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Microscale computed tomography scans of fiber-reinforced composites reveal
that fibers are most often not strictly parallel to each other but exhibit varying
degrees of misalignment and entanglement. One characteristic of this
entanglement is the degree to which fibers stay together as clusters. In this
study, a method for identifying and isolating fiber clusters was established,
and scans of two different composite microstructures were analyzed. To
identify clusters, fiber center points of the first cross-section were triangu-
lated, and the variation of the perimeter and area of triangles along the fiber
direction was used to identify fiber triads which stay together. A filtering
process eliminated fiber triads not part of a larger cluster. Geometric prop-
erties of the clusters such as cluster orientation, radius of gyration, cluster
density, and volume fraction were calculated and compared. The metrics re-
vealed fundamental differences between the two samples, suggesting that
clusters have origins in manufacturing.

INTRODUCTION

One of the keys to understanding the performance
of fiber-reinforced composites lies in understanding
the organization and geometry of their microstruc-
ture. Proper quantification of the behavior of com-
posites at the fiber level can provide critical
information on quantities such as their stiffness
and strength. It is extremely important, therefore,
that any representation of the microstructure be as
accurate as possible.

Early efforts at understanding the effects of fibers
involved modeling perfect, parallel cylinders packed
in a repeating hexagonal or square pattern. These
studies showed that some elastic properties, espe-
cially those that are axially dominated, are nominally
captured well by such ideal models.'~® However, they
often fall short when predicting transversely domi-
nated properties, and strength, as well as the
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variation of properties. Additionally, cross-sectional
images of fiber microstructures reveal that ideal fiber
packing models are not representative of the varia-
tion found in manufactured composites.

Recently, much work has been done to try to
understand the effects of random placement of fibers.
Newer representative volume elements (RVEs) have
been generated by varying the two-dimensional (2D)
locations of fibers randomly.” !” Constructing RVEs
in this way allows localized effects such as stress
concentrations to be captured.'® The results of these
efforts have shown that the random spatial variation
offibers has a strong effect on the transverse strength
of composites. Numerous works have also shown that
fiber misalignment has a strong effect on the com-
pressive strength of composites.'® 22 The scatter on
the values of properties of composites has thus been
attributed in part to the apparently random positions
of fibers in real composites.

One of the aspects of fiber morphology that is not
necessarily represented by many of these models is
the presence of lengthwise fiber behaviors such as
entanglement. A number of studies have been
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carried out using micro computed tomography (CT)
scans of composites to explore the morphology of
fibers along the fiber direction.?*?° These works
have shown that the spatial variability in fiber
positions is subject to change from cross-section to
cross-section due to the degree of misalignment of
the fibers. The degree of fiber misalignment and its
effects on strength have also been studied exten-
sively.?>3! Some studies have also attempted to
quantify the behavior of fibers using various met-
rics. These works have found that many composite
microstructures are host to several three-dimen-
sional (3D) features.

One feature of microstructures exhibiting signif-
icant entanglement is fiber clustering, where groups
of neighboring fibers remain together throughout
the volume of a composite. Defining and identifying
fiber clustering may be a way to describe the
features of the entanglement that may have a
significant impact on local effects such as failure
initiation and progression, and could serve towards
homogenizing parts of the microstructure for more
efficient microstructural representation. Few stud-
ies have been done on the detection of fiber clusters,
while virtually no analyses have been done on
cluster morphology or mechanical effects.?3?
Therefore, there is a need to create a methodical
definition of fiber clusters to study their behavior
and eventual effects on composite properties.

In this study, a novel method for identifying and
analyzing fiber clusters is presented. High resolu-
tion cross-sectional images from two different com-
posite microstructures were analyzed. One scan set
is from an aerospace-grade laminate, made from a
prepreg in an autoclave using materials manufac-
tured for higher performance. The second scan set
comes from an automotive-grade heavy tow (48k
fibers per tow) consolidated using vacuum-assisted
resin transfer molding (VARTM), where the reduced
cost of working with a larger tow results in more
entanglement of fibers. Fiber paths are extracted
using a custom-written MATLAB code. Clusters are
detected using the extracted fiber paths. A series of
metrics are then used to quantify the behavior of the
clustered fibers. Finally, the results of the metrics
for the two different microstructures are compared
(Fig. 1).

EXPERIMENTAL PROCEDURES
Materials and Manufacturing

For this study, scans of two fiber-reinforced
composites were compared, an aerospace- and auto-
motive-grade composite. The aerospace-grade com-
posite was constructed from an IM7/5320-1
unidirectional prepreg and processed using an
autoclave. The specimen was a curved bracket
geometry, quasi-isotropic layup. From the aerospace
sample, layers 5, 9, and 13 were isolated and
analyzed (Fig. 2a).

The automotive-grade composite was manufac-
tured at the Institute for Textile Technology at
RWTH University from Toho Tenax STS40 F13 48k
tows. Each tow contained 48,000 fibers, which
dereases the cost of the carbon fiber due to bulk
manufacturing. The tows were infiltrated with
Hexion Epikote RIMR 135 with an Epikure RIMH
curing agent. The tow was infiltrated using VARTM
at pressure of 1000 mbar.

Imaging

The automotive-grade specimens were scanned at
the European Synchrotron Radiation Facility
(Fig. 2a). Scans were taken at a resolution of 0.332
um/voxel, with 2048 pixels in the fiber direction and
2098 pixels in the transverse directions. To reduce
the computational load, every third image was
analyzed in the stack of automotive scans, resulting
in a total of 682 images with spacing of 0.996 ym
between images. Compared with micro-CT scan-
ners, synchrotrons have the advantage of being able
to operate at significantly higher energy levels.
Typical micrographs at submicron resolution often
contain significant amounts of Gaussian pixel noise.
This noise effectively blurs the boundaries between
fiber and matrix, leading to errors in fiber detection
in each scan. The scans of the automotive composite,
however, exhibit high levels of contrast between
fibers and matrix.

The scan of the aerospace-grade composite was
taken at the Air Force Research Lab using their
Robomet.3D robotic serial sectioning system (Fig. 2-
b).33 A robotic arm system polishes the surface of
the specimen, takes an image, then continues
polishing. One of the main benefits of optical
microscopy serial sectioning (compared with

Fig. 1. Flowchart of clustering process.
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Fig. 2. Cross-sectional images of the (a) automotive-grade heavy tow and (b) aerospace-grade quasi-isotropic layup with layers highlighted.

volumetric methods such as x-ray CT for polymer-
matrix composites) is that bright-field reflective
optical images from composite materials provide a
combination of high signal-to-noise and micron-
scale resolution that greatly aids in the segmenta-
tion of carbon fibers from matrix. Note that this is
not a “volumetric” reconstruction as one obtains
from x-ray CT systems; rather, it is information
from just the surface. The resolution of the images
was 0.336 um/pixel, and images were taken with an
average spacing of 1.07 um between images. A total
of 208 images were taken with each image being
4844 x 5939 pixels. Three of the four 0° sections of
the aerospace composite were cropped and used for
analysis.

Microstructure Reconstruction

A script was used to reconstruct the fiber paths of
both samples. First, fiber centers and radii were
found in each cross-section transverse to the fiber
direction (as in Fig. 2) using a circular Hough
transformation. The fibers used in this study did not
show significant cross-sectional eccentricity, and
the standard deviation of the fiber radii was com-
puted to be 0.104 um for the aerospace samples and
0.201 um for the automotive samples. These values
are relatively low when compared with the mean
radius of 2.8 um for the aerospace samples and 3.38
um for the automotive samples, thus the mean fiber
radius for each sample was used for all subsequent
calculations. After the fiber center points were
found in each cross-section, the center points had
to be linked between cross-sections to form the fiber.
Due to the stiffness of the fibers and the relatively
short spacing between images (compared with the
fiber diameter), the fiber positions did not vary
significantly between sequential cross-sections and
a nearest-neighbor search algorithm from one cross-
section to the next was thus used to link fibers.

Fibers located at the edge of each scan were often
only partially within the image boundaries, effec-
tively making them discontinuous. Many of the
metrics used for analysis required fibers that were

represented in all cross-sections, so all edge fibers
were removed from the useable dataset.

Cluster Analysis

A formal definition for isolating clustered fibers
from all other fibers is described below. After fiber
clusters were identified, various quantities are
presented to describe the features of individual
clusters, as a means of characterizing the composite
microstructures.

Cluster Identification

Cluster analysis is a method for describing the
tendency of groups of fibers to remain together
throughout the volume of fiber-reinforced compos-
ites. The literature contains several approaches to
formalize the notion of “cluster” or “fiber bundle.”
Most approaches are two dimensional in nature and
rely on the distribution of distances between nearby
fiber centers, whether measured in absolute units or
via graph-theoretic notions of adjacency in terms of
nearest neighbors. In the analysis presented here,
fiber triads are found by triangulation of all fiber
centers in the first cross-section of an image stack.
Alpha shapes of the fibers are used to ensure the
boundary fiber connectivity is restricted to the
convex hull. The fiber triads found in the first
cross-section were held constant for the remainder
of the analysis. Triangulated fiber triads belonging
to clusters will not vary as much in area or
perimeter as those that do not belong to a cluster.
Whether or not a triad belongs to a cluster should
also be independent of fiber orientation. Clustered
fibers should be permitted to meander as long as
their neighbors tend to meander in parallel. The
requirement that all fibers stay together also makes
clusters independent of the degree of fiber packing.
Therefore, the cluster metric was defined in terms of
the total variation of certain geometric measure-
ments of fiber triads. The total variation of the area,

%’ ,1s used here to measure the 3D variation of triad
areas within the sample.
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Vi = |A xn) — Al(xn-1)| (1)

n=2

where N is the total number of cross-sections and A’
is the area of triad I at a particular cross-section
(Fig. 3a). Initially the total variation of triad areas
was the sole criteria used to determine whether
fibers belonged to a cluster or not. It was discovered,
however, that it was possible for three fibers to
bound a relatively small area but still be spread out.
To handle such cases, the total variation of the

perimeter, V5, was added as a second criterion.

N
Vp = |P'(xa) — P(xn-1)| (2)
n=2

where V% is the total variation of the perimeter, and
P is the perimeter of triad / at a particular cross-
section (Fig. 3a). The final cluster determination is
made using the histogram distributions of both
criteria. The analysis is complicated, however, by
the presence of “stray fibers.” These fibers travel at
an angle to their neighbors that is considerably (by
three standard deviations or more) larger than the

variation in the angles between nearby fibers. The
centers of cross-sections of stray fibers create triads
whose areas are subject to total variation that is an
order of magnitude greater than that between fibers
belonging to the same cluster. Therefore, the his-
togram distributions for both criteria were trimmed
to within the mean plus two standard deviations to
remove outliers from the data. Otsu’s method with

three bins was then used to threshold V% and V5
independently.®* In this method, three bins are
created, with bin boundaries set such that the
variance within each bin is minimized. While it may
seem that using three bins is an arbitrary selection,
it relies on the assumption that there are generally
three groups of fibers of interest: those that diverge
from each other along the fiber direction, those that
stay close together, and all the others. For this
analysis, only the group which stayed together were
selected for further analysis, but the group of fiber
triads which diverge from each other could similarly
be used to identify fiber groups which are highly
entangled. Finally, using relative rather than static
thresholds allows the cluster identification process
to take place independent of the compaction of a
specimen, since the threshold is specific to the

b)
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Fig. 3. Diagrams of (a) a typical triad / with perimeter P and area A through N cross-sections and length L, (b) a linearized cluster over length L
with vector S connecting the cluster’s centroids, and (c) a cross-section of a cluster showing the distance between a triad centroid (red dot) and

the cluster centroid (red diamond) (Color figure online).
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specimen. Additionally, despite the total variation
values being sensitive to the spacing of the cross-
sections, the cluster analysis itself is independent of
the spacing. When the spacing between scans
increases or decreases, the variation values for each
triad in the sample change equally and the distri-
bution of values are then shifted higher or lower.
Finally, the determination of whether a triad is
clustered or not depends solely on the triad’s
relative location in the distribution of all triads
rather than its specific value, and the threshold is
invariant of a length scale.

The lower thresholds for the area and perimeter
variance are then combined via a Boolean operation.

For each triad, the values of V!, and V% must be
below their respective thresholds to be deemed
clusters. The triads in the two upper bins for both
criteria, as determined by Otsu’s method, were not
studied in this analysis. There are two major
drawbacks to this method of cluster detection. The
first is that the thresholding method used can be
sensitive to outlier triads. While these outliers were
filtered out during the analysis, and filtered equally
for both samples, it is difficult to remove them
objectively. The second drawback is that the pro-
posed method will always find fiber clusters in a
sample, even if they do not appear to be present.
Other methods can be applied to look at the
averages of certain metrics of the sample as a whole
and check for fibers whose values deviate. Metrics
such as the neighbor change rate, for example, have
been used in the past as a basis for the existence of
clusters in a particular sample.?® Within clusters,
there are typically fibers whose neighbors do not
change or change very little throughout the sample.
Searching for these fibers, coupled with the
approach mentioned in this work, could serve as
an alternative approach to cluster detection. Details
of the use of Otsu’s method and the method for
removing outliers using the histogram distributions
are presented in Appendix Sect. 6.2.

The thresholding typically results in a noisy mix
of threshold-passing triads, but clusters should be a
unique subset of these triads that are aggregated
together. To isolate the fiber clusters, a filtering
algorithm was created. The intent of the filtering is
to remove passed triads that are not part of a larger
cluster but include fiber triads that are surrounded
by a cluster but did not pass the thresholding. This
results in a smoothing of fiber clusters, where the
feature size can be controlled via the filtering
method. The basic filtering operation checks
whether the neighbors of each triad also passed
the thresholding. The algorithm then changes the
designation of each triad according to the designa-
tion of its neighbors. Details of the filtering opera-
tion can be found in Appendix Sect. 6.3. The entire
clustering process is also summarized in Fig. 1.

Cluster metrics

A variety of measurements can be made on
clusters to reveal details of their geometry and
makeup. Two types of metrics were used to quantify
the clusters (Fig. 4). The first type were 3D metrics,
such as orientations, which described features of the
clusters over their entire length. The second type
were 2D metrics, such as the second moments of
area and radius of gyration, which were calculated
at each cross-section and averaged along the length
of the clusters.

The centroid of the cluster at each cross-section
can be found by finding the average of the centers of
area for all triads that make up that cluster. These
centers can be found in every cross-section of each
sample and stitched together similarly to the fiber
centers found in each scan. A straight line can be
used to approximate the overall path of the centers
of area for each cluster. A linear fit was used so that
the orientation metrics could be formulated as
global rather than local metrics. One of the main
issues with local metrics is that they are sensitive to
any deviations in position from cross-section to
cross-section. Using these linear fits, the polar
angle, y™, can be found for each cluster m by

Y™ = acos (ﬁ) (3)

where L is the length of the entire scan volume in
the fiber direction and S is the vector of the line of
best fit through all centroids of a cluster in each
cross-section (Fig. 3b). The polar angle is a useful
quantity because if gives the magnitude of a clus-
ter’s deviation from the global fiber direction. While
many clusters tend to consist of fibers that deviate
very little from the global fiber direction, a number
of clusters were seen to be made of fibers which were
oriented some offset from the global fiber direction.
Another useful angle measure is the pairwise angle
between clusters m and n, ™", defined as

ym.yn
mn __ 4
p "‘°°S(|van’|) )

where V™ is the direction vector for a linearized

cluster m and V" is the direction vector for cluster
n. Note that both direction vectors are the unit
normal vectors of the vector S for both clusters. The
angle between fibers provides an indication of how
parallel the clusters are to each other.

The radius of gyration, R;'(x,) , of each cluster m
at cross-section x, can be calculated about the
center of area from each cluster using

N7
R (%) = Zl}vi,i,f(x") (5)
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Low Vf

Fig. 4. Examples of cluster metrics including (a) polar angle from the x-axis, (b) contrasting R, values, (c) contrasting K values, and (d)

contrasting V¢ values.

where N is the number of fiber triads in a cross-
section of cluster m, and d’(x,) is the distance from
the centroid of the cluster to the center of triad [
inside the cluster at cross-section x, (Fig. 3c). While
the value for R, has many structural uses, it is used
here as a measure for how spread out the triads, and
subsequently the fibers, are inside a cluster
(Fig. 4c).

The second moments of area, I,, and I,,, can also
be calculated for each cross-section (x,) of a cluster
using

N
Lij(xn) = ZAZ (xn)d’; wherei=1y,z (6)
=1

d!, is the distance from the cluster centroid to the
center of the triads within the cluster in either the y
or z direction. Like the radius of gyration, the
moments of inertia are used to understand the
geometry of clusters. The values of I,, and I,
provide insight into how long the clusters are along
both the y and z axes, in the sense of the distribution
of area along those dimensions (Fig. 4d).

The value K(x,) is used to determine how sym-
metric the clusters are about both axes, defined as

K(x,) = || 20 ™)

When the values for the moments of inertia are
very similar, the value of K is close to 1, indicating
that the clusters are fairly symmetric about the y
and z axes. When I, is larger than I, it means that
the cluster is longer in the z than y direction, and
vice versa. The values for K, therefore, give a sense
of how symmetric the clusters are about both axes
(Fig. 4a). B

The average cluster volume fraction, V}':: (x,) is a
measure of the average fiber volume fraction in a
cluster m at cross-section x,,.

nR2 ZN?‘ 1
T f e=l=1Al(x,)
where Ry is the radius of the fibers in the sample.
The assumption for all samples analyzed in this
work is that the radius of the fibers is nearly
constant and that all deviations from the mean
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radius are inconsequential. While this may not be
valid for many composites, the quality of fibers used
in the composite specimens of this study permits
this assumption. The average volume fraction for
each cluster is a measure of how compacted the
clusters are (Fig. 4b).

Finally, the cluster density, p,, can be used to help
compare samples of different sizes and fiber counts.

N,
c = 9
P Atotal ( )

where N, is the number of clusters per sample and
A, 18 the total area of cross-section of the scanned
composite.

Additional metrics such as the linearity and
global twist of the clusters could also be explored
using this analysis. Little is known about which
descriptors will correlate with structural properties
such as the fatigue strength and transverse
strength. Study is needed to quantify the effects of
these descriptors and provide information on the
effects of clusters.

RESULTS AND DISCUSSION

A method for detecting and isolating fiber clusters
using cross-sectional images of fiber-reinforced com-
posites was created. Various measurements and
metrics were used to quantify the shape and
behavior of the clusters. In this section, automo-
tive-grade and aerospace-grade composites are ana-
lyzed, and the cluster metrics compared.

Cluster Analysis
Cluster Identification

The clustering process isolates groups of neigh-
boring fibers whose spacing with respect to each
other varies little throughout the sample (Fig. 5a
and b). Cropped regions of the automotive sample
and layer 13 are shown (Fig. 5a). The average
intensity images, referred to in this work as “ghost
plots,” were created by averaging each cross-section
together (Fig. 5b). The colored triangles show the
magnitude of the values of V4 and Vp, while the
grey triangles represent the outliers which were
removed before calculating thresholds (Fig. 5¢ and
d). The fiber triads that are below both thresholds
were then found before clusters were isolated
(Fig. 5e). The fiber clusters for both sections are
then shown after rounds of filtering (Fig. 5f).

As seen in the ghost images of the automotive
sample, the orientation of many of the clustered
fibers deviated far from the intended fiber direction.
In the aerospace sample, however, the degree of
misalignment of the fibers was far less severe.
Instead, the clusters seen here actually seem to be
near hexagonally packed in many places. As
expected, the total variation values for the two
samples are significantly different (Fig. 5¢c and d). In
the automotive sample, there are distinct resin-rich

regions that contain low fiber counts and meander-
ing fibers. These regions appear as grey triangles
when the triads are colored based on their total
variation value. In the aerospace samples, the holes,
if any, appear as very small regions made up of only
a few triangles. Effectively, the level of compaction
in the aerospace samples forces the total variation
values to decrease relative to the automotive sam-
ple. This makes the thresholds for the aerospace
samples generally smaller than those for the auto-
motive sample. The filtering process applied here
removed all of the fiber triads whose neighbors were
not below both thresholds. The filtering process was
run until no more triads were removed, allowing the
shapes of the clusters to converge.

The lower pressure used to manufacture the
automotive sample suggests that the passed fiber
triads in the automotive sample tend to be much
more spread out on average than those of the
aerospace samples; That is, the clusters in the
aerospace samples tend to be denser with respect to
fibers than the clusters in the automotive sample.

Plotting the total variation of fiber triad area and
perimeter for both samples shows that the automo-
tive triads are generally larger than the aerospace
ones (Fig. 6a and b). The area thresholds for the
automotive sample and layers 5, 9, and 13 of the
aerospace sample were 68.3 um?, 7.34 um?, 8.61
pm?2, and 5.72 um?, respectively. The perimeter
thresholds for the automotive sample and layers 5,
9, and 13 were 24.6 um, 4.65 um, 5.29 um, and 3.35
um, respectively. In both materials, triads with
higher average volume fractions tend to contain
more passed triads. In other words, there is a
noticeable correlation between increasing volume
fraction and the number of passed triads. This
finding makes sense because a higher total varia-
tion in the area, for example, would indicate that
the fibers bounding that area are relatively far from
each other. Comparing across samples, however,
reveals that clusters in the automotive material
occur at lower average volume fraction values than
in the aerospace material.

Plotting the two total variation values together
provides clearer insight into the shapes of the fiber
triads in the two composites (Fig. 6¢). In general,
the aerospace samples have more fiber triads that
pass only one of the two thresholds. There is a
definite positive correlation between the total vari-
ation of area and total variation of perimeter for
each sample. The fibers in the triads of the aero-
space samples, however, have a greater tendency to
diverge from each other in such a way as to increase
either the perimeter or the area bounded between
them, but not both. This leads to the aerospace
envelope being much wider than the automotive
one. The aerospace fibers tend to slip past each
other in shear bands as they meander, causing more
obtuse triangles that vary more in perimeter than
area.
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Fig. 5. Clustering process for two samples showing (a) cross-sections, (b) ghost plots, (c) triangulation colored by V, values, (d) triangulation
colored by Vp values, (e) triads that passed the variation thresholds, (f) final cluster result with each individual cluster colored uniquely, and (g)

final cluster results overlayed on top of ghost plots.
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Fig. 6. Plots of (a) total variation of area versus average triad volume fraction, V, (b) total variation of perimeter, Vf4, versus average volume
fraction, and (c) total variation of perimeter, V’P, versus total variation of area with thresholds for each sample shown as vertical and horizontal

colored lines.
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Cluster Metrics

For the automotive sample, the clustering analy-
sis identified 32 clustered regions. The aerospace
layers 5, 9, and 13 had 71, 64, and 73 clusters,
respectively. One of the known details about both
samples is that they were compacted vertically,
which would cause the fibers in both samples to
spread out horizontally. It was hypothesized, there-
fore, that the cluster shapes would be affected by
this. Visually, it is apparent that the fiber clusters
are longer horizontally than vertically (Fig. 7).

Various metrics were chosen to try to obtain a
more complete picture of the geometry of clusters
(Fig. 8). The average cluster area for each sample
gives a general idea of the magnitude of the cluster
sizes (Fig. 8a). The average polar angle is a measure
of the cluster centroid’s deviation from the fiber
direction (Fig. 8b). The average angle between
cluster centroids is a measure of how parallel the
clusters are to one another in each sample (Fig. 8c).
The average moments of inertia give a sense of how
long the clusters are in each direction (Fig. 8d and
e). The average value of K is the ratio of the
moments of inertia and provides information on the
symmetry of clusters (Fig. 8f). The average cluster
volume fraction is a measure of the average fiber
volume fraction in each cluster per cross-section
(Fig. 8g). Finally, the cluster density is a normalized
measure of how many clusters are present in a
given area (Fig. 8h).

The average polar angle and average angle
between cluster centroids for each cluster in each
sample did not have standard deviations of more
than 2° per sample. This means that the majority of
clusters do not deviate very much from the intended
fiber direction and remain relatively parallel to each
other. The greatest difference between samples was
seen in the angles between the cluster centroids.
The automotive sample had higher averages than
the aerospace samples in every metric except its K
value. The cluster density, p., considers the number
of clusters per area of the scan space for each
sample. This metric provides a way to compare

clusters in samples of different shapes. The cluster
density for all aerospace samples was significantly
larger than for the automotive samples, while the
average area for all aerospace samples was lower
than for the automotive samples.

Centerline plots of cluster centroids were gener-
ated for all four samples, where the view is directly
into the fiber direction and the automotive sample
has been trimmed to the size of the aerospace
samples (Fig. 9a). The centerline plots provide a
good way of viewing the orientation of the cluster
centroids. The degree of misalignment of each
centroid can be seen by its own length in a
particular direction. Centroids which do not move
very much appear very similar to the actual width of
the line. Another benefit of the centerline plot is
that it can show, qualitatively, how parallel the
centroids are. The parallelism of clusters is also
shown in the histogram of angles between cluster
centroids (Fig. 9b).

The angles between fiber -cluster centroids
between the automotive and aerospace samples
differ mainly in the magnitude of the probability
density. Clusters belonging to the aerospace sam-
ples are more parallel to each other than those of
the automotive sample in the sense that lower
values of f occur more often. In both samples,
however, the majority of cluster centroids were
within 1° of each other. These results show the fiber
clusters to be relatively straight and aligned with
each other.

The histogram of all values for K for the four
samples is shown in Fig. 10a. In a sense, K is a
measure of the anisotropy of the clusters. Higher
values of K would mean that the clusters were
longer in the z direction, while lower values of K
would mean the clusters are longer in the y
direction. A K value of 1 would mean that the
clusters are perfectly symmetric about both axes.
The average cluster volume fraction, however, is a
measure of the average compaction of the fibers
inside each cluster in each cross-section (Fig. 10b).
The volume fractions of all triads in each cluster
were averaged in each cross-section. The areas of

Automotive

Aerospace

Layer 5

a

Layer 13

Fig. 7. Final results of cluster analysis for automotive sample (left) and four aerospace samples (right).
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each cluster were measured in each cross-section by
summing up the areas of all triads in the clusters
(Fig. 10c). The radius of gyration of each cluster was
calculated in each cross-section by finding the root-
mean-square distance of each cluster centroid to the
centroid of the constituent triads (Fig. 10d).

The majority of the K values for both samples lay
below 1, with the aerospace sample peaking just
under. The distribution shows that the clusters in
both samples tend heavily to be larger in the y

direction, normal to compaction. Many of the aero-
space clusters, however, lay just under a K value of
1. This means that aerospace samples each have
clusters that are very symmetric about both axes,
while the automotive clusters have a stronger
preference for their direction.

The cluster volume fractions depict more of a
difference between the two samples than the values
for K. Due to the different manufacturing methods
and the qualitative information obtained from the
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cross-sectional images, it is known that the levels of
compaction between the two samples differed
greatly. The story is the same when looking at the
volume fractions of the clusters. The majority of the
aerospace samples lay between cluster volume
fraction values of 0.5 and 0.8, while the majority
of automotive cluster volume fraction values were
between 0.4 and 0.7. The peaks occurred at 0.65 for
the aerospace samples and 0.55 for the automotive
samples.

The data presented here characterize the clusters
of the two samples as being oriented similarly with
respect to angle, but different in the sense of
geometry and density. The automotive clusters
tended to be longer in the y direction and relatively
large when compare with the aerospace samples.
The aerospace samples were mostly oriented hori-
zontally as well, but exhibited higher degrees of
symmetry. The aerospace clusters were also found
to be smaller, more numerous, and much more
compacted than the automotive clusters. Further
analysis is needed to fully understand the ramifica-
tions of these findings. Future work will include
finite-element-based analyses of composite 3D com-
posite RVEs that have been homogenized using the
cluster formulation. The findings of this work and
future analyses into other samples will serve as a
blueprint for the design of clustered composite
RVEs.

CONCLUSIONS

Composite microstructures are typically charac-
terized by the overall fiber volume fraction and
global fiber orientation, but these two measures
alone may be insufficient for accurate representa-
tion. Different metrics to describe the structural
distribution of fibers and their entanglement have
been developed, but one higher-order structural
feature that has been observed in many microstruc-
tures is the clustering of fibers, where groups of
fibers remain together throughout the entire sample
volume. While this can be recognized qualitatively,
a method for identifying and isolating clusters was
the focus of this study. Fiber clusters were identified
by triangulating all fibers and studying the total
variations of the area and perimeter of these
triangles (or triads of fibers) in every cross-sec-
tion. The triads were divided into three groups or
bins based on the variation, and the thresholds
between the bins was optimized to minimize the
variance in each group. Using thresholds relative to
the sample rather than absolute thresholds allows
the identification of clusters regardless of global
compaction levels and sample size. The triads in the
bin with the lowest variance were selected as
potentially part of a fiber cluster, and a filtering
operation was applied to identify discrete clusters of
fibers with low variance. The clusters were then
isolated, and various metrics such as cluster
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orientation, cluster symmetry, cluster fiber volume
fraction, cluster density, and radius of gyration
were calculated.

Microstructures from scans of two different com-
posites, one from an automotive-grade and the other
from an aerospace-grade composite, were analyzed
for cluster metrics. Both analyzed samples had a
uniform global fiber direction (ether unidirectional
or constructed of unidirectional layers) but differed
significantly in the level of compaction or global
volume fraction, with the automotive composite
being less compact than the aerospace composite.
The analysis allowed a more subtle comparison of
the two samples beyond global fiber volume fraction.

The metrics presented revealed some key differ-
ences and similarities between the automotive and
aerospace samples. The aerospace samples had a
larger density of clusters, smaller clusters, and
higher volume fraction of clusters than the automo-
tive sample. The automotive sample had a large
variation of cluster sizes, with one large cluster
pulling the average up. The orientation of fiber
clusters was similar in both samples, with clusters
varying less than 5° from each other. Additionally,
metrics describing the cross-sectional shape of clus-
ters showed equivalency between samples. The
radius of gyration for both had similar values, and
both showed anisotropy in fiber shape, with a
tendency to be flatter in the direction of compaction
(through-thickness). One would have to take more
samples of each type of composite to thoroughly
characterize the microstructure, but it was signifi-
cant that the analysis showed differences in cluster
geometry between the two samples nonetheless.

One major question which remains unanswered
in this study is how far (in the fiber direction) the
fiber clusters persist beyond the field of view of
these particular scans. The scans were around 0.2
mm and 0.7 mm in the fiber direction, and longer
scans would be needed to answer this question. It is
currently unknown whether clusters eventually
disperse, or stay together for extended lengths.
Little is known to date regarding the morphology of
individual fibers in the fiber direction, because
continuous fibers would need to be scanned at much
larger length scales, while still maintaining a high
enough resolution transversely to recognize and
isolate individual fibers.

One can speculate about the manufacturing ori-
gins of the clusters for the different samples. The
automotive sample consisted of a heavy tow, which
was processed in a bundle of around 48k fibers.
During manufacturing, these tows are much wider
than they are thick, which makes them susceptible
to the tow folding in on itself. This mechanism may
be one of the contributors of the larger, more
distinct fiber clusters. The aerospace samples, on
the other hand, were made from highly aligned
prepregs compressed with a greater pressure during
manufacturing. These fibers are generally more
aligned, allowing greater compaction. The fiber

clusters here may be more a product of either stray
fiber individuals or shear planes of fibers shifted
under high compaction pressures. Further work is
needed to identify these causes, which could lead to
tuning the processing towards achieving the desired
fiber clustering.

While clusters exist within the microstructure of
certain fiber-reinforced composites, further work
needs to be done to understand how this feature
affects macroscopic characteristics such as strength.
While volume fraction and global orientation are
well known to be influential metrics, the size,
density, and alignment of fiber clusters may have
a significant impact on the ability of a crack to
travel transverse to the fibers. It may be difficult to
determine such an effect experimentally, so it is
expected that computational models will be pivotal.

The identification of fiber clusters could be used to
perform a level of homogenization below typical
composite mesoscales (tows/plies) but above the
fiber microscale. This additional level could provide
morphological context for local failure initiation,
where perhaps failure initiation is not solely deter-
mined by the presence of a microscale flaw or stress
riser, but where that initiation point is located in
relation to larger features such as fiber clusters,
matrix-rich regions, and larger voids. Additionally,
these descriptors provide a more refined way to
determine microstructural features and compare
between processing conditions, as was done here.
Identifying these morphological features such as
fiber clusters and developing methodical ways to
quantify them is an important link in the process—
microstructure—properties chain, being one step
closer to designing manufacturing processes to
obtain desired material and part performance
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APPENDIX
Fiber Path Extraction

To confirm the validity of the extracted fiber
paths, a second method for fiber detection was used.
The second method used a novel algorithm, coded in
Mathematica, that mixed tools from mathematical
morphology and traditional Gaussian filters. A
median filter, with a disk structuring element, was
applied to the images, followed by thresholding and
Gaussian smoothing. The fiber centers were identi-
fied by finding the local maxima of the filtered
image. The blending of image foreground and
background made traditional gradient-based edge
detection methods inapplicable. It was concluded
that these optical artifacts were due to surface
contamination since they did not persist from one
cross-section to the next. The algorithm based on
mathematical morphology is computationally more
intensive but performs better on noisy images.
These difficulties notwithstanding, the two methods
were always within 1 pixel on the centers of the
fiber cross-sections and agreed with each other on
more than 90% of the disks.

Use of Otsu’s Method

Otsu’s method is typically used to threshold
greyscale images for the purpose of, for example,
separating background from foreground or isolating
objects. It was recognized, however, that Otsu’s
method provides a reliable way of splitting his-
tograms into specific regions. The implementation of
Otsu’s method used in this work is a MATLAB
function, multithresh, which can split histograms
into multiple regions based on the input number of
thresholds.

To find the thresholds for V4 and Vp, histograms
of both values were generated. For all samples,
these histograms contained long, discontinuous
tails filled with outliers. For each histogram, the
average and standard deviation were calculated.

The tails were then trimmed by filtering out all
values greater than the average plus twice the
standard deviation (Fig. 11).

The multithresh function was then used to split
the total variation histograms into three bins. The
multithresh function splits the distribution of val-
ues into £ number of bins with the objective of
minimizing the variation of values within each bin
as expressed in

k
argmin’>~ 3" [lx — gy

i—1 x€S;

(10)

where S is the set of partitioned values of the input
data, x is a particular entry of S, also known as S;,
and y; is the mean of the points in x. This is also the
function used in K-means clustering, a process in
which groups of values are clustered together by
sets of points in which the variance for those points
is minimized.?”

All triads with V4 and Vp values below the lower
threshold were determined to be clustered triads.
The triads in the two upper bins were not studied in
this work. These bins are hypothesized to contain
both intermediate triples, which contain relatively
equal proportions of fiber and matrix, and matrix-
rich triads. Future works will focus on what these
bins truly represent.

Filtering

Filtering algorithms are applied to the clustered
triads to remove extraneous fibers which do not
appear to be clustered. The subtraction algorithm
loops through each clustered triad and removes it
from the cluster if two of its neighboring triads do
not belong to a cluster. The addition algorithm loops
through every nonclustered triad and adds it to a
cluster if two of its neighbors belong to one. A
generalized version of these two algorithms, where
each triad becomes whatever two of its neighbor
triads are, is used as a first step in the overall
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filtering process. A final, subtractive filtering step is
used to remove any remaining noise and allow the
clusters to converge to their final shapes. The entire
filtering process is then repeated until the number
of clusters converges (Fig. 5e).

10.

11.

12.
13.

14.

15.

16.

17.

REFERENCES

F. H. Bhuiyan, S. H. R. Sanei, and R. S. Fertig, Compos.
Struct. 237, 111887 (2020).

B. Fiedler, M. Hojo, S. Ochiai, K. Schulte, and M. Ochi,
Compos. Sci. Tech. 61, 95. (2001).

C.T. Sun, and R.S. Vaidya, Compos. Sci. Tech. 56, 171.
(1996).

L. Bouaoune, Y. Brunet, A. El Moumen, T. Kanit, and H.
Mazouz, Compos. Part B 103, 68. (2016).

J.C. Michel, H. Moulinec, and P. Suquet, Comput. Method.
Appl. M. 172, 109. (1999).

0. van der Sluis, P.J.G. Schreurs, W.A.M. Brekelmans, and
H.E.H. Meijer, Mech. Mater. 32, 449. (2000).

A. Wongsto, and S. Li, Compos. A 36, 1246. (2005).

S.H.R. Sanei, and R.S. Fertig, Compos. Sci. Tech. 117, 191.
(2015).

P. Pineau, and F. Dau, Comput. Method. Appl. M. 241-244,
238. (2012).

X. Chen, and T.D. Papathanasiou, Compos. Sci. Tech. 64,
1101. (2004).

S. H. R. Sanei, E. Barsotti, D. Leonhardt, and R. Fertig III,
J. Compos. Mater. 51, (2016).

C. Fu and X. Wang, Compos. Struct. 113343 (2020).

M. Wang, P. Zhang, Q. Fei, and F. Guo, Compos. Struct. 227,
111287. (2019).

L. Wang, G. Nygren, R.L. Karkkainen, and Q. Yang, Com-
pos. Struct. 230, 111462. (2019).

T.J. Vaughan, and C.T. McCarthy, Compos. Part A 42, 1217.
(2011).

E. Totry, C. Gonzalez, and J. Lorca, Compos. Sci. Tech. 68,
829. (2008).

F. Larsson, K. Runesson, S. Saroukhani, and R. Vafadari,
Comput. Method. Appl. M. 200, 11. (2011).

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.
35.

Y. Swolfs, L. Gorbatikh, and I. Verpoest, Compos. Sci. Tech.
85, 10. (2013).

B. Fedulov, F. Antonov, A. Safonov, A. Ushakov, and S.
Lomov, J. Compos. Mater. 49, 2887. (2015).

D. Wilhelmsson, D. Rikemanson, T. Bru, and L.E. Asp,
Compos. Struct. 233, 111632. (2020).

T. Zheng, L. Guo, R. Sun, Z. Li, and H. Yu, Compos. Part A
143, 106295. (2021).

A. Li, J. Zhang, F. Zhang, L. Li, S. Zhu, and Y. Yang, New
Carbon Mater. 35, 752. (2020).

T. Fast, A.E. Scott, H.A. Bale, and B.N. Cox, JJ. Mater. Sci.
50, 2370. (2015).

M.W. Czabaj, M.L. Riccio, and W.W. Whitacre, Compos. Sci.
Tech. 105, 174. (2014).

P.J. Creveling, W.W. Whitacre, and M.W. Czabaj, Compos.
Part A 126, 105606. (2019).

J. Weissenbock, A. Bhattacharya, B. Plank, C. Heinzl, and
J. Kastner, Case Stud. Nondestruct. Test. Eval. 6, 39. (2016).
R.M. Sencu, Z. Yang, Y.C. Wang, P.J. Withers, C. Rau, A.
Parson, and C. Soutis, Compos. Part A 91, 85. (2016).

A.E. Scott, I. Sinclair, S.M. Spearing, A. Thionnet, and A.R.
Bunsell, Compos. Part A 43, 1514. (2012).

N.Q. Nguyen, M. Mehdikhani, I. Straumit, L. Gorbatikh, L.
Lessard, and S.V. Lomov, Compos. Part A 104, 14. (2018).
D. Wilhelmsson, R. Gutkin, F. Edgren, and L.E. Asp, Com-
pos. Part A 107, 665. (2018).

B. Larraniaga-Valsero, R.A. Smith, R.B. Tayong, A. Fer-
nandez-Lopez, and A. Giiemes, Compos. Part A 114, 225.
(2018).

B.A. Bednarcyk, J. Aboudi, and S.M. Arnold, Int. J. Solids
Struct. 69-70, 311. (2015).

J.E. Spowart, H.E. Mullens, and B.T. Puchala, JOM 55, 35.
(2003).

N. Otsu, IEEE Trans. Syst. Man Cybern. 9, 62. (1979).

J. Macqueen, in 5th Berkeley Symposium on Mathematical
Statistics and Probability (1967), pp. 281-297.

Publisher’s Note Springer Nature remains neutral with re-
gard to jurisdictional claims in published maps and institutional
affiliations.



	Identification and Quantification of 3D Fiber Clusters in Fiber-Reinforced Composite Materials
	Abstract
	Introduction
	Experimental Procedures
	Materials and Manufacturing
	Imaging
	Microstructure Reconstruction
	Cluster Analysis
	Cluster Identification
	Cluster metrics


	Results and Discussion
	Cluster Analysis
	Cluster Identification
	Cluster Metrics


	Conclusions
	Acknowledgements
	Conflict of interest
	Appendix
	Fiber Path Extraction
	Use of Otsu’s Method
	Filtering

	References




