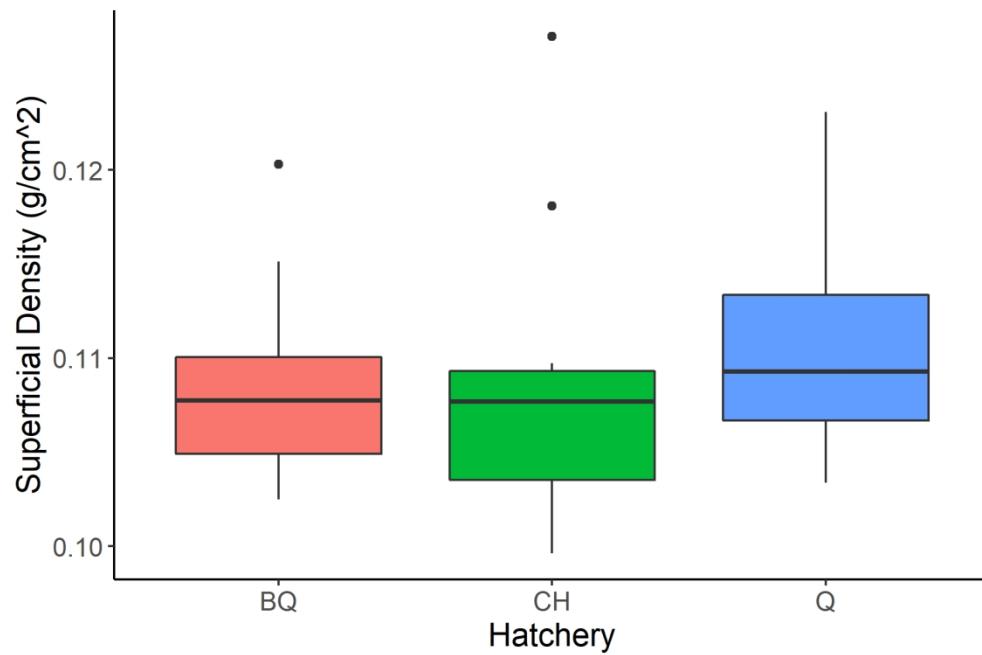


Figure 4. Boxplots showing the average otolith superficial density of Coho Salmon from the Big Qualicum (BQ; $n = 12$), Chilliwack (CH; $n = 11$) and Quinsam (Q; $n = 12$) hatcheries. Outliers are indicated by black dots. No significant differences were detected across hatcheries (see text for details).

152x101mm (300 x 300 DPI)

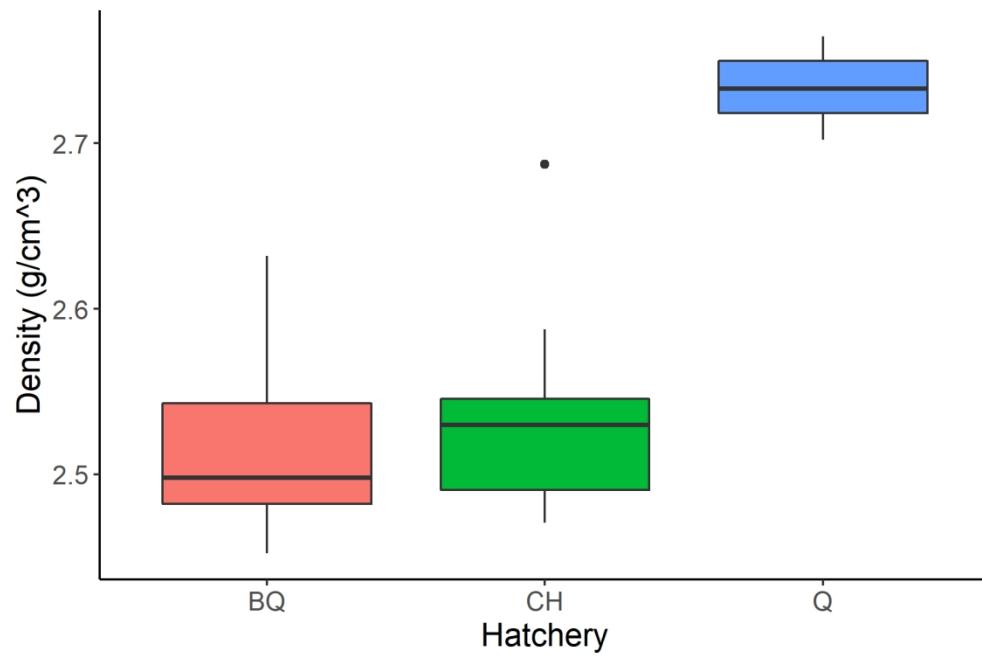


Figure 5. Boxplots showing the average otolith density of Coho Salmon from the Big Qualicum (BQ; $n = 12$), Chilliwack (CH; $n = 10$) and Quinsam (Q; $n = 12$) hatcheries. CH18-225 is not included in this figure as it was identified as a potential outlier. Significant differences were detected across hatcheries (see text for details).

152x101mm (300 x 300 DPI)

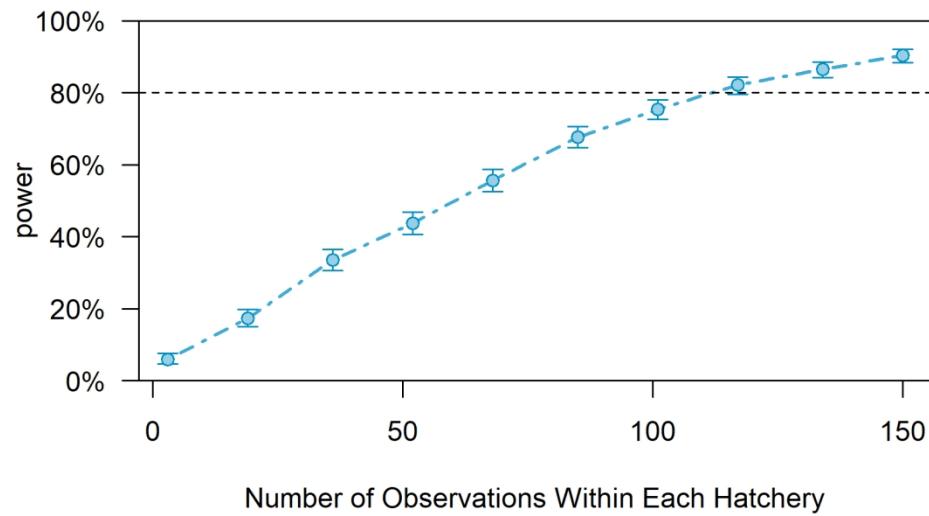


Figure 6. Power curve simulation of ANOVA of superficial otolith density (g/cm^2) of fish from the Big Qualicum, Chilliwack, and Quinsam hatcheries based upon the data of the 35 otolith pairs in this study. Observations were extended to 150 otolith pairs per hatchery. Power was set at 80% and alpha was set at 0.05. These conditions were met between 110-130 Coho Salmon per hatchery.

152x101mm (300 x 300 DPI)

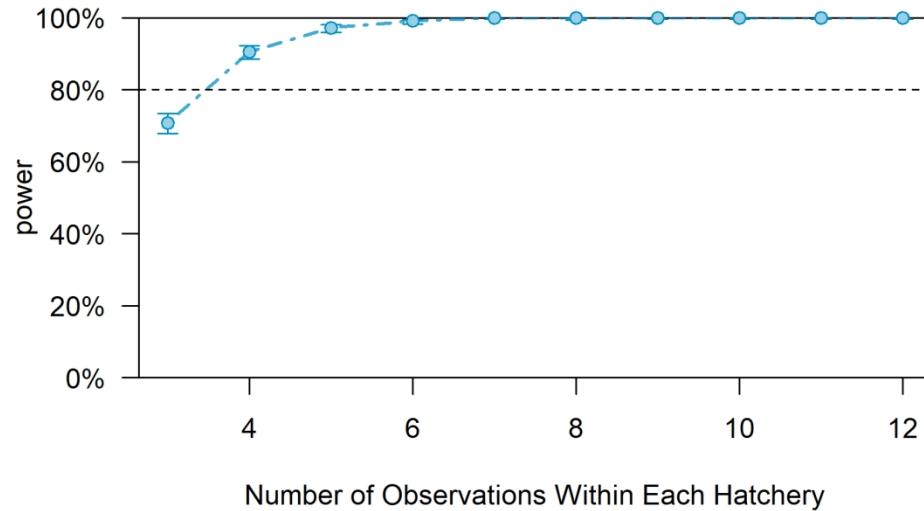


Figure 7. Power curve simulation of ANOVA of otolith density (g/cm^3) of fish from the Big Qualicum, Chilliwack, and Quinsam hatcheries based upon the data of the 35 otolith pairs in this study. Power was set at 80% and alpha was set at 0.05. These conditions were met between 3-4 Coho Salmon per hatchery.

152x101mm (300 x 300 DPI)