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Many biological systems synchronize their movement through physical interactions. By far, the most
well-studied examples concern physical interactions through a fluid: Beating cilia, swimming sperm and
worms, and flapping wings all display synchronization behavior through fluid mechanical interactions.
However, as the density of a collective increases, individuals may also interact with each other through
physical contact. In the field of “active matter” systems, it is well known that inelastic contact between
individuals can produce long-range correlations in position, orientation, and velocity. In this work, we
demonstrate that contact interactions between undulating robots yield novel phase dynamics such as
synchronized motions. We consider undulatory systems in which rhythmic motion emerges from time-
independent oscillators that sense and respond to an undulatory bending angle and speed. In pair
experiments, we demonstrate that robot joints will synchronize to in-phase and antiphase oscillations
through collisions, and a phase-oscillator model describes the stability of these modes. To understand how
contact interactions influence the phase dynamics of larger groups, we perform simulations and
experiments of simple three-link undulatory robots that interact only through contact. Collectives
synchronize their movements through contact as predicted by the theory, and when the robots can adjust
their position in response to contact, we no longer observe antiphase synchronization. Lastly, we
demonstrate that synchronization dramatically reduces the interaction forces within confined groups of
undulatory robots, indicating significant energetic and safety benefits from group synchronization. The
theory and experiments in this study illustrate how contact interactions in undulatory active matter can lead
to novel collective motion and synchronization.
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I. INTRODUCTION

The study of oscillations in biological systems has led to
a fundamental understanding of the dynamics of coupled
oscillators [1,2]. Biological locomotion typically arises
from oscillatory movements, and groups of living systems
can exhibit coupled movement oscillations when interact-
ing. For example, recent studies have demonstrated that
fluid forces acting between pairs of flagella [3–5], arrays of
cilia [6–8], and even flapping wings [9–11] can lead to
phase and frequency synchronization of oscillatory body
movements. However, many animal and robot groups
operate in close proximity where movements may result
in collisions, leading to collective jamming [12,13], dis-
order-to-order transitions in traffic flow [14,15], and

synchronization of oscillatory swimming gaits [16]. In this
work, we study the phase dynamics of oscillators that are
coupled only through intermittent mechanical contact. We
provide experimental and theoretical evidence that inelastic
mechanical collisions between independent oscillators
produce a rich array of phase dynamics in contact-coupled
systems.
Synchronization in biological systems can be observed

across all scales—from genetic oscillators within cells
[17,18] to collective animal groups within habitats
[19–21]. While synchronization is observed across a wide
variety of different systems, ultimately it requires two
fundamental properties [22]: (1) Perturbations to the phase
of each oscillator neither grow nor decay, and (2) oscillator
interactions can influence the phase. Many mechanical
systems possess both such properties—for example,
the original pendulum clocks of Huygens [23] exhibit
(1) autonomous oscillations that (2) interact through struc-
tural motion. In the context of undulatory locomotion, there
are two main archetypes for autonomous oscillations [24]:
central pattern generators that provide an adaptive global
“clock,” and reflexive oscillators that generate spontane-
ous oscillations through local feedback. Critically, both
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modalities incorporate environmental and propriocep-
tive feedback. Many abstractions of these circuits exist
[25–27], and one common model is the phase oscillator,
which oscillates at a constant frequency ω and can be
augmented with sensory feedback.
Collectives that interact through contact have been

extensively studied in the soft-matter fields, such as active
matter and granular materials. Inert systems that interact
through contact, such as granular materials, exhibit novel
nonlinear phenomena such as inelastic collapse [28,29],
jamming [30], and transitions between fluid and solid states
[31]. However, granular materials require external driving
forces to stay in motion. In contrast, active matter systems
generate spontaneous movement through internal energy
reservoirs and external interactions with the group [32].
Studies of self-propelled “dry” active matter have demon-
strated that inelastic collisions are responsible for the
collective motion and long-range order in dynamical states,
such as flocking, jamming, and phase separation (see
Ref. [33] for a review). Recent experiments and simulation
of undulatory active matter systems such as swimming
sperm [34,35] and reciprocating robots [36,37] have
demonstrated that contact interactions can lead to novel
spatial ordering. However, the explicit ability for these
mobile systems to synchronize through contact is
unknown. In this paper, we study an active matter system
of undulatory robots and demonstrate that inelastic
mechanical collisions produce a rich dynamics of collective
behavior through contact coupling alone.
As a first example of contact-coupled synchronization,

we introduce the Newton’s cradle toy (Fig. 1). Newton’s
cradle is a series of metal balls mounted on wires so that
they each undergo pendular motion. When one ball is

allowed to fall under pendular motion and collide with the
group, energy is transferred through collisions (with some
energy loss), and the ball on the other end will rotate
upwards. A less-appreciated aspect of this process is that,
as time evolves, energy is lost due to collisions, and
eventually the system settles into a state where all of the
pendulums are oscillating in phase and in continuous
contact. This is a simple example of a contact-coupled
dynamical system in which the pendulum is initially out of
phase, but through repeated collisions and energy loss, the
system is driven to a synchronous oscillating state.
In active oscillating systems, energy loss through dis-

sipation or collisions can be compensated for by energy
input, thus exhibiting limit-cycle oscillations [21]. The
oscillatory movements of some biological systems can be
considered as limit-cycle oscillators [25,39], prompting our
interest in the phase dynamics of active oscillatory systems
that interact through contact (Fig. 1). We consider sim-
plified representations of biological systems that move
through undulation: Our experimental robots use rotary
joints and have rigid links. To allow the robots to evolve
in the undulatory phase, we use a simple, autonomous, non-
linear oscillator to drive sinusoidal motions of the robots.
In the following sections, we study how oscillatory

systems can achieve synchronization when they interact
through contact. In Sec. II, we present a simple theoretical
model of contact synchronization, and we analyze the
steady-state modes and their stability through a contact-
to-contact iterated map. In Sec. III, we introduce a simple
experiment to examine how two robot joints can synchron-
ize through mechanical contact, and we compare with the
theoretical model. To understand how contact interactions
may apply to larger groups, we perform simulations of
1D lattices and study their dynamics in Sec. IV. In the next
two sections, we perform experiments and simulations on
simple three-link robots that interact through collisions. We
demonstrate that the in-phase synchronization predicted
by our phase model, and observed in our first experiments,
is observed in robot groups (Sec. V). To find out why
synchronization is beneficial in mobile groups, we measure
contact forces between robots and compare between the
synchronous and asynchronous states (Sec. VI). When
robot joint oscillation is driven through time-dependent
sinusoidal control, the contact forces are orders of magni-
tude larger than when the robots are allowed to
synchronize.

II. MODEL OF SYNCHRONIZATION

THROUGH CONTACT

We begin by studying a simple model of two phase
oscillators that represent body-bending elements, or the
joints of undulatory robots [Fig. 2(a)]. We consider
that undulatory motion is generated according to the phase
oscillator equation, _ϕ ¼ 1. The oscillator phase governs the
lateral position of the undulating body element, such that

(a)

(c)

(b)

(d)

FIG. 1. Examples of oscillators that interact through contact.
(a) The balls of the Newton’s cradle toy collide and synchronize
to in-phase oscillations. (b) Arrays of flapping cilia in close
proximity can be driven to synchrony through contact [38].
(c) The undulatory gaits of swimming worms (C. elegans)
synchronize through contact interactions [16]. (d) Simple
three-link “Purcell-swimmer” robots similarly synchronize their
gaits through contact, as demonstrated in this work.
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xi ¼ A cosðϕiÞ is the lateral distance from the body’s center
line, and _xi ¼ −A sinðϕiÞ is the lateral speed [Fig. 2(b)].
When two body elements are in close proximity, they will
come into contact when the following condition is met:
A cosðϕ1Þ − A cosðϕ2Þ ¼ d, where d is the separation dis-
tance of the central axis of the two agents. We introduce the
normalized separation distance, d̃ ¼ ðd=2AÞ, such that only
when d̃ ≤ 1 will oscillators be able to come into contact.
The contact condition thus becomes

cosðϕ2Þ − cosðϕ1Þ ¼ 2d̃: ð1Þ

When the oscillator pair collides, each oscillator has a
velocity of _x−i ¼ −A sinðϕ−

i Þ, where superscripts � denote
before (−) and after (þ) collision variables [Fig. 2(b)].
We model the collision as an inelastic process with coeffi-
cient of restitution r such that _xþ

1
− _xþ

2
¼−rð_x−

1
− _x−

2
Þ.

Combining the inelastic collision model with conservation
of momentum, _xþ

1
þ _xþ

2
¼ _x−

1
þ _x−

2
, yields the following

postcollision velocities (we assume equal masses):

_xþ
1
¼

1

2
½ð1 − rÞ_x−

1
þ ð1þ rÞ_x−

2
�; ð2Þ

_xþ
2
¼

1

2
½ð1 − rÞ_x−

2
þ ð1þ rÞ_x−

1
�: ð3Þ

When the oscillators collide, they instantaneously change
their phase due to the velocity change [Fig. 2(b)]. The
oscillator phase is represented in the phase plane as the
clockwise angle from the positive x axis to the instantaneous

coordinate ðx; _xÞ. Thus, the phases before and after a
collision can be represented by the following equation:

ϕ�
i ¼ atan

�

−
_x�i
x�i

�

: ð4Þ

The negative sign accounts for the fact that the rotation
direction is in the clockwise direction.
We seek to understand the asymptotic behavior of

the phase difference, Δ ¼ ϕ2 − ϕ1. In systems with con-
tinuous coupling, this often amounts to demonstrating that
_Δ ¼ 0 [22]. However, since this system consists of repeti-
tive collision events, the phase difference Δ is constant in
between collisions and changes instantaneously during a
collision. Thus, we derive the iterated map that takes the
precollision phase difference of the (n)th collision to the
precollision phase difference of the (nþ 1)th collision,
Δ

ðnþ1Þ ¼ fðΔðnÞÞ. We represent the phase difference of the
nth collision as Δ

ðnÞ, where we have dropped the super-
script � for notational convenience. To derive fðΔðnÞÞ, we
take the following steps: (1) Starting with an initial phase
difference, Δðn;−Þ, solve for the phases at collision, ϕ−

1
and

ϕ−

2
, (2) apply the velocity update rule for the inelastic

collision, and (3) determine the postcollision phases
for the oscillators. Since ω is the same between each
oscillator, the nth postcollision phase difference is exactly
the same as the (nþ 1)th precollision phase difference, and
thus Δ

ðn;þÞ ¼ Δ
ðnþ1;−Þ. We have now determined the

function that generates Δ
ðnþ1;−Þ from Δ

ðn;−Þ, and we can
drop the � superscripts, yielding Δ

ðnþ1Þ ¼ fðΔðnÞÞ. This
process results in the collision-to-collision return map

(a) (b) 1) Phases before nth collision 2) Instant before nth collision

3) Inelastic collision 4) Post collision 5) Instant before n+1th collision

FIG. 2. Phase oscillator model for contact-mediated synchronization of undulatory gaits. (a) Undulatory motion is generated through
periodic bending of body elements at joints. (b) We envision that the motion of the body in the lateral direction (x) is governed by a phase
oscillator that produces harmonic motion. The evolution of the collision model is shown in steps 1–5. (1) Oscillators are initially at phase
difference Δ ¼ ϕ2 − ϕ1. (2) Oscillators will collide when x1 ¼ x2. (3) During a collision, the velocities are instantaneously updated
according to an inelastic collision law, and the phase difference changes. (4) Immediately following collision, the oscillators continue
evolving until (5) they collide again, resulting in a new postcollision phase difference.
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Δ
ðnþ1Þ ¼ atan
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; ð5Þ

where we have defined κ ¼ asin(d̃ csc ðΔ=2Þ).
The collision-to-collision return map allows us to exam-

ine the asymptotic behavior and dynamics of synchroniza-
tion for contact-coupled oscillators. We first examine
the fixed points of the map, Δ

� ¼ fðΔ�Þ. The return
map for 0 < r ≤ 1 exhibits three fixed points as a function
of separation. Two of the fixed points exist independently
of the coefficient of restitution,

Δ
� ¼ 2asinðd̃Þ; ð6Þ

Δ
� ¼ π; ð7Þ

while the third fixed point depends on r and must be solved
numerically. We define the first fixed point [Eq. (6)] as the
compatibility curve because it defines the maximum phase
difference between two oscillators separated by d̃ before
they collide [see inset in Fig. 3(a)]. When oscillators are at
the compatibility fixed point, they will repeatedly make
grazing contact with each other. The compatibility curve
actually determines the boundary of an entire set of fixed
points for these oscillators since if the phase difference
jΔ�j < 2asinðd̃Þ, the oscillators will never contact each
other and thus Δ will never change. The second fixed point
[Eq. (7)] is an antiphase oscillation. We show the fixed
points in Fig. 3(a) for r ¼ 0.67, where the lower branch is
the compatibility fixed point and the upper branch is the
antiphase fixed point.

When the separation distance is zero (d̃ ¼ 0), the com-
patibility fixed point corresponds to perfect in-phase syn-
chronization, Δ

� ¼ 0, and the return map dramatically
simplifies to

Δ
ðnþ1Þ ¼ −2 atan

�

r tan

�

1

2
Δ

ðnÞ

��

. ð8Þ

This equation can be solved recursively to generate the phase
difference of the nth collision as a function of any initial
condition (Δð0Þ),

Δ
ðnÞ ¼ 2 atan

�

ð−rÞn tan

�

1

2
Δ

ð0Þ

��

; ð9Þ

and we clearly see that, for large n, the phase difference
converges to Δ

� ¼ 0.
Equation (9) highlights the importance of inelastic

collisions in the synchronization process for contact-
coupled oscillators. The coefficient of restitution, r, gov-
erns the rate of convergence to the synchronization fixed
point for d̃. The linear stability of fixed points in the
collision-to-collision map is determined by the condition
jf0ð0Þj < 1, where the prime denotes the derivative with
respect to Δ

ðnÞ. For the Δ� ¼ 0 fixed point, the stability is
f0ð0Þ ¼ −r, again highlighting the importance of inelas-
ticity in the synchronization process. Thus, because

0
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π/2
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(a) (b) (c)
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FIG. 3. Evolution of the phase difference captured by the phase oscillator model. (a) For an initial phase difference Δ and separation
distance d̃, a collision will induce a change inΔ. The heatmap shows the collision-to-collision phase difference, jΔðnþ1Þj − jΔðnÞj at each
ðd̃;ΔÞ location [Eq. (5)]. States in the red region result in a decrease in the absolute phase difference, while states in the blue region
increase in phase difference. Black lines are stable fixed points, solid gray lines are unstable, and dashed gray lines are marginally stable.
The lower black curve is the compatibility fixed point [Eq. (6)]. The coefficient of restitution is r ¼ 0.67. The inset shows three different
separation distances and the range of “compatible” phase differences that can exist without collision. (b) Collision-to-collision phase
change behavior at four different restitution coefficients. The black lines are stable fixed points, the gray lines are unstable fixed points,
and dashed gray lines are neutrally stable. (c) Average steady state from random initial phases as a function of separation distance and
restitution coefficient.
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inelastic interactions always generate energy loss
(0 < r < 1), the system is guaranteed to reach phase
synchronization when d̃ ¼ 0.
To analyze the time evolution of the system when

0 < d̃ < 1, we construct the basins of attraction for the
fixed points by calculating the phase change behavior after
a single collision event, gðjΔðnÞjÞ ¼ jΔðnþ1Þj − jΔðnÞj. In
Figs. 3(a) and 3(b), we plot gðjΔðnÞjÞ and denote with
arrows and color the flow direction of the compatible
(down arrow, red) and antiphase (up arrow, blue) basins.
We observe that, for each r, there is a critical d̃c below
which all initial phase differences are attracted to the
compatible state. However, for larger d̃, the antiphase basin
causes states that start with large jΔj to evolve to antiphase
synchronization [blue regions in Figs. 3(a) and 3(b)].
To analyze the behavior of the antiphase fixed point

[Eq. (7)], we similarly construct the basin of attraction and
linear stability. Since the return map at Δ

� ¼ π has a
continuous first derivative, we can compute the linear
stability of this point. Evaluating the derivative, we find

f0ðπÞ ¼ −
rðd2 − 1Þ þ d2

r2ðd2 − 1Þ − d2
; ð10Þ

which yields the critical separation distance, d̃c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½rðr − 1Þ=r2 − r − 2�
p

. When d̃ > d̃c, antiphase oscilla-
tions switch from unstable to stable. However, as r → 0, the
range of d̃ where jf0ðπÞj < 1 becomes vanishingly small
as f0ðπÞ converges to f0ðπÞ ¼ 1 for infinitesimal d̃. The
overall influence of r and d̃ can be understood by averaging
the collision-to-collision phase change across all initial
phases, highlighting that, for modest r ≈ 0.5 and above, the
average steady-state behavior is evenly divided between the
antiphase and compatible states [Fig. 3(c)].

In this section, we have proven that a simple model of
phase oscillators interacting through intermittent inelastic
collisions can produce a rich range of dynamical behavior.
We observe in-phase synchronization for small sepa-
ration distances and antiphase synchronization for larger
distances. Furthermore, this system admits a continuum of
“fixed points” when the phase difference is below the
compatibility line, in which case the oscillators are com-
pletely uncoupled and do not come into contact. In the next
sections, we demonstrate, in experiment and simulation,
that the pairwise interactions of contact-coupled oscillators
lead to rich collective behaviors.

III. SYNCHRONIZATION OF ROBOT

JOINTS IN EXPERIMENT

To validate the model introduced in the previous section,
we perform experiments with two oscillating motors that
interact through collisions [Fig. 4(a)]. Each brushless dc
motor (Quanum 5250) represents the joint of a robot and is
actuated under closed-loop torque control. Rigid 9-cm-long
aluminum links and viscoelastic bumpers are attached
to both motors [Fig. 4(a)]. We measure the experimental
coefficient of restitution of the system to be r ¼ 0.67
(Fig. 11 in Ref. [40]). A capacitive encoder attached to the
motor shafts provides angular position measurements at a
resolution of 8192 counts per revolution, which is 0.044°
(AMT102, CUI Devices). An ODrive brushless dc motor
controller (ODrive Robotics) provides closed-loop torque
control for both motors individually.
We consider the joint rotation angle and rotational

velocity as the position and velocity variables of our phase
oscillator, (x; _x). In order to actuate these motors as phase
oscillators, we control the motor torque (at a rate of 300 Hz)
using the following equation:

(a) (b) (c)

x
1

x
1

x
1

x
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x
2

x (deg.)

x
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Motor 2

Motor 1
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= 0.6

FIG. 4. Experimental validation of synchronization between undulatory robot joints. (a) Two motors mounted on a concentric axis are
actuated as phase oscillators. The oscillators interact through inelastic collisions when their rotation angle is equal. (b) Data from three
separation distances. Robot joints are initially oscillated out of contact to achieve steady-state behavior (phases 1 and 2) and are slowly
brought into contact (phase 2) to their final fixed distance d̃ (phase 3), until the experiment is over (phase 4). (c) At low d̃, joints
synchronize; at intermediate d̃, joints oscillate with compatible phases and do not come into contact; and at large d̃, joints collide in
antiphase synchronization. Images are from Video 1 in Ref. [40].
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τi ¼ −kxi þ ðc − μx2i Þ_xi; ð11Þ

where xi is the relative angular displacement from the
neutral angle and i refers to the oscillator. We assume
the motor internal damping and friction are small, and the
system’s inertia (I) is the same for both motors, such that
Iẍi ¼ τi. Note that there is no coupling between the motors
in Eq. (11); the only interactions are through inelastic
collisions.
The motor actuation in Eq. (11) represents a generic form

of the Van der Pol oscillator, which generates sinusoidal
oscillations with constant phase speed ( _ϕ) for weak non-
linearity [21]. Thus, this choice of actuation enables the
robot joints to oscillate sinusoidally with constant phase
velocity consistent with our phase oscillator model in
the previous section. The position and velocity feedback
terms in Eq. (11) enable the actuator to instantaneously
respond to collision-induced velocity changes, also con-
sistent with our model assumptions. The actuation para-
meters of Eq. (11) are chosen such that the oscillators
have natural frequencies of ω1 ¼ 2.61� 0.04 Hz and
ω2 ¼ 2.63� 0.03 Hz and amplitudes of A1 ¼ 44.4� 0.9
degrees and A2 ¼ 44.3� 1.6 degrees. For the purposes of
analysis and variable definitions, we assume equal ampli-
tudes between the oscillators.
To study the phase dynamics between the two colliding

oscillators, we set up steady limit-cycle oscillations with
the systems initially separated by a large neutral position,
d̃ ¼ 2. The lower link is allowed to oscillate, and after a
random time in the range of 5–7 seconds, the upper link is
perturbed to limit-cycle oscillations. This random wait time

sets a random initial phase difference between the two
oscillators. Once both links are oscillating at a steady state,
we slowly move the neutral position of the second oscillator
to the prescribed separation d̃ for that experiment. Once the
oscillators are at the appropriate d̃, we continue the
experiment for 15 seconds until reducing the amplitude
and stopping. We measure the oscillator positions and
velocities throughout the experiment [Fig. 4(b)] and com-
pute collisional information, including the phase difference
before each collision, ΔðnÞ. In total, we performed 1312
experiments over a range of separation distances where
collisions were possible, d̃ ∈ ½0; 1�, and a control separa-
tion distance d̃ ¼ 2 to rule out any coupling through the
structure. In Figs. 4(b) and 4(c) and Video 1 in Supple-
mental Material [40], we show experiments from three d̃,
showing in-phase synchronization (d̃ ¼ 0), compatibility
(d̃ ¼ 0.3), and antiphase synchronization (d̃ ¼ 0.6).
We first compare the model predictions and experiment

for the d̃ ¼ 0 return map [Eq. (8)]. In experiment, the
oscillators synchronize phases through repeated collision
events, eventually reaching a final synchronized state where
the oscillators move together in or near contact [Figs. 4(b)
and 4(c)]. The experimental collision-to-collision return
map shows consistent in-phase synchronization as pre-
dicted by Eq. (8) from all initial conditions [Fig. 5(a)].
To rule out the effect of slowly bringing the oscillators
together [Phase 2 in Fig. 4(b)], we perform a second set of
experiments in which both oscillators begin at d̃ ¼ 0 and a
random initial phase. We observe good agreement in the
collision-to-collision return map between both experimental
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FIG. 5. Experiment results. (a) Collision return map from two separate experimental methods (over 100 experiments for each).
Squares are from experiments in which limit cycles slowly move together to d̃ ¼ 0; circles are experiments in which oscillators are
initialized with d̃ ¼ 0. The black line is return map for r ¼ 0.67 [Eq. (8)]. (b) Steady-state phase difference (Δ) versus separation
distance (d̃Þ from 1312 experiments. The black line represents the compatibility curve [Eq. (6)]. Gray and red circles are points that reach
a steady-state configuration in which they no longer collide. Red circles start with jΔj above the compatibility curve and evolve
downwards to the compatible state, while gray circles represent initial conditions below the compatibility line. Blue points are states that
evolve to stable antiphase oscillations in which the oscillators repeatedly collide head-on. The heatmap is the model prediction from the
collision-to-collision return map for r ¼ 0.67 [Eq. (5)]. Far right points at d̃ ¼ 2 are control experiments. (c) Experimental observation
of antiphase oscillations coinciding with the onset of antiphase stability in the model. The top is the cumulative distribution of
observations of antiphase oscillations versus d̃. The bottom is the stability eigenvalue of antiphase behavior for r ¼ 0.67 [Eq. (10)].
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methods. The model and experimental return map exhibit
excellent agreement, indicating that the phase-oscillator
model is able to capture relevant phase dynamics of this
system [Eq. (8); black curve in Fig. 5(a)]. It is important to
note here that there are no fitting parameters in the model.
Since the phase dynamics are evaluated from collision to
collision, we do not need to match frequencies or amplitude
between experiment andmodel. The prediction only requires
knowledge of one parameter, the coefficient of restitution r,
which can easily be measured.
We next compare the steady-state Δ across the full

experimental range of d̃ [Fig. 5(b)]. Comparison of the
theoretical compatibility curve [Fig. 5(b), solid line] and
the experimental data indicates good agreement between
the phase oscillator model and observation. We observe that
initial phases that start in the compatible state will continue
to stay there [gray circles, Fig. 5(b)], and initial phases that
start outside of the compatible state may either evolve
to antiphase oscillations or compatibility depending on
initial conditions. The red circles in Fig. 5(b) show initial
conditions that began above the compatibility line and
evolved to the compatible state. Blue circles represent
initial conditions that began above the compatibility line
and evolved to the antiphase state [Fig. 5(b)].
The antiphase state consists of the two oscillators

repeatedly colliding with each other (see Video 1 in
Ref. [40]) in a rather violent manner, which leads to broken
components on more than one occasion. The antiphase
state observed in experiment is found to be remarkably
stable and able to resist manual perturbations consistent
with the stability calculations in Sec. II. In one experiment,
we observe that the two oscillators remain in the antiphase
state for over 12 hours until we eventually halt the
experiment. The return map allows us to predict when
antiphase oscillations become stable [Eq. (10)]. In Fig. 5(c),
we compare the cumulative observations of antiphase
oscillations and the linear stability calculation [Eq. (10)].
Once again, we find exceptional agreement between the
model and experiment: As the antiphase fixed point in
our model becomes stable, we begin observing antiphase
oscillations in experiment.

IV. COLLECTIVE BEHAVIOR OF MOBILE AND

STATIONARY OSCILLATOR GROUPS

We next seek to understand whether contact interactions
among larger groups can yield similar synchronization and
phase dynamics as the robot-pair experiments. We consider
the lateral dynamics of arrays of mobile cilia and groups
of swimming worms as a one-dimensional lattice, where
nearest-neighbor collisional interactions occur along the
direction of body undulations [Fig. 6(a)]. To simulate the
dynamics of mobile and fixed systems, we allow the neutral
position of each oscillator to move in response to a
collision. Immediately after a collision, we update the
neutral positions of the colliding oscillators according to

the equation δi ¼ βð_x−j − _x−i Þ, where δi is the neutral
position change of the ith oscillator and β is the magnitude
of collision-induced change. When β ¼ 0, the system base
is immobile (as in arrays of cilia) while nonzero β allows
for oscillators to repel each other through collisions. To
confine the oscillator group to a fixed linear distance, we set
β ¼ 0 for the left (i ¼ 0) and right (i ¼ N) oscillators in the
N-oscillator lattice. We perform numerical simulations of
the one-dimensional oscillator lattice over varied initial
neutral positions spanning d̃i;iþ1 ∈ ½0.06; 1.2�. We simulate
50 oscillators initialized at random phases and observe the
phase dynamics, collision rate, and neutral position of the
group over time.
When the oscillator lattice is initiated in close proximity

(small d̃i;iþ1), the oscillators rapidly converge to a com-
patible state through collisions [Fig. 6(b)] in both the
immobile and mobile cases. Collisions between oscillators
initially occur due to the random incompatible phases, and
over time, the collision rate decreases, ultimately halting
after a time trelax for small d̃i;iþ1 < 0.5. Once all oscillators
are in the compatible state, they will stay there indefinitely
unless perturbed.
To quantitatively compare the oscillator lattice results

with the theoretical model and experiments from the
previous section, we measure the nearest-neighbor phase
difference jΔi;iþ1j and the nearest-neighbor separation
distance of the neutral position, d̃i;iþ1. Examining the
relationship between the phase difference and spatial
separation reveals a fundamental difference between
mobile and immobile systems [Fig. 6(c)]. Immobile oscil-
lator lattices show good agreement between the theoretical
predictions and simulation for d̃i;iþ1 < 0.5. However, when
the separation distance is large (d̃i;iþ1 > 0.5), the collisions
never stop and the oscillator groups never entirely reach the
compatible state [Fig. 6(d), top]. We measure the collision
rate over the last approximately 70 periods of oscillation
and observe a sharp rise in nonzero steady-state collisions
when d̃i;iþ1 > 0.5 for the immobile system. This is sup-
plemented by the large cluster of points above the com-
patibility curve in Fig. 6(b) for the immobile case. To
characterize this deviation from the model prediction, we
calculate the fraction of nearest-neighbor pairs that are
above the compatibility curve and plot this compatibility
error in Fig. 6(d). The immobile base simulations exhibit a
large compatibility error and persistent colliding among the
group when d̃ > 0.5.
The immobile system’s deviation from the compatibility

curve is easily understood from the pairwise dynamics of
oscillators modeled and studied in the previous sections. At
larger separation distances, the collision-to-collision phase
change causes oscillator pairs to increase in phase differ-
ence. This phase repulsion is what leads to the stable
antiphase mode in the pair experiment. However, in larger
groups, the interior oscillators have a left and a right
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neighbor and thus experience phase repulsion from both of
these neighbors which ultimately inhibits the ability to
synchronize. These results are in agreement with observa-
tions from lattices of locally coupled Kuramoto oscillators
in which repulsive phase interactions have been demon-
strated to generate asynchronous collective states [41].
In contrast to the immobile system, oscillators that are

able to move in response to collisions always relax to the
compatible state. The phase and spatial values clustered at
or below the compatibility curve [Fig. 6(c)] and exhibit low
numbers of collisions and low compatibility error in the
steady state [Fig. 6(d)]. The small but nonzero compati-
bility error for the mobile system is likely due to the
assumptions of pure sinusoidal motion in the theory,
compared to the slight deviation in sinusoidal behavior
that Eq. (11) generates. The deviation from compatibility in
the mobile system is still small and clustered on or just
above the compatibility line.
The ability for mobile systems to always achieve

compatibility can be understood by examining the phase
and space dynamics from our theoretical model. In the
fixed base system, the only free degree of freedom isΔ, and

thus oscillator pairs can only increase or decrease in phase
difference (the state evolution in Fig. 3 is only vertical).
However, when the base is allowed to move in response to

0
0

π

0.5 1 1.5

0

C
o
m

p
at

ib
il

it
y
 e

rr
o
r

C
o
ll

is
io

n
 r

at
e 

(1
/s

)

0

0.5

0.5

Mobile

Immobile

1

0 0.5 1

Mobile

Mobile

Immobile
Immobile

0

5

10

15

20
(a)

(b)

(d)

0

π

0 0.5 1 1.5

(c)

0

0

30

-π

π

50
Oscillator

T
im

e 
(T

) 

Collision

rate (1/s)

800

φ
i

t
relax

FIG. 6. Phase dynamics for oscillator lattices. (a) Phase dynamics of undulatory robots modeled as a one-dimensional lattice with
interactions occurring along the lateral direction. Body undulations between neighboring robots can lead to contact. (b) Spatiotemporal
evolution of phase for an oscillator group (50 oscillators, d̃ ¼ 0.14, β ¼ 0). The bottom plot shows final phases. The right plot shows the
rate of collisions and the relaxation time trelax after which no collisions occur. (c) Final phase difference and separation distance between
adjacent oscillators. The top plot shows the phase behavior for oscillators with an immobile base (β ¼ 0). The bottom plot shows results
for mobile oscillators (β ¼ 0.1) in which the equilibrium position moves as a result of collisions. (d) Collision rate and compatibility
error versus d̃. Mobile oscillators always evolve to states with no collisions (top plot) and good agreement with the compatibility
equation (bottom plot).

0

π

0 1

(a) (b)
106

104

102

10-3 10-2 10-1

t re
la

x
 (

s)

FIG. 7. Collision-induced mobility allowing groups to reach
compatibility. (a) Phase and spatial evolution of mobile oscillator
groups. Collisions result in an increase in separation distance;
thus, the system evolution tends towards larger d̃, and there is no
longer a stable antiphase state. (b) System relaxation time versus
mobility coefficient β for d̃ ¼ 0.78. As β decreases, the relaxation
time increases. Here, β ¼ 0 coincides with the immobile simu-
lation, in which case the system evolves to stable antiphase
behavior.

WEI ZHOU, ZHUONAN HAO, and NICK GRAVISH PHYS. REV. X 11, 031051 (2021)

031051-8



collisions, the oscillator pairs have a second degree of
freedom, and the system can evolve through phase change
or spatial separation change. Because the spatial change
between oscillator pairs is only repulsive, this emerges as a
lateral drift towards larger d̃ in the collision-to-collision
state evolution [Fig. 7(a)]. Antiphase oscillations are no
longer a stable fixed point because the high-impact colli-
sions will drive the oscillators apart until they settle at the
point ðd̃ ¼ 1;Δ ¼ πÞ.
To demonstrate that spatial movement inhibits anti-

phase oscillation, we examine the long time dynamics
of an oscillator lattice initialized at a separation distance
that leads to antiphase oscillation in pairs and repetitive
collisions in groups (d̃ ¼ 0.78). We vary the magnitude of
collision-induced spatial change, β, over 2 orders of
magnitude and observe a nearly 3-order-of-magnitude
increase in the relaxation time [Fig. 6(b)]. This power-
law behavior matches previous simulations and intuition
from our model: Immobile systems will never relax to
collisionless compatibility since trelax → ∞ as β → 0. Thus,
we see a fundamental difference between mobile and fixed-
base systems that undulate and interact through collisions,
and these results suggest that mobile robots and organisms
will always evolve to compatible, collisionless states
through contact.

V. ROBOTS SYNCHRONIZE GAITS

THROUGH COLLISIONS

Lastly, we examine how groups of mobile undulatory
robots synchronize their gaits through contact. We perform
both experiments and simulations with simple three-link
robots that have two active servomotors (Dynamixel AX-
12, Robotis) controlling joint angles α1, α2, and three rigid
links of length 18.65 cm [Fig. 8(a)]. Such a three-link
system is often referred to as “Purcell’s swimmer” and was
originally introduced by Purcell as a minimal model of low
Reynolds swimming [42]. The three-link robot has been
studied extensively in the context of locomotion through
fluids [43,44], on frictional surfaces [45,46], and within
granular media [47]. In addition, three-link robots have
been recently used to study the collective behavior of robot
groups that exhibit time-dependent oscillatory motion and
push each other through contact [36,37,48].
In experiment, the robot actuators are controlled by

continuously sending position commands for the joint angle
at a rate of 100Hz. To actuate the robot joints according to the
phase-oscillator model using position-controlled servos, we
numerically integrate the oscillator equation used in the
motor pair experiments [Eq. (11)] solving for the next joint
angle at each time step. Critically, this actuation method
requires measuring the instantaneous joint angle and joint
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velocity from the servos and thus incorporates proprioceptive
feedback to generate autonomous oscillations, consistent
with the direct-drive motors of the previous experiment.
We simulate the three-link robots using the ProjectChrono

multibody physics simulation engine [49]. In simulation, we
directly control the torque of the rotational joints consistent
with the previous two-motor experiment [Eq. (11)]. Contact
interactions in the simulation are modeled through short-
range repulsive viscoelastic interactions, and we add stokes-
drag fluid forces to the robot links according to themethod in
Ref. [50] to mimic the damping from friction in experiment.
In both the experiment and simulation, we incorporate
methods to enforce a constant phase difference of (2

3
π)

between joints to produce traveling-wave body undulations.
We slightly modify the actuation equation by adding a
coupling term (λ) between joints α1, α2,

τi;j ¼ −kðxi;j þ λjxi;j̄Þ þ ðc − μx2i;jÞ_xi;j; ð12Þ

in which subscripts i ¼ 1; 2; 3;… represent the number of
robots and j ¼ 1, 2 represent the two joints of robot i. The
coupling constants for the two joints are λ1 ¼ 1.5 and
λ2 ¼ −0.5, and the position xi;j̄ refers to the opposite joint
of the robot. The position and torque control methods of the
experiment and simulation produce body undulations of
the robot with a constant frequency and phase difference
[Fig. 8(b)]. In experiment, the frictional interactions between
the robot links and ground cause perturbations to the robot
joint motion; however, this does not affect the synchroniza-
tion behavior of the robots.
To observe whether multiple undulatory robots will syn-

chronize their gaits through contact, we put groups of four
robots within a confined rectangular channel [Fig. 8(c);
Video 2 in Ref. [40]]. In experiments, we only test
configurations where the robots were aligned longitudi-
nally, but we test the effect of longitudinal misalignment in
simulation. The rectangular channel is 55 cm long, and we
test five different widths, w ∈ ½16; 18; 20; 22; 24� cm with
10 trials at each width. The experiment begins with the
robots evenly spaced in the lateral direction and at random
initial phases. After 30 s (approximately 15 periods of
oscillation), we stop the experiment and measure the final
phase difference Δi;iþ1 and spatial distance d̃i;iþ1 between
neighboring robot pairs [Fig. 8(d)]. Increasing the wall
width causes both Δi;iþ1 and d̃i;iþ1 to increase [Fig. 8(e)].
We perform similar three-link robot synchronization

experiments in simulation. In addition to simulating
the experiments performed with physical robots, we also
increase the number of robots and the confinement
arena size to represent two-dimensional simulations in
which robots occupy a rectangular region. Qualitatively,
the one-dimensional and two-dimensional arenas exhibit
similar spatial and phase effects, with nearby robots
influencing each other in the undulatory phase and reaching
compatibility.

In all experiments (n ¼ 50) and simulations (n ¼ 210),
the three-link robots adjust their undulatory phase through
collisions, and the final states are well characterized by the
theoretical model of Sec. II. When we examine the nearest-
neighbor phase difference versus lateral separation, we see
that all robot-robot interactions lead to phase and distance
states that are near or below the compatibility condition
[Eq. (6); black line in Fig. 9]. Critically, we never observed
antiphase synchronization as we did in the earlier two-joint
experiments from Sec. III or the immobile lattice simu-
lations from Sec. IV. The lack of antiphase behavior is
understandable from the mobile simulations in Sec. IV;
when robots collide, they push each other away, and this
spatial repulsion drives them out of contact before they
synchronize to the antiphase.
The extremely good agreement we observe from both the

simulation and experiment with the compatibility model
indicates that contact interactions have an important role in
collective phase dynamics. Initial states outside of compat-
ibility evolve to synchronized movement when spacing is
small, and compatible phases evolve at larger spacing. It is
important to note that the mobile robots in simulation and
experiment can displace and rotate with respect to each
other, thus indicating that the phase dynamics model of
Sec. II is robust to misalignment and natural variation.
However, it remains to be demonstrated what benefits gait
synchronization would have for undulatory collectives. In
the last section, we compare time-dependent actuation in an
asynchronous group versus undulatory generation through
autonomous oscillators, which enables synchronization.

VI. SYNCHRONIZATION MINIMIZES CONTACT

FORCES IN UNDULATORY GROUPS

In this last section, we seek to determine the potential
benefit of gait synchronization for collectives. There are
likely many metrics that could be influenced by synchro-
nization: locomotion energetics and collective sensing,
for example. Here, we focus on the interaction forces
between robots that occur when in high-density spatial
arrangements.
We conduct simulations with groups of ten three-link

robots in a confined rectangular volume [Fig. 10(a)].
Initially, the robot joints are actuated through a time-
dependent position control signal with fixed frequency
and amplitude

ᾱi;j ¼ A sin

�

ϕi þ
2π

3
ðj − 1Þ − 2πft

�

ð13Þ

in which subscripts i ¼ 1; 2; 3;… represent the number of
robots and j ¼ 1, 2 represent the two joints of robot i. The
position command is converted to a control torque through
a proportional control law τi;j ¼ −kðαi;j − ᾱi;jÞ, where αi;j
is the actual joint angle. The proportionality constant k
determines how much torque the actuators exert when the
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position deviates from the time-dependent sinusoidal com-
mands and can be considered as a controller stiffness. We
perform simulations across k ∈ ½0.015; 0.15� Nm

rad . For each
control stiffness, we perform ten simulations at random
initial phases [ϕi ∈ ½−π; π� in Eq. (13)]. The frequency
(0.8 Hz) and amplitude (0.8 rad) are chosen to match the
oscillation kinematics when the robots are under limit-cycle
control [Eq. (12)].
To enforce contact and collisions, we slowly move the

top and bottom walls inwards towards the arena center. The
rectangular region has a constant width of 0.6 m, and at
the beginning of the simulation, the lateral walls are 2.0 m
apart. The width of the lateral walls is decreased at constant
velocity from 10 s to 100 s while the robots oscillate,
stopping at a lateral width of 0.3 m for the rest of the
simulation [Fig. 10(a)]. The robots are controlled through
time-dependent sinusoidal actuation during the first 200 s
and switched to phase-oscillator control from 200–300 s.

We record the oscillatory phase and the contact forces
acting on all robot links during each time step. The mean
force between robots under the phase-fixed control is
significantly larger than that under the phase-oscillator
control mode in which synchronization occurs [Fig. 10(b)].
The interaction forces between the robots in the high-
density environment are large because the oscillation
phases are incompatible, resulting in collisions. These
collisions persist and repeat because the phase differences
are fixed, leading to a fluctuating mean force with constant
time-averaged behavior [Fig. 10(b)]. However, when robots
are switched to the phase-oscillator control mode, the
collisions between robots quickly drive the robot group
to synchronization. The median contact force is less than
0.1 N during the phase-oscillator control mode, indicating a
large reduction in contact forces.
This section demonstrates that robots with undulatory

phase differences can experience large contact forces as
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they push against each other. However, when synchronized
to the same undulatory phase, the collisions reduce to a small
and negligiblemagnitude. Contact forces between robots can
be a significant problem and lead to rapid wear and failure.
Similar negative consequences are likely to occur in bio-
logical collectives where repeated high-force contact can
lead to higher energy expenditure and potential injury.

VII. DISCUSSION

Our results have demonstrated that inelastic collisions
between undulatory robots can produce novel phase dynam-
ics such as in-phase and antiphase synchronization, and
compatible oscillations that persist without contact. The
behavior of larger robot groups tends towards phase com-
patibility, and once achieved, the group is effectively
decoupled because collisions will no longer occur unless
perturbed. The compatible state is similar to the “cohesive”
state originally introduced for the Kuramoto system [51]
inwhich cohesive oscillators remainwithin a bounded phase
difference for all time. Compatibility is a beneficial property
for undulatory groups because it minimizes the contact
forces between individuals and thus likely reduces ener-
getics, fatigue, and damage. Critically, this beneficial
collective behavior emerges naturally from the physics of
inelastic contact and simply requires that undulatory motion
be generated through an autonomous oscillator so that
phases between robots can “slip” through interactions. In
additional simulations and experiments, we have demon-
strated that this behavior is insensitive to the particular
control law that generates undulation.
The coefficient of restitution from inelastic collisions

between robots is the lone governing parameter for phase
dynamics among these contact-coupled groups. Inelastic
contact interactions generate a wide array of collective
behaviors in driven or active nonlinear systems, such as
pattern formation [52,53], particle aggregation [29,54], and
swarming [55,56]. However, the ability of repulsive contact
interactions to drive attractive phase dynamics in oscillators
has not been observed. Our phase model is able to explain
how phase attraction and repulsion emerge from inelastic
collisions. When undulatory systems are in close proximity,
the collisional interactions between their limit cycles drive
their phase difference to be smaller. However, when the
separation distance is large, collisions drive the phase
difference to grow and generate a stable antiphase mode.
Extending these interactions to an oscillator lattice, we have
shown that phase repulsion can destroy long-range order
when the oscillator base is immobilized, while mobile
undulatory systems always reach compatibility.
Our inspiration for this study comes from collective

movement in worm groups in which body and appendage
oscillations may occur in close proximity. Recent work
has demonstrated that collisional interactions in arrays of
cilia can generate synchronization, metachronal wave propa-
gation, and jammed states, dependent on separation [38].

Similarly, recent observations of small worms that swim by
laterally oscillating their bodies have illustrated that groups
of worms tend to synchronize their oscillatory phasewhen in
close proximity [16,57,58]. Genetic manipulations of these
worms illustrated that external sensory responses (extero-
ception)were not necessary for synchronization, and instead,
the authors argued that collisional (“steric”) interactions
could produce synchronization [16]. Our results provide a
potential explanation for the observed gait synchronization:
Body oscillations that are governed by internal propriocep-
tive neural feedback can exhibit emergent synchronization
through collisional body interactions alone.
The system explored in this experiment has appreciable

inertial dynamics and momentum transfer through colli-
sion. However, in the systems we take inspiration from,
such as small oscillatory organisms in fluids, inertial
dynamics are likely not relevant. Thus, it is important to
consider how these results may apply across inertial and
noninertial active matter systems. We propose that contact-
coupled oscillators in both the inertial and noninertial
regimes are captured by the coefficient of restitution in
our phase model. When r ¼ 0, the oscillators do not
rebound but instead “stick” together, which models the
noninertial behavior of oscillators such as cilia and worms
in overdamped viscous environments. However, for r > 0,
systems exhibit significant rebounding as they collide,
which captures the behavior of inertial oscillatory systems
and can lead to antiphase synchronization [Fig. 3(b)]. The
reduction of contact-coupled oscillators to a simple model
in which r is the only governing parameter allows us to
explore these systems across inertial to noninertial regimes.
This will be of interest in future studies and in comparisons
between model predictions and observations from active
matter and swarm robot systems in experiment.
This work has relevance to the fields of swarm and

collective robotics where a critical goal is to design distrib-
uted control laws that lead to desired, beneficial, emergent
behaviors of the group [59]. Recent work in swarm robotics
has embraced contact and collisional interactions as a means
of coordinating robot group behaviors [60–68], and other
recent work has leveraged collisions [69–72] for maneuver-
ing individual robots. Our work demonstrates that designing
appropriate limit cycles to actuate the rhythmic motion of
robots can lead to emergent synchronization and drastically
reduce the contact forces. Thus, the desired collective
behaviors of the group are encoded within the gait generation
algorithm of the individuals. Future capabilities can thus
build on to the collective behaviors studied here. For example,
subsets of informed individuals could “herd” the group
through contact interactions controlling collective motion.
The coupling of oscillatory dynamics with mobility is an

exciting future direction for active matter systems such as
biological or robotics swarms. Previous work on mobile
phase oscillators in which the phase differences can influ-
ence motion of the mobile systems has demonstrated novel
collective flocking and pattern formation behaviors [73–75].
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However, there has been little work to consider how the
mechanical collisions between oscillating moving individuals
drive collective synchrony or motion patterns. In recent
experiments, three-link “smarticle” robots have demonstrated
how stochastic interactions among neighboring oscillating
robots can drive emergent and controlled collective behavior
[37]. However, currently, smarticle systems do not have
oscillatory phase dynamics, and thus synchronization has
not been explored. In our work, the oscillator phase is
intrinsically tied to the undulatory motion of the robotic joint.
Thus, phase and motion are explicitly coupled. Future swarm
systems that take advantage of the phase dynamics from
inelastic collisions may enable emergent synchronization of
mobile undulatory robots purely through contact, thus sim-
plifying swarm robot motion control.
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APPENDIX A: DERIVATION OF CONTACT MAP

In this section, we derive the collision-to-collision phase
map presented in Sec. II. To derive this map, we have to
first consider how to represent the precollision phases ϕ−

i in
terms of only the phase differenceΔ ¼ ϕ2 − ϕ1. We seek to
solve for the collision phases using only the phase differ-
ence between oscillators, Δ. We begin by introducing an
intermediate variable κ such that

ϕ1 ¼ κ −
Δ

2
; ðA1Þ

ϕ2 ¼ κ þ
Δ

2
: ðA2Þ

The collision condition [Eq. (1) in main text] is

2d̃ ¼ cosðϕ2Þ − cosðϕ1Þ; ðA3Þ

and we expand this into the form

2d̃ ¼ cosðϕ1Þ − cosðϕ2Þ ðA4Þ

¼ cos

�

κ −
Δ

2

�

− cos

�

κ þ
Δ

2

�

ðA5Þ

¼ −2 sinðκÞ sin

�

−
Δ

2

�

; ðA6Þ

ðA7Þ

which yields the relationship

κ ¼ arcsin

�

d̃ csc

�

Δ

2

��

: ðA8Þ

This equation allows us to determine, for a given initial Δ,
what the individual phases of the oscillators are at collision
by substituting κ into Eqs. (A1) and (A2).
Our goal here is to solve for the return map between

collisions as a function of Δ. To do this, we take the
following steps: (1) Solve for ϕ1 and ϕ2 at collision from
Eqs. (A1), (A2), and (A8); (2) apply the velocity update
rule for inelastic collisions from Eqs. (2) and (3); (3) deter-
mine the postcollision phases for the oscillators from
Eq. (4). Since ω is the same between each oscillator and
they evolve independently until colliding, the postcollision
phase difference Δðn;þÞ is exactly the same phase difference
of the next collision, Δðnþ1;−Þ. We have introduced the
superscript notation where the first value indexes the
collision, and the � denotes whether the value is before
(−) or after (þ) the indexed collision:

Δ
ðn;þÞ ¼ ϕ

ðn;þÞ
2

− ϕ
ðn;þÞ
1

ðA9Þ

¼ atan
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−
_x
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2

x
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2
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− atan
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x
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ðA10Þ
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Since Δðn;þÞ ¼ Δ
ðnþ1;−Þ, we have derived the mapping from the collision phase immediately after the n collision to the

phase immediately after the nþ 1 collision. Thus, we can drop the � superscripts, and we arrive at the final collision-to-
collision return map,

Δ
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2
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ðnÞ

2
Þ

�

: ðA15Þ

APPENDIX B: EXPERIMENT DETAILS

1. Motor control and limit-cycle generation

Each motor was controlled by an ODrive brushless dc
motor controller (ODrive Robotics). The ODrive provides
closed-loop current control for each motor, and we set the
maximum current limit to 30 A. The motor current control
was performed on a computer in Python. At every update
loop, the motor current was computed using the following
equation:

i ¼ −kθ þ c_θ − μθ2 _θ þ βsgnð _θÞ; ðB1Þ

with the following parameters:

Variable Motor 0 Motor 1

k 3.9 A/rad 3.3 A/rad
μ 0.24 A s=rad3 0.24 As=rad3

c 0.009 A s=rad 0.009 As=rad
β 0.25 A 0.25 A

The constants were selected so that each motor exhibited
limit-cycle oscillations of approximately sinusoidal motion
with equal amplitude (A1 ¼ 44.4� 0.9 degrees and A2 ¼
44.3� 1.6 degrees) and equal frequency (ω1¼2.61�
0.04Hz and ω2 ¼ 2.63� 0.03 Hz). The β term in the
motor control equation helped overcome the frictional
resistance of the motor bearings. Without this term, the
motor dynamics exhibited a stable fixed point at ðθ; _θÞ ¼
ð0; 0Þ with a small region of attraction around this point.

2. Collision dynamics

A rigid robot link of length 9 cm was attached to each
motor. The link was waterjet cut from 9.5-mm-thick
aluminum and rigidly fastened to the motor. A 3D
printed adapter was attached to the end of each link,
which provided an impact surface for the two links to
interact with each other (Fig. 11). The colliding surface
was an elastic sphere, a bouncy ball, purchased from a
commercial vendor.

To determine the coefficient of restitution of the
impacting surfaces, we performed a series of experiments.
The links were accelerated towards each other at a constant
motor current (selected at random between 0 and 2 A)
for 200 ms, after which the current was set to 0 and the
motors and links glided towards each other, impacting and
rebounding. We measured the motor speed immediately
prior to the collision and immediately after the collision and
computed the coefficient of restitution using the equation
_xþ
1
− _xþ

2
¼ −rð_x−

1
− _x−

2
Þ. We found a coefficient of resti-

tution of r ¼ 0.67� 0.02.

3. Simulation

We performed numerical simulations of colliding oscil-
lator pairs and collectives. Simulations were performed
in both Matlab and C++ using the library “odeint” and a
variable time-step integrator with absolute and relative
tolerances of 1 × 10−6. An event detection scheme was
used in both simulation environments to detect oscillator
collisions. At each collision, the numerical integration was
halted, the inelastic collision model was implemented, and
the integration was reinitialized with the new postcollision
state. In the simulations with more than two oscillators,
simultaneous collisions between more than one oscillator
pair were not observed.

0 500 1000 1500

-800

-400

0

(a) (b)

(deg./s)

(deg./s)

FIG. 11. Measurement of coefficient of restitution for experi-
ment. (a) Impacting surfaces. (b) Coefficient of restitution
measurement. The equation is given in the text.
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