OPEN ACCESS

Retrieval of the d/sdL7+T7.5p Binary SDSS J1416+1348AB

Eileen C. Gonzales 2,3,4,5,11,1 6, Ben Burningham , Jacqueline KFahert 0, Colleen Clear Channon Visscher 0, Mark S. Marley 6, Roxana Lupu and Richard Freedman 6

¹ Department of Astronomy and Carl Sagan Instituternell University 122 Sciences Drivetthaca,NY 14853, USA; ecg224@cornell.edu Department of Astrophysics merican Museum of Natural HistoryNew York, NY 10024, USA The Graduate CenteCity University of New York, New York, NY 10016, USA

⁴ Centre for Astrophysics Researc achool of Physics Astronomy and Mathematics Iniversity of Hertfordshire Hatfield AL10 9AB, UK Department of Physics and Astronomyunter College City University of New York, New York, NY 10065, USA Chemistry & Planetary ScienceBordt University, Sioux Center, IA, USA

⁷ Center for Extrasolar Planetary System Space Science Institut Boulder, CO, USA NASA Ames Research Centel Moffett Field, CA 94035, USA ⁹BAER Institute/NASA Ames Research Centel/Joffett Field, CA 94035, USA

10 Seti Institute, Mountain View, CA, USA

Received 2020 July 13; revised 2020 October 1; accepted 2020 October 2; published 2020 December 10

Abstract

We present the distance-calibrated spectral energy distribution (SED) of the d/sdL7 SDSS J14162408+1348263A (J1416A) and an updated SED for SDSS J14162408+1348263B (J1416B) also present the first retrieval analysis of J1416A using the Brewster retrieval code base and the second retrieval of J1446Bnd that the primary is best fit by a nongray cloud opacity with a power-law wavelength dependence but is indistinguishable between the type of cloud parameterization 1.416B is best fit by a cloud-free mode posistent with the results from Line et al. Most fundamental parameters derived via SEDs and retrievals are consistent within 1σ for both J1416A and J1416B. The exceptions include the radius of J1416A, where the retrieved radius is smaller than the evolutionary model-based radius from the SED for the deck cloud model, and the bolometric luminosity, which is consistentwithin 2.5σ for both cloud models. The pair's metallicity and carbon-to-oxygen ratio pointoward formation and evolution as a systemBy comparing the retrieved alkaliabundances while using two opacity models, we are able to evaluate how the opacities behave for the L and T dwafstly, we find that relatively small changes in composition can drive major observable differences for lower-temperature objects.

Unified Astronomy Thesaurus concepts: Brown dwarfs (185); L subdwarfs (896); T subdwarfs (1680); Fundamental parameters of stars (555)

1. Introduction

Brown dwarfs are a class of astronomical objects that straddle the massboundary between starsand planets with masses __75 Mup (Saumon et al. 1996; Chabrier & Baraffe 1997) and effective temperatures of 250-3000 K, corresponding to late-type M, L, T, or Y spectral types (Burgasser et al. 2002; Kirkpatrick 2005; Cushing et al. 2011). Due to electron degeneracthey never reach a core temperature high enough for stable hydrogen burning buinstead contractand cool through their lifetimes, progressingthrough spectral classifications as they age.

Field-age brown dwarfsanchor the spectral type scheme; the standard scheme. Low-metallicity sources, known as subdwarfs, have unusually blue near-infrared(NIR) J□-□K colors (Burgasser etl. 2003, 2009) compared with equivalent field sources. Spectral features distinguishing them from field dwarfs include enhanced metal-hydride absorption bands (e.g. distribution (SED), with evolutionary models and (2) by FeH), weak or absent metal oxides (TiO, CO, VO), and enhanced althospheric retrievals where we explore similarities and collisionally induced H₂ absorption (Burgasseet al. 2003

Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

and references therein). Subdwarfs also exhibit substantial radial velocities, high proper motions, and inclined, eccentric, and sometimes retrograde Galactic orbits indicating membership in the Galactic halo (Burgasseet al. 2008; Dahn et al. 2008; Cushing et al. 2009). To date, as classified by Zhang et al. (2017, 2018b, 2018a, 2019), there are approximately 66 L subdwarfsand 41 T subdwarfs, although mostT subdwarfs are not classified as such in previous literature (see Table 3 of Zhang et al.2019). To be identified as a T subdwarf in Zhang et al. (2019), T dwarfs need to have a suppressed K-band spectrum.

Presently there is only one subdwarfL+T system, SDSS however, low-gravity, low-metallicity, and color outliers expand suited for low-metallicity bd-bd binary atmospheric characterization via retrievals. In this paper, we determine and examine fundamental parameters and atmospheric features of J1416AB via two methods: (1) by coupling the empirical bolometric luminosity, from the distance-calibrated spectral energy differences between the pair to determine their formation and evolution and to understandtheir individual atmospheric structure.

> In Section 2 we present literature data on J1416AB. Section 3 presents the data used for creating distance-calibrated SEDs and the retrievalsas well as the resultanfundamental parameters derived from creating the SED. Section 4 describes our retrieval framework and setup for J1416AB. Retrieval

^{11 51} Pegasi b Fellow.

¹² LSSTC Data Science Fellow.

results for J1416A and J1416B are discussed in Sections 5 and a weakly or unconstrained age (Burningham at 2010; 6, respectively. Fundamental parameters derived from SED and owler et al. 2010; Schmidt et al. 2010). retrieval methods are compared to the literature and evolutionary models in Section 7Lastly, Section 8 brings together the individual retrievals of J1416AB to discuss the alkali abundance, metallicity, and carbon-to-oxygen (C/O) ratios derived and what we can interpret for the system as a whole.

Literature Data on SDSS J1416AB

At the time of discovery, J1416AB was one of the few known widely separated L+T systemsthus allowing for the properties of both to be examined in tande in ta benchmarkas features of the primary indicate an old age for the system. Here we present the literature data for the independent discoveries of the L and T dwarfs.

2.1. Literature Data on SDSS J1416A

SDSS J141624.08+134826.7 (hereafter 1416A) was discovered independently via a variety of methods by Burningham ULAS J141623.94+1348836.30 (hereafter J1416B) was et al. (2010), Schmidt et al. (2010), and Bowler et al. (2010). It discovered by Burningham et al. (2010) through a cross match was initially overlooked in color-based searchesdue to its 2010), suggesting a low metallicity and/or high surface gravity by Scholz (2010) with a projected separation of 75 auhich to be bluer than normalin the literature; however, the spectral type varies with classifications of d/sdL7 by Burningham et al. J1416A, J1416B has unusualeatures of a late-T dwarf. In (2010), sdL7 by Kirkpatrick et al. (2010, 2016) and Zhang et alparticular, the CH₄ - J-early peculiarity (where the CH₄-J (2017), and a blue L dwarf by both Schmidet al. (2010) (L5 optical, L4 NIR) and Bowler et al. (2010) (L6 optical, L6p NIR). There are currently three optical pectra (Schmidet al. 2010 SDSS and MagE and Kirkpatrick etal. 2016 Palomar) three NIR spectra (SpeX PrismSchmidtet al. 2010; Bowler et al. 2010, SpeX SXD: Schmidt et al. 2010), and one L-band spectrum (Cushing et al. 2010) available of J1416A.

provided by Gaia DR2 (Gaia Collaboration et al016, 2018; Lindegren et al. 2018), with previous measurements by Schmidtet al. (2010) (proper motions) Dupuy & Liu (2012), and Faherty etal. (2012) (parallax) Radial velocity measurements have been reported by SDSS DR7 (Abazajian etal. 2009), Schmidtet al. (2010), and Bowler et al. (2010). UVW kinematic measurementsplace J1416A in the thin disk (Schmidtet al. 2010; Bowler et al. 2010), and in Table 1 we present updated UVW kinematics using Gaia DR2 proper motions and parallax paired with the radial velocity from Schmidt et al.(2010).

J1416A by fitting its spectrum to self-consisteratrid models (Burningham et al. 2010; Bowler et al. 2010; Cushing et al. 2012010b), respectively. Schmidt et al. 2010). Its atmospherewas determined to be relatively dust-free (Burningham et al. 2010), and like other bluthrough comparison with grid models (Burgasser et al. L dwarfs it possibly had a thin or patchy cloud deck with large 2010a, 2010b), SED fitting (Filippazzo et al. 2015), and grains that could cause the observed blue NIR colors. Additionally, J1416A might have an older age and higher surface010a) found that J1416B was well matched to the archetype gravity (Bowler et al2010; Schmidt et al. 2010). Cushing et al. blue T dwarf 2MASS J09393548-2448279.hey determined (2010) found evidence for vertical mixing in the atmosphere due T_{eff}□=□650□±□500glg□=□5.2□±[[Fe/4]]□_□-0ænd to the lack of CHabsorption at 3.3 µm. Temperature estimates of zz□=□⁴1@sing the Saumon & Marley (2008) models and J1416A vary from 1500 to 2200 K (Burningham et al. 2010; Bowler et al. 2010; Cushing et al. 2010; Schmidtet al. 2010), while the literature agrees on a surface gravity of 5.5 dex

J1416A was examined for variability in Khandrika et al. (2013), Metchev et al. (2015), and Miles-Páez etal. (2017). Khandrika et al. (2013) found marginal evidence of variability detected in one night of their observationsusing Gemini camera J and Kbands on the Shane telescopetchev et al. (2015) monitored J1416A using Spitzer ch1 (14 hours) and ch2 (7 hours) as partof their Weather on other Worlds survey to look for variability attributed to patchy clouds, finding no evidence for variability. In Miles-Páez et al. (2017), variability correlated to activity was tested using the Gemini Multi-object Spectrograph (GMOS-N) with the R831-G5302 grating, but no evidence for variability was found.

Values for J1416A from the literature and those determined in this work are listed in Table 1. All literature values are also listed in Table 9 for comparison in Section 7.

2.2. Literature Data on SDSS J1416B

of SDSS and UKIRT, finding a separation of 9" between the A

unusually blue NIR color (J□-□K□=□1.03□±□0.03) (SchmatteBatomponentJ1416B was also independently discovered (Burningham et al. 2010). The spectral type of J1416A is agreed have updated (now 83.7 au) using the Gaia DR2 parallax and the angular separation from Burningham et al. (2010). Like index on the red side of the J-band peak suggests an earlier spectraltype than the HO-J index on the blue side of the Jband peak), the very blue H□-□K colorand the extremely red H□-□[4.5¢olor lead to its classification as a T7.5p (Burningham et al. 2010). At the time of its discovery, J1416B was both the bluest $H\Box - \Box K$ and reddest $H\Box - \Box [4.5]$ T dwarf. The CH₄□−□J-early peculiarity of 1416B pointed toward either low The most precise proper motions and parallax for J1416A is metallicity or high surface gravity (Burningham et al. 2010). It was noted that J1416B forms a sequence with other lowmetallicity and high-gravity T dwarfs, and because of the extremely red $H\Box - \Box [4.5]$ colorciould not be ruled out as a binary itself (Burningham et al. 2010). Burgasser et al. (2010a) classified J1416B as a T7.5 but noted strong water and methane bands, a possible detection of ammonia between 1 and 1.3 µm, and a broadened Y-band peak and suppressed K band indicative of high gravity or low metallicity in its spectrum. Kirkpatrick et al. (2016) regarded J1416B asan sdT7.5 in relation to J1416A, and Zhang et al. (2017) also classified it as sdT7.5 via their subdwarf metallicity classification scheme. Presently, Many studies aimed to determine the fundamental properties 0416B has three NIR prism spectra (IRCSpeX, and FIRE) from Burningham et al. (2010) and Burgasseret al. (2010a,

Fundamental parameters of J1416B were determined atmosphericretrieval (Line et al. 2017). Burgasseret al. used Baraffe evolutionary modelsto find an age range of 2-10 Gyr, mass between 22 and 47 M $_{\rm Jup}$ and radius of 0.83 □ R Both cloudless and cloudy models were fito the (Burningham et al. 2010; Bowler et al. 2010; Cushing et al. 201s) ectrum of J1416B in Burgasser ett. (2010b), with cloudy

Table 1
Properties of the J1416+1348AB System

J1416B
Value Reference
T7.5p 1
Astrometry
14 ⁿ 16 ^m 23.94 [§] 1 +13° 48′ 36″3 1
L L
107.56□±□0.30 3
221□±□33 1
115□±□45 1
L L
L L
L L
L L
Photometry
L L
25.21□±□0.26 7
20.87□±□0.09 7
L L
L L
L L
19.8□±□0.06 8
L L
L L
L L
18.13□±□0.02 1
17.35□±□0.02 1
17.62□±□0.02 1
18.93□±□0.17 1
16.12□±□0.20 10
12.791□±□0.038 10
12.19□±□0.23 10
14.69□±□0.05 1
12.76□±□0.03 1
System
alue Reference
9 1 L L 83.7 5 L L
ameters from SED
-5.80□±□0.07 5
660□±□62 5
0.94□±□0.16 5
33□±□22 5
4.83□±□0.51 5
0.5–10 5
9.3□±□0.03 5
ieved Parametérs
Model Value Reference Model
Allard Alkalies
ver-law deck cloud $5.00^{+0.28}_{-0.41}$ 5 cloud-free
on law dook doud 5.00 _{0.41} 5 cloud-free
vor law dock cloud 5.00±0.05 5 -11
- 0.04
rer-law deck cloud 659.05 15.33 5 cloud-free

Table 1 (Continued)

			(Continued)			
Property	J1416A			J1416B		
	Value	Reference		Value	Reference	
C/O e	0.59 0.11	5	power-law deck cloud	0.52 ^{+ 0.09}	5	cloud-free
C/O _{AB} ^f	$0.59^{+0.11}_{-0.21}$	5	power-law deck cloud	0.53 0.10	5	cloud-free
[M/H] ⁹	$-0.19^{+0.21}_{-0.23}$	5	power-law deck cloud	- 0.38 0.15	5	cloud-free
[M/H] _{AB} ^h	- 0.17 ^{+ 0.21}	5	power-law deck cloud	- 0.35 ⁺ 0.15	5	cloud-free
[M/H] Line17	L	L	L	- 0.36 ^{+0.14}	5	cloud-free
log g (dex)	5.18 ^{+0.28} _{0.36}	5	power-law slab cloud	L	L	L
L _{bol}	-4.21□±□0.01	5	power-law slab cloud	L	L	L
T _{eff} (K)	1821.5 3 64.58 102.79	5	power-law slab cloud	L	L	L
Radius (R _{up})	0.77 0.10	5	power-law slab cloud	L	L	L
Mass (M _{Jup})	36.96 30.48 18.71	5	power-law slab cloud	L	L	L
C/O ^e	0.58 0.11	5	power-law slab cloud	L	L	L
C/O _{AB} f	$0.58^{+0.11}_{-0.21}$	5	power-law slab cloud	L	L	L
[M/H] ⁹	- 0.35 ⁺ 0.20	5	power-law slab cloud	L	L	L
[M/H] _{AB} ^h	- 0.33 ^{+0.20}	5	power-law slab cloud	L	L	L
			Burrows Alkalies			
log g (dex)	5.42 ⁺ 0.23 0.29	5	power-law deck cloud	4.77 ⁺ 0.32 0.34	5	cloud-free
L _{bol}	-4.22□±□0.01	5	power-law deck cloud	-5.90□±□0.04	5	cloud-free
T _{eff} (K)	1904.69 39.99 42.49	5	power-law deck cloud	653.05 16.01 13.23	5	cloud-free
Radius (R _{up})	0.69□±□0.04	5	power-law deck cloud	0.86□±□0.06	5	cloud-free
Mass (M _{Jup})	51.76 28.21 24.33	5	power-law deck cloud	17.22 15.67	5	cloud-free
C/O ^e	$0.60^{+0.10}_{-0.16}$	5	power-law deck cloud	$0.50^{+0.10}_{-0.07}$	5	cloud-free
C/O _{AB} ^f	0.60 ⁺ 0.10 - 0.11 0.18 - 0.11 0.21	5	power-law deck cloud	$0.50^{+0.11}_{-0.07}$	5	cloud-free
[M/H] ^g	- 0.1† ^{0.18}	5	power-law deck cloud	- 0.50 ^{+ 0.16}	5	cloud-free
[M/H] _{AB} ^h	- 0.09 0.18 0.21	5	power-law deck cloud	- 0.47 ^{+ 0.16}	5	cloud-free
[M/H] Line17	L	L	L	- 0.47 ^{+ 0.15}	5	cloud-free
log g (dex)	5.31 0.24 0.34	5	power-law slab cloud	L	L	L
L_bol	- 4.22 ^{+0.02}	5	power-law slab cloud	L	L	L
T _{eff} (K)	1859.0 7 61.09	5	power-law slab cloud	L	L	L
Radius (R _{up})	$0.73^{+0.11}_{-0.06}$	5	power-law slab cloud	L	L	L
Mass (M _{Jup})	45.73 27.91 22.22	5	power-law slab cloud	L	L	L
C/O ^e	$0.57^{+0.11}_{-0.26}$	5	power-law slab cloud	L	L	L
C/O _{AB} ^f	0.57 0.11	5	power-law slab cloud	L	L	L
[M/H] ⁹	- 0.30 ⁺ 0.21 0.27	5	power-law slab cloud	L	L	L
[M/H] AB ^h	- 0.29 ⁺ 0.21 0.27	5	power-law slab cloud	L	L	L

Notes.

References—(1) Burningham et al. (2010), (2) Cutri et al. (2003), (3) Gaia Collaboration et al. (2016, 2018); Lindegren et al. (2018), (4) Schmidt et al. (2010), (5) the paper,(6) Abazajian et al.(2009),(7) Leggett et al.(2012),(8) Chambers et al.(2016),(9) Cutri et al. (2014),(10) Cutri et al. (2012).

models producing a marginally better ftb the data, bringing the temperaturecloser to that inferred by its mid-infrared parameters from Burgasser et (2010a,2010b) by determining semiempiricalparameters based on its distance-calibrated SED. Most recently, Line et al. (2017) retrieved its thermal

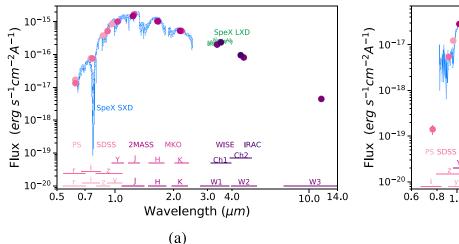
profile and derived fundamentabarametersmetallicity ([M/ H]), and a C/O ratio. Values for J1416B from the literature and colors. Filippazzo et al. (2015) improved upon the fundamentalthose determined in this work are listed in Table 1. J1416B was studied by Metchev et al. (2015) for variability with no evidence found in Spitzer ch1 and ch2. All literature values are also listed in Table 10 for comparison in Section 7.

^a We do not correct for LSR.

^b Using Saumon & Marley (2008) low-metallicity (M/H□=□-0.3) evolutionary modessuming an age of 0.5–10 Gyr.

c Lboh Teff, radius, mass, C/O ratio, [Fe/H], and [M/H] are not directly retrieved parameters but are calculated using the retrieved parameters bu the predicted spectrum. The C/O ratio is not relative to the Sun; it is absolute olar C/O is 0.55.

J1416A is best fit using Allard alkalieswhile J1416B is best fit with BurrowsWe conclude the Allard alkali opacities provide the best fit across both sources.


e Atmospheric C/O using constrained gases, J1416A (both models, H€O, CH₄, and VO; J1416B: H₂O and CH₄ (same gases as used in Line et al. 2017 here without the rainout correction).

Atmospheric C/O using only the gases in common between J1416ABOHCH₄, and CO.

g Metallicity determined using all constrained gases416A: H2O, CO, CH4, VO, CrH, FeH, and Na+K; J1416B: H2O, CH4, NH3, Na+K.

h Metallicity determined using only the gases in common between J1416A∰0,HCH₄, CO, and Na+K.

Metallicity using the same gases as Line et (2017): H₂O and CH₄ and without the rainout correction.

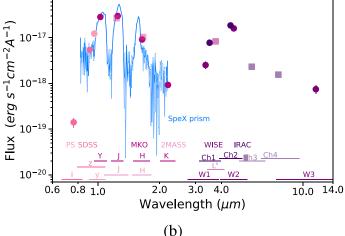


Figure 1. SEDs of J1416+1348ABPhotometry (shades of pink and purple) is labeled by instrument or filter sys**Tère**.horizontal lines at the bottom show the wavelength coverage for the corresponding photometric measurement. Error bars on the photometric points are smaller than the point size. Observation reference be found in Tables 1 and 2. (a) Distance-calibrated SED of J1416A. SpeX SXD is in blue, and SpeX LXD is in green. No estimated photometry (b) distance-calibrated SED of J1416B. The SpeX prism is in blueEstimated synthetic photometry shown as transparent squares.

Table 2 Spectra used to Construct SEDs and for Retrievals

Name	Spectrum	Obs. Date	References	Use
J1416A	SpeX SXD,	2009 Jun 29,	1	SED
	LXD1.9	2010-01-29		
J1416A	SpeX prism	2009 Jun 28	3	Retrieval
J1416B	SpeX prism	2001 Oct 23	2	Both

References—(1)Cushing et al. (2010), (2) Burgasseret al. (2010a), (3) Schmidt et al.(2010).

3. Data Used and Results from Generating the SED

The fundamentabarameters for J1416AB were determined using the technique of Filippazzo et al. (2015), where we creat a distance-calibrated SED using the spectpanotometry, and parallax. The SED of J1416A uses the SpeX short-cross-dispersed (SXD) and long-cross-dispersed (LXD) spectrum from Cushing et al. (2010), while J1416B uses the SpeX prism spectrum from Burgasser et l. (2010a). The photometry and Gaia parallax used for both sources are listed in Table 1. Table 2 lists the spectra used in the SEDs and the retrieval models, which differ for J1416A due to the current time constraints on data resolution for our retrieval model.

To generate the SED of J1416Athe SpeX SXD and LXD spectra were stitchedinearly interpolating to fill gaps in the data, into a composite spectrum and then scaled to the absolute magnitudes of the observed photometFor J1416B we scale the SpeX prism spectrum to the absolute magnitudes of observed and synthetic (those calculated based on empirical relations) photometry. Synthetic photometry for J1416B is included because if we linearly interpolated between W2 and W3, without including the synthetic MIR IRAC Ch3 and Ch4 photometry calibrated based on field dwarfse would likely overestimate the mid-infrared flux compared to most T dwarfs, causing a noticeable change in the TAS there are no known low-metallicity T dwarfs with IRAC Ch3 or Ch4 MIR

photometry, we cannot place a level of error on their difference from field T dwarfs. The SEDs of J1416A and J1416B are shown in Figure 1, with the synthetic magnitudes used for J1416B plotted as transparent squares in Figure 1(b).

The bolometric luminosity (Lbol) was determined by integrating under the distance-calibratedSED from 0 to 1000 µm,using a distance of 9.3 □ ± □ 0.3 pc based on the Gaia Collaboration et al. (2018) parallax measurement. The effective temperature (Iff) was calculated using the Stefan-Boltzmann law with the resultant inferred radius from the cloudless Saumon & Marley (2008) low-metallicity (-0.3 dex) evolutionary model. The low-metallicity models were chosen for the assumed radius due to the literature spectral type classification of sd for both components. Additionally, as done in Filippazzo ^{te}t al. (2015),the Chabrier etal. (2000),Baraffe etal. (2003), and cloud-free Saumon & Marley (2008) evolutionary models were also used to determine the radius final radius range was set as the maximum and minimum from all model predictions as done in Filippazzo et al. (2015). An age range of 0.5-10 Gyr for the system was chosen to conservatively encompass possible field and subdwarf ages. Additional details on the SED generation can be found in Filippazzo et al. (2015). Fundamental parameters derived for J1416A and J1416B using this approach are listed in Table 1 and are compared to the literature in Section 7 (also see Tables 9 and 10).

4. The Brewster Retrieval Framework

Our retrievals use the Brewster framework (Burningham et al. 2017) with a modified setup from the one in Burningham et al. (2017) in order to optimize for low-metallicity atmospheres. A summary of the Brewster framework with our modifications is discussed below. We differ from Burningham et al. (2017) with a higher resolution for opacity sampling, using a second method (thermochemicalequilibrium with rainout) for determining gas abundances, and expanded temperature and mass prior more detailed description of Brewster can be found in Burningham et 42017).

¹³ SEDkit is available on GitHub at□https://github.com/hover2pi/SEDkit. The Eileen branch was used for this work.

4.1. The Forward Model

transfer technique of Toon et al. (1989), including scattering, as thermochemical equilibrium grids discussed later in this by, for example. Marley et al. (1996) Saumon & Marley by, for example, Marley et al. (1996), Saumon & Marley (2008), and Morley et al. (2012). We use a 64 pressure layer (65 levels) atmosphere with geometric mean pressures between $\log P = -4$ and 2.3 bars in 0.1 dex spaced intervals. The temperature in each layer is characterized by the three exponentialfunctions as done following the Madhusudhan & Seager(2009) parameterizationsplitting the atmosphere in three zones where the pressure and temperature are related bour retrieval models. While simple, the uniform-with-altitude

$$P_0 < P < P_1$$
: $P_0 e^{a_1(T-T_0)^{1/2}}$ (Zone 1),
 $P_1 < P < P_3$: $P_2 e^{a_2(T-T_2)^{1/2}}$ (Zone 2),
 $P > P_3$: $T = T_3$ (Zone 3),

the atmosphere and the atmosphere becomeisothermal at pressure Pwith temperature T Since R is fixed in our model and continuity at the zonal boundaries requires fixing two parameters, we consider six free parameters α P_1 , P_2 , P_3 , and T_3 . A thermal inversion can occur when $P_2 \square > \square P1$; however, this is ruled out by setting $P_2 \square = \square$, Pthus further simplifying this to five free parameters.

4.2. Gas Opacities

Layer optical depths due to absorbing gases are calculated Layer optical depths due to absorbing gases are calculated (Fegley & Lodders 1994, 1996; Lodders 1999, 2002; Lodders using opacities sampled at a resolving power R□=□10,000 taken from Freedman et al. (2008, 2014). Line wing profiles based on Fegley 2002, 2006; Visscheret al. 2006, 2010; Lodders from Freedman et al. (2008, 2014). Line wing profiles based on 2010; Visscher 2012; Moses et al. 2012, 2013) and recently the unified line shape theory (Allard et al. 2007a, 2007b) are of Nai (\sim 0.59 µm) and K i (\sim 0.77 µm) in brown dwarf spectra. Tabulated line profiles (Allard N., private communication) are calculated for the Na1 and K1 D1 and D2 lines broadened by collisions with Hand He, for temperatures in the 500–3000 K range and perturber (HHe) densities up to 40 cm⁻³ with two collisional geometries considered fobroadening by H₂. Within 20 cm⁻¹ of the line center there is a Lorentzian profile with a width calculated from the same theory. While there are updated versions of these opacities (Allard et al. 2016, 2019; Phillips et al. 2020), we did not have access to them for this work. We also use the Na and K alkali opacities from Burrows & Volobuyev (2003) to be consistent with Line et al. (2017) in the J1416B retrievals.

Across our temperature-pressure regimtee line opacities are tabulated in 0.5 dex steps for pressure and in steps ranginglistributed among layers in pressure spacewith the optical from 20 to 500 K as we move from 75 to 4000 K in temperature epth either gray or as a power law (τϤκϢwhere τ is the where we then linearly interpolate this to our working pressure optical depth at 1 μm). grid. We include free-free continuum opacities forH and H₂ and bound-free continuum opacity for H⁻, which are influenced by the H $^-$ metallicity and determined from the thermochemical equilibrium grid (see Section 4.3). Continuum to lower pressures $\frac{dt}{dP} \mu \exp((P - P_{deck})/F))$, where opacities for H $_2$ -H $_2$ and H $_2$ -He collisionally induced absorp- $\frac{dt}{dP} = \frac{dt}{dP} \exp((10^{D \log P} - 1))/(10^{D \log P})$; and (3) the cloud particle tion, using cross sections from Richard et al. (2012) and Saumon et al. (2012), are included, as well as Rayleigh scattering due to H₂, He, and CH₄, but we neglect the remaining gases. Neutral H gas fraction abundancewas determined from the thermochemical equilibrium grid. The atmosphere is assumed to be dominated by Idnd He, with proportions of (0.84H+ 0.16He) based on solar abundances.

After including the retrieved gases, neutral H, H⁻, and The forward model in Brewster uses the two-stream radiative electrons H₂ and He are assumed to make up the remainder

4.3. Determining Gas Abundances As done in Burningham etal. (2017), we use the uniform-

with-altitude mixing ratios method for absorbing gasesand retrieve these directly, also known as "free" retrievals, for all of mixing method cannot capture important variations in gas abundance with altitude for some species (i.e., see metal oxides and metalhydrides of J1416A and the alkalies for J1416B), which can vary by several orders of magnitude in the photosphere and are expected to make a large contribution to where P₀ and T₀ are the pressure and temperature at the top of the flux we observe. Freely retrieving abundances that ary with altitude would be preferredhowever, the resultantarge number of parameters to solve for in this approach is computationally difficult. To address this issue we use a second method, the chemical equilibrium method, which instead retrieves [Fe/H] and C/OGas fractions in each layer of this method are pulled from tables of thermochemical equilibrium abundances as a function of T, P, [Fe/H], and C/O ratio along with the thermal profile of a given state vector. The thermochemical equilibrium grids we use were calculated using the NASA Gibbs minimization CEA code (McBride & Gordon 1994), based on previous thermochemical models used to account for the broadening of the D resonance doublets of conditions in substellar atmospheres (Morley et al. 2012, 2013; Skemer et al. 2016; Kataria et al. 2016; Wakeford et al. 2017). The chemical grids in this work determine equilibrium abundances of atmospheric species over pressures ranging from 1 microbar to 300 bars, temperatures between 300 and 4000 K, metallicities in the range −1.0□<□[Fe/ H]□<□+2.0, and C/O abundance ratios of 0.25-2.5 times the solar abundance.

4.4. Cloud Model

The cloud modelfollows that of Burningham et al. (2017), with options for a "deck" or "slab" cloud parameterization. Both clouds are defined similarly, where the cloud's opacity is

The deck cloud is parameterized by (1) a cloud top pressure, P_{top} , the point at which the cloud passes T = 1 (looking down); single-scattering albedo. The deck cloud becomes optically thick at P_{top} At $P \square > \square P$ the optical depth increases following the decay function untilit reaches $\Delta T_{aye} \square = \square 1000$ /ith this decay function, the deck cloud can quickly become opaque with increasingpressure and therefore we obtain essentially no atmospheric information from deep below the cloud top. Because of this, it is important to note that the pressure-temperature (PT)

Table 3 Priors for J1416+1348AB Retrieval Models

Parameter	Prior
gas volume mixing ratio	uniform, log f _{gas} □ □−12å0 _{gas} f _{gas} □ 1.0
thermal profile (α, α2, P1, P3, T3)	uniform, 0.0 K□<□T < 6000.0 K
scale factor (RD 2)	uniform, 0.5 R _{Jup} □□R□ □ 2.0 R
gravity (log g)	uniform, 1 M _{Jup} □ <u> </u>
cloud top ^b	uniform, −4□□log _T P□2.3
cloud decay scafe	uniform,0□<□log & Pa√□<□7
cloud thicknes ^d	uniform, $\log P_{CT} \square \square \log_{C}(P \square + \square \Delta P) \square \square \square 2$.
cloud total optical depth at 1 µm	uniform, 0.0□ data □ 100.0
single scattering albedo (ω_0)	uniform, 0.0 □ <u> </u>
wavelength shift	uniform, −0.01□<□Δλ□<□0.01 μm
tolerance factor	uniform, log $(0.01 ' \min(s_i^2)) \square b \square _ \square \log$ $(100 ' \max(s_i^2))$

Notes.

(and spread) at the cloud top pressure.

slab cloud and thus include an additional parameter for determining the totaloptical depth at 1 µm (Tcloud), bringing the total number of parameters for the slab cloud to 4. The optical depth is distributed through the slab cloud extent as dt/ dP□∝□P (looking downe)aching its total value at the bottom (highestpressure) of the slabln principle, the slab can have any optical depth; however, we restrict our prior as $0.0\square$ τ_{cloud} __ 100Because it possible to see to the bottom of the slab cloud, a physical extent in log-pressure $\mathbb{D} \log P$ is determined, instead of the decay scale, as was done for the deck. — bound–free and free–free continuum opacities as the cloud.

for the power (α) in the optical depth is included.

4.5. Retrieval Model

As described in Burningham eal. (2017), we use EMCEE (Foreman-Mackey etal. 2013) to sample posteriorprobabilities. Table 3 shows our priors for both J1416A and J1416B. We differ from the Burningham et al. (2017) setup by extending the thermalprofile temperature up to 6000 K for both J1416A and J1416B and extending the mass prior up to $100\square M_D$ for J1416A (up to only 80 M $_{Jup}$ for J1416B) to expand the surface gravity in an effort to encompass likely ranges for subdwarfsn our retrievals of J1416A and J1416B we use their distance-calibrated SpeX prism spectra (output from generating our SED) trimmed to the 1.0–2.5 µm region and set the distance to 10 pc. This spectrum calibration differs following intervals from Kass & Raftery (1995) for selecting from Burningham et al. (2017), where they calibrated the spectrum to the 2MASS J-band photometry and used the true distance in their initialization.

For each retrievalof J1416A and J1416B we initialize 16 walkers per parameter in a tight Gaussian for the gases, surface 3. $6\Box < \Box \Delta BIC \Box < \Box 10$: strong

gravity, wavelength shiftbetween the modeland data ($\Delta\lambda$), and scale factor where R□≈□,1,00 Pases are centered around the approximate solar composition equilibrium chemistry values for gas volume mixing ratios while the surface gravity is initiated centered around the SED-derived value. The tolerance parametehas a flat distribution across the entire prior range. For cloud parameters the cloud top pressure and power law are initialized as tighGaussianswhile the optical depth, albedo, and cloud thickness are flatacross the entire prior range. As in Burningham et al. (2017), we use the fiveparameter thermabrofile, as we do not expect a temperature inversion for either of these objects and use the Saumon & Marley (2008) $T_{\text{eff}} = 1700 \text{ K log g} = 5.0 \text{ ntwo dreitialize}$ α_1 , α_2 , P_1 , P_2 , P_3 , and T_3 for both J1416A and J1416B. Differences in the individual setups between J1416A and J1416B are discussed in the following subsection.

4.5.1.J1416A

To explore the atmosphere of J1416A, e retrieved for the following gases: HO, CO, CQ, CH4, TiO, VO, CrH, FeH, K, and Na. As done in Burningham etal. (2017) and Line etal. (2015), we tie K and Na together as a single element in the state vector assuming a solar ratio taken from Asplund et al. (2009). Additionally, we include the H - bound-free and free-free continuum opacities to account for the possibility of the profile going above 3000 K in the photospher stated above the profile (and spread) below the deck is an extension of the gradlegtg mass prior ranges from 0 to 109 MThe multiple cloud parameterizations are tested building up from the cloudless to Unlike the deck cloud, it is possible to see the bottom of the the four-parameter power-law slab cloud mod We also test both the uniform-with-altitude mixing ratios and chemical equilibrium methods for determining the gas abundances.

4.5.2.J1416B

The retrieval setup and initialization for 1416B is similar to J1416A with the following exceptions: (1) as J1416B is much cooler, we retrieve only H₂O, CH₄, CO₂, NH₃, K, and Na (where Na and K are tied together), and (2) we do not include profile is cooler than the L dwarf and does nowarrantthem. If the deck or slab cloud is nongray, an additional parameter As the T dwarf should be less massivethe log g mass prior ranges from 0 to 80 $M_{\text{Jup}}\,$ We also differ from the retrieval setup of thatin Line et al. (2017) by (1) excluding CQ and H₂S in our gas list as Line et al. (2017) could only derive upper limits and (2) testing both the Allard and Burrows alkali opacities.

4.6. Model Selection

A variety of parameterswere tested in our retrievals of J1416A and J1416B, with some aspects remaining constant throughout(the gases included in each model), while others differed. The aspectsthat were allowed to differ in our retrievals include cloud parameterization, gas abundance method, and alkali opacities. To compare all of our retrievals. model selection was assessed using the Bayesian information criterion (BIC) where the lowest BIC is preferreble use the between two models with evidence against the higher BIC as

- 1. $0 \square < \square \Delta BIC \square < \square 2$: no preference worth mentioning
- 2. $2\Box < \Box \Delta BIC \Box < \Box 6$: positive

^a Gravity prior upper limit only to 80 ☐ M_b for J1416B.

b For the deck cloud, this is the pressure whered□=□1; for a slab cloud, this is the top of the slab.

c Decay height for deck cloud above the Jud = 1.0 level.

^d Thickness and _{dloud} only retrieved for slab cloud.

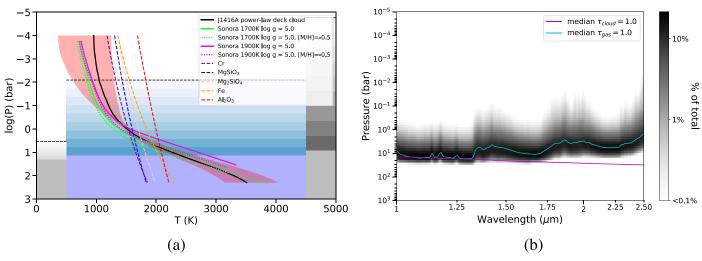


Figure 2. (a) Retrieved PT profile (black) compared to the Sonora cloudless solar and low-metallicity model profiles similar to the semiempirical and retrieval-derive T_{eff} (neon green and purpleThe median cloud deck is shown in shades of blute median deck reaches an optical depth of τ□=□1 at the boundary between the darkest blue and purple located at log P□=□1.42 bar. The purple region is where the cloud is optically thick, and the blue shading indicates the vertical distributio where the cloud opacity drops to τ = 0.5 at the dashed line. The gray bars on either side show the 1σ cloud deck location and vertical height distribution. The co dashed lines are condensation curves for the listed species. (b) The contribution function associated with this cloud model, with the median cloud (magenta) and g (aqua) at an optical depth of $\tau\Box = \Box 1$ overplotted.

4. ΔBIC□>□10: very strong

A variety of cloud assumptions are explored in our retrievals by building up from the least complex cloud-free model to the most complex slab cloud model. Prior to moving from the cloud-free to cloudy models, we tested the impact of assuming different metallicities when determining the neutral H, and electron abundances used for continuum opacity calculations as both targets are expected to be low metallicityWe found using low-metallicity ($[M/H]\square = \square 0.3$) ion fractions to be indistinguishable from the solar-metallicity ion fractions and thus proceeded using the solar ion abundances for the cloudy models.

Once the "winning" model was determined we tested two additional methods for calculating gas abundances(1) the thermochemical equilibrium assumption and (2) alternate opacities based on the Burrows and Allard line-broadening treatments (Burrows for J1416A and Allard for J1416B) in the uniform-with-altitude assumptionWe examined both Allard and Burrows alkali opacities as there is no agreement the models (Saumon & Marley 2008; Todorov et al. 2016; Burningham etal. 2017; Line et al. 2017; Gravity Collaboration et al. 2020, Marley et al. 2020, in preparation). As done in comparing J1416A to J1416B. Burningham et al. (2017), we started with the Allard opacities for the L dwarf, and as done in Line et al. (2017), we started with the Burrows opacities for the T dwarf. By testing the alternative line profile treatments, we aim to establish the impact of this choice on the derived alkali abundancesor J1416AB.

5. Retrieval Model of J1416A

The ΔBIC for all tested models for J1416A are shown in deck cloud. However, this model is indistinguishable from the b) and deeper. However, one should note that our deep PT power-law slab cloud (ΔBIC□=□1.40)eaning both models provide similarly good fits to the spectroscopicfeatures observed in J1416A. The retrieval results of the power-law deck and power-law slab cloud models are discussedin

Table 4 ΔBIC for J1416A Retrieval Models

Number of Parameters	ΔΒΙС
18	8.8
18	9.0
21	11.3
22	18.5
22	0
15	9.2
22	0.7
23	1.4
16	20.0
23	2.1
	18 21 22 22 22 15 22 23 16

Note. ☐ Unless otherwise list**dd**fault alkali opacities used are from Allard.

Sections 5.1 and 5.2, respectively. The "winning" deck and literature as to which is the preferred choice in retrievals or gridslab cloud models were also indistinguishable when using the Burrows alkali opacities insteadSection 8.1 provides further discussion of the preferred choice of alkali opacities for

5.1. Best-fit Model: Power-law Deck Cloud

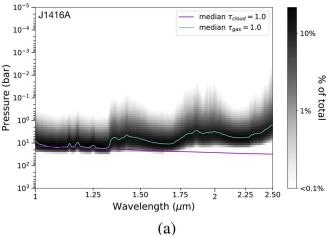
5.1.1.PT Profile and Contribution Function

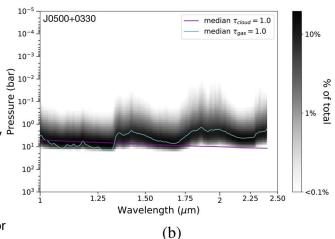
Figure 2(a) shows the retrieved PT profile and location of the winning deck cloud model for J1416A. The Sonora (Marley et al. 2020, in preparation) solar-metallicity, $\log g \Box = \Box 5.0$, 1700 K model and the $[M/H]\Box = \Box -0.5 \log g \Box = \Box 5.0900 K$ model agree with the retrieved profile 1σ boundshroughout Table 4. The best-fitting model is parameterized as a power-lawhe main photospheric pressure range (~0.5–18 bars, see panel profile (below photosphere) is an extrapolation of the shape at lower pressures as there is little contribution to the observed flux. At pressureslower than 1 bar (higher up in the atmosphere)the median PT profile is hotter than the Sonora

models, which was also seen for two L dwarfs in Burningham et al. (2017). The median deck cloudshown in the center of Figure 2(a), becomes optically thick deeper than ~10 bars with the cloud top location in pressure space quite tightly constrained to $\log P = 1.14^{+0.18}_{-0.21}$ bars. However, the extentof the cloud (gradient region) where the optical depth falls to $T\Box = \Box 1/2$ (dashed black line) is poorly constrained.

Figure 2(b) shows the contribution function for this model along with the $T\Box = \Box$ tas and cloud contributions. The contribution function in a layer is defined as

$$C(I, P) = \frac{B(I, T(P)) \grave{Q}_{P_1}^{P_2} dt}{\exp \grave{Q}_{P_2}^{P_2} dt},$$
 (2)


where $B(\lambda, T(P))$ is the Planck function, zero is the pressure at the top of the atmosphere? is the pressure at the top of the layer, and P₂ is the pressure at the bottom of the layer. The majority of the flux contributing to the observed spectrum of J1416A comes from the approximately 1 to 18 bar region, corresponding to the photospherehe observed flux in the Y band is dominated by the gas at shorter wavelengths ($\Box 1.11 \, \mu m$), while the cloud opacity dominates from ~1.06 to 1.11 µm. The J band is shaped by the gas opacitith the cloud opacity sitting just below the $\tau\Box = \Box 1$ gas line, potentially contributing minor amounts of opacity. In the H and K bands, the gas opacity dominates ourobserved flux as it becomes optically thick well before (higher up) the cloud contribution.


The lack of the cloud's contribution to the J band is a possible factorfor J1416A's observed unusually blue J□-□K color of $1.03\Box\pm\Box 0.03$. In Figure 3 we compare the contribution functions for J1416A with the two L dwarfs in Burningham et al. (2017), 2MASS J05002100+033050 (hereafted0500 +0330), and 2MASSW J2224438-015852 (hereafted 2224 -0158). We can see that the median I_0 = □1 level is reached at shallower pressure for both comparison targets and lies above the median $_{3}$ = 1 level in most of the Y and the entire $_{3}$ band for J0500+0330 and the entire Y and J bands in the cas $_{3}$ $_{10^{-2}}$ of J2224-0158. This points toward seeing deeperinto the atmosphere at the J band of J1416A potentially due to its lower metallicity, than the field source J0500+0330 and the red L dwarf J2224-0158, as the possible cause of the observed blue J□-□K color.

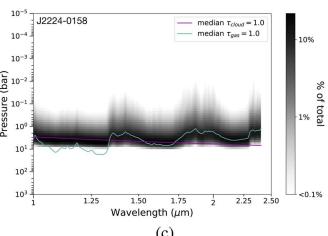

5.1.2. Retrieved Gas Abundances and Derived Properties

Figure 4 shows the posterior probability distributions for the retrieved gas abundances and surface gravity, well as Teff, radius, mass, C/O ratio, and [M/H], which are determined based on retrieved quantities. The values in Figure 4 are listed Figure 3. Contribution functions for J1416A winning model compared to the in Table 5 for ease of reading. An extrapolated value forist not shown in Figure 4 as Lbol showed no interesting correlations with any parameter. Our retrieved gas abundances J1416A,(b) J0050+0330,(c) J2224-0158. are compared to values expected from chemicælquilibrium grids in Section 5.1.4.

scaling factor (RD 2) and log g valuesalong with the parallax measuremento derive the Tff we use the radius and integrate the flux in the resultant forward model spectrum across 0.6–20 \$\int\textit{lint}\text{D}: log g \subseteq = \subseteq 5.22 \subseteq ± \subseteq 0.22; M \subseteq = \subseteq 6\text{Q}\subseteq ± \subseteq 18 M Our retrieval-derived $_{\rm ff}$ \sim 200 K hotter than our semiempirical $T_{\rm eff}$ ($T_{\rm eff_{Retrieval}} = 1891^{+42.56}_{-41.38}$ K versus $T_{\rm eff_{SED}} = 1694$ $^{\circ}$ $^{\circ}$ 74 K). This is due to the retrieval-based radius being 0,125 maller

power-law deck cloud models for J2224-0158 and J0050+0330 from Burningham etal. (2017), in order from bluest to reddestJ□-□K colo(a)

than the model radius from the SED method. Our retrieved The derived radius and mass are calculated from the retrieve favity and extrapolated mass agree within 1σ to the gravity and mass we derive from evolutionary models when generating the SED (retrieval: $\log g = 5.26^{+0.32}$, $M \square = 36.82^{+31.92}_{-18.71}$ M_{Jup}

To derive the C/O ratio we exclude all carbon- and oxygenbearing molecules that are not constrained for both cloud models of J1416A, thus assuming all of the carbon exists in CO

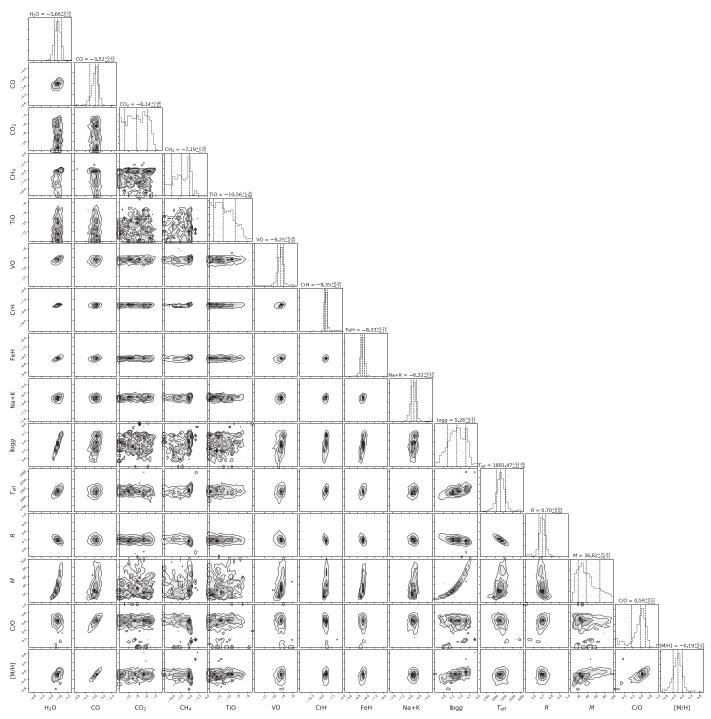


Figure 4. J1416A power-law deck cloud posterior probability distributions for the retrieved parameters and extrapolated parameters. One-dimensional histograms of the marginalized posteriors are shown along the diagonal with 2D histograms showing the correlations between the parameter the dashed lines in the 1D histograms represent the 16th, 50th, and 84th percentiles, with the 68% confidence interval as the width between the 16th and 84th percentiles. Parameter values above are shown as the median ± 1σ. Gas abundances are displaye(Nas/adges, where X is the gas_{eff}Tradius, mass, C/O ratio, and [M/H] are not directly retrieved parameters but are calculated using the retrieved and log g values along with the predicted spectrum. Our derived C/O ratio is absolute, where solar C/O is 0.55, while our [M/H] is relative to solar. Values for CQ, CH₄, and TiO are not constrained and thus only provide upper limits.

and CH₄ and all of the oxygen is in H_2O , CO, and VO. To derive [M/H], we use the following equations:

$$f_{H_2} = 0.84(1 - f_{gase}),$$
 (3)

$$N_{H} = 2f_{H_2}N_{\text{tot}}, \tag{4}$$

$$N_{\text{element}} = \sum_{\text{molecules}}^{8} n_{\text{atom}} f_{\text{molecule}} N_{\text{tot}}$$
 (5)

$$N_{M} = {\stackrel{\circ}{a}} \frac{N_{\text{element}}}{N_{H}},$$
 (6)

where f_{H_2} is the H₂ fraction, N_H is the number of neutral hydrogen atoms N_{element} is the number atoms for the element of interest (C, O, V, Cr, Fe, and Na+K)_{at D_m} is the number of atoms of that element in a molecule (e.g., two for oxygen in

Retrieved Gas Abundances and Derived Properties for J1416A Deck Cloud Model

Parameter	Value
Retrie	eved
H ₂ O	- 3.66 ^{+ 0.16}
CO	- 3.52 ⁺ 0.22
CO ₂	<-5.68
CH ₄	<-4.91
TiO	<-9.3
VO	- 9.25 ⁺ 0.26
CrH	- 8.35 ⁺ 0.20
FeH	- 8.33 ^{+ 0.15}
Na+K	- 6.32 ⁺ 0.19
log g (dex)	5.26 ^{+ 0.32} 0.33

Derived				
L_{bol} T_{eff} (K) Radius (R_{up}) Mass (M_{Jup}) $C/O^{a,b}$ [M/H] $L_{a,b}$	$-4.23\Box\pm\Box0.01$ $1891.47^{42.56}_{41.38}$ $0.7\Box\pm\Box0.04$ $36.82^{31.92}_{18.71}$ $0.59^{0.21}_{0.21}$ $-0.19^{0.23}_{0.23}$			
	- 0.23			

Notes. Molecula abundances are fractions listed as log values. For unconstrained gase\$\sigma\$ confidence is used to determine the upper limit. ^a Additional comparatives are listed in Table 1.

CO₂), $f_{\text{gases}}\,\text{is}$ the total gas fraction containing only the constrained gases, and $\,N_{tot}\,$ is the total number of gas molecules. Thus the final value of [M/H] is

$$[M/H] = \log \frac{N_M}{N_{\text{color}}}, \tag{7}$$

where f_{solar} is calculated as the sum of the solarbundances relative to H. Examining our derived C/O and [M/H], we find that J1416A has a roughly solar C/O and a slightly subsolar metallicity (C/O \square =0.59 $^{0.11}_{0.21}$, [M/H] \square = \square 0.19 $^{+0.21}_{0.23}$). We note that for both C/O and [M/H] it does not matter if we include or exclude VO, which is done when comparing to J1416Bthe ratios agree within 1σ□of each othenis C/O ratio does not account for oxygen lost to silicate formation, which we address the retrieval-derived radius of J1416A and the α parameter. in further detail in Section 8.2.

5.1.3. Cloud Properties

Figure 5 shows the four retrieved deck cloud properties for J1416A: (1) the pressure at which the optical depth of the cloud passes one (the cloud top), (2) the decay height of the cloud in $\Delta logP$ (vertical extentabove the cloud top, see Section 4.4), (3) the single scattering albedo, and (4) the wavelength exponent α for the optical depth function $t = t_0 I^a$ characterizing how "nongray" the cloud is. We find the cloud top location is well constrained, while the vertical extent of the cloud and the albedo are unconstrained. With α being a

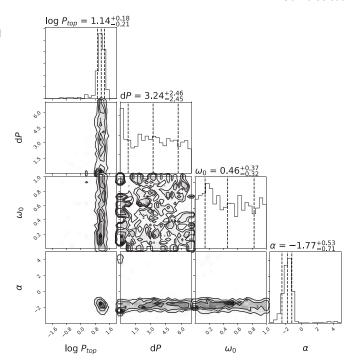
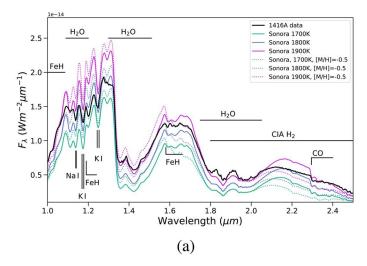


Figure 5. J1416A power-law deck cloud posterior probability distributions for the cloud parameters The cloud top pressure (log Pop) and the cloud height (dP) are shown in barsand α is from the optical depth equation $\tau \Box \overline{\tau} \Delta \overline{\Box} \tau$

a Hansen distribution (Hansen 1971) dominated by small submicron particles.

By examining the overplotted condensation curves on the PT profile (Figure 2) to identify the possible cloud deck species, we find that no condensation curves intersect the profile at the cloud top location. Burningham et al. (2017) found iron or corundum as likely cloud compositions for their two L dwarfs as these condensation curves intersected the PT profiltenct top of the deck cloud. Thus for J1416A, iron or corundum (Al₂O₃) could be possible deck cloud candidates; however, the cloud optical depth continues to increase beneath the phaseequilibrium condensation pointon our thermal profile. This could be due to cloud opacity deriving from the condensation of other speciesat deeperlayers or opacity arising from a process such as virga:when condensed materia(rain) falls through the atmosphere before vaporizing again.


Interestingly, we find a slight positive correlation between With a more negative α, the cloud has a lower optical depth at longer wavelengths allowing for flux to escape from hotter, brighter layers. The retrieval compensates for this to provide a good fit by reducing the scale factor(R²/D²), resulting in a smaller radius estimate.

5.1.4. Retrieved Spectrum and Composition

Figure 6(a) compares the observed SpeX prism data and Sonora model spectra, which are cloud-free and consistent with the retrieved PT profile (see Figure 2)Figure 6(b) compares the retrieved forward model spectrum for the deck cloud model to the observed SpeX prism data. To compare the Sonora spectra to our retrieved forward modespectrum, the Sonora negative value ($a = -1.77^{+0.53}_{-0.32}$), Burningham et al. (2017) models were scaled to the median retrieved scale factor models were scaled to the models were sc

in two L dwarfs and found $\alpha\Box = \Box - 2$ to be most consistent withto the cloudless Sonora models are notery far off. This is

^b Atmospheric values.

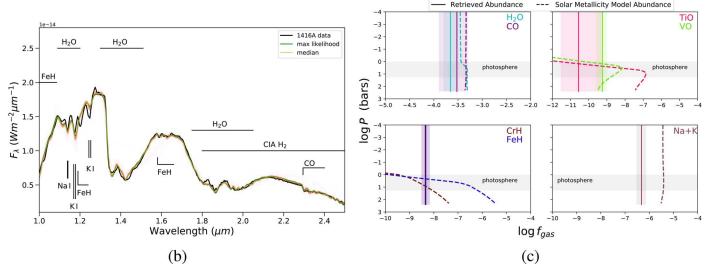


Figure 6. (a) Retrieved forward model spectra for the deck cloud model of J1416A. The maximum-likelihood spectrum is shown in dark green, the median spectrum in yellow, and 500 random draws from the final 2000 samples of the EMCEE chain in red. The SpeX prism data are shown in black. For comparison the cloud-free Sonora grid modebolar-metallicity spectra for log g□=□5.0 amp□=□1600 k700 K, and 1800 K (solid teal.blue, and purple) as well as [M/H]□=□-0.5 for log g□=□5.0 and =□1800 K and 1900 K (dotted teal, blue, and purple), are shown. Theatues bracket the range of the SED-derived and retrieval-derived Teff. (b) Retrieved uniform-with-altitude mixing abundances foonstrained gases compared to solar-metallicity and C/O modebundancesThe approximate location of the photosphere is shown in gray.

likely due to the deck cloud affecting only a smalbortion of J1416A's spectrum, thus these models can do a fair job at fitting the observed data.

When comparing the observed spectrum of J1416A to the Sonora model spectra, we find the 1900 K solar-metallicity model provides the best fit overall but struggles to fit features inob of fitting the FeH band to the data. This is likely driven by 1800 K solar model, while the peak of the H band is best fit by and thus has a larger impact the goodness of fit. The FeH the 1900 K low-metallicity modeland while the 1900 K solar model fits some of the K-band pseudo continuuitris a poor match to the CO feature.

In Figure 6(b), the retrieval spectrum fits the overall shape of different abundances at those pressure layers. the observed spectrum quite well but has difficulties fitting the Nai doublet, Ki doublets, and the FeH feature between the K doublets in the J band. Issues in fitting the area KI doublets are likely due to how the pressure broadening is treated in the introduced in Section 4.3. Here we see the Na+K and H₂O opacity models for these lines. With pressure broadening from abundances less than expected from models, pointing the 0.77 µm K I doublet impacting the slope in the J band

fit both the broad slope of the J band in this region as well as the narrow K I and NaI doublet features. We find that the Allard alkali opacities provide a better fito J1416A than the Burrows alkali opacities, discussed in further detail in Section 8.1. In the H band, the retrieval does a much better the J band and the H-band plateau. The J band is best fit by the H-band feature being broader than the J-band FeH feature fitting issue is an example of a problem introduced by the assumption of uniform-with-altitude mixing ratios, as the Jand H-band features are at different pressures and should have

Figure 6(c) shows the retrieved abundances for constrained gases compared to the solar-metallicity and solar C/O thermochemical equilibrium model values from the grid toward a subsolar metallicity for J1416A. The median retrieved through about 1.1 µm, the retrieved spectrum is likely unable toCO abundance is also less than the solar model value but is just

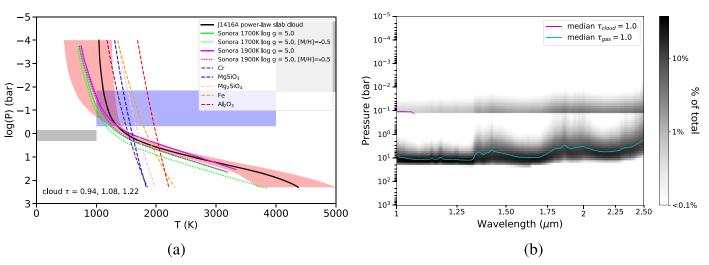


Figure 7. (a) Retrieved PT profile (black) compared to cloudless Sonora solar and low-metallicity model profiles similar to the SED-derived and retrieval-derived effective temperatures (neon green and purp Teh)e median cloud slab height and location are shown purp With the 1σ shown in gray indicating the ranges of height and base locations. Optical depth for the cloud is shown in the bottom left corner. The colored dashed lines are condensation curves for the listed species. (The contribution function associated with this cloud modelth the median cloud (magenta) and gas (aqua) at an optical depth of τ□=□1 overplotted.

within the 1σ confidence interval. The photosphere is shown as grees within the 1σ confidence interval with the Sonora solar a gray strip to guide reasonable abundance ranges foretal oxides and metal hydrides these are not close to uniformwith-altitude, it is difficult to compare our retrieved values to and FeH all fall within the very wide range of possible model abundances in the photosphere. Examining our FeH abunabundance of≈-6 that is possible in the photosphereThis maximum abundance corresponds those deeper into the atmosphere where we see the J-band FeH featule/ith our lower than expected abundancthis points toward Fe being condensed in the atmosphereand agrees with Fe as our predicted cloud species.

Interestingly, we find that the uniform-with-altitude model is preferred over the thermochemical equilibrium model. At these with a $\lambda^{-1.27}$ drop-off to longer wavelengths. temperatures,J1416A is expected to be in thermochemical equilibrium as the thermochemicalmescale should be faster than the mixing timescale (Visscher etl. 2006, Section 5.1). Based on Figure 6(b)the alkalies are likely to be driving this preference as their abundance is the only one that is discrepartite comes optically thin and no longer significantly contributes with the thermochemical grid abundance. Therefore, the uniform-with-altitude method is able to capture this discrepancy while still allowing for the other gas abundances to be inthis region, the optical depth of $\tau_{mediar} = 1.08$ is primarily agreement with the thermochemical grid.

5.2. It's a Different Cloud, Which Is Indistinguishable: The Power-law Slab Cloud Tells the Same Story

As listed in Table 4, the power-law slab cloud is indistinguishable from the power-law deck cloud modeand Here we present the retrieval results of the power-law slab cloud retrieval.

5.2.1.PT Profile and Contribution Function

Figure 7(a) shows the retrieved PT profile, slab cloud location, and total optical depth of the cloud. For this model, we find the bulk of the flux roughly between 1 and 18 bars like ease of readability. Comparisons to the chemicælquilibrium the deck cloud. The median retrieved profile in this region

metallicity, $\log g = 5.0200 \text{ K}$, and 1700 K models and the $[M/H] \square = \square - 0.5 \log g \square = \square 510200 \text{ K model.Compared to the}$ 1700 K/5.0/solar and 1900 K/5.0/-0.5 models the retrieved the models. We do find that our abundances for TiO, VO, CrH, profile is slightly hotter at the same pressure, while it is slightly cooler than the 1900 K/5.0/solar model at the same pressure. At higher pressures deeperin the atmosphere the retrieved dance, we see that the retrieved value is less than the maximuprofile has a similar slope to that of the Sonora models, while at pressures lowethan the photosphere the retrieved profile is more isothermal than the models. This is similar to the behavior of the power-law deck cloud profile compared to the Sonora models. The location in pressure space of the slab clouds well as its verticalheight, are both poorly constrained due to the cloud being primarily optically thin with a total median optical depth across the cloud thickness of $\tau = 1.08 \mu ah$,

Figure 7(b) shows the contribution function for this model, which shows the opacity from the slab cloud having a small effect on the overall flux emitted. The optically thick portion of the slab cloud is only between ~1 and 1.06 µmyhereafter it to the observed flux. In the optically thick Y-band region we see that even though the cloud contributes ~1% of the total flux in from here. Unlike the deck cloud, we see that the slab contributes to the flux athigher altitudes; however, this only contributes ~1%-10% of the totaflux observed. The lack of cloud opacity in the J band contributes to the unusually blue J□-□K coloun the same way as the power-law deck cloud model. With the cloud only affecting part of the Y band, the flux from the J band likely coming from a deeper pressure layer thus should tell a similar story about the atmosphere of J1416Athan that of field L dwarfs causing the bluer J \Box - \Box K color (see the comparison in Section 5.1.1).

5.2.2. Retrieved Gas Abundances and Derived Properties

Figure 8 shows the posterior probability distributions for the gases surface gravity, T_{eff} , radius, mass, C/O, and [M/H] for the slab cloud model, with the values also listed in Table 6 for grid values of the gases are discussed in Section 5.2. The

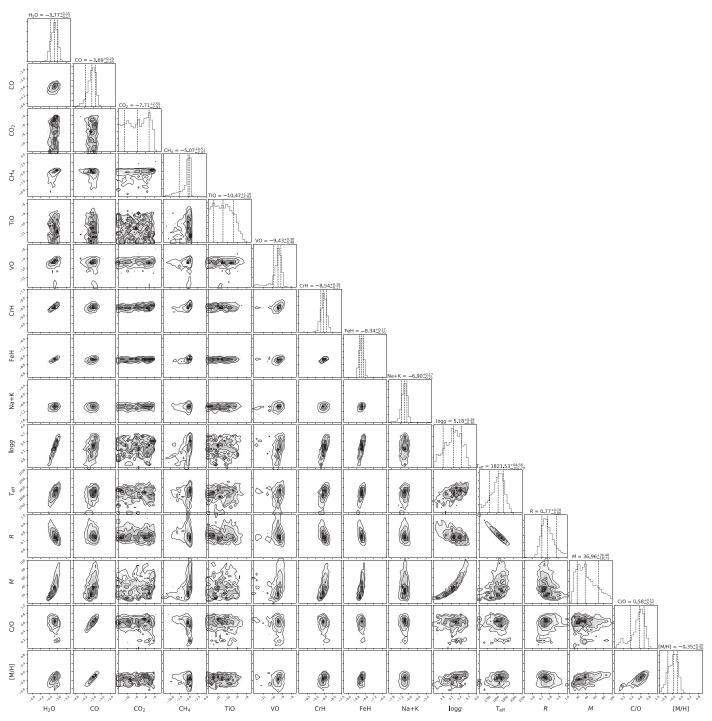


Figure 8. J1416A power-law slab cloud posterior probability distributions for the retrieved parameters and extrapolated parameters. One-dimensional histograms o the marginalized posteriors are shown along the diagonal with 2D histograms showing the correlations between the paramete shown along the diagonal with 2D histograms showing the correlations between the paramete shown along the diagonal with 2D histograms showing the correlations between the parameters are shown along the diagonal with 2D histograms showing the correlations between the parameters are shown along the diagonal with 2D histograms showing the correlations between the parameters are shown along the diagonal with 2D histograms showing the correlations between the parameters are shown along the diagonal with 2D histograms showing the correlations between the parameters are shown along the diagonal with 2D histograms showing the correlations between the parameters are shown along the diagonal with 2D histograms showing the correlations are shown as the correlation of the diagonal with 2D histograms are shown as the correlation of the diagonal with 2D histograms and 2D histograms are shown as the correlation of the diagonal with 2D histograms are shown as the correlation of the correlation histograms represent the 16th, 50th, and 84th percentiles, with the 68% confidence interval as the width between the 16th and 84th percentiles. Parameter values above are shown as the median ± 1σ. Gas abundances are displaye (X) stages, where X is the gas_{eff} Tradius, mass, C/O ratio, and [M/H] are not directly retrieved parameters but are calculated using the retrieved land log g values along with the predicted spectrum. Our derived C/O ratio is absolute, where solar C/O is 0.55, while our [M/H] is relative to solar. Values for CQ and TiO are not constrained and thus only provide upper limits.

majority of the gas abundances, radius, mass, C/O, and [M/H] values for the slab model agree with those from the deck cloud model. The exception is the Na+K abundance, which differs from the deck cloud abundance by 1.4σ. This keythe cloud, the single scattering albedo,and the wavelength in Section 8.1, when we compare the alkali abundances between the retrievals for J1416A and J1416B.

5.2.3. Cloud Properties

Retrieved cloud properties forthe total optical depth, the pressure level for the base of the cloud (log P the height of difference in alkali abundance will be discussed in more detail exponent a that describes how "nongray" the cloud is for the slab model are shown in Figure 9. The cloud base, height, and albedo are unconstrained for this model. The power α is more

Retrieved Gas Abundances and Derived Properties for J1416A Slab Cloud Model

Parameter	Value
Retr	rieved
H ₂ O	- 3.77 ⁺ 0.15 0.17
CO	- 3.69 ⁺ 0.25
CO ₂	<-5.16
CH₄	- 5.07 ⁺ 0.51 2.47
TiO	<-9.37
VO	- 9.43 0.30 - 9.43 0.48
CrH	- 8.54 ⁺ 0.16
FeH	- 8.34 ⁺ 0.17
Na+K	- 6.90 ⁺ 0.17
log g (dex)	5.18 ^{+0.28}

Derived				
L _{bol}	-4.21□±□0.01			
T _{eff} (K)	1821.5 3 ^{64.58} _{102.49}			
Radius (R _{up})	$0.77^{+0.10}_{-0.06}$			
Mass (M _{Jup})	36.96 30.48 18.71			
C/O ^{a,b}	$0.58^{+0.11}_{0.21}$			
[M/H] ^{a,b}	- 0.35 ^{+0.20}			

Notes. Molecula abundances are fractions listed as log values. For unconstrained gase\$\sigma\$ confidence is used to determine the upper limit. ^a Additional comparatives are listed in Table 1.

^b Atmospheric values.

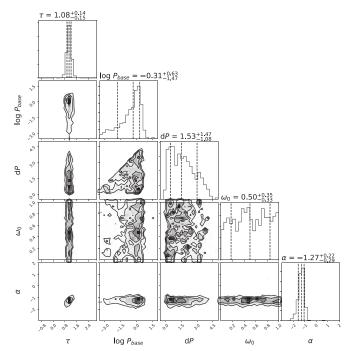
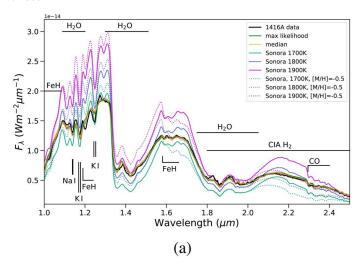


Figure 9. J1416A power-law slab cloud posterior probability distributions for the cloud parametersThe cloud top pressure (log Po) and the cloud height (dP) are shown in barsand α is from the optical depth equation $\tau \Box \tau \Delta \Box \tau$

tightly constrained than in the deck cloud modeland agrees within 1σ . The slab cloud also has a negative power, corresponding to a reddening cloud with submicron-sized particles likely described by a Hansen distribution. As the slab (2017), we find our profile consistent within 10; however the cloud is higher in the atmosphere, multiple condensates are

stable atits location. As the slab and deck cloud models are indistinguishable, distinguishing between the condensate's critical to atmospheric understanding and will be the subject of future work. Like the deck cloud, the slab cloud also has a positive correlation between the radius and α, causing a smaller opacity at longer wavelengths thus allowing for a smaller radius.

5.2.4. Retrieved Spectrum and Composition


The forward model spectrum for the slab cloud model is shown in Figure 10(a) compared to the observed SpeX spectrum and various temperatureand metallicity Sonora models that bracket the retrieved Teff. For the slab cloud forward maximum-likelihood modelspectrum, we find it is best fit by the 1700 K solar-metallicity modeln the J band, while the 1800 K solar metallicity or 1800 K [M/H]□=□0.5 models fit better in the H and K bands. In Figure 10(b), we compare the retrieved spectrum and the observed spectrum. The spectrum from the slab cloud model is quite similar to that of the deck cloud, fitting both the FeH feature and the 1.25 µm K I doublet in the J band poorly, for similar reasons as discussed in Section 5.1.4. Figure 10(c) compares the retrieved gas abundances for the constrained gases to the solarmetallicity values expected from the thermochemicæguilibrium model values from the grid introduced in Section 4.3. Unlike the deck cloud model the retrieved CO abundance is below the solar model expected values. All of our retrieved gas fractions for this model are consistent with the deck cloud model, with the exception of the Na+K abundance. These low abundances of ₩0, CO, and the tied Na+K again confirm the low-metallicity atmosphere that we derive.

Retrieved Model of 1416B

We initially used the Burrows alkali opacities as done in Line et al. (2017) for J1416B, which produced the best-fit model. However, we find that the Allard alkali opacities give consistent abundances between J1416A and J1446B, thus we effectively treatthe cloud-free Allard alkali model as the best model for J1416B. Thus in this section, we present the results of the second bestitting model (our winning model, Δ BIC = 10)the cloud-free, uniform-with-altitude mixing ratio, Allard alkali opacity modelfor J1416B. The ΔBIC for all tested models for J1416B are listed in Table 7, and the cloud-free Burrows alkaliopacity modelresults are shown in Section A.2. Detailed examination of our choice of alkali line models is discussed in Section 8.1. We will compare our J1416B results to retrieval results from Line et al. (2017) throughout this section. Intercomparison of retrieved and extrapolated parameters between J1416B and J1446Avell as comparisons to the literature, will be discussed in Section 8.

6.1. PT Profile and Contribution Function

Figure 11(a) compares our retrieved median profile to Sonora 500 K, 600 K, and 700 K solar and $[M/H]\Box = \Box -0.5$ models and the median retrieved profile from Line et al. (2017). We see that our retrieved profile has a similar slope and is consistent within 1 \sigma across the entire profile with all models except the solar 700 K and low-metallicity 500 K Sonora models. Compared to the median profile from Line et al. shape of our profile differs from Line et al. (2017) at pressures

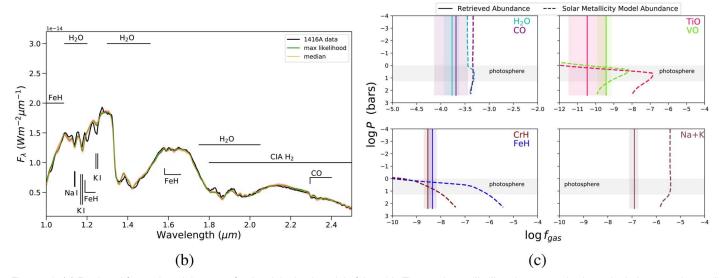


Figure 10. (a) Retrieved forward model spectra for the slab cloud model of J1416A. The maximum-likelihood spectrum is shown in dark green, the median spectru in yellow, and 500 random draws from the final 2000 samples of the EMCEE chain in red. The SpeX prism data are shown in black. For comparison, the Sonora quality of the spex prism data are shown in black. model solar-metallicity spectra for log g = 5.0 and = 1600 K, 1700 K, and 1800 K (solid teal, blue, and purple), as well as [M/H] = −0.5 for log g = 5.0 and Teff = 1800 K and 1900 K (dotted teal, blue, and purple), are shown Teff bracket the range of the SED-derived and retrieval-derived to Tetrieved uniform-with-altitude mixing abundancesfor constrained gasescompared to solar-metallicity and C/O model abundancesThe approximate location of the photosphere is shown in gray.

Table 7 ΔBIC for J1416B Retrieval Models

Model	Number of Parameters	ΔΒΙС
Cloud-free	14	0
Cloud-free chemical equilibrium	11	14
Cloud-free,Allard alkali	14	10
Gray slab cloud	18	14
Power-law slab cloud	19	25
Gray deck cloud	19	17
Power-law deck cloud	20	18

Note. ☐ Unless otherwise listed fault alkali opacities are Burrows.

below ~-0.5 bar. Many of the retrieved T dwarf profiles in Line et al. (2017) were more isothermalhan the modelsand they suggested it could be due to additional heating; however, temperature constraintare unreliable in this region of the profile. Figure 11(b) shows the contribution function for this model with the photosphere ranging from about 1 to 100 bars. $0.52^{+0.09}_{0.07}$. To consider the effect of oxygen sequestration by

6.2. RetrievedGas Abundance and Derived Properties

Posterior probability distributions for gases, surface gravity, T_{eff}, radius, mass, C/O, and [M/H] are shown in Figure 12 with their values along with the derived be listed in Table 8. Compared to results from Line et al. (2017), our deriver is hotter and is not consistent within 1σ (T _{eff} \Box =659.05 $^{15.33}_{13.21}$ versus $T_{eff} = 605^{+29}_{35}$, while our radius, surface gravity, and metallicity agree within 1σ. Comparing our retrieved gas abundances to those of Line et al. (2017), we find all the gases we have in common are consistent except for the Na+K alkali abundance. Line et al. (2017) used the Burrows alkali opacities, while we use the Allard opacities in this model. When comparing with our model that used the Burrows opacities we find the Na+K abundance is consistent with Line et al. (2017). Similar to Line et al. (2017), we detect ammonia with our constraints equally as tight.

Our retrieved abundancesyield a C/O ratio of C/O =

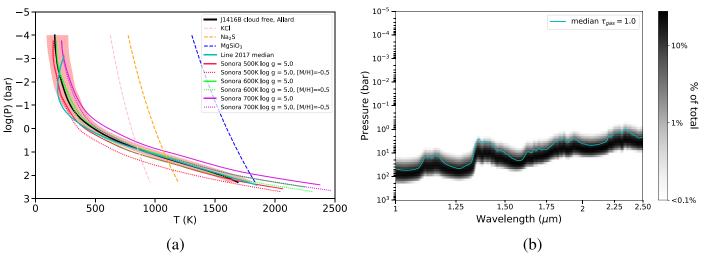


Figure 11. (a) Retrieved PT profile (black) compared to cloudless Sonora solar and low-metallicity model profiles (neon green, purple, and bright pink) and the Line et al. (2017) median profile in aquab) Contribution plot with median gas at $\tau\Box = \Box 1$.

silicate condensation in the atmosphere of J1416Bae et al. (2017) made a correction of 25% to their retrieved C/O ratio. resulting in $C/O_{Corr.} = 0.45_{0.26}^{0.16}$ If we apply this same correction, we have $C/O_{Corr.} = 0.39^{+0.07}_{-0.05}$, which is consistent within $1\sigma\Box$ of the precorrected value, the Line et al. (2017) value, and is subsolar relative to the solar C/O ratio of $C/O\square = \square 0.55$ (Asplund et al. 2009). It should be noted that the correction used from Line et al. (2017) (where 3.28 oxygen atoms are removed per silicon atom) is under the assumption of uniform metallicity variations in elemental abundance ratios (e.g., Si/H□~□M/H; see Visscher et21.10), as variations in the abundances of rock-forming elements (such as Mg and Si) values using Gaia Collaboration ed. (2018) proper motions will affect the proportion of oxygen removed by silicate condensationHowever, as J1416B is subsolarcorrections to the C/O ratio may differ as subdwarf atmospheres have weak or absent metal oxides. If there is a relative depletion or lack oflively; however, all three measurementshave very small rock-forming elements, less oxygen would be sequestered, yielding a smaller correction in the C/O ratidn Figure 13 of Nissen et al. (2014), the authors show that as metallicity ([Fe/ H]) decreases the C/O is expected to decrease for thin-disk stars. Using our uncorrected metallicitive find that our C/O ratio lies within the scatter of their expected metallicity prediction. The Line et al. (2017) C/O ratio also falls within the scatter of the Nissen et a (2014) metallicity prediction.

6.3. Retrieved Spectrum and Composition

Figure 13(a) compares our retrieved median and maximumlikelihood spectra to the SpeX prism J1416B data and the best-we derive agrees between the SED and the retriementhods. fitting Sonora solar and $[M] \square = \square -0.5$ grid model spectra. We find that our retrieval spectrum fits quite well, with the exception of the Y-band peak being slightly below the data. In comparison to the Sonora modepectra, we find none of the models fit the Y-band peakhe 600 K solar-metallicity model does a good job fitting the J-band peak but is unable to fit the slope on either side quite well, and the H- and K-band featuresparameters compared to the literature. Comparing we find are bestfit by the 700 K low-metallicity model. We find our retrieved gas abundances for CH₄, and NH₃ are subsolar in the photosphere, while the alkalies are broadly consistent

with those in Line et al. (2017). We find that relatively small changes in composition can drive major observable differences in the spectrumparticularly at lower temperature Therefore, with a slightly subsolar metallicity for J1416B, its spectrum differs quite drastically from field T dwarfs.

Fundamental Parameter Discussion

7.1. J1416A Fundamental Parameter Comparison

Table 9 compares our SED- and retrieval-based fundamental parameters to the literatureAdditionally, we list new UVW and parallax along with the radial velocity from Schmidt et al. (2010). Our empirical H_{el} is 2.5 σ and 1.5 σ discrepant from our deck and slab retrieval-based bolometric luminositiesspecuncertainties. The largest discrepancy between ou SED and retrieval-derived parameters are the fT and radius, with our T_{eff} for the deck cloud at minimum 81 K hotter and the slab 50 K hotter than the semiempirical of 1694 K. This is due to our small retrieved radius of $R_{deck} = 0.7 \pm 0.7 \pm 0.7$ 0.77⁺ 0.10, 0.06, which is about 20% smaller than the evolutionary model radius from the SED method (see Section 7.3 for further discussion). Compared to the literature, our retrieval-based T is hotter than all, except the model-basedrom Bowler et al. (2010) (which also calculates and but using an atmospheric spectra model), while the retrieval-based masses are consistent with our SED method value and Bowler et al. (2010). The log g find that the metallicity is consistent between both cloud models.

7.2. J1416B Fundamental Parameter Comparison

Table 10 lists our SED and retrieval method fundamental that both our SED and retrieval method valuesagree with Filippazzo et al. (2015) within 1σ . Our semiempirical and retrieval-based of radius, mass, and log g are consistentith with the solar value in Figure 13(b). These values are consistement another and the literature within 1σ , with the exception of

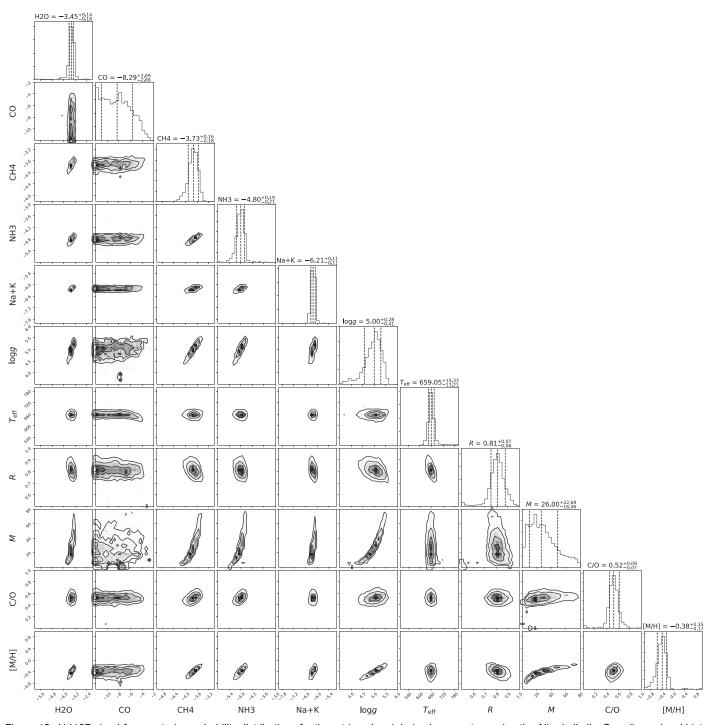


Figure 12. J1416B cloud-free posterior probability distributions for the retrieved and derived parameters using the Allard alkalis. One-dimensional histograms of the marginalized posteriors are shown along the diagonals, with 2D histograms showing the correlations between the parameters. The dashed lines in the 1D histograms represent the 16th, 50th, and 84th percentiles, with the 68% confidence interval as the width between the 16th and 84th percentiles. Parameter values listed above shown as the median 🗆 ± 1σ. Gas abundances are displayed (as) logiues, where X is the gaseff radius, mass, C/O ratio, and [M/H] are not directly retrieved parameters but are calculated using the retrieved Rand log g values along with the predicted spectrum. Our derived C/O ratio is absolute, where solar C/O is 0.55, while our [M/H] is relative to solar. 🖟 radius, mass, C/O ratio, and [M/H] are not directly retrieved parameters but are calculated using the retribed R and log g values along with the predicted spectru@O abundance is not constrained and thus only provides an upper limit.

 $T_{\text{eff}},$ which is consistent within $2\sigma.$ Our retrieval C/O and [M/ H] measurements are consistent with those in the literature.

7.3. Comparison of Characteristics to Evolutionary Diagrams

Figures 14(a)–(d) compare our SED- and retrieval-based

solar and low metallicity ($[M/H]\Box = \Box -0.5$)s the SED-based parametersT_{eff}, mass, and radius are drawn from different evolutionary models (see Section 3 forevolutionary models used), these are plotted for comparison to the retrieval-inferred values and not to the evolutionary models themselves.

A comparison of radius versus Lis shown in Figure 14(a), fundamental parameters to Sonora evolutionary model grids fowith the retrieval shown in black and the SED in pink. It is

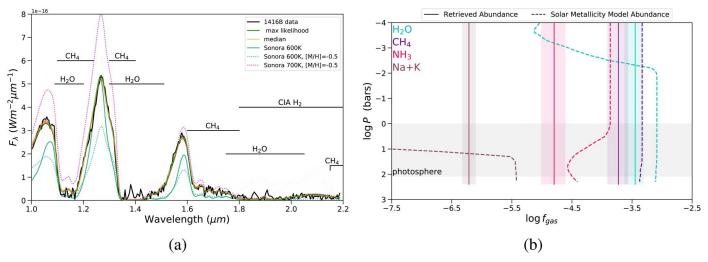


Figure 13. (a) Data (in black) compared to the retrieved maximum-likelihood (in green) and median (in yellow) spectra. In red we show 500 random draws from the final 5000 walkers of the converged Markov Chain Monte Carlo chain. Sonora solar and low-metallicity model spectra are shown in teal and purple, respectively. (I Retrieved uniform-with-altitude gas abundances for the cloudless Allard alkali model compared to solar abundances.

Table 8 Retrieved Gas Abundances and Derived Properties for J1416B

Parameter	Value
Ret	rieved
H ₂ O	- 3.45 ⁺ 0.14
CO	<-5.68
CH₄	- 3.73 ^{+ 0.16}
NH ₃	- 4.80 ^{+0.19}
Na+K	-6.21□±□0.11
log g (dex)	5.00 ⁺ 0.28 0.41
De	rived
L _{bol}	- 5.93 0.05 0.04
T _{eff} (K)	659.0 5 ^{15.33} 13.21
Radius (Ŗ _{up})	$0.81^{+0.07}_{-0.06}$
Mass (M _{Jup})	26.01 22.68 16.07
C/O ^{a,b,c}	0.53 0.10 0.08
[M/H] ^{a,c}	- 0.35 ^{+0.15}

Notes. Molecula bundances are fractions listed as log values. For unconstrained gase\$\sigma\$ confidence is used to determine the upper limit.

quite clear thatthe derived retrievaladius for the deck cloud model of J1416A is smaller than predicted by the evolutionary models, while the slab cloud is consistent with the lowmetallicity 6-10 Gyr and the solar-metallicity 3-6 Gyr models. While the radius of the deck cloud modelmay appear to be unphysically small, Sorahana et al. (2013) estimated the radii of gure 14(d), we find that the retrieval places J1416A with a brown dwarfs from the scale factor, similar to our method, using AKARI spectra and found that most of their mid- to late-L dwarfs had radii smaller than predicted from evolutionary models. We find both the deck and slab cloud radii for J1416A radius, and with a larger radius the derived mass range would fall within the radius range of 0.64–0.81 \Re_p for the mid- to

late-L dwarfs in Sorahana etal. (2013) with a T eff between 1500 and 2000 K.The problem of unphysically smalladii is an ongoing problem foratmospheric retrievals (e.gZalesky et al. 2019) and has been seen as an issue forthe directly imaged exoplanets as well. We caution the reader against using the retrieved radii for J1416A.

Compared to our SED method radiuse see that it is only consistent with J1416A's slab cloud model radius. For J1416B, the retrieval radius is consistent with the Sonora evolutionary models and the SED method radius As seen with J1416A, J1416B's SED method radius is larger than the retrievalderived radius J1416A and J1416B's empirical bol from the SED are fainter than the retrieval-derived, which is inferred from integration under the retrieved forward mode bectrum. The retrieval-derived radius for J1416B constrains the age to be >6 Gyr.

Comparison of the retrieved and evolutionary model-based (from the SED method) surface gravity versus, L. compared to the Sonora Bobcat evolutionary models is shown in Figure 14(b). The surface gravity for both retrievarhodels of J1416A is consistent with the SED value, and the same is seen between J1416B's retrieved and SED surface gravity. Here we see thatboth J1416A's slab and deck retrievals well as the SED, log g gives an age range of 1-10 GyFor J1416B,we find the retrieved log g produces an age range of 1-10 Gyr, which is broader than the range given from the radius.

Figure 14(c) compares the log g versus Twhere here we also compare J1416A to literature results from model values in Cushing et al. (2010) and the retrieval results for J1416B from Line et al. (2017). While the log g for J1416A and J1416B are consistentacross the SEDretrievals, and the literature values plotted, the T_{eff} measurements/ary over a wider range, particularly for J1416A.When comparing mass versus Lin very young age of likely less than 1 Gyr, which is strikingly different from the very old age estimate from the radiushis age disagreemen's likely due to the mass being tied to the be higher.

^a Ratios determined from the same gases in both the A and B components. Additional comparatives are listed in Table 1.

 $^{^{}b}$ C/O $_{Corr.}=0.39\,_{0.05}^{0.07}$ when using the 25% correction from Line et al. (2017) to account for rainout.

^c Atmospheric values.

Table 9 Comparison of Fundamental Parameters from the Literature for 1416A

Parameter	This Paper SED	This Paper Retrieval-Deck	This Paper Retrieval-Slab	Burn10	Schm10	Bowl10	Scho10	Cush10
log L*/L e	-4.18□±□0.011	-4.23□±□0.01	-4.21□±□0.01	L	L	-4.36□±□0.21	L	L
T _{eff} (K)	1694□±□74	189 † 42.56 41.38	1821.53 64.58 102.79	1500	1722	2200	L	1700
Radius (R _{up})	0.92□±□0.08	0.7□±□0.04	$0.77^{+0.10}_{-0.06}$	L	L	L	L	0.81
Mass (M _{Jup})	60□±□18	36.82 31.92 18.71	36.96 30.48 18.71	75	L	61□± □ 9	L	L
log g	5.22□±□0.22	5.26 ⁺ 0.32 0.33	5.18 ^{+ 0.28} 0.36	5.5	L	5.5	L	5.5
Age (Gyr)	0.5-10	L	L	10	>0.8	1 ^a	L	L
[M/H]	-0.3 ^b	- 0.17 ^{+ 0.21f}	- 0.33 0.20 o	L	L	L	L	L
C/O	L	$0.59^{+0.11}_{-0.21}$	0.58 0.11 0.21	L	L	L	L	L
distance (pc)	9.3□±□0°.03	10 ^d	10 ^d	5–15	8□±□1.6	8.4□±□¶.9	7.9□±□1.7	L
U ^g	-17.48□±□0.5	L	L	L	-17.9□±□0.5	6□±□4	L	L
√ ^g	5.81□±□0.04	L	L	L	10.2□±□1.2	10.2□±□1.2	L	L
Wg	−38.4□±□1.1	L	L	L	-31.4□±□4.7	-27□±□9	L	L

Notes. Column abbreviations are defined as follows rn10 = Burningham et al. (2010); Schm10 = Schmidt et al. (2010); Bowl10 = Bowler et al. (2010); Scho10 = Scholz (2010); Cush10 = Cushing et a(2010).

Table 10 Comparison of Fundamental Parameters from the Literature for 1416B

Parameter	This Paper SED	This Paper Retrieva [†]	Burn10	Scho10	Burg10a	Burg10ີ່ກ່ cloudless	Burg10b ² cloudy	Fili15	Line17
log L*/L e	-5.80□±□0.07	- 5.93 0.05	L	L	L	L	L	-5.813□±□0.013	L
T _{eff} (K)	660□±□62	659.05 15.33	500	600	650□±□60	685 ^{+ 55}	595 ^{+ 25}	656□±□54	605 ^{+ 29}
Radius (R _{up})	0.94□±□0.16	$0.81^{+0.07}_{-0.06}$	L	L	$0.83^{+0.14}_{-0.10}$	0.84□±□0.06	0.86	0.96□±□0.16	$0.8^{+0.07}_{-0.06}$
Mass (M _{Jup})	33□±□22	26.01 22.68 16.07	30	30	22–47	43.0 ⁺ 11.5 10.5	36.7 ⁺ 1.0	30.23□±□19.86	L
log g	4.83□±□0.51	$5.00^{+0.28}_{-0.41}$	5.0	L	5.2□±□0.4	5.2□±□0.3	5.5	4.80□±□0.52	4.93□±□0.4
Age (Gyr)	0.5-10	L	10	5	2–10.	8□±□4	6–12	0.5–10	L
C/O	L	0.52 ^{+0.09c,d}	L	L	L	L	L	L	0.45 ^{+0.26e}
[M/H]	-0.3 ^f	- 0.35 ^{+0.10c}	-0.3	L	<-0.3	- 0.17 ^{+ 0.17}	0.0	0.0	- 0.35 ^{+0.10}
distance (pc)	9.3□±□0 <mark>.</mark> 03	10 ^h	5–15	7.9□±□1.7	10.6 ^{+3.0}	11.1□±□3.2	11.4□±□3.4	9.12□±□0.11	9.12□±□0.1

Notes. Column abbreviatioase defined as follows: Burn10 = Burningham et al. (2010); Scho10 = Scholz (2010); Burg10a = Burgasser et al. (2010a); Burg10b = Burgasser et al(2010b); Fili15 = Filippazzo et al.(2015); Line17 = Line et al.(2017).

8. Discussion

Table 11 lists all the parameterswe will discuss when comparing between J1416A and J1416Barticularly those of interest when determining whether the system formed and evolved together. We list the retrieved alkali abundances, C/O, and [M/H] determined when using both the Allard and

a Additional masses based on assumed ages of 3 Gyr: 78□±⊑26M10 Gyr: 80.9□±□1.26M

b Due to the low metallicity in the literature, we use the Saumon & Marley (2008) low-metallicity (-0.3 dex) cloudless evolutionary models to determine the radius

^c From Gaia Collaboration et a(2018).

d For the retrieval, the distance-calibrated spectrum from the SED was used; thus it was set to a distance of 10 pc. Distance uncertainty is included for determining extrapolated parameters using the measured distance uncertainty.

e An estimated distance of 9.4 □ ± □ 1.3 pc is given assuming a low metallicity and using the Cushi(如●) relations.

^f Same gas set between J1416AB used for deriving value.

⁹ We derive new UVW values in this work and do not correct for LSR. UVW values from Schmidt et al. (2010) and Bowler et al. (2010) were both corrected for LSF using Dehnen & Binney (1998). Thus Schmidt et al. (2010) uses & ₩ = □(10, 5, 7), making U\W_{SR}□=□(-17.9, 2.2, -38.4), while Bowler et al. (2010) uses LSR_{Corr} $\Box = \Box (-16,25,7.17)$, making UVW_{No LSR} $\Box = \Box (16,95,-34.17)$.

^a Mean values listed.

^b Here we list values from the Allard alkalies for the winning model.

^c Same set of gases for J1416A and J1416B used for deriving value.

d If we use the rainout correction from Line et a(2017), $C/O_{Corr.} = 0.39^{+0.07}_{-0.05}$

^e Rainout corrected value listed in Line et a(2017) in log₁₀C/O.

f Due to the low metallicity in the literature, we use the Saumon & Marley (2008) low-metallicity (-0.3 dex) cloudless evolutionary models to determine the radius

⁹ From Gaia Collaboration et a(2018). h For the retrieval, the distance-calibrated spectrum from the SED was used; thus it was set to a distance of 10 pc. Distance uncertainty is included for determining extrapolated parameters using the measured distance uncertainty.

Parallax from Faherty et al(2012) was used.

^j Parallax from Dupuy & Liu (2012) was used.

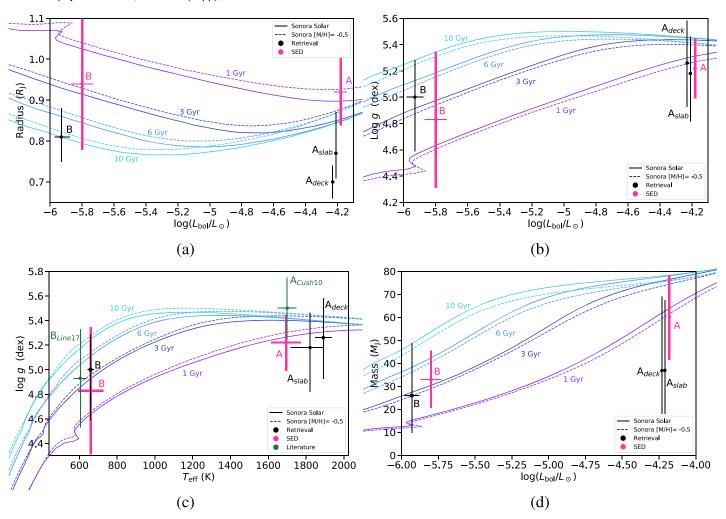


Figure 14. Comparison of retrieved bolometric luminosity, radius, surface gravity, and mass to the Sonora Bobcat evolutionary solar and low-metallicity models. [MH] = 0.0 are displayed as solid lines, while [M/H] = 0.5 are dashed lines, with ages ranging from 1 to 10 Gyr in shades of blue and purple. Black symbols sharetrieved values using the Allard alkalies, while pink points show the SED-derived values, with values that are ranges as thick pink lines because they use the radiange in the determination of the value, while thin lines are uncertainties. Nonvisible uncertainties are smaller than the point size. (a) Radiangs vs. L_{bol}. (c) Log g vs. T_{eff}. Green points show the Cushing et a[2010] and Line et al (2017) values for J1416A and J1416Bespectively(d) Mass vs.L_{bol}.

Table 11
Properties for Comparison between J1416A and J1416B

Object	log(Na+	K)	C/	O ^a	[M/H] ^a	
02,000	Allard	Burrows	Allard	Burrows	Allard	Burrows
1416A deck	- 6.32 ^{+0.17}	- 6.62 ^{+ 0.18}	0.59 0.11	0.60 0.11	- 0.17 ⁺ 0.21	- 0.11 0.18
1416A slab	- 6.90 ⁺ 0.17	- 7.15 ^{+ 0.41}	$0.58^{+0.11}_{0.21}$	0.57 + 0.11 0.26	- 0.33 ^{+ 0.20}	$-0.29^{+0.21}_{0.27}$
1416B	-6.21□±□0.11	- 5.29 ⁺ 0.05	$0.53^{+0.10}_{-0.08}$	$0.50^{+0.11}_{-0.07}$	- 0.35 ^{+0.15}	- 0.47 ^{+ 0.16}

Notes. □ C/O values are listed as absolwhere solar C/O □= □ 0.55 and [M/H] is listed relative to solar abundances.

Burrows alkali opacities for both J1416A and J1416B. Here weopacities are able to produce consistentalkali abundance use the C/O and [M/H] ratios determined from using only the gases thatboth J1416A and J1416B have in common (LD, CH₄, and CO). Agreementin the expected behavior of the alkali abundanceswas the primary deciding factor on the preferred cross sections.

Between J1416A and J1416B, only when J1416A is parameterized with the deck cloud. Alkali abundancesdo not necessarily need to be consistent between J1416A and J1416B have in common (LD, common of the preferred cross sections).

8.1. Addressing the Differences in Alkalies

The alkali abundances retrieved for J1416AB are listed in Table 11, using both alkali opacity models. The Allard

between J1416A and J1416B,only when J1416A is parameterized with the deck cloud. Alkali abundancesdo not necessarily need to be consistent between J1416A and J1416B because they are condensing out at around the ff J1416B (Line et al. 2017; Zalesky et al. 2019). However, the Burrows opacities resultn J1416AB having a higher alkaliabundance than J1416A, which is not expected to occur in T dwarfs due to rainout. To check for correlationsor degeneracies tween alkali abundanceand the cloud parameters of both cloud models for J1416A, we created a corner plot using the Allard

 $^{^{\}rm a}$ The is the AB comparative for C/O and [M/H]. The other versions can be found in Table 1.

opacity retrieval results and found no correlations foreither the deck cloud and not the slab cloud, this is evidence that the median metallicity for J1416A, but a lower median metallicity deck cloud produces a more realistic fit to the data over the slafor J1416B. Only the Allard opacities produce a consistent cloud for J1416A.

8.2. C/O Ratio

To compare the C/O ratio between J1416A and J1416B, we have derived an atmospheric C/O ratio that only considers the J1416A and an updated distance-calibrated SED dfl416B. due to the differing gas assumptions in the L and T dwarf retrievals. For the L dwarf, there will be a small contribution from VO missing in the oxygen total. However, as VO has a very small abundance it does not make a large impact on the overall C/O ratio. Using this C/O ratio, we find that J1416AB are consistentwithin 1 σ , which points toward evidence in favor of formation and evolution as a pairBoth J1416A and J1416B are approximately solarin C/O and have slightly subsolar metallicities. Considering the various methods to determine the C/O for J1416AB, all methods are consistent within 1σ□and do notiffer based on which alkali opacities are used.

As a note, the C/O ratios in Table 11 do not include the rainout correction, as we have not made any corrections to the C/O ratio of J1416A. The rainout correction applied to J1416B only the Allard alkali opacities produce alkali abundances accounts for oxygen that hould be in the atmosphere above any deep cloud not detected in the retrieval. For J1416A, because the retrieval prefers a cloudy model, we have an entirely different situation to consider. If a correction is necessary for J1416A it would likely be a smaller amount, because a much smallerfraction of the total atmosphere is above the cloud (i.e., for the median slab ordeck cloud we would be accounting for oxygen above ~0.1 bar) than is the case for J1416BIn addition, we should consider oxygen tied up in SiO gas in J1416A. Considering this the correction for J1416A could range from 0.5% to 12%which is well within our 68% confidence interval of our C/O ratio.

8.3. Metallicity Differences?

To compare the metallicity between J1416A and J1416B, it and T dwarf atmospheres. is important to remember that the gases used to derive the individual atmospheric metallicities differed between the L and T dwarf atmospheresTo account for this, we take the same only the gases in common between the L and T dwarf to determine the elemental bundances in our metallicity calculation. This approach does not include elements that are expected to have a large portion taken up by unobservable sinks such as N₂ or condensation of iron in the L dwarf. However, both nitrogen (for J1416B) and iron (for J1416A) would affect the metallicity determination at the 10% level. well within our 68% confidence intervals.

The 1σ□confidence intervals are quite large for both alkali opacity variantmetallicities, with the Allard opacities producing consistent [M/H] between J1416A and J1416B regardless Analysis Center/California Institute of Technologyanded by of J1416A's cloud model. When using the Burrows opacities. the derived metallicities are inconsistent between J1416A's deck cloud model and J1416B.It should be noted that both

alkali models produce a lower median metallicity for the deck cloud model. Because the Allard alkalies produce the expected cloud compared to the slab; however, only the Allard model is alkali abundance behavior between J1416A and J1416B with consistent. Additionally, the Burrows model produces a higher picture of the comoving pair.

9. Conclusions

In this work we present the first distance-calibrated SED of We present the first retrieval of J1416A and the second retrieval of J1416B. J1416A is best parameterized by a power-law deck cloud model; however, it is indistinguishable from a power-law slab cloud model, while J1416B is best fit by a cloud-free model, agreeing with previous results from Line et a 2017). For both cloud models of J1416A, we find our retrieval radius is smaller than the evolutionary model radius and inconsistent within 1σ. We also find that the retrieval produces a hotter T than the SED to compensate for the smaller radius and to maintain the same flux we observe. We find that relatively small changes in the composition can drive major changes in observed features in the spectrum, particularly for low temperature sources.

Examining the retrieval esults across the paiwe find that expected for J1416AB (with the T dwarf abundance lower than that of the L dwarf) and only for the deck cloud model for J1416A. Both J1416A and J1416B have slightly subsolar metallicities that are consistent with each other, no matter the chosen alkaliopacity model. J1416AB is consistentwith an approximately solar C/O ratiowith the median value slightly supersolar for J1416A and slightly subsolar for J1416B. These results point toward the pair having formed and evolved together. Retrieval results of this binary are the first look from a larger sample that aims to dive deeper into understanding subdwarf atmospheres by asking (1) are subdwarfs cloudless? and (2) how do their PT profiles compare to similar spectral type or T_{eff} sources (Gonzales et al. 2020, in preparation)? Having both cloudy and cloud-free results from this work provides a step in understanding the nuances of metallicity in L

This research was supported by the NSF underrant No. AST-1614527 grant No. AST-1313278 and grant No. ASTapproach as for the C/O ratio and determine a metallicity using 1909776. This research was made possible thanks to the Royal Society International Exchange grant No. IES\R3\170266. thanks the LSSTC Data Science Fellowship Programich is funded by LSSTCNSF Cybertraining grantlo. 1829740,the Brinson Foundation and the Moore Foundation participation in the program has benefited this work. B.B. acknowledges financial support from the European Commission in the form of a Marie Curie International Outgoing Fellowship (PIOF-GA-2013-629435). This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and the National Aeronautics and Space Administration and the National Science Foundation. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is

a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the NationalAeronautics and Space Administration. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa. int/gaia), processed by the Gaia Data Processing and Analysis(Figures 15-18) and slab (Figures 19-22) clouds using the Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/ dpac/consortium)Funding for the DPAC has been provided by national institutions, in particular the institutions participating onding BIC values as listed in Table 4 in Section 5. in the Gaia Multilateral Agreement.

Software: □astropy (Astropy Collaboration et al. 2013), SEDkit (https://github.com/hover2pi/SEDkit, Eileen Branch), Brewster (Burningham et al. 2017), EMCEE (Foreman-Mackey et al. 2013), Corner (Foreman-Mackey 2016).

Appendix Alternative Alkalies for Winning Models

A.1. J1416A Burrows Models

Here we show the resultarfigures for the power-law deck Burrows alkali cross sections. These models are also indistinguishable from the winning models with their corresp-

A.1.1.Deck Cloud Alternative Alkalies

The resultantfigures for the power-law deck clouds using the Burrows alkali cross sections are shown in Figures 15-18.

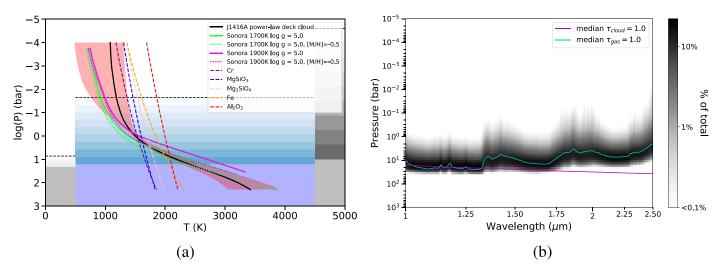


Figure 15. (a) Retrieved PT profile (black) compared to cloudless Sonora solar and low-metallicity model profiles similar to the SED-derived and retrieval-derived effective temperatures (neon green and purple). The median cloud deck is shown in shades of blue. The median deck reaches an optical depth of τ□=□1 at the b between the darkest blue and purple. The purple region is where the cloud is optically thick, and the blue shading indicates the vertical distribution where the cloud opacity drops to τ□=□0.5 at the dashed line. The gray bars on either side show the 1σ cloud deck location and vertical height distribution. The colored dashed lin condensation curves for the listed species. (b) The contribution function associated with this cloud model, with the median cloud (magenta) and gas (aqua) at an o depth of $\tau\Box = \Box 1$ overplotted.

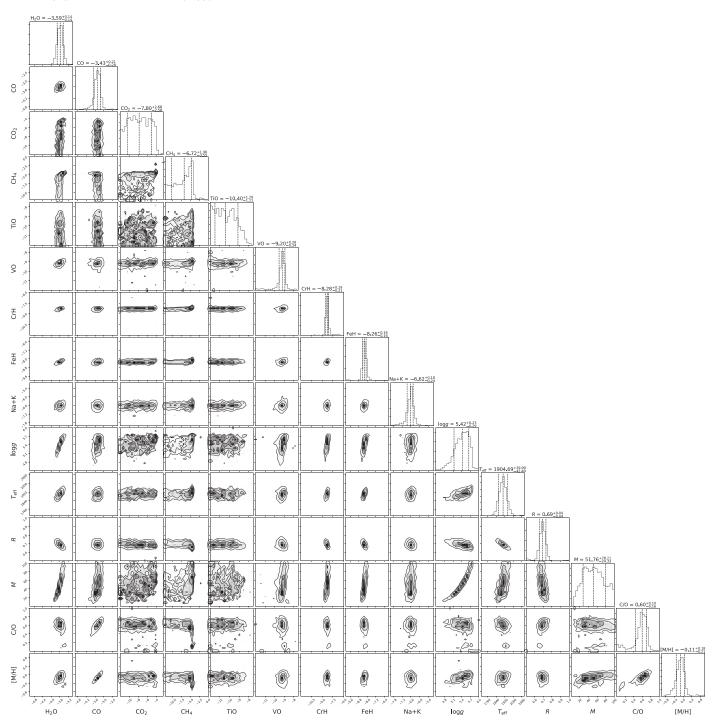


Figure 16. J1416A power-law deck cloud posterior probability distributions for the retrieved parameters and extrapolated parameters. One-dimensional histograms the marginalized posteriors are shown along the diagonal with 2D histograms showing the correlations between the parameter and extrapolated lines in the 1D histograms represent the 16th, 50th, and 84th percentiles, with the 68% confidence interval as the width between the 16th and 84th percentiles. Parameter values above are shown as the median ± 1σ. Gas abundances are displaye. And be a significant of the parameters but are calculated using the retrie and log g values along with the predicted spectrum. Our derived C/O ratio is absolute, where solar C/O is 0.55, while our [M/H] is relative to solar. CO₂, CH₄, and TiO abundances are not constrained and thus only provide upper limits.

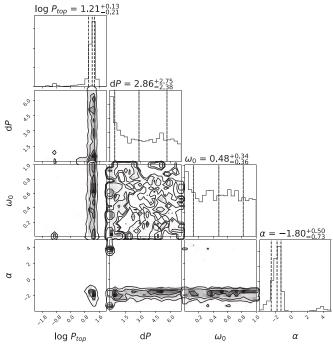


Figure 17. J1416A power-law deck cloud posterior probability distributions for the cloud parameters. The cloud top pressμβεα(trad)tRe cloud height (dP) are shown in bars and α is from the optical depth equation τ □ π Δτ

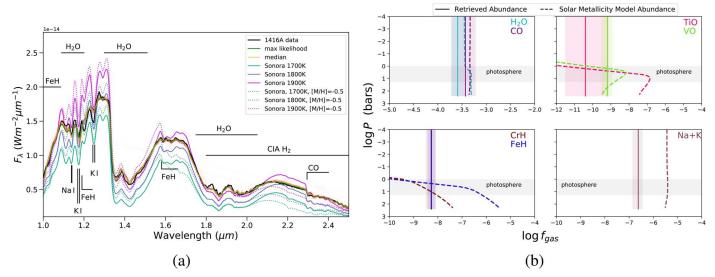


Figure 18. (a) Retrieved forward model spectra for the deck cloud model of J1416A. The maximum-likelihood spectrum is shown in dark green, the median spectrum in yellow, and 500 random draws from the final 2000 samples of the EMCEE chain in red. The SpeX prism data are shown in black. For comparison the Sonora green model solar-metallicity spectra for log g= 5.0 and = 1600 K, 1700 K, and 1800 K (solid light green, teal, and blue), as well as [M/H]= 0.5 for log g= 15.0 and = 1800 K and 1900 K (dotted blue and purple), are shown. Therefore bracket the range of the SED-derived and retrieval-derived uniform-with-altitude mixing abundances constrained gases compared to solar-metallicity and C/O model abundances. The approximate location of the photosphere is shown in gray.

A.1.2. Slab Cloud Alternative

The resultant figures for the power-law slab clouds using the Burrows alkali cross sections are shown in Figures 19–22.

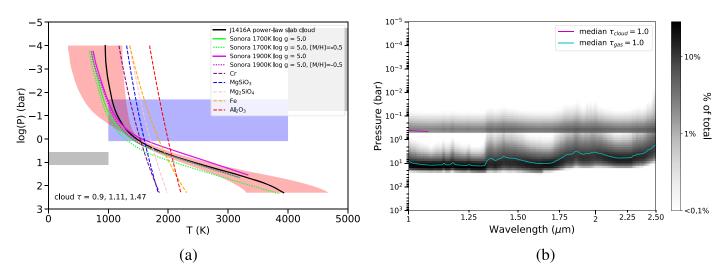


Figure 19. (a) Retrieved PT profile (black) compared to cloudless Sonora solar and low-metallicity model profiles similar to the SED-derived and retrieval-derived effective temperatures (neon green and purple). The median cloud slab height and location are shown purple with the 1σ shown in gray, indicating the ranges of h and base locations ptical depth for the cloud is shown in the bottom left corne dashed lines are condensation curves for the listed specific contribution function associated with this cloud mode the median cloud (magenta) and gas (aqua) at an optical depth of τ = 1 overplotted.

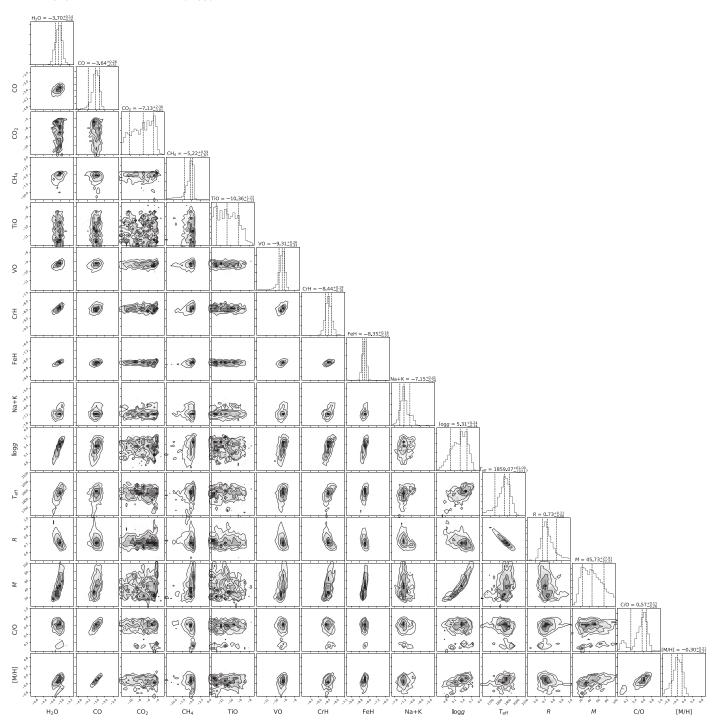


Figure 20. J1416A power-law slab cloud posterior probability distributions for the retrieved parameters and extrapolated parameters. One-dimensional histograms the marginalized posteriors are shown along the diagonal with 2D histograms showing the correlations between the parameter as dashed lines in the 1D histograms represent the 16th, 50th, and 84th percentiles, with the 68% confidence interval as the width between the 16th and 84th percentiles. Parameter values above are shown as the median ± 1σ. Gas abundances are displaye. And log g walues along with the predicted spectrum. Our derived C/O ratio, and [M/H] are not directly retrieved parameters but are calculated using the retrieved and log g values along with the predicted spectrum. Our derived C/O ratio is absolute, where solar C/O is 0.55, while our [M/H] is relative to solar. CO₂ and TiO abundances are not constrained and thus only provide upper limits.

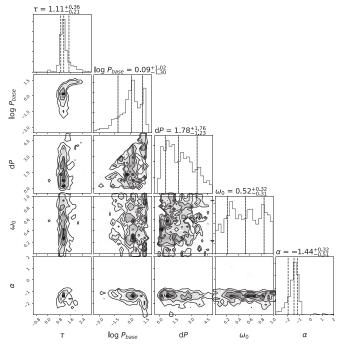


Figure 21. J1416A power-law slab cloud posterior probability distributions for the cloud parameters. The cloud top pressψφ (Industributions for the cloud parameters. The cloud top pressψφ (Industributions for the cloud parameters. The cloud top pressψφ (Industributions for the cloud parameters. The cloud top pressψφ (Industributions for the cloud parameters. The cloud top pressψφ (Industributions for the cloud parameters. The cloud top pressψφ (Industributions for the cloud parameters. The cloud top pressψφ (Industributions for the cloud parameters).

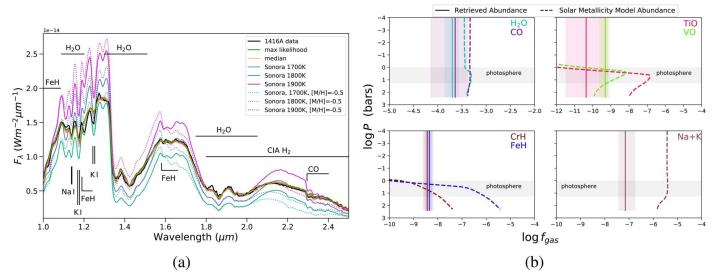


Figure 22. (a) Retrieved forward model spectra for the slab cloud model of J1416A. The maximum-likelihood spectrum is shown in dark green, the median spectrum in yellow, and 500 random draws from the final 2000 samples of the EMCEE chain in red. The SpeX prism data are shown in black. For comparison the Sonora gr model solar-metallicity spectra for log $g = 5.0 \, \text{m} \cdot \text{m} = 1000 \, \text{K}$, and 1800 K (solid teal, blue, and purple), as well as $[M/H] = 0.5 \, \text{for log } g = 5.0 \, \text{m} \cdot \text{m} = 1000 \, \text{K}$ and 1900 K (dotted teal, blue, and purple), are shown. Finestees bracket the range of the SED-derived and retrieval-derive (b) Retrieved uniform-with-altitude mixing abundances for constrained gases compared to solar-metallicity and C/O model abundances. The approximate location of the photosphere is shown in gray.

A.2. J1416B Burrows Models

Figures 23–25 show the cloud-free Burrows alkalicross-section modelfor J1416B, which presents a bettefit to the data; however, it produces inconsistent alkali abundances between J1416A and J1416B.

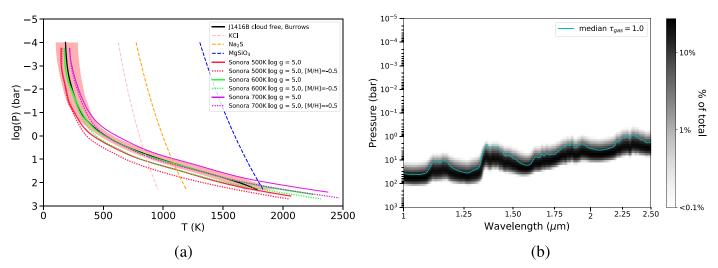


Figure 23. (a) Retrieved PT profile (black) compared to cloudless Sonora solæmd low-metallicity model profiles (neon green purple, and bright pink). (b) Contribution plot with maximum-likelihood gas at τ□=□1.

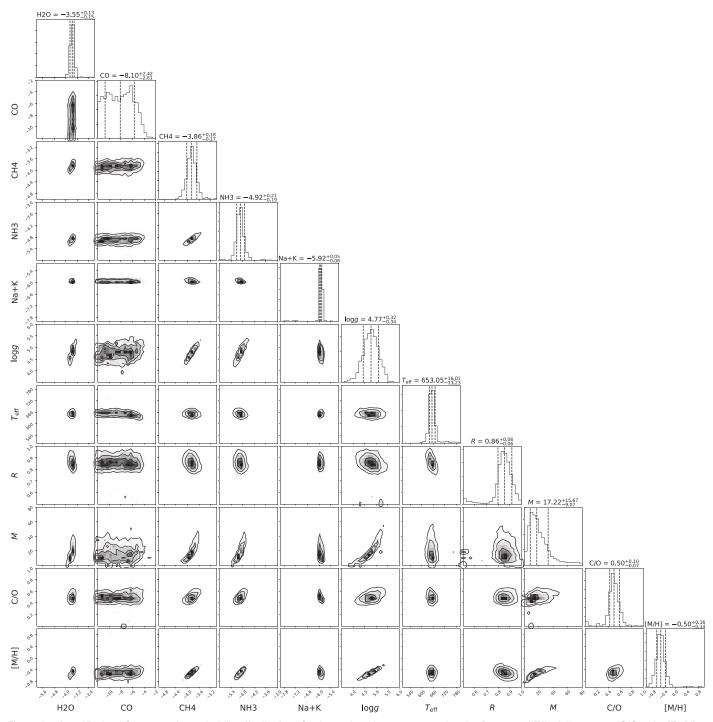


Figure 24. J1416B cloud-free posterior probability distributions for the retrieved parameters using the Burrows, alkElis radius, mass, C/O ratio, [Fe/H], and [M/H] are not directly retrieved parameters but are calculated using the retrieved Pand log g values along with the predicted spectrum abundance is not constrained and thus only provides an upper limit.

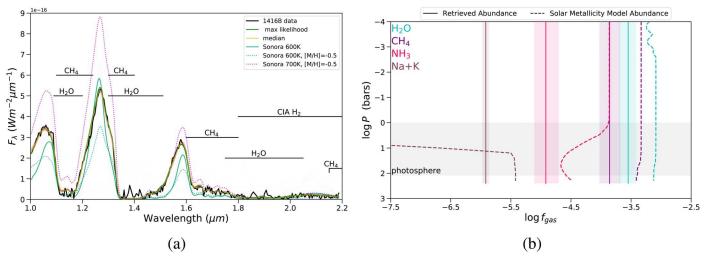


Figure 25. (a) Data (in black) compared to the retrieved maximum-likelihood (in green) and median (in yellow) spectra. In red we show 500 random draws from the final 5000 walkers of the converged Markov Chain Monte Carlo change of the converged Markov Chain Monte Carlo change solar and low-metallicity model spectra are shown in teal and pure perfectively. (b) Retrieved uniform-with-altitude gas abundances for the cloudless Burrows alkali model compared to solar abundances.

ORCID iDs

Eileen C. Gonzales https://orcid.org/0000-0003-4636-6676 Ben Burningham https://orcid.org/0000-0003-4600-5627 Jacqueline K.Faherty® https://orcid.org/0000-0001-6251-0573

Channon Visscher https://orcid.org/0000-0001-6627-6067 Mark S. Marley https://orcid.org/0000-0002-5251-2943 Roxana Lupu https://orcid.org/0000-0003-3444-5908 Richard Freedman https://orcid.org/0000-0001-9333-4306

References

```
Abazajian, K. N., Adelman-McCarthy, J. K., Agüeros, M. A., et al. 2009,
        ,182,543
Allard, N. F., Kielkopf, J. F., & Allard, F. 2007a, EPJD, 44, 507
Allard, N. F., SpiegelmanF., & Kielkopf, J. F. 2007b, A&A, 465, 1085
Allard, N. F., SpiegelmanF., & Kielkopf, J. F. 2016, A&A, 589, A21
Allard, N. F., Spiegelman, F., Leininger, T., & Molliere, P. 2019, A&A,
Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47, 481
Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, A&A
   558, A33
Baraffe, I., Chabrier, G., Barman, T. S., Allard, F., & Hauschildt, P. H. 2003,
    \&A, 402,701
Bowler, B. P., Liu, M. C., & Dupuy, T. J. 2010, ApJ, 710, 45
Burgasser, A. J., Kirkpatrick, J. D., Brown, M. E., et al. 2002, ApJ, 564, 421
Burgasser, A. J., Kirkpatrick, J. D., Burrows, A., et al. 2003, ApJ, 592, 1186
BurgasserA. J., Looper, D., & Rayner, J. T. 2010a, AJ, 139, 2448
Burgasser, A. J., Simcoe, R. A., Bochanski, J. J., et al. 2010b, ApJ, 725, 1405 MadhusudhanN., & Seager, S. 2009, ApJ, 707, 24
BurgasserA. J., Vrba, F. J., Lépine, S., et al. 2008, ApJ, 672, 1159
Burgasser, A. J., Witte, S., Helling, C., et al. 2009, ApJ, 697, 148
Burningham, B., Leggett, S. K., Lucas, P. W., et al. 2010, MNRAS, 404, 1952
Burningham, B., Marley, M. S., Line, M. R., et al. 2017, MNRAS, 470, 1177
Burrows, A., & Volobuyev, M. 2003, ApJ, 583, 985
Chabrier, G., & Baraffe, I. 1997, A&A, 327, 1039
Chabrier, G., Baraffe, I., Allard, F., & Hauschildt, P. 2000, ApJ, 542, 464
Chambers, K. C., Magnier, E. A., Metcalfe, N., et al. 2016, arXiv:1612.05560
Cushing, M. C., Kirkpatrick, J. D., Gelino, C. R., et al. 2011, ApJ, 743, 50
Cushing, M. C., Looper, D., Burgasser, A. J., et al. 2009, ApJ, 696, 986
Cushing, M. C., Saumon, D., & Marley, M. S. 2010, AJ, 140, 1428
Cutri, R. M., Skrutskie, M. F., van Dyk, S., et al. 2003, 2MASS All Sky
   Catalog of Point Sources (Pasade@A: IPAC)
Cutri, R. M., Wright, E. L., Conrow, T., et al. 2012, yCat, 2311,0
Cutri, R. M., Wright, E. L., Conrow, T., et al. 2014, yCat, 2328,0
Dahn, C. C., Harris, H. C., Levine, S. E., et al. 2008, ApJ, 686, 548
Dehnen, W., & Binney, J. J. 1998, MNRAS, 298, 387
Dupuy, T. J., & Liu, M. C. 2012, ApJS, 201, 19
```

```
Faherty, J. K., Burgasser, A. J., Walter, F. M., et al. 2012, ApJ, 752, 56
Fegley, B., Jr., & Lodders, K. 1994, Icar, 110, 117
Fegley, B., Jr., & Lodders, K. 1996, ApJL, 472, L37
Filippazzo, J. C., Rice, E. L., Faherty, J., et al. 2015, ApJ, 810, 158
Foreman-MackeyD. 2016, JOSS, 1, 24
Foreman-MackeyD., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP,
   125,306
FreedmanR. S., Lustig-Yaeger, J., Fortney, J. J., et al. 2014, ApJS, 214, 25
FreedmanR. S., Marley, M. S., & Lodders, K. 2008, ApJS, 174, 504
Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2016, A&A, 595, A2
Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2018, A&A, 616, A1
Gravity Collaboration, Nowak, M., Lacour, S., et al. 2020, A&A, 633, A110
Hansen J. E. 1971, JAtS, 28, 1400
Kass, R. E., & Raftery, A. E. 1995, Journal of the American Statistical
     ssociation,90,773
Kataria, T., Sing, D. K., Lewis, N. K., et al. 2016, ApJ, 821, 9
Khandrika, H., Burgasser, A. J., Melis, C., et al. 2013, AJ, 145, 71
Kirkpatrick, J. D. 2005, ARA
                            &A, 43, 195
Kirkpatrick, J. D., Kellogg, K., Schneider A. C., et al. 2016, ApJS, 224, 36
Kirkpatrick, J. D., Looper, D. L., Burgasser, A. J., et al. 2010, ApJS, 190, 100
Leggett, S. K., Saumon, D., Marley, M. S., et al. 2012, ApJ, 748, 74
Lindegren, L., Hernandez, J., Bombrun, A., et al. 2018, A&A, 616, A2
Line, M. R., Marley, M. S., Liu, M. C., et al. 2017, ApJ, 848, 83
Line, M. R., Teske, J., Burningham, B., Fortney, J. J., & Marley, M. S. 2015,
     J, 807, 183
Lodders, K. 1999, ApJ, 519, 793
Lodders, K. 2002, ApJ, 577, 974
Lodders, K. 2010, Exoplanet Chemistry (New York: Wiley), 157
Lodders, K., & Fegley, B. 2002, Icar, 155, 393
Lodders, K., & Fegley, B., Jr. 2006, Chemistry of Low Mass Substellar Objects
   (Chichester: Praxis Publishing Ltd), 1
Marley, M. S., Saumon, D., Guillot, T., et al. 1996, Sci, 272, 1919
McBride, B., & Gordon, S. 1994, Computer Program for Calculation of
   Complex Chemical Equilibrium Compositions and Applications I. Analysis,
   ReferencePublication NASA RP-1311, NASA Lewis Research Center,
   National Aeronautics and Space Administration Lewis Research Center
   Cleveland, Ohio 44135-319, https://www.grc.nasa.gov/WWW/CEAWeb/
   RP-1311.htm
McKay, C. P., Pollack, J. B., & Courtin, R. 1989, Icar, 80, 23
Metchev, S. A., Heinze, A., Apai, D., et al. 2015, ApJ, 799, 154
Miles-Páez, P. A., Metchev, S. A., Heinze, A., & Apai, D. 2017, ApJ, 840, 83
Morley, C. V., Fortney, J. J., Kempton, E. M.-R., et al. 2013, ApJ, 775, 33
Morley, C. V., Fortney, J. J., Marley, M. S., et al. 2012, ApJ, 756, 172
Moses, J. I., Line, M. R., Visscher, C., et al. 2013, ApJ, 777, 34
Moses, J. I., Richardson, M. R., Madhusudhan, N., et al. 2012, AAS Meeting,
   44, 103.02
Nissen, P. E., Chen, Y. Q., Carigi, L., Schuster, W. J., & Zhao, G. 2014, A&A,
  568 A25
```

Phillips, M. W., Tremblin, P., Baraffe, I., et al. 2020, A&A, 637, A38

```
Visscher, C. 2012, ApJ, 757, 5
Richard, C., Gordon, I. E., Rothman, L. S., et al. 2012, JQSRT, 113, 1276
Saumon, D., Hubbard, W. B., Burrows, A., et al. 1996, ApJ, 460, 993
                                                                               Visscher, C., Lodders, K., & Fegley, B., Jr. 2006, ApJ, 648, 1181
                                                                               Visscher, C., Lodders, K., & Fegley, B., Jr. 2010, ApJ, 716, 1060
Saumon,D., & Marley, M. S. 2008, ApJ, 689, 1327
Saumon, D., Marley, M. S., Abel, M., Frommhold, L., & Freedman, R. S.
                                                                               Wakeford, H. R., Visscher, C., Lewis, N. K., et al. 2017, MNRAS, 464, 4247
                                                                               Zalesky, J. A., Line, M. R., Schneider, A. C., & Patience, J. 2019, ApJ, 877, 24
  2012, ApJ, 750, 74
Schmidt, S. J., West, A. A., Burgasser, A. J., Bochanski, J. J., & Hawley, S. L. Zhang, Z. H., Burgasser A. J., Gálvez-Ortiz, M. C., et al. 2019, MNRAS,
   2010, AJ, 139, 1045
                                                                                 486, 1260
Scholz, R. D. 2010, A&A, 510, L8
                                                                               Zhang, Z. H., Galvez-Ortiz, M. C., Pinfield, D. J., et al. 2018a, MNRAS,
Skemer, A. J., Morley, C. V., Zimmerman, N. T., et al. 2016, ApJ, 817, 166
                                                                                 480,5447
SorahanaS., YamamuraJ., & Murakami, H. 2013, ApJ, 767, 77
                                                                               Zhang, Z. H., Pinfield, D. J., Gálvez-Ortiz, M. C., et al. 2017, MNRAS,
Todorov, K. O., Line, M. R., Pineda, J. E., et al. 2016, ApJ, 823, 14
                                                                                 464,3040
Toon, O. B., McKay, C. P., Ackerman, T. P., & Santhanam, K. 1989, JGR, 94, Zhang, Z. H., Pinfield, D. J., Gálvez-Ortiz, M. C., et al. 2018b, MNRAS,
   16287
                                                                                 479, 1383
```