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Optimization using data from complex simulations has become an attractive decision-making option, due
to ability to embed high-fidelity, non-linear understanding of processes within the search for optimal
values. Due to lack of tractable algebraic equations, the link between simulations and optimization is of-
tentimes a surrogate metamodel. However, several forms of uncertainty exist within the cycle that links
simulation data, to metamodels, to optimization. Uncertainty may originate from parameters of the sim-
ulation, or the form and fitted parameters of the metamodel. This paper reviews different literatures that
are relevant to surrogate-based optimization and proposes different strategies for handling uncertainty,
by combining machine learning with stochastic programming, robust optimization, and discrepancy mod-
eling. We show that incorporating uncertainty management within simulation-based optimization leads
to more robust solutions, which protect the decision-maker from infeasible solutions. We present the re-
sults of our proposed approaches through a case study for direct-air capture through temperature swing

adsorption.

© 2019 Published by Elsevier Ltd.

1. Introduction

Rapid developments in computational capabilities and numer-
ical methods have led to substantial advances in computer-aided
decision-making using simulations in many areas of chemical engi-
neering, including Process Systems Engineering (PSE). Our advanc-
ing ability to simulate phenomena from a molecular level, all the
way to the process and enterprise levels has motivated many re-
searchers to use multiscale models for design, optimization, control
and operations. Detailed simulations include large systems of ordi-
nary or partial differential equations, computational fluid dynamic
simulations, discrete element method models or even Monte-Carlo
simulations, and many more (Amaran et al, 2014; Boukouvala
et al,, 2017; Chuang et al., 2018; Cozad et al., 2014; Dias et al.,
2018; Dowling et al., 2014; Eslick et al., 2014; Lucidi et al., 2016;
Ma et al, 2018; Marques et al, 2017; Palmer and Realff, 2002;
Wang and lerapetritou, 2017). Simulations are used to model mul-
tiphase or particle, multicomponent flows within complex geome-
tries, oftentimes under dynamically changing initial or boundary
conditions. However, as the complexity of simulations increases,
this creates a new challenge, namely the inability to directly opti-
mize systems with commercially available deterministic optimiza-
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tion solvers (Amaran et al.,, 2014; Dowling et al., 2014; Eason and
Biegler, 2016). This challenge has led to an increasing interest in
the area of data-driven optimization techniques that search for
globally or locally optimal solutions in the absence of the true
derivatives of the original model.

In the past decade, data-driven optimization (DDO) applica-
tions are becoming common in many engineering fields (Anna
et al.,, 2017; Boukouvala et al., 2017; Ibrahim et al., 2018; Lucidi
et al,, 2016; Ma et al.,, 2018; Marques et al,, 2017; Na et al., 2017;
Negrellos-Ortiz et al., 2016; Quirante and Caballero, 2016; Rossger
and Richter, 2018; Wang et al., 2017; Zadeh et al., 2016; Zhong
et al,, 2019). Specifically, in chemical engineering, DDO has been
applied to carbon capture systems (Eslick et al., 2014), pressure
swing adsorption (Boukouvala et al., 2017), ammonia production
process simulation (Palmer and Realff, 2002), reactive flow systems
(Rossger and Richter, 2018), cryogenic air separation (Negrellos-
Ortiz et al., 2018), crude-oil distillation (Ibrahim et al., 2018),
continuous pharmaceutical manufacturing modeling (Boukouvala
and lerapetritou, 2013; Marques et al., 2017; Wang et al., 2017),
and many more. In these applications, closed-form or explicit
algebraic relationships and derivatives are either unavailable or
impractical to obtain. There are many different types of data-
driven optimization methods, and several recent review articles
provide very comprehensive comparisons (Audet and Kokkolaras,
2016; Bhosekar and lerapetritou, 2018; Boukouvala et al., 2016;
Rios and Sahinidis, 2013). One of the most popular categories
of data-driven optimization is referred to as “model-based” or
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Fig. 1. (a) Curves of the same surrogate model (Kriging) trained with different samples

Vector Regression) trained with the same deterministic sample points.

“surrogate-based”. This category includes a critical step after data
collection, namely the training of intermediate surrogate models
that serve as the computationally cheap algebraic approximations
of the important input-output relationships embedded within the
optimization problem. This paper will focus on surrogate-based
optimization techniques that have become very popular in the
recent literature, which is also due to the increasing interest in
Machine Learning in engineering.

There are currently many open challenges in surrogate-based
optimization. These include: (a) the selection of the most efficient
sampling strategy; (b) the selection of the best surrogate model;
(c) the efficient training and validation of the surrogate models;
and finally (d) the development of efficient algorithms that adap-
tively sample-fit-validate data, to find the best optimum with min-
imum computational cost and sampling requirements. The litera-
ture is split between the use of local model-based methods, such
as trust-region methods, e.g. Powel’s method (Powell, 2002), and
global model-based methods, such as the Sequential Design for
Optimization (Cox and John, 1992) and Efficient Global Optimiza-
tion (Jones et al., 1998) methods. Both classes of methods use lo-
cal or global surrogate models to expedite the search for an opti-
mum. Two recent review articles outline the differences between
the state-of-the-art methods on this topic (Audet and Kokkolaras,
2016; Boukouvala et al., 2016). Undoubtedly, no method has been
proven to significantly outperform all others across a large set
of benchmark problems, while the performance of each method
is highly dependent on (a) the problem characteristics, (b) the
amount and quality of data available, and (c) the selected surrogate
modeling technique. Computational studies of the current exist-
ing data-driven optimization software have verified that the perfor-
mance is problem dependent (Amaran et al., 2014; Boukouvala and
lerapetritou, 2013; Rios and Sahinidis, 2013). Especially when sur-
rogate models are employed for optimization, researchers have de-
voted great effort on finding the best surrogate model (Boukouvala
and Floudas, 2017; Cozad et al., 2014; Eason and Cremaschi, 2014;
Garud et al., 2018; Garud et al., 2017, 2018; Strau and Skogestad,
2017; Wilson and Sahinidis, 2017); however, the presence of un-
certainty and limitations in sampling make this a very challeng-
ing problem. Specifically, training one type of surrogate model with
samples collected from different sampling strategies may result in
slightly different realizations of the surrogate model (Fig. 1a). Even
in the situation where the same samples are used to train differ-
ent types of surrogate models, the realizations may also vary from
each other significantly (Fig. 1b).

Although there is a very prolific open debate on the devel-
opment of the best strategy for sampling and surrogate model-
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and (b) curves of different surrogate model types (Kriging, Polynomial, Support

ing and comparison of methods that manage to get closest to the
best-known global optimum, there has been less discussion on
the effects of uncertainty when using surrogate-based optimiza-
tion algorithms. Recently, Wang et al. used the smoothing effects
of Gaussian process metamodels to optimize simulations with ho-
moscedastic input uncertainty (Wang et al., 2018), while Wang
et al. used a modified Expected Improvement criterion and Kriging
metamodels to optimize a stochastic simulation of a pharmaceuti-
cal production system (Wang and lerapetritou, 2018). Recent work
on Bayesian optimization under uncertainty has shown that by
conditioning the prior distribution on the observations, a Bayesian
approach can be used to locate robust solutions of sample-based
systems (Beland and Nair, 2017; Bogunovic et al., 2018). A local
stochastic trust-region based algorithm was recently presented by
Shashaani et al. (2018), which aims to locate local optima of un-
constrained optimization problems subject to noise. Similarly, Au-
det et al. modified their mesh adaptive direct-search algorithm to
handle noisy black-box data, in order to robustly converge to lo-
cally optimal solutions (Audet et al., 2018). Eslick et al. present a
framework that aims to perform uncertainty quantification, sensi-
tivity analysis and optimization of carbon capture systems through
a user-friendly interface (Eslick et al., 2014). Bertsimas et al. have
developed a local gradient-descent optimization algorithm to iden-
tify locally robust solutions of unconstrained simulation based op-
timization problems (Bertsimas et al., 2010b), or constrained prob-
lems with known functional forms (Bertsimas et al., 2010a).

In this work, we aim to highlight the importance of considering
uncertainty when performing surrogate-based simulation-based
optimization, which is a topic rarely discussed in the surrogate-
based optimization literature. We focus our work on techniques
that are applicable for simulation-based problems for which prior
distribution assumptions, or knowledge of the simulation model
equations are not available. Specifically, first we ask the question:
Can simulation-based data-driven optimization be treated as a de-
terministic problem in engineering case studies? We argue that
there are several forms of uncertainty that are embedded within
data-driven optimization problems that need to be considered, and
we show this through a simulation-based case study.

First, one of the most commonly referred to sources of un-
certainty in simulation-based optimization is caused by numeri-
cal methods and numerical precision. However, this form of uncer-
tainty is negligible in state-of-the-art computer systems and soft-
ware. A second major source of uncertainty is introduced from the
uncertain simulation parameters that are estimated using exper-
imental data (e.g., mass transfer coefficients, kinetic parameters,
etc.). This form of uncertainty is often not considered in bench-
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marking of surrogate-based optimization solvers, treating the data-
generating simulation as a deterministic model. Finally, even if the
simulation is deterministic, a last form of uncertainty is introduced
during the selection of the form and the training of the parameters
of the surrogate model. An example of this type of uncertainty is
shown in Fig. 1, where in (a) slightly different samples are used
to fit the same type of surrogate model (i.e., Kriging) and in (b)
the same samples are used to fit different types of surrogate mod-
els (i.e., Kriging, polynomial and Support Vector Regression (SVR)).
Through this simple example, it becomes evident that small vari-
ations in sample locations, and the choice of the surrogate model,
introduce uncertainty in the final output predictions of the meta-
model, and would potentially lead to different optimal solutions.

All three forms of this uncertainty may not be present in a spe-
cific application simultaneously, however, in a surrogate-based op-
timization approach the latter form of uncertainty is always intro-
duced. As a result, we argue that uncertainty is unavoidably em-
bedded within the problem of data-driven surrogate-based opti-
mization. We show this through a case study that suffers from
two forms of uncertainty: (a) the simulation is stochastic due to
the presence of an uncertain parameter, and (b) the best form
and parameters of the surrogate model to represent the simulation
are unknown. The case study discusses direct air capture (DAC) by
passing air through solid adsorbents inside a monolithic structure
and removing the CO, through pressure swing adsorption. The DAC
simulation model outputs are affected by an estimated mass trans-
fer coefficient parameter.

Finally, we present several ideas for handling uncertainty when
using surrogates for optimization that are general enough to be
adapted to different metamodeling techniques. The techniques pro-
posed in this work use existing concepts from the robust and
stochastic optimization and discrepancy modeling literatures. The
main contribution of this paper is two-fold: (a) this paper serves
as a brief review and comparison of different literatures that are
rarely discussed together, namely surrogate-based optimization, ro-
bust and stochastic optimization and discrepancy modeling, and
(b) the main novelty of this paper is the adaptation and compre-

Adsorbent Film

' o5
Feed: CO, Rich Air %’
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hensive comparison of existing concepts from diverse fields within
a surrogate-based optimization framework under uncertainty.
Specifically, we employ a Robust Counterpart (RC) approach to de-
velop “Robust Surrogates” from an ensemble of deterministic sur-
rogates and compare this approach with a sample average approx-
imation formulation, as well as a discrepancy modeling approach.
We discuss the advantages and disadvantages of different types of
surrogate modeling and uncertainty handling methods. Overall, we
show that the obtained robust solutions are more conservative, but
maintain feasibility at different realizations of the uncertain pa-
rameters, which is not the case for deterministic solutions.

The remainder of the paper is structured as follows. First, the
motivating case study is described in the Motivating Case Study:
Design of Direct-Air Capture section. Following, we discuss sam-
pling and surrogate modeling methods (Surrogate Modeling Meth-
ods) and focus on two types that were used in this work, namely
polynomial approximations and artificial neural networks. Next,
three ideas for handling uncertainty within a surrogate-based op-
timization framework are discussed in section Methods for Han-
dling Uncertainty. The results are then presented for several com-
binations of surrogate models and uncertainty management meth-
ods and all solutions are validated against the actual simulation
(Results). We conclude the paper with some discussion and future
perspectives (Conclusions).

2. Motivating case study: design of direct-air capture

Our direct air capture (DAC) design aims at removing CO, di-
rectly from ambient air using solid adsorbents via pressure swing
adsorption. The solid adsorbent is coated inside monolithic chan-
nel in the form of films. For this case study, we have used a metal
organic framework (MOF), MIL-101(Cr)-PEI-800, as the solid ad-
sorbent. Details about the isotherm behavior of this adsorbent at
ambient CO, conditions (~ 400 ppm) can be found in Sinha et al.
(2017). The Direct Air Capture process is performed in two steps:
adsorption and desorption, as shown in Fig. 2. During the adsorp-
tion step, ambient air is passed through the front end of the chan-

__ CO, depleted Air
(Adsorption Step)

Product J-~‘

— CO, Rich Steam
(Desorption Step)

Fig. 2. Schematic of direct air capture process.
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nel with the help of blowers. CO, adsorbs in the MOF film as the
air flows inside the channel and CO, depleted air is emitted from
the rear end of the channel. During the desorption step, the pres-
sure from the rear end of the channel is decreased below atmo-
spheric pressure with the help of vacuum pump and the front end
of the channel is closed. After this brief depressurization, steam
is then used to heat the channel, this causes CO, to desorb from
the adsorbent. The steam also sweeps the CO, down the channel
lowering its partial pressure due to steam dilution and eventually
removing it from the channel.

The DAC design is modeled by formulating coupled heat and
mass balance equations governing the concentration and tem-
perature dynamics of the different process components. The de-
tailed governing equations of this model have been presented in
Sinha et al. (2017) and are included in the Supplementary Infor-
mation of this paper. The model tracks the gas phase concentra-
tion of three adsorbates, CO,, N and O,. The distribution of tem-
perature within the gas, adsorbent and monolithic wall are also
modeled through the heat balance. The velocity of the gas inside
the channel is modeled using the Hagen Poiseuille equation. Spe-
cific boundary and initial conditions for the adsorption and desorp-
tion steps are required to model the operation of the temperature
swing adsorption process. The rate of adsorption of CO, is approxi-
mated by a linear driving force model, where the equilibrium con-
centration of adsorbed CO, is determined by isotherm equations.
The rate of adsorption also depends on the mass transfer coeffi-
cient k (h~!) that needs to be estimated. Determination of mass
transfer coefficient requires estimation of adsorbent film thickness
and effective diffusivity of CO, inside the adsorbent. Adsorbent
film thickness determination involves uncertainty due to irregular
adsorbent film coating. Similarly, determination of effective diffu-
sivity introduces sources of uncertainty due to human errors in ex-
perimental runs and inherently through the orientation and thick-
ness of MOF crystals on the adsorbent surface. Hence, mass trans-
fer coefficient is an uncertain parameter in the DAC model.

In this case study, we have used adsorption time (t,4) and des-
orption time (tg4) as inputs and productivity, recovery, purity and
energy as the output design variables. Definition of the output de-
sign variables are provided in Eqs. (1)-(4).

Amount of CO, recovered as product (mol)
mass of adsorbent (kg) x total time (h)

Productivity = (1)

Amount of CO, recovered as product (kg)
Amount of CO, fed as input (kg)

Recovery =

Moles of CO, recovered as product
tal moles of gas recovered as product

Purity = To

Energy :EBlower + EVacuum (4)

where Epuer 1S the energy consumed in the blowers that push
the ambient air inside the monolithic channel during adsorption.
Evacuum 1S the energy required to operate the vacuum pump during
desorption.

Fig. 3 shows the process flow for the DAC simulation. The in-
put variables (t,4; and tgg) are fed to the model to obtain the out-

Mass transfer coefficient (k)

Adsorption cycle time (t,45) Purity

—_—]
Recovery

Desorption cycle time (£ ;.5) DAC Simulation Energy

Productivity

Fig. 3. Process flow showing input and output variables along with uncertain pa-
rameter.

put values of productivity, recovery, purity and energy at varying
mass transfer coefficient, k. The model is implemented in gPROMs
(“gPROMS,” 1997-2018).

Based on the above, the optimization problem we propose to
solve in this work is as follows:

max Productivity (tugs, taes, k)
subject to:

Purity (tags, taes, k) > 95
Recovery (tugs, taes, k) > 15
Energy (tads, taes, k) < 0.2

20 < tags, tges < 250

(P1)

All of the equations in formulation (P1) rely on the simulation
outlined above. In addition, all of the constraints and the objec-
tive function are expected to be highly nonlinearly correlated with
the two decision variables and the uncertain parameter. One ap-
proach to optimize this system would be through discretization
of the system of equations and the formulation of a large non-
linear programming problem. However, in this work we will fol-
low a surrogate-based optimization approach, based on which we
will collect data from the simulation and approximate the objective
function and all of the constraints in P1 with surrogate models.

3. Surrogate modeling methods

In this section, we discuss the problem of fitting a surrogate
model fM(b(M) x), where xeRP and b(™ is the vector of parame-
ters fitted to a set of X — Y input-output data. Xis a [N x D] ma-
trix of n=1,...,N observations in d=1, ..., D dimensions. Y is
a [N x M] matrix of m =1, ..., M outputs measured at the samples
in X, and Yy, is the vector of matrix Y corresponding to output m.
Each function for each output mmay differ in the form of f™ and
the parameter vector b™.

There are many different types of surrogate models or meta-
models that have been used to approximate data from computer
simulations. The types of surrogate models can be broadly catego-
rized into: (a) explicit regression functions with functional forms
that are fixed a-priori (e.g., linear, quadratic and generalized lin-
ear regression) and (b) implicit regression functions that are based
on linear or nonlinear kernel transformations, such as Gaussian
Process Models, Neural Networks, Support Vector Regression and
more (Hastie et al., 2009). Although all surrogate models have pa-
rameters that need to be fitted based on observed data, the first
category requires that one predefines the terms of the regres-
sion function, while the second category includes generic nonlin-
ear universal approximators, whose structure and model parame-
ters don’t have a physical meaning and could change depending on
the amount of data available.

This work does not aim to perform a thorough comparison be-
tween all different types of surrogate functions, as this has been
done in recent work on a variety of problems (Bhosekar and ler-
apetritou, 2018; Davis et al., 2018; Garud et al., 2018, 2018). In
this work, we employ two different types of surrogate models that
have convergent approximating qualities: (a) Neural networks, and
(b) Sparse-Grid polynomial interpolation models. For each type, we
use well established sampling strategies, training and validation
procedures, to ensure that we identify a surrogate model structure
and the optimal parameters that predict the collected data with
minimized validation error. We compare the performance of these
two different types of models and then employ various strategies
to formulate surrogate-based optimization under uncertainty prob-
lems.
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3.1. Polynomial approximations based on sparse grids

One approach for surrogate modeling is polynomial interpolat-
ing models using a set of fixed samples that lie on a Sparse Grid,
or else a Smolyak Grid (Smolyak, 1963). The Sparse Grid and poly-
nomial fitting method has received significant attention in the in-
tegration (Bungartz and Dirnstorfer, 2003, 2004; Dung, 2016; Ger-
stner and Griebel, 1998; Peherstorfer et al., 2015; Tang et al., 2016),
and approximation theory (Gajda, 2005; Plaskota and Wasilkowski,
2004; Xu, 2015) literatures. One of the strengths of this approach
is the existence of convergent approximation error bounds as the
number of samples increases under mild smoothness assumptions
(Wasilkowski and Wozniakowski, 1995). In fact, it has been shown
that interpolating functions fitted using these grids converge to
the true black-box function with a more tractable rate and a
weaker dependence on dimensionality. These approximations have
recently gained some popularity in the field of surrogate-based
optimization (Grimstad and Sandnes, 2016; Hulsmann and Reith,
2013; Kieslich et al., 2018; Novak and Ritter, 1996; Valentin and
Pfluger, 2016).

The first decision in building a SG is the selection of the sam-
pling basis points, which are roots or extrema of the orthog-
onal polynomials used to build the final surrogate function. In
this work we use extrema of Chebyshev polynomials as our ba-
sis points. Once the basis is selected, a multidimensional grid
can be constructed as a tensor product of one-dimensional basis
points. A multidimensional SG can be constructed for different de-
grees of polynomial exactness, or else approximation level (u). As
Jincreases, more points are added to the grid (Fig. 4); the size of
the interpolating polynomial terms and parameters increases; as
does its approximation accuracy. One very important property of
SGs is their ‘nesting’ nature, which means that every level of ap-
proximation contains all of the points of the previous level (Fig. 4).
Finally, in order to fit the multidimensional polynomial based on
the level and grid points collected, Lagrange interpolation is used
to identify the parameters of the surrogate function. Details about
how to construct these grids and surrogate functions has been doc-
umented in the literature, and algorithmic packages exist for their
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Adsorption time (s)

Fig. 4. Sparse grid designs for up to level p =3. Orange points represent points of
prior level =2, blue points and orange points are part of level i =3 (Eq. (5)). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

generation (Harding, 2016; Judd et al., 2014; Kieslich et al., 2018;
Novak et al., 2010; Peherstorfer et al., 2015; Valentin and Pfluger,
2016).

Unlike many other types of popular machine learning methods
for development of approximations, this approach has no flexibil-
ity on the sampling scheme and functional form. As a result, these
methods are only suited for simulation-based optimization stud-
ies, where one can precisely control the location of the samples.
Once an algorithm exists to create the grid points and basis func-
tions for different levels w, the simulation is inquired at the sim-
ulation points, and the parameters are fitted by solving a system
of linear equations (Fig. 5). A grid of D=2 and levels © = 2 and
W = 3 is shown in Fig. 4, along with their associated functional
forms (Eq. (5)). As seen in Fig. 4, a Sparse Grid in 2 dimensions has
N=13 points for level of approximation 4 = 2 and N=29 points
for u = 3. In order to validate the approximation error of the fitted
functions, we calculate the approximation error on sample points
that do not lie on the SG (training set). In this work, we use points
collected based on a Latin Hypercube Design as validation points
(validation set), and these will be discussed in the next section.

fsG, = bo+bixy +by(2x3 — 1) + bsXa + ba(2x3 — 1) + bs(4x] — 3x)
+be (1 — 87 + 8x7) + byx1Xa + bgX (2x5 — 1) + boxy (2x3 — 1)
+b10(2x§ - 1)(2x§ —1)+by (4x§ —3%;) + bn (1 — 8x3 + 8x3)
+by3(5x%1 — 203 + 16x37) + bia(18x — 48x7 + 32x§ 1)
+bys(56x3 — 112x3 + 64x] —7x; )
+bis(1 — 32xF + 160x] — 256§ + 128x%)
+byzxa (4x3 —3x1 )
+bigxa (1 — 8x% + 8x7) + big(4x] — 3x1)(2x5 — 1)
+boo (23 — 1) (1 — 8x] + 8x}) + bx: (4x3 — 3x))

+b2y (2%F — 1) (4x3 — 3x2) + basxy (1 — 8x3 + 8x3)

(
+bya(2x5 — 1) (1 — 8X3 + 8x3) + bas (5%, — 203 + 16x3)
+bys(18x5 — 48x; + 32x5 — 1)
+by7 (1 56x3 — 112x3 + 64x) —7x; )
+bys(1 — 32x3 + 160x; — 256x5 + 128x5) (5)

3.2. Artificial neural network (ANN) models based on Latin hypercube
sampling (LHS)

Even though the basic concept of ANNs has been known since
the middle of the 20th century, ANNs have recently gained popu-
larity, as they started to outperform other machine learning tech-
niques (Schmidhuber, 2015). ANNs have favorable properties for
a use as surrogate models: ANN evaluation is fast and therefore,
ANNs are suitable for application in process design and optimiza-
tion (Hoskins and Himmelblau, 1988). In this work, we used multi-
layer feedforward networks (FFN) for surrogate modeling, which is
a class of ANNs that can approximate any Borel measurable func-
tion to any desired degree of accuracy (Hornik et al.,, 1989). FFNs
have been applied to different tasks in the field of chemical engi-
neering, for example, CO, capture processes (Nuchitprasittichai and
Cremaschi, 2013), Fischer-Tropsch synthesis (Fernandes, 2006),
Biodiesel production (Yuste and Dorado, 2006), pressure swing ad-
sorption processes (Lewandowski et al., 1998) and some of the
most common unit operations (Henao and Maravelias, 2011).

ANNSs are inspired by the way natural neurons process informa-
tion. First, the incoming values x; are weighted by a factor w4,
which is fitted for each connection between two neurons. Those
weighted values are then summed together the so-called bias term
(bm). Second, this sum is exposed to an activation function fto gain
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Using nonlinear activation functions enables the FFN to repre-
sent complex nonlinear relationships between inputs and outputs.
A schematic of how artificial neurons are organized in a FFN can
be found in Fig. 6. A neuron receives the outputs from all neu-
rons in the anterior layer and passes its output to all neurons in
the posterior layer. The last layer in the direction of calculation is
called output layer, while all previous layers, except the first in-
put layer, are hidden layers. For many years, logistic functions like
the hyperbolic tangent or the sigmoid function serve as the most
common activation functions (LeCun et al., 2012). Recently neurons
with different activation functions, such as rectifier liner units Re-
LUs and exponential linear units ELUs, have become more popular
(Clevert et al., 2016).

When fitting ANN models, we have more flexibility with re-
spect to selecting the sampling design. In this work, Latin Hyper-
cube Sampling (LHS) is used, which is a popular space-filling sam-
pling technique for multidimensional spaces (McKay et al., 1979).
Based on LHS, a specified number of sample points is positioned
in the space such that the minimum distance between each pair
of points is maximized. Based on this criterion, LHS designs are
known to span the space relatively well and as a result cluster-
ing of points that can be caused by random sampling is avoided. A
LHS design with N = 39 points used in this work is shown in Fig. 7.
The total number of points is selected such that a fraction of the
points can be used for training (N = 29), and the rest used for val-
idation. The size of the training and validation set is selected to
match the number of samples used to train and validate the poly-
nomial surrogate models. In this case study we found that differ-
ent set of training and validation points through cross validation,
led to different accuracy in the best fitted FFN surrogate models.
This is probably caused by the relatively low number of data points
available which changed the composition of the training set sub-
stantially between runs. We have observed that in certain cases,
when randomly splitting the validation and training sets, we en-
counter the case where some validation points are placed outside
the region that is spanned by the training set. This may cause

Adsorption time (s)

Fig. 7. Total set of Latin Hypercube samples collected for training and validation
of ANNs. Dominated points are shown in blue circles, non-dominated points are
shown in orange squares. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

high validation errors, resulting in the disadvantageous behavior of
early stopping, since the validation points are basically extrapola-
tion points. Therefore, for FFN fitting, the splitting of training and
validation was not done fully randomly, but in a way that ensured
that “non-dominated” points of the dataset were always part of the
training data (Fig. 7). In this case a point is “dominated” if there is
at least one other point with higher or lower values for adsorption
or desorption time in any of the four combinations of axis and di-
rections. Hence non-dominated points are all points that do not
fit this requirement in at least one of the four possible combina-
tions of directions. In addition, the split into training and valida-
tion sets=is done so that in every quarter of the LHS dataset the
fraction of validation points is equal. This is done to avoid possible
clustering of the validation points in on area.

The number of neurons and layers, the training algorithm and
the activation function all have an impact on the quality of the ob-
tained FFN. In this work, we used a modified Genetic Algorithm
to identify a good set of hyperparameters for training, because hy-
perparameters influence each other and training is overall an op-
timization problem. Two different approaches were investigated,
a multiple input multiple output (MiMo) FFN where all outputs
are calculated simultaneously and individual multiple input sin-
gle output (MiSo) FFN for each of the four outputs. In prepara-
tion of training five different kinds of hyperparameters need to be
specified: the number of layers, the number of neurons in each
layer (which can vary in each layer), the activation function of the
hidden and output layers and the training algorithm for the net-
work. In all cases, we ensure that the shape of a FFN is chosen
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in a way that the degrees of freedom in the FFN are lower or
equal the number of training points available. The training proce-
dure of these structures was done in an automated framework that
was developed by integrating several state-of-the-art algorithms
in the scikit-learn and Keras packages on a TensorFlow backend
(Chollet, 2015; Abadi et al., 2015; Pedregosa et al., 2011) and de-
tails regarding the training parameters and settings are provided in
the Results. Overall, the training and validation procedure for FFN
models is a more involved procedure to ensure that the best model
is found and overfitting is avoided, especially in this case of limited
data (“small data”). However, the high-accuracy and high-flexibility
of FFN models make them attractive, especially for higher dimen-
sions, when large data sets are available and particularly when the
samples cannot be selected.

4. Methods for handling uncertainty

In this section we present various ways to manage the different
forms of uncertainty outlined earlier. We present three different
ideas: (a) formulating a robust counterpart surrogate-based opti-
mization formulation; (b) formulating a stochastic formulation us-
ing an ensemble of surrogates; and (c) fitting the uncertainty in
the form of a discrepancy to correct a nominal surrogate model.
These three ideas are not tied to the specific surrogate models pre-
sented in this work, and therefore they represent general method-
ologies that can be applied for a wide range of studies, if similar
datasets were available. However, we will describe why some of
these approaches are only applicable with certain general classes
of surrogate models, based on the form of the surrogate model. At
this point it is important to mention that there is a large body
of work for quantification of uncertainty using model-based ap-
proaches, or reachability analysis methods for dynamical systems
with uncertainty (Scott and Barton, 2013; Shen and Scott, 2017).
However, here we discuss approaches for optimization under un-
certainty, assuming that the simulation is too complex and there-
fore is treated as a black-box problem.

4.1. Robust optimization

Robust optimization formulations aim to find a single optimal
solution that is feasible for all the realizations within an uncertain
parameter space. Early work of this concept proposed performing
perturbations of a nominal problem and formulating a linear pro-
gramming problem that would result to an optimal solution that is
feasible for all possible perturbations (Ben-Tal et al., 2009; Ben-Tal
and Nemirovski, 1999; Soyster, 1973). This idea has evolved over
the years resulting to several recent advances which aim to find
probabilistic bounds of optimization problems which suffer from
parametric uncertainty (Ben-Tal and Nemirovski, 1999; Ghaoui and
Lebret, 1997; Guzman et al., 2016; Li et al., 2011; Li et al., 2012;
Matthews et al., 2018; Yuan et al., 2016). Accounting for the uncer-
tainty embedded in mostly all real-life applications, significant ef-
fort has been devoted recently to combine data-driven techniques
for characterizing the uncertainty in robust optimization (Ben-Tal
et al.,, 2009; Birge and Louveaux, 2011). In robust optimization, the
uncertain parameters belong to a given uncertainty set and the ro-
bust solution is known to be immunized against uncertainty (Ben-
Tal et al., 2009). While most robust optimization studies have been
focused on deriving standard uncertainty sets from available data
(Ben-Tal et al., 2009; Ben-Tal et al., 2013; Bertsimas et al., 2018;
Li et al, 2019), recently the use of data and machine learning
has been proposed to find more customized uncertainty sets (Ning
and You, 2018; Shang et al.,, 2017). In other recent related work,
surrogate models have been used to find the convex subregions
(Zhang et al., 2015) and the uncertainty sets from available data
(Ning and You, 2018; Shang et al.,, 2017). The work of Bertsimas

et al. (2010a, 2010b) is the most relevant work to this paper. This
work tackles the challenge of parameter and model mismatch un-
certainty in simulation-based optimization, through a robust lo-
cal search algorithm that requires the simulation to provide input-
output values and the gradient of the objective function. In this
work we use the definition of the robust formulation presented
by Bertsimas et al. to build a robust counterpart surrogate model,
while global optimization is used to optimize the surrogate-based
formulations and the gradients of the simulation are not required.

One of the major decisions in robust counterpart optimization
is the selection of the parameter uncertainty set, which signifi-
cantly affects the conservativeness of the final solution (Ben-Tal
et al., 2009; Bertsimas et al., 2018; Guzman et al., 2016; Li et al.,
2011). In this work we formulate the constrained surrogate-based
optimization problem as a robust counterpart formulation with
box uncertainty, where the uncertain parameters are the fitted pa-
rameters of the surrogate models (P2).

N
max Z bn,Prodgn (*)

n=1
subject to :

N
> bumgn(x) <cm  m={Rec, Pur, Ene} (P2)

n=1

where bp,n represent the uncertain parameters of the surrogate
models for the objective function (productivity) and constraints
(recovery, purity, energy), respectively. Parameters c,; represent
the right-hand side of the feasibility constraints that are set to a
known deterministic value. One of the pre-requisites of this formu-
lation is that the uncertain parameters must participate linearly in
the model, which makes this approach applicable only with a sub-
set of the surrogate models. As a result, we can only formulate the
above Robust Counterpart (RC) surrogate problem with polynomial
functions, since neural network functions is a convoluted nonlin-
ear function with respect to the parameters. Consequently, func-
tions g, represent the basis functions of the polynomials shown in
Eq. (5). In RC optimization, uncertain parameters are represented
as the sum of the nominal value and their perturbation, as shown
in Eq. (7).

bum = bum + Enm bam ¥Yn=1,...,N m = {Prod, Pur,Rec, Ene}

(7)
where b, m represent the nominal value, by represent a posi-
tive perturbation and &, prepresent independent random variables
which are subject to uncertainty that is bounded by the selected
uncertainty set. The final RC formulation takes different forms de-
pending on the uncertainty set that is selected to describe the un-
certain parameters. By writing the objective function as an uncer-
tain constraint and using a box uncertainty set, (P2) can be written
as follows:

maxz
subject to:

N N
Z— Z anrodgn (X) + W Z bn.Prodlgn (X)| <0
n=1

n=1 =

N N
an,mgn(x) +Vv ZBn,m|gn(X)| <Ch M= {REC, Pur, Ene}

n=1 n=1
(P3)

where W represents the uncertain set parameter. For the simplest
case of box uncertainty within an interval, ¥ = 1. One of the ad-
vantages of robust optimization when compared to stochastic op-
timization is that the size of the robust formulation does not in-
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crease from the nominal formulation in size or complexity. De-
tails about how we calculate by, 1 and Bn.m for the surrogate-based
direct-air capture problem, given the data that is available, will be
provided in the Results.

4.2. Stochastic programming

Stochastic programming is another commonly used technique
of decision-making under uncertainty, which is introduced in the
1950s by Dantzig (1955). In the contrast to robust optimization,
the uncertain parameters in stochastic programming are assumed
to follow a probability distribution obtained from historical data or
prior knowledge (Birge and Louveaux, 2011). The different realiza-
tions of the uncertain parameters are scenarios which are used to
formulate the stochastic optimization problem. The objective func-
tion of stochastic programming is to optimize the expectation of
the productivity, subject to constraints that represent multiple sce-
narios. Therefore, to calculate the expectation of the productivity, a
probability distribution assumption is needed. Given the data that
has been collected, the key assumption made here is that all ten
scenarios are identically-distributed in the DAC process, which is
essentially equivalent to the sample average approach (Birge and
Louveaux, 2011). In order to formulate a stochastic programming
surrogate-based formulation, the different scenarios are the differ-
ent realizations of the simulation outputs for different values of
mass transfer coefficientk. In other words, the stochastic formula-
tion aims to find the expected optimal solution when the param-
eters of the surrogate models are uncertain. More specifically, the
expectation of the productivity E(P)) can be expressed as:

N
E() =Y piP (8)
i=1

where P; is the productivity for each instancei, and p; = % .N=
10 is the number of scenarios. The full stochastic formulation (P4)
is:

1

N
max — » P(tads, taes, ki
toger L N ; 1( ads» tdes 1)

1 N
st. 5= g lerecovery,-(tads, tges, ki) < 100

1T
95 < N Z]:purltYi(tad& Ldes, kl) <100

1 N
0< N Xlzenergyi(tads, Edes» ki) <02

25 < togs < 250
25 < tges < 250 (P4)

Notably, this is a simple one-stage stochastic programming
problem with t,;; and tgs as the two variables. If more data
is collected, or additional knowledge about the system becomes
available, different assumptions regarding the distribution or the
weights of the objective function can be used.

4.3. Discrepancy modeling

The final approach for handling uncertainty differs from the
above two, because it does not provide a single robust or ex-
pected optimal solution, but it can be used to develop a “map”
of the uncertainty in the form of a surrogate model. This approach
also allows us to combine the two surrogate modeling approaches
(i.e., polynomials and Neural Networks) in the form of a hybrid
model. The concept of discrepancy modeling can be found in dif-
ferent variations in different fields which use different terminology.

Nominal model

tndsr tdes npoly (tads' tdes)

—l npoly([ads' tdes) -

N = 29 (S6), k: fixed | Purity

Recovery
—
la(k’ tads: Laes) Productivity

4 Energy

k: Lads) tdes Dlscrepancv model ‘sNN(k; tads, tdes)
e OV (Ko taas taes)

N =390

Fig. 8. Structure of hybrid nominal/discrepancy model structure.

Kennedy and O’Hagan discuss the concept of lumping many differ-
ent forms of uncertainty, such as parameter uncertainty, model in-
adequacy, residual variability, and code uncertainty into a discrep-
ancy model term (§(x)) (Kennedy and O’Hagan, 2001). The discrep-
ancy model is essentially a model of the nominal model (n(x)) er-
ror, without accounting for the randomly distributed measurement
error (e):

fE)y=nx)+5(x) +¢ 9)
This concept is based on the realization that all models are ap-
proximations of real systems and uncertainty exists in many forms.
All of the aforementioned forms of uncertainty can be lumped into
the modeling of the “systematic error”. This idea has been ex-
tended and applied into modeling of dynamical systems, by com-
bining a reduced-model error with a dynamic discrepancy model
(Li et al., 2017). This concept shares some similarities with the
concept of hybrid modeling that has been used in the PSE litera-
ture extensively (von Stosch et al., 2014). Specifically, researchers
have proposed several hybrid modeling structures (i.e., serial or
parallel) that combine inaccurate or incomplete mechanistic mod-
els with black-box models that capture the residuals between the
model and the experimental data (Duarte et al., 2004; Thompson
and Kramer, 1994; Van Can et al., 1996). Particularly Neural Net-
work models have been found to be very useful in modeling such
residuals between a model and experimental observations.

We merge concepts from the area of hybrid modeling and dis-
crepancy modeling, as our last proposed alternative for handling
uncertainty for data-driven surrogate-based optimization. We de-
velop a hybrid model that can capture the nominal effects, but
also provide corrections of the nominal predictions depending on
the uncertainty caused by the mass transfer coefficient k. In our
approach, the nominal model is a polynomial model, 7pop(tyds,
taes), fitted only with data from a single (nominal) k value (Fig. 8).
Our discrepancy model, Syn(tads, tdess k), is @ FFN model that is fit-
ted using as inputs all of the remaining available data, while the
output is the error between the nominal prediction and the sim-
ulation data (Eq. (10)). Since this is a simulation-based case study,
we can assume that the measurement error is negligible.

fhybrid (tads’ tdes) = npoly (tadSs tdes) + SNN (tads’ tdew k) (10)

The discrepancy model Syn(tads taess k) is essentially a map of
the effects of the uncertain parameter k on the predicted out-
puts. Undoubtedly, an alternative approach would use all of the
data, treating the uncertain parameter k as an input variable,
and fit a single 3-variable model directly in one pass. However,
since k is not a controllable input, the hybrid model structure of
Eq. (10) aims to represent the typical case where one would have
a nominal or mechanistic model available, and thus the goal would
be to model the trends of the residuals or the systematic bias of
that model in a second stage. In addition, it has been claimed that
if the nominal model is sufficiently accurate, the map of the resid-
uals is a smoother function with less variability, and as a result
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Table 1
Applied hyperparameter combinations for FFN training.

Model Surrogate type  Shape Training algorithm  Hidden layer activation  Output layer activation
All (MiMo) MiMo 2-8-6-4 Nadam tanh linear
Energy MiSo 2-7-1 Adam tanh linear
Productivity =~ MiSo 2-4-2-1 Adam tanh linear
Purity MiSo 2-4-2-1 Nadam tanh linear
Recovery MiSo 2-7-1 Nadam tanh linear
an easier output to fit using a surrogate model. We will test this Table 2 ) o )
hypothesis in the results, by comparing the quality of approxima— Relative average and maximum absolute Errors (%) for validation points.
tion and optimization via the proposed hybrid model and the sin- Purity  Recovery  Productivity — Energy
gle black—bpx three-variable model, where t, 4, t4s and k are all FEN - MiMo (rMAE) 0029 0809 0.574 0.681
treated as inputs. FFN - MiSo (rMAE) 0.028  0.385 0.977 0.669
SG - Poly (rMAE) 0.020  0.522 1.232 2.177
5. Results FEN - MiMo (rMaxAE)  0.157  5.233 3.231 5.084
: FEN - MiSo (rMaxAE) ~ 0.248  1.998 8.871 5.811
. o SG - Poly (rMaxAE) 0.053  1.279 2.922 7.596
5.1. Quality of approximations
In this section, we will compare the performance of the two Table 3 . . .
. . . R R Relative average and maximum absolute errors (%) for extrapolation points.
surrogate modeling techniques used to approximate the simulation
data. We have performed all of the studies in this work by col- Purity  Recovery  Productivity  Energy
lecting the following data from the simulation: (1) 29 sparse grid FFN - MiMo (rMAE) 1925 20727 45.430 15.049
samples for 10 realizations of k(290 points); (b) 39 Latin Hyper- FEN - MiSo (rMAE) 1.715 10.028 41.041 15.289
cube points for 10 realizations of k (390 points); (c) 9 validation SG - Poly (rMAE) 0801 12708  19.179 13.631
ints for 10 realizations of k (90 points), (d) 8 points outside the FEN - MiMo (tMaxAE)  19.567 351267 197.381 52.265
points ! p (d)sp FFN - MiSo (rMaxAE)  19.407  78.971 173.083 45.574
experimental region for extrapolation (80 points). A figure of all SG - Poly (rMaxAE) 3.562 43.811 57.778 53.769

of the sampling locations is provided in Supplementary Informa-
tion. The first set of points was used for training the polynomial
approximations, the second was used for training and validation of
the FFN models and the last category was not used for any training
or testing procedure, and thus served as the validation set of both
surrogate model types.

One of the key findings of this comparative work is that the se-
lection of sampling sizes, training, validation and test sets played
a significant effect on the final results and conclusions, especially
because we are operating in a “small-data” regime. The fitting
and validation procedure of polynomial models was described pre-
viously. Training and validation of FFNs is performed in epochs,
where one epoch represents one iteration of the training algorithm
in which the FFN is exposed to training points and the weights are
adjusted according to the output errors. During each epoch, the
number of training points that are used before a weight update
is performed can be tuned. The choices are after every point, after
all points or after a certain number of points, and this parameter is
referred as mini batch size (Ruder, 2016). In this work a maximum
number of 100,000 epochs with 29 points of training data (to be
directly comparable with the polynomial surrogate models) using a
mini batch size of four. To prevent overfitting 10 additional points
of validation data are used, which corresponds to a validation split
of 25.6%. If in 10,000 epochs the error on the validation points re-
mains constant, then early stopping is employed to terminate the
training. The minimum validation error is taken as a measure of
quality for the obtained FFN. For each surrogate model developed,
the training was done 40 times with the same set of hyperparam-
eters and the best obtained FFN was selected for further use as
surrogate model.

The identified hyperparameter combinations of the optimally
identified FFN for the Multiple Input-Multiple Output (MiMo)
model, and the Multiple Input-Single Output (MiSo) models are
shown in Table 1. The identified set of hyperparameters for one
value of the mass transfer coefficient is assumed to be suitable for
all other FFNs representing the same input-output relation at dif-
ferent values of k.

Despite their very different structure and sample locations, both
surrogate model types were able to capture the four different out-

puts of Productivity, Recovery, Purity and Energy with sufficient
accuracy. In Table 2, we report the relative mean absolute error
(rMAE) and relative maximum absolute error (rMaxAE) for the
three different types of surrogate models and all outputs for the
same validation points. In Table 3, we report the same error mea-
sures for 8 sample points collected outside the [25 — 250] range to
test the extrapolating capabilities of the models. When it comes
to predictions within the experimental region, we observe that the
rMAE is below 1% for most models and FFNs perform better for
three out of the four outputs. However, polynomial surrogates typ-
ically have reduced absolute maximum errors between the surro-
gate and the simulation. This result validates the theory of Sparse-
Grid polynomial interpolation, which states the maximum error
between the true function and the surrogate model converges to
zero, as the level of approximation increases. Based on the re-
sults shown in Table 3, we observe that polynomials tend to per-
form better in the case of extrapolation, apart from two excep-
tions. This result could be because Sparse Grid points cover the
extreme points of the search space. Overall, we observe that the
performance of these surrogates is not promising for extrapolation
and should not be used for predictions outside the range of the
original experimental design. In Figs. 9 and 10 we show the surro-
gate model predictions for both polynomial functions and FFN for
a nominal k = 18.6 h~1. As expected, the plots look similar and we
observe that all of the four outputs are nonlinearly dependent on
the two inputs.

5.2. Deterministic optimization results

If the uncertainty of k was not considered and one performed
a surrogate-based optimization study for the nominal k value, a
deterministic optimal solution would be obtained from each of
the surrogate models (Table 4). Both surrogate formulations were
solved in GAMS using BARON (Tawarmalani, 2005). The FFN mod-
els were solved in Pyomo (Hart et al., 2017), which generates a
reduced-space formulation of the FFN models (Schweidtmann and
Mitsos, 2019) that is solved in GAMS using the same solver. Despite
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Fig. 9. Surrogate functions using Sparse Grids and polynomials for nominal k=18.6h".

the fact that both surrogate models are accurate, and the same
global optimizer is used to optimize them, we observe that the op-
timal solution varies significantly when using a different surrogate
model. In addition, since these results are based on a nominal k
value, we should not expect these solutions to be feasible when
k varies. In fact, by fixing the values of t,4and tg to the values
in Table 4 for the polynomial and FFN respectively, and evaluating
the prediction of the outputs for different values of k,we found
that recovery and energy constraints were violated in almost half
of the realizations of k.

In addition to the variability in optimal solutions that may be
observed when using different surrogate models, we expect to ob-
tain different optimal solutions when individually optimizing dif-
ferent surrogate models for each k value. This analysis was per-
formed using polynomial surrogate models and the results are
shown in Table 5, where we see that adsorption time varies within
[70.6 — 101.4] and desorption time varies within [128 — 195]. This
variation in solutions validates our assumption that k plays a sig-
nificant role and that the effects of k in the optimal solutions are
also nonlinear. We observed similar variations when optimizing
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Fig. 10. Surrogate functions using Hypercube samples and neural networks for nominal k=18.6 h-1.

the FFN models. In the next sections we will provide the results
obtained when accounting for uncertainty and we will compare
the obtained results with this nominal deterministic case.

5.3. Robust optimization with polynomial surrogate models

Solving the robust surrogate-based formulation (P3) can be con-
sidered as solving of a problem comprised of surrogate functions
that are under estimations of the different surrogate realizations.
Due to the nonlinearity of the problem, we cannot guarantee that

these are valid under-estimators of all of the realizations of the
uncertain parameter space. However, by using the most conserva-
tive uncertainty set, namely interval uncertainty, we aim to get a
conservative underestimation of the outputs we are approximating.
This is shown in Fig. 11, where we overlay the polynomial surro-
gate models for the objective function of productivity for all values
of the uncertain mass transfer coefficient, as well as the robust-
counterpart surrogate model which bounds all of the realizations
from below. The optimal solution of formulation (P3) is expected
to highly increase the probability of obtaining a solution that will
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satisfy all constraints throughout the uncertain parameter space of
k. Also, it is important to note that through this formulation, we
are grouping the effects of both forms of uncertainty (kand surro-
gate modeling) together.

One of the challenges of formulation (P3) is the calculation of
the nominal (bp, ) and deviation parameters (En‘m). Here, we used
the average of each of the polynomial term parameters over all re-
alizations of k as our nominal parameters. The deviation parame-
ters are calculated using the standard deviation of the optimal pa-
rameters of individual surrogate models. We carefully studied the
behavior of the optimal surrogate parameter distributions and ob-
served that they are narrow bell-shaped distributions. This can be
explained by the fact that although k influences the surrogate func-
tions, the trends remain similar and thus the optimized parameter
values tend to cluster towards similar values. Selecting the devia-
tion parameter has a significant effect on the conservativeness of
the solution. In this work, we used a deviation equal to the stan-
dard deviation of the optimized parameters for different k values,
which resulted to a reasonable bound of all of our four outputs
(Fig. 11). Using the above statistics, the robust formulation (P3)
was globally optimized using BARON and the optimal solution was
identified as t,; = 48 s, tys = 138 sec, which differs from the de-
terministic solutions obtained in Table 4.

We validated this solution (Table 6) by running the simulation
for all realizations of k that were initially used to build the models,
and three additional k values that were not used to train any mod-
els: knew = [7.2, 14.4, 21.6] . The most important result to observe
in Table 6 is that no constraints are violated for any of the origi-
nal or new mass transfer coefficients. In addition, the maximum
objective function obtained is 0.372 %, the minimum is
0.198 and the average is 0.305. These values are lower but com-
parable to the values of Table 5, when each surrogate model was
optimized individually.

0.36
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Fig. 11. Productivity polynomial surrogate models for all realizations of k bounded
below by robust counterpart surrogate polynomial.

Table 4

5.4. Stochastic optimization with surrogate models

Unlike the Robust surrogate approach, one advantage of formu-
lation (P4) is that it can be solved for any surrogate model. As
a result, two versions of (P4) were solved, namely one with all
of the constraints and the objective are approximated by poly-
nomial functions, and the second where all functions in P4 are
FFN models. We performed this analysis to compare the perfor-
mance of the different surrogate models, but nothing prohibits us
from combining scenarios obtained by different types of surrogate
models. The solution of the stochastic formulation does not pro-
vide a worst-case solution like in the case of the robust formula-
tion, but it provides an expected maximum productivity. The ex-
pected solution when using polynomial models is: (tgs, tges) =
(73,176), where the expected productivity is 0.327, while the op-
timal solution when the formulation is comprised solely on Neural
Networks is: (t;qs, tges) = (78,132), where the expected produc-
tivity is 0.328.

From the above two solutions we observe that the adsorption
times are very similar for both problems, while desorption times
differ. However, overall both formulations have led to relatively
similar solutions, compared to the variability in solutions obtained
when solving separate deterministic problems (Table 5). This is a
promising indication of considering uncertainty when using surro-
gate models, since the result becomes less prone to the variation
caused by all the different forms of uncertainty. However, varia-
tion in the solutions still exists, and this might be because of lack
of sufficient data (or scenarios).

Finally, we validated the results of the solution obtained by the
stochastic formulations, by running the simulation for the same k
values as in the robust optimization study. This allows us to check
whether the stochastic solution violates any constraints for differ-
ent k values, and to calculate the accuracy of the expected produc-
tivity. As can be seen in Table 7, the obtained solution using the
polynomial stochastic formulation does not violate any constraints
and the average productivity is 0.315 (4% relative error from pre-
dicted expected productivity). It is also important to note that the
solution obtained using the polynomial stochastic programming
formulation has a higher average than the one obtained by the ro-
bust formulation. This is expected due to the conservativeness of
the robust counterpart approach. However, the solution obtained
using the FFN-based stochastic formulation has an expected pro-
ductivity of 0.322 (2% relative error from predicted expected pro-
ductivity), but violates the recovery constraint in 3 out of the 13
simulated scenarios. We hypothesize that this may be caused by
the fact that polynomial models are less flexible than FFN mod-
els, and thus a larger number of scenarios of FFN models would be
necessary to obtain more consistent and reliable sample average
approximations.

5.5. Discrepancy modeling coupling polynomial approximations with
neural networks

In this final section, we present the results for a hybrid model
comprised of a nominal polynomial surrogate model and a FFN
model of the error between the nominal model predictions and the
simulated results. In order to develop this hybrid model, we used
the 29 SG points for a nominal k to develop a model for predict-
ing the purity, recovery, productivity and energy as a function of

Deterministic global optimization results using different surrogate formulations for nominal k.

Model tags (S)  taes (S)  Recovery (predicted) (%)  Productivity (predicted) (kg’“s‘ﬂf%) Energy (predicted) (%JCOZ) Purity (predicted) (%)
(P1) Poly 88.7 165 204 0.340 0.106 98.104
(P1) FEN 76.0 132 19.98 0.341 0.112 97.751
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Table 5

Globally optimal solutions of polynomial surrogates when different each realization of k is fitted and opti-

mized individually.

k(%) tas () tas(s) Recovery (%)  Productivity (%) Energy (%JCOZ) Purity (%)
309 706 1280  23.82 0.387 0.10 97.65
186 887 1650  20.40 0.341 0.11 98.10
311 726 1336 2392 0.386 0.09 97.72
5.7 79.6 1950  15.00 0.209 0.15 97.74
9.6 1014 1768 1544 0271 0.14 98.14
259 748 1405  23.04 0.372 0.10 97.81
299 856 1627  23.42 0.386 0.09 98.05
261 753 1419  23.11 0.372 0.09 97.83
121 963 1714 1715 0.296 0.12 98.14
8.0 97.0 1820  15.00 0.252 0.14 98.06
Table 6 ) ) In order to validate the hybrid model, we calculate the error
a‘;‘”l';g;’n fesults for robust optimal solution  (fags. faes) = between its predictions and the simulation, for the same valida-
. tion points of Table 2 (Table 8). We observe that the errors are
: Recovery Prt;tiolllecgigity EnerM%y Purity comparable to the errors shown in Table 2, and thus the accuracy
k(3) (%) (gsomenin)  (moeco,) (%) of this model for the entire search space of k is comparable to the
30.9 31.1 0372 0.078 97.4 model obtained by modeling each k individually. As a result, we
18.6 27.0 0.322 0.090 97.4 can conclude that the discrepancy model can be used as a map of
217'1 ‘:’é'é 8%; g'?zz g;‘g the error between the nominal case and different realizations of
96 211 0252 0115 972 the uncertam_parame_ter_ in _the input space, and could b_e used to
25.9 29.8 0.355 0.081 97.5 formulate various optimization problems. One of the main advan-
29.9 30.9 0.369 0.078 97.4 tages of this approach is that it provides the ability to predict the
261 299 0.356 0.081 97.5 discrepancy, or else the correction we need to add to our nominal
121 B3 0.277 0.104 97.3 redictions, for kvalues that have not been simulated
8.0 19.5 0.233 0.124 97.1 p P . o
7.2 18.6 0.222 0.130 97.0 {\lthoggh this approach aims tq Qevelop a corre‘ctllor‘l map,
14.4 24.8 0.296 0.098 97.4 which will be additive to the prediction of a deterministic nom-
216 283 0.338 0.085 97.4

tqds and tges. The nominal model is one out of the ten models, for
which approximation results were provided in Table 2. Once this
model is fitted, we use all of the available Latin Hypercube data for
all realizations of (N =39 x 10 points), and calculate the error (or
discrepancy) between the nominal model prediction and the simu-
lated output (8(k, tygs, tges)) (Fig. 8). These errors are now the out-
puts of the discrepancy model (8yn(k, tqgs, tges)), Which are approx-
imated using a FFN. The error models were trained and validated
and we were able to identify optimal structures and hyperparam-
eters that fit the errors with sufficient accuracy. This was the first
indication that a systematic model can be fitted by a surrogate ap-
proximation. Indicative surface plots of the discrepancy model for
a fixed k = 30.9 h~! are shown in Fig. 12.

Table 7

inal model, one may argue that a simpler approach would be to
treat the uncertain parameter as an additional input and fit a sin-
gle three-input surrogate model. In order to assess the predictive
ability of this larger model, we used all of the simulated data for
all k values to train a single MiMo NN model with three inputs.
Surprisingly, the size of the FFN for the 3-variable input model,
is a slightly more accurate surrogate model (Table 8), and it is
a network with 2 layers but an increased number of nodes (3-
15-22-4). The optimal discrepancy FFN is a deeper network with
less nodes in each layer (3-10-8-6-4). When comparing the total
number of parameters of the discrepancy FFN model to the single
3-variable FFN model, the latter requires more fitted parameters.
However, if the polynomial parameters are considered, the over-
all hybrid model (Poly+FFN) contains more parameters than the
single-state 3-variable FFN. This is a surprising result that could be

Simulated results for stochastic formulation using polynomials (t_ads, t_des) = (73, 176) (Poly)
and NN (t_ads, t_des) = (78, 132) (NN). Constraint violations shown in bold.

Recovery (%)

Productivity (R €02 )

Energy ( %Jcoz ) Purity (%)

I ( 1 ) kg Sorbentxh

U Poly NN Poly NN Poly NN Poly NN
309 2762 2262 0381 0388 0.08 0.10 98.05  97.75
18.6 2420 1982 0334 0.340 0.09 0.1 98.07 97.77
31.1 2766 2265 0381 0389 0.08 0.10 98.05 97.75
57 1510 1254 0208 0215 015 0.18 97.61 97.28
96  19.10 1572 0263 0270 012 0.14 97.92  97.61
259 2651 2170 0365 0372 0.08 0.10 98.07 97.77
209 2743 2246 0378 0385 0.08 0.10 98.05 97.75
261 2657 2175 0366 0373 0.08 0.10 98.07 97.77
121 2096 1720 0289  0.295 011 013 98.00  97.69
80 1767 1458 0244 0250 013 0.15 97.83  97.52
7.2 16.87 1395 0233 0239 013 0.16 97.77 9745
144 2230 1827 0307 0314 010 012 98.04 97.74
216 2528 2069 0348 0355 0.09 0.11 98.07 97.77
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Fig. 12. Discrepancy models fitted using neural networks. The surfaces are shown for fixed k = 30.9 h-1.

Table 8

Relative absolute average and maximum errors (%) of hybrid discrepancy model over all

values of k.

Purity ~ Recovery  Productivity  Energy

Hybrid Discrepancy Model (rMAE) 0.035 1.616 1.400 3.124
Hybrid Discrepancy Model (rMaxAE)  0.096 3.534 4.052 7.260
3-input FFN Model (rMAE) 0.006 0.554 0.192 0.716
3-input FFN Model (rMaxAE) 0.020 2.268 0.614 2.069

explained by the fact that the residual mapping is a nonlinear re-
sponse surface, and thus it is harder to fit than the smoother map-
ping between the 3 variables and the original outputs. However,
the hybrid approach is still a promising approach that leads to an
accurate overall model, especially when a widely-accepted nominal
model pre-exists.

6. Conclusions

In this work we discuss the challenges caused by different
forms of uncertainty in simulation-based optimization; advocate
the need to consider uncertainty when performing surrogate-based
optimization; and propose three basic ideas to manage this uncer-
tainty. Our motivating case study is the optimization of a simula-
tion for direct air capture by maximizing the productivity of the
process, while satisfying purity, recovery and energy constraints.
The two decision variables of the system are adsorption and des-
orption times, while the model outputs are nonlinearly dependent
on the value of a mass transfer coefficient that is an uncertain sim-
ulation parameter. Due to the complexity of the simulation and
lack of algebraic equations connecting the inputs to the outputs,

this problem is optimized following a surrogate-based optimiza-
tion approach, based on which input-output data is collected, sur-
rogate models are fitted and subsequently optimized. We use two
very different types of surrogate models in this work (i.e., Sparse
Grid polynomials and Neural Network models) to approximate the
input-output data, and validate our obtained solutions with the
rigorous simulation.

We show that both the uncertainty of the mass transfer coeffi-
cient and the selection of the surrogate model lead to variability in
the obtained optimal values. Most importantly, we observe that of-
ten the solutions that are obtained when treating this problem as
a deterministic case study are infeasible when simulated for differ-
ent mass transfer coefficients. We compare three ideas for mitigat-
ing the effects of uncertainty by combining existing literature on
robust optimization, stochastic optimization and discrepancy mod-
eling, with surrogate approximations. The results show that we can
obtain more conservative but feasible solutions when formulating
a surrogate-based robust optimization problem, and a slightly less
conservative solution when formulating a surrogate-based stochas-
tic formulation. Finally, we show that we can accurately combine
different surrogate models to capture both nominal effects but also
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the discrepancy between the nominal and simulation model accu-
rately. We observe that all three methods have merits and limita-
tions, which are discussed throughout the paper.

The analysis performed in this work mainly aims to stress the
issue of uncertainty embedded within surrogate-based optimiza-
tion, which is not discussed enough in the PSE and black-box opti-
mization literatures. The proposed techniques can serve as a guide
for selecting the most appropriate approach to manage uncertainty
in a variety of simulation-based optimization studies, depending
on the chosen surrogate model, the availability of the data and the
size of the problem. The results in this paper also aim to point
to a more general debate for the simulation-based optimization
literature; on whether investing on more sampling to achieve in-
cremental improvements in deterministic optimal results is more
valuable than sampling to characterize the unavoidable embedded
uncertainty. In the future, it will be of high interest to compare the
employed methods with recently proposed methods for Bayesian
optimization under uncertainty, which have been used in other ap-
plications for robust optimization and discrepancy modeling.
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