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a b s t r a c t 
Optimization using data from complex simulations has become an attractive decision-making option, due 
to ability to embed high-fidelity, non-linear understanding of processes within the search for optimal 
values. Due to lack of tractable algebraic equations, the link between simulations and optimization is of- 
tentimes a surrogate metamodel. However, several forms of uncertainty exist within the cycle that links 
simulation data, to metamodels, to optimization. Uncertainty may originate from parameters of the sim- 
ulation, or the form and fitted parameters of the metamodel. This paper reviews different literatures that 
are relevant to surrogate-based optimization and proposes different strategies for handling uncertainty, 
by combining machine learning with stochastic programming, robust optimization, and discrepancy mod- 
eling. We show that incorporating uncertainty management within simulation-based optimization leads 
to more robust solutions, which protect the decision-maker from infeasible solutions. We present the re- 
sults of our proposed approaches through a case study for direct-air capture through temperature swing 
adsorption. 

© 2019 Published by Elsevier Ltd. 
1. Introduction 

Rapid developments in computational capabilities and numer- 
ical methods have led to substantial advances in computer-aided 
decision-making using simulations in many areas of chemical engi- 
neering, including Process Systems Engineering (PSE). Our advanc- 
ing ability to simulate phenomena from a molecular level, all the 
way to the process and enterprise levels has motivated many re- 
searchers to use multiscale models for design, optimization, control 
and operations. Detailed simulations include large systems of ordi- 
nary or partial differential equations, com putational fluid dynamic 
simulations, discrete element method models or even Monte-Carlo 
simulations, and many more ( Amaran et al., 2014; Boukouvala 
et al., 2017; Chuang et al., 2018; Cozad et al., 2014; Dias et al., 
2018; Dowling et al., 2014; Eslick et al., 2014; Lucidi et al., 2016; 
Ma et al., 2018; Marques et al., 2017; Palmer and Realff, 2002 ; 
Wang and Ierapetritou, 2017 ). Simulations are used to model mul- 
tiphase or particle, multicomponent flows within complex geome- 
tries, oftentimes under dynamically changing initial or boundary 
conditions. However, as the complexity of simulations increases, 
this creates a new challenge, namely the inability to directly opti- 
mize systems with commercially available deterministic optimiza- 
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tion solvers ( Amaran et al., 2014; Dowling et al., 2014 ; Eason and 
Biegler, 2016 ). This challenge has led to an increasing interest in 
the area of data-driven optimization techniques that search for 
globally or locally optimal solutions in the absence of the true 
derivatives of the original model. 

In the past decade, data-driven optimization (DDO) applica- 
tions are becoming common in many engineering fields ( Anna 
et al., 2017; Boukouvala et al., 2017; Ibrahim et al., 2018; Lucidi 
et al., 2016; Ma et al., 2018; Marques et al., 2017; Na et al., 2017; 
Negrellos-Ortiz et al., 2016; Quirante and Caballero, 2016; Rossger 
and Richter, 2018 ; Wang et al., 2017; Zadeh et al., 2016; Zhong 
et al., 2019 ). Specifically, in chemical engineering, DDO has been 
applied to carbon capture systems ( Eslick et al., 2014 ), pressure 
swing adsorption ( Boukouvala et al., 2017 ), ammonia production 
process simulation ( Palmer and Realff, 2002 ), reactive flow systems 
( Rossger and Richter, 2018 ), cryogenic air separation ( Negrellos- 
Ortiz et al., 2018 ), crude-oil distillation ( Ibrahim et al., 2018 ), 
continuous pharmaceutical manufacturing modeling ( Boukouvala 
and Ierapetritou, 2013; Marques et al., 2017 ; Wang et al., 2017 ), 
and many more. In these applications, closed-form or explicit 
algebraic relationships and derivatives are either unavailable or 
impractical to obtain. There are many different types of data- 
driven optimization methods, and several recent review articles 
provide very comprehensive comparisons ( Audet and Kokkolaras, 
2016; Bhosekar and Ierapetritou, 2018; Boukouvala et al., 2016; 
Rios and Sahinidis, 2013 ). One of the most popular categories 
of data-driven optimization is referred to as “model-based” or 
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Fig. 1. (a) Curves of the same surrogate model (Kriging) trained with different samples and (b) curves of different surrogate model types (Kriging, Polynomial, Support 
Vector Regression) trained with the same deterministic sample points. 
“surrogate-based”. This category includes a critical step after data 
collection, namely the training of intermediate surrogate models 
that serve as the computationally cheap algebraic approximations 
of the important input-output relationships embedded within the 
optimization problem. This paper will focus on surrogate-based 
optimization techniques that have become very popular in the 
recent literature, which is also due to the increasing interest in 
Machine Learning in engineering. 

There are currently many open challenges in surrogate-based 
optimization. These include: (a) the selection of the most efficient 
sampling strategy; (b) the selection of the best surrogate model; 
(c) the efficient training and validation of the surrogate models; 
and finally (d) the development of efficient algorithms that adap- 
tively sample-fit-validate data, to find the best optimum with min- 
imum computational cost and sampling requirements. The litera- 
ture is split between the use of local model-based methods, such 
as trust-region methods, e.g. Powel’s method ( Powell, 2002 ), and 
global model-based methods, such as the Sequential Design for 
Optimization ( Cox and John, 1992 ) and Efficient Global Optimiza- 
tion ( Jones et al., 1998 ) methods. Both classes of methods use lo- 
cal or global surrogate models to expedite the search for an opti- 
mum. Two recent review articles outline the differences between 
the state-of-the-art methods on this topic ( Audet and Kokkolaras, 
2016; Boukouvala et al., 2016 ). Undoubtedly, no method has been 
proven to significantly outperform all others across a large set 
of benchmark problems, while the performance of each method 
is highly dependent on (a) the problem characteristics, (b) the 
amount and quality of data available, and (c) the selected surrogate 
modeling technique. Computational studies of the current exist- 
ing data-driven optimization software have verified that the perfor- 
mance is problem dependent ( Amaran et al., 2014; Boukouvala and 
Ierapetritou, 2013; Rios and Sahinidis, 2013 ). Especially when sur- 
rogate models are employed for optimization, researchers have de- 
voted great effort on finding the best surrogate model ( Boukouvala 
and Floudas, 2017; Cozad et al., 2014 ; Eason and Cremaschi, 2014; 
Garud et al., 2018; Garud et al., 2017 , 2018; Strau and Skogestad, 
2017; Wilson and Sahinidis, 2017 ); however, the presence of un- 
certainty and limitations in sampling make this a very challeng- 
ing problem. Specifically, training one type of surrogate model with 
samples collected from different sampling strategies may result in 
slightly different realizations of the surrogate model ( Fig. 1 a). Even 
in the situation where the same samples are used to train differ- 
ent types of surrogate models, the realizations may also vary from 
each other significantly ( Fig. 1 b). 

Although there is a very prolific open debate on the devel- 
opment of the best strategy for sampling and surrogate model- 

ing and comparison of methods that manage to get closest to the 
best-known global optimum, there has been less discussion on 
the effects of uncertainty when using surrogate-based optimiza- 
tion algorithms. Recently, Wang et al. used the smoothing effects 
of Gaussian process metamodels to optimize simulations with ho- 
moscedastic input uncertainty ( Wang et al., 2018 ), while Wang 
et al. used a modified Expected Improvement criterion and Kriging 
metamodels to optimize a stochastic simulation of a pharmaceuti- 
cal production system ( Wang and Ierapetritou, 2018 ). Recent work 
on Bayesian optimization under uncertainty has shown that by 
conditioning the prior distribution on the observations, a Bayesian 
approach can be used to locate robust solutions of sample-based 
systems ( Beland and Nair, 2017; Bogunovic et al., 2018 ). A local 
stochastic trust-region based algorithm was recently presented by 
Shashaani et al. (2018 ), which aims to locate local optima of un- 
constrained optimization problems subject to noise. Similarly, Au- 
det et al. modified their mesh adaptive direct-search algorithm to 
handle noisy black-box data, in order to robustly converge to lo- 
cally optimal solutions ( Audet et al., 2018 ). Eslick et al. present a 
framework that aims to perform uncertainty quantification, sensi- 
tivity analysis and optimization of carbon capture systems through 
a user-friendly interface ( Eslick et al., 2014 ). Bertsimas et al. have 
developed a local gradient-descent optimization algorithm to iden- 
tify locally robust solutions of unconstrained simulation based op- 
timization problems ( Bertsimas et al., 2010b ), or constrained prob- 
lems with known functional forms ( Bertsimas et al., 2010a ). 

In this work, we aim to highlight the importance of considering 
uncertainty when performing surrogate-based simulation-based 
optimization, which is a topic rarely discussed in the surrogate- 
based optimization literature. We focus our work on techniques 
that are applicable for simulation-based problems for which prior 
distribution assumptions, or knowledge of the simulation model 
equations are not available. Specifically, first we ask the question: 
Can simulation-based data-driven optimization be treated as a de- 
terministic problem in engineering case studies? We argue that 
there are several forms of uncertainty that are embedded within 
data-driven optimization problems that need to be considered, and 
we show this through a simulation-based case study. 

First, one of the most commonly referred to sources of un- 
certainty in simulation-based optimization is caused by numeri- 
cal methods and numerical precision. However, this form of uncer- 
tainty is negligible in state-of-the-art computer systems and soft- 
ware. A second major source of uncertainty is introduced from the 
uncertain simulation parameters that are estimated using exper- 
imental data (e.g., mass transfer coefficients, kinetic parameters, 
etc.). This form of uncertainty is often not considered in bench- 
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marking of surrogate-based optimization solvers, treating the data- 
generating simulation as a deterministic model. Finally, even if the 
simulation is deterministic, a last form of uncertainty is introduced 
during the selection of the form and the training of the parameters 
of the surrogate model. An example of this type of uncertainty is 
shown in Fig. 1 , where in (a) slightly different samples are used 
to fit the same type of surrogate model (i.e., Kriging) and in (b) 
the same samples are used to fit different types of surrogate mod- 
els (i.e., Kriging, polynomial and Support Vector Regression (SVR)). 
Through this simple example, it becomes evident that small vari- 
ations in sample locations, and the choice of the surrogate model, 
introduce uncertainty in the final output predictions of the meta- 
model, and would potentially lead to different optimal solutions. 

All three forms of this uncertainty may not be present in a spe- 
cific application simultaneously, however, in a surrogate-based op- 
timization approach the latter form of uncertainty is always intro- 
duced. As a result, we argue that uncertainty is unavoidably em- 
bedded within the problem of data-driven surrogate-based opti- 
mization. We show this through a case study that suffers from 
two forms of uncertainty: (a) the simulation is stochastic due to 
the presence of an uncertain parameter, and (b) the best form 
and parameters of the surrogate model to represent the simulation 
are unknown. The case study discusses direct air capture (DAC) by 
passing air through solid adsorbents inside a monolithic structure 
and removing the CO 2 through pressure swing adsorption. The DAC 
simulation model outputs are affected by an estimated mass trans- 
fer coefficient parameter. 

Finally, we present several ideas for handling uncertainty when 
using surrogates for optimization that are general enough to be 
adapted to different metamodeling techniques. The techniques pro- 
posed in this work use existing concepts from the robust and 
stochastic optimization and discrepancy modeling literatures. The 
main contribution of this paper is two-fold: (a) this paper serves 
as a brief review and comparison of different literatures that are 
rarely discussed together, namely surrogate-based optimization, ro- 
bust and stochastic optimization and discrepancy modeling, and 
(b) the main novelty of this paper is the adaptation and compre- 

hensive comparison of existing concepts from diverse fields within 
a surrogate-based optimization framework under uncertainty. 
Specifically, we employ a Robust Counterpart (RC) approach to de- 
velop “Robust Surrogates” from an ensemble of deterministic sur- 
rogates and compare this approach with a sample average approx- 
imation formulation, as well as a discrepancy modeling approach. 
We discuss the advantages and disadvantages of different types of 
surrogate modeling and uncertainty handling methods. Overall, we 
show that the obtained robust solutions are more conservative, but 
maintain feasibility at different realizations of the uncertain pa- 
rameters, which is not the case for deterministic solutions. 

The remainder of the paper is structured as follows. First, the 
motivating case study is described in the Motivating Case Study: 
Design of Direct-Air Capture section. Following, we discuss sam- 
pling and surrogate modeling methods (Surrogate Modeling Meth- 
ods) and focus on two types that were used in this work, namely 
polynomial approximations and artificial neural networks. Next, 
three ideas for handling uncertainty within a surrogate-based op- 
timization framework are discussed in section Methods for Han- 
dling Uncertainty. The results are then presented for several com- 
binations of surrogate models and uncertainty management meth- 
ods and all solutions are validated against the actual simulation 
(Results). We conclude the paper with some discussion and future 
perspectives (Conclusions). 
2. Motivating case study: design of direct-air capture 

Our direct air capture (DAC) design aims at removing CO 2 di- 
rectly from ambient air using solid adsorbents via pressure swing 
adsorption. The solid adsorbent is coated inside monolithic chan- 
nel in the form of films. For this case study, we have used a metal 
organic framework (MOF), MIL-101(Cr)-PEI-800, as the solid ad- 
sorbent. Details about the isotherm behavior of this adsorbent at 
ambient CO 2 conditions ( ∼ 400 ppm) can be found in Sinha et al. 
(2017 ). The Direct Air Capture process is performed in two steps: 
adsorption and desorption, as shown in Fig. 2 . During the adsorp- 
tion step, ambient air is passed through the front end of the chan- 

Fig. 2. Schematic of direct air capture process. 
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nel with the help of blowers. CO 2 adsorbs in the MOF film as the 
air flows inside the channel and CO 2 depleted air is emitted from 
the rear end of the channel. During the desorption step, the pres- 
sure from the rear end of the channel is decreased below atmo- 
spheric pressure with the help of vacuum pump and the front end 
of the channel is closed. After this brief depressurization, steam 
is then used to heat the channel, this causes CO 2 to desorb from 
the adsorbent. The steam also sweeps the CO 2 down the channel 
lowering its partial pressure due to steam dilution and eventually 
removing it from the channel. 

The DAC design is modeled by formulating coupled heat and 
mass balance equations governing the concentration and tem- 
perature dynamics of the different process components. The de- 
tailed governing equations of this model have been presented in 
Sinha et al. (2017 ) and are included in the Supplementary Infor- 
mation of this paper. The model tracks the gas phase concentra- 
tion of three adsorbates, CO 2 , N 2 and O 2 . The distribution of tem- 
perature within the gas, adsorbent and monolithic wall are also 
modeled through the heat balance. The velocity of the gas inside 
the channel is modeled using the Hagen Poiseuille equation. Spe- 
cific boundary and initial conditions for the adsorption and desorp- 
tion steps are required to model the operation of the temperature 
swing adsorption process. The rate of adsorption of CO 2 is approxi- 
mated by a linear driving force model, where the equilibrium con- 
centration of adsorbed CO 2 is determined by isotherm equations. 
The rate of adsorption also depends on the mass transfer coeffi- 
cient k ( h −1 ) that needs to be estimated. Determination of mass 
transfer coefficient requires estimation of adsorbent film thickness 
and effective diffusivity of CO 2 inside the adsorbent. Adsorbent 
film thickness determination involves uncertainty due to irregular 
adsorbent film coating. Similarly, determination of effective diffu- 
sivity introduces sources of uncertainty due to human errors in ex- 
perimental runs and inherently through the orientation and thick- 
ness of MOF crystals on the adsorbent surface. Hence, mass trans- 
fer coefficient is an uncertain parameter in the DAC model. 

In this case study, we have used adsorption time ( t ads ) and des- 
orption time ( t des ) as inputs and productivity, recovery, purity and 
energy as the output design variables. Definition of the output de- 
sign variables are provided in Eqs. (1) –(4) . 
Productivity = Amount of C O 2 recovered as product (mol) 

mass of adsorbent ( kg ) × total time (h) (1) 
Recovery = Amount of C O 2 recovered as product (kg) 

Amount of C O 2 fed as input (kg) (2) 
Purity = Moles of C O 2 recovered as product 

Total moles of gas recovered as product (3) 
Energy = E Blower + E Vacuum (4) 
where E Blower is the energy consumed in the blowers that push 
the ambient air inside the monolithic channel during adsorption. 
E Vacuum is the energy required to operate the vacuum pump during 
desorption. 

Fig. 3 shows the process flow for the DAC simulation. The in- 
put variables ( t ads and t des ) are fed to the model to obtain the out- 

Fig. 3. Process flow showing input and output variables along with uncertain pa- 
rameter. 

put values of productivity, recovery, purity and energy at varying 
mass transfer coefficient, k . The model is implemented in gPROMs 
( “gPROMS,” 1997–2018 ). 

Based on the above, the optimization problem we propose to 
solve in this work is as follows: 
max Productivity ( t ads , t des , k ) 
subject to: 
Purity ( t ads , t des , k ) ≥ 95 
Recovery ( t ads , t des , k ) ≥ 15 
Energy ( t ads , t des , k ) ≤ 0 . 2 
20 ≤ t ads , t des ≤ 250 

(P1) 

All of the equations in formulation ( P1 ) rely on the simulation 
outlined above. In addition, all of the constraints and the objec- 
tive function are expected to be highly nonlinearly correlated with 
the two decision variables and the uncertain parameter. One ap- 
proach to optimize this system would be through discretization 
of the system of equations and the formulation of a large non- 
linear programming problem. However, in this work we will fol- 
low a surrogate-based optimization approach, based on which we 
will collect data from the simulation and approximate the objective 
function and all of the constraints in P1 with surrogate models. 
3. Surrogate modeling methods 

In this section, we discuss the problem of fitting a surrogate 
model f ( m ) ( b ( m ) , x ), where xεR D and b ( m ) is the vector of parame- 
ters fitted to a set of X − Y m input-output data. X is a [ N × D ] ma- 
trix of n = 1 , . . . , N observations in d = 1 , . . . , D dimensions . Y is 
a [ N × M ] matrix of m = 1 , . . . , M outputs measured at the samples 
in X , and Y m is the vector of matrix Y corresponding to output m . 
Each function for each output m may differ in the form of f m and 
the parameter vector b m . 

There are many different types of surrogate models or meta- 
models that have been used to approximate data from computer 
simulations. The types of surrogate models can be broadly catego- 
rized into: (a) explicit regression functions with functional forms 
that are fixed a-priori (e.g., linear, quadratic and generalized lin- 
ear regression) and (b) implicit regression functions that are based 
on linear or nonlinear kernel transformations, such as Gaussian 
Process Models, Neural Networks, Support Vector Regression and 
more ( Hastie et al., 2009 ). Although all surrogate models have pa- 
rameters that need to be fitted based on observed data, the first 
category requires that one predefines the terms of the regres- 
sion function, while the second category includes generic nonlin- 
ear universal approximators, whose structure and model parame- 
ters don’t have a physical meaning and could change depending on 
the amount of data available. 

This work does not aim to perform a thorough comparison be- 
tween all different types of surrogate functions, as this has been 
done in recent work on a variety of problems ( Bhosekar and Ier- 
apetritou, 2018; Davis et al., 2018; Garud et al., 2018 , 2018 ). In 
this work, we employ two different types of surrogate models that 
have convergent approximating qualities: (a) Neural networks, and 
(b) Sparse-Grid polynomial interpolation models. For each type, we 
use well established sampling strategies, training and validation 
procedures, to ensure that we identify a surrogate model structure 
and the optimal parameters that predict the collected data with 
minimized validation error. We compare the performance of these 
two different types of models and then employ various strategies 
to formulate surrogate-based optimization under uncertainty prob- 
lems. 
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3.1. Polynomial approximations based on sparse grids 

One approach for surrogate modeling is polynomial interpolat- 
ing models using a set of fixed samples that lie on a Sparse Grid, 
or else a Smolyak Grid ( Smolyak, 1963 ). The Sparse Grid and poly- 
nomial fitting method has received significant attention in the in- 
tegration ( Bungartz and Dirnstorfer, 2003, 2004; Dung, 2016; Ger- 
stner and Griebel, 1998; Peherstorfer et al., 2015; Tang et al., 2016 ), 
and approximation theory ( Gajda, 2005; Plaskota and Wasilkowski, 
2004; Xu, 2015 ) literatures. One of the strengths of this approach 
is the existence of convergent approximation error bounds as the 
number of samples increases under mild smoothness assumptions 
( Wasilkowski and Wozniakowski, 1995 ). In fact, it has been shown 
that interpolating functions fitted using these grids converge to 
the true black-box function with a more tractable rate and a 
weaker dependence on dimensionality. These approximations have 
recently gained some popularity in the field of surrogate-based 
optimization ( Grimstad and Sandnes, 2016; Hulsmann and Reith, 
2013; Kieslich et al., 2018; Novak and Ritter, 1996; Valentin and 
Pfluger, 2016 ). 

The first decision in building a SG is the selection of the sam- 
pling basis points, which are roots or extrema of the orthog- 
onal polynomials used to build the final surrogate function. In 
this work we use extrema of Chebyshev polynomials as our ba- 
sis points. Once the basis is selected, a multidimensional grid 
can be constructed as a tensor product of one-dimensional basis 
points. A multidimensional SG can be constructed for different de- 
grees of polynomial exactness, or else approximation level ( µ). As 
µ increases, more points are added to the grid ( Fig. 4 ); the size of 
the interpolating polynomial terms and parameters increases; as 
does its approximation accuracy. One very important property of 
SGs is their ‘nesting’ nature, which means that every level of ap- 
proximation contains all of the points of the previous level ( Fig. 4 ). 
Finally, in order to fit the multidimensional polynomial based on 
the level and grid points collected, Lagrange interpolation is used 
to identify the parameters of the surrogate function. Details about 
how to construct these grids and surrogate functions has been doc- 
umented in the literature, and algorithmic packages exist for their 

Fig. 4. Sparse grid designs for up to level µ= 3. Orange points represent points of 
prior level µ= 2, blue points and orange points are part of level µ= 3 ( Eq. (5) ). (For 
interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.) 

generation ( Harding, 2016; Judd et al., 2014; Kieslich et al., 2018; 
Novak et al., 2010; Peherstorfer et al., 2015; Valentin and Pfluger, 
2016 ). 

Unlike many other types of popular machine learning methods 
for development of approximations, this approach has no flexibil- 
ity on the sampling scheme and functional form. As a result, these 
methods are only suited for simulation-based optimization stud- 
ies, where one can precisely control the location of the samples. 
Once an algorithm exists to create the grid points and basis func- 
tions for different levels µ, the simulation is inquired at the sim- 
ulation points, and the parameters are fitted by solving a system 
of linear equations ( Fig. 5 ). A grid of D = 2 and levels µ = 2 and 
µ = 3 is shown in Fig. 4 , along with their associated functional 
forms ( Eq. (5) ). As seen in Fig. 4 , a Sparse Grid in 2 dimensions has 
N = 13 points for level of approximation µ = 2 and N = 29 points 
for µ = 3. In order to validate the approximation error of the fitted 
functions, we calculate the approximation error on sample points 
that do not lie on the SG (training set). In this work, we use points 
collected based on a Latin Hypercube Design as validation points 
(validation set), and these will be discussed in the next section. 
f S G 3 = b 0 + b 1 x 1 + b 2 (2 x 2 1 − 1 ) + b 3 x 2 + b 4 (2 x 2 2 − 1 ) + b 5 (4 x 3 1 − 3 x 1 )

+ b 6 (1 − 8 x 2 1 + 8 x 4 1 ) + b 7 x 1 x 2 + b 8 x 2 (2 x 2 1 − 1 ) + b 9 x 1 (2 x 2 2 − 1 )
+ b 10 (2 x 2 2 − 1 )(2 x 2 1 − 1 ) + b 11 (4 x 3 2 − 3 x 2 ) + b 12 (1 − 8 x 2 2 + 8 x 4 2 )
+ b 13 (5 x 1 − 20 x 3 1 + 16 x 5 1 ) + b 14 (18 x 2 1 − 48 x 4 1 + 32 x 6 1 − 1 )
+ b 15 (56 x 3 1 − 112 x 5 1 + 64 x 7 1 − 7 x 1 )
+ b 16 (1 − 32 x 2 1 + 160 x 4 1 − 256 x 6 1 + 128 x 8 1 )
+ b 17 x 2 ( 4x 3 1 − 3 x 1 )
+ b 18 x 2 (1 − 8x 2 1 + 8x 4 1 ) + b 19 (4x 3 1 − 3 x 1 )(2 x 2 2 − 1 )
+ b 20 (2 x 2 2 − 1 )(1 − 8x 2 1 + 8x 4 1 ) + b 21 x 1 (4 x 3 2 − 3 x 2 )
+ b 22 (2 x 2 1 − 1 )(4 x 3 2 − 3 x 2 ) + b 23 x 1 (1 − 8 x 2 2 + 8 x 4 2 )
+ b 24 (2 x 2 1 − 1 )(1 − 8 x 2 2 + 8 x 4 2 ) + b 25 (5 x 2 − 20 x 3 2 + 16 x 5 2 )
+ b 26 (18 x 2 2 − 48 x 4 2 + 32 x 6 2 − 1 )
+ b 27 ( 56 x 3 2 − 112 x 5 2 + 64 x 7 2 − 7 x 2 )
+ b 28 (1 − 32 x 2 2 + 160 x 4 2 − 256 x 6 2 + 128 x 8 2 ) (5) 

3.2. Artificial neural network (ANN) models based on Latin hypercube 
sampling (LHS) 

Even though the basic concept of ANNs has been known since 
the middle of the 20th century, ANNs have recently gained popu- 
larity, as they started to outperform other machine learning tech- 
niques ( Schmidhuber, 2015 ). ANNs have favorable properties for 
a use as surrogate models: ANN evaluation is fast and therefore, 
ANNs are suitable for application in process design and optimiza- 
tion ( Hoskins and Himmelblau, 1988 ). In this work, we used multi- 
layer feedforward networks (FFN) for surrogate modeling, which is 
a class of ANNs that can approximate any Borel measurable func- 
tion to any desired degree of accuracy ( Hornik et al., 1989 ). FFNs 
have been applied to different tasks in the field of chemical engi- 
neering, for example, CO 2 capture processes ( Nuchitprasittichai and 
Cremaschi, 2013 ), Fischer–Tropsch synthesis ( Fernandes, 2006 ), 
Biodiesel production ( Yuste and Dorado, 2006 ), pressure swing ad- 
sorption processes ( Lewandowski et al., 1998 ) and some of the 
most common unit operations ( Henao and Maravelias, 2011 ). 

ANNs are inspired by the way natural neurons process informa- 
tion. First, the incoming values x d are weighted by a factor w md , 
which is fitted for each connection between two neurons. Those 
weighted values are then summed together the so-called bias term 
( b m ). Second, this sum is exposed to an activation function f to gain 
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Fig. 5. Steps for building and fitting SG polynomial functions. 

Fig. 6. Example of a 3–4–3–2-shaped FFN mapping from X ∈ R 3 to Y ∈ R 2 . 
the neurons output y m , as shown in Eq. (6) : 
y m = f 

( 
b m + ∑ 

d w md x d 
) 

(6) 
Using nonlinear activation functions enables the FFN to repre- 

sent complex nonlinear relationships between inputs and outputs. 
A schematic of how artificial neurons are organized in a FFN can 
be found in Fig. 6 . A neuron receives the outputs from all neu- 
rons in the anterior layer and passes its output to all neurons in 
the posterior layer. The last layer in the direction of calculation is 
called output layer, while all previous layers, except the first in- 
put layer, are hidden layers. For many years, logistic functions like 
the hyperbolic tangent or the sigmoid function serve as the most 
common activation functions ( LeCun et al., 2012 ). Recently neurons 
with different activation functions, such as rectifier liner units Re- 
LUs and exponential linear units ELUs, have become more popular 
( Clevert et al., 2016 ). 

When fitting ANN models, we have more flexibility with re- 
spect to selecting the sampling design. In this work, Latin Hyper- 
cube Sampling (LHS) is used, which is a popular space-filling sam- 
pling technique for multidimensional spaces ( McKay et al., 1979 ). 
Based on LHS, a specified number of sample points is positioned 
in the space such that the minimum distance between each pair 
of points is maximized. Based on this criterion, LHS designs are 
known to span the space relatively well and as a result cluster- 
ing of points that can be caused by random sampling is avoided. A 
LHS design with N = 39 points used in this work is shown in Fig. 7 . 
The total number of points is selected such that a fraction of the 
points can be used for training ( N = 29) , and the rest used for val- 
idation. The size of the training and validation set is selected to 
match the number of samples used to train and validate the poly- 
nomial surrogate models. In this case study we found that differ- 
ent set of training and validation points through cross validation, 
led to different accuracy in the best fitted FFN surrogate models. 
This is probably caused by the relatively low number of data points 
available which changed the composition of the training set sub- 
stantially between runs. We have observed that in certain cases, 
when randomly splitting the validation and training sets, we en- 
counter the case where some validation points are placed outside 
the region that is spanned by the training set. This may cause 

Fig. 7. Total set of Latin Hypercube samples collected for training and validation 
of ANNs. Dominated points are shown in blue circles, non-dominated points are 
shown in orange squares. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
high validation errors, resulting in the disadvantageous behavior of 
early stopping, since the validation points are basically extrapola- 
tion points. Therefore, for FFN fitting, the splitting of training and 
validation was not done fully randomly, but in a way that ensured 
that “non-dominated” points of the dataset were always part of the 
training data ( Fig. 7 ). In this case a point is “dominated” if there is 
at least one other point with higher or lower values for adsorption 
or desorption time in any of the four combinations of axis and di- 
rections. Hence non-dominated points are all points that do not 
fit this requirement in at least one of the four possible combina- 
tions of directions. In addition, the split into training and valida- 
tion sets = is done so that in every quarter of the LHS dataset the 
fraction of validation points is equal. This is done to avoid possible 
clustering of the validation points in on area. 

The number of neurons and layers, the training algorithm and 
the activation function all have an impact on the quality of the ob- 
tained FFN. In this work, we used a modified Genetic Algorithm 
to identify a good set of hyperparameters for training, because hy- 
perparameters influence each other and training is overall an op- 
timization problem. Two different approaches were investigated, 
a multiple input multiple output (MiMo) FFN where all outputs 
are calculated simultaneously and individual multiple input sin- 
gle output (MiSo) FFN for each of the four outputs. In prepara- 
tion of training five different kinds of hyperparameters need to be 
specified: the number of layers, the number of neurons in each 
layer (which can vary in each layer), the activation function of the 
hidden and output layers and the training algorithm for the net- 
work. In all cases, we ensure that the shape of a FFN is chosen 
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in a way that the degrees of freedom in the FFN are lower or 
equal the number of training points available. The training proce- 
dure of these structures was done in an automated framework that 
was developed by integrating several state-of-the-art algorithms 
in the scikit-learn and Keras packages on a TensorFlow backend 
( Chollet, 2015 ; Abadi et al., 2015; Pedregosa et al., 2011 ) and de- 
tails regarding the training parameters and settings are provided in 
the Results. Overall, the training and validation procedure for FFN 
models is a more involved procedure to ensure that the best model 
is found and overfitting is avoided, especially in this case of limited 
data (“small data”). However, the high-accuracy and high-flexibility 
of FFN models make them attractive, especially for higher dimen- 
sions, when large data sets are available and particularly when the 
samples cannot be selected. 
4. Methods for handling uncertainty 

In this section we present various ways to manage the different 
forms of uncertainty outlined earlier. We present three different 
ideas: (a) formulating a robust counterpart surrogate-based opti- 
mization formulation; (b) formulating a stochastic formulation us- 
ing an ensemble of surrogates; and (c) fitting the uncertainty in 
the form of a discrepancy to correct a nominal surrogate model. 
These three ideas are not tied to the specific surrogate models pre- 
sented in this work, and therefore they represent general method- 
ologies that can be applied for a wide range of studies, if similar 
datasets were available. However, we will describe why some of 
these approaches are only applicable with certain general classes 
of surrogate models, based on the form of the surrogate model. At 
this point it is important to mention that there is a large body 
of work for quantification of uncertainty using model-based ap- 
proaches, or reachability analysis methods for dynamical systems 
with uncertainty ( Scott and Barton, 2013; Shen and Scott, 2017 ). 
However, here we discuss approaches for optimization under un- 
certainty, assuming that the simulation is too complex and there- 
fore is treated as a black-box problem. 
4.1. Robust optimization 

Robust optimization formulations aim to find a single optimal 
solution that is feasible for all the realizations within an uncertain 
parameter space. Early work of this concept proposed performing 
perturbations of a nominal problem and formulating a linear pro- 
gramming problem that would result to an optimal solution that is 
feasible for all possible perturbations ( Ben-Tal et al., 2009 ; Ben-Tal 
and Nemirovski, 1999; Soyster, 1973 ). This idea has evolved over 
the years resulting to several recent advances which aim to find 
probabilistic bounds of optimization problems which suffer from 
parametric uncertainty ( Ben-Tal and Nemirovski, 1999; Ghaoui and 
Lebret, 1997; Guzman et al., 2016 ; Li et al., 2011 ; Li et al., 2012; 
Matthews et al., 2018; Yuan et al., 2016 ). Accounting for the uncer- 
tainty embedded in mostly all real-life applications, significant ef- 
fort has been devoted recently to combine data-driven techniques 
for characterizing the uncertainty in robust optimization ( Ben-Tal 
et al., 2009; Birge and Louveaux, 2011 ). In robust optimization, the 
uncertain parameters belong to a given uncertainty set and the ro- 
bust solution is known to be immunized against uncertainty ( Ben- 
Tal et al., 2009 ). While most robust optimization studies have been 
focused on deriving standard uncertainty sets from available data 
( Ben-Tal et al., 2009 ; Ben-Tal et al., 2013; Bertsimas et al., 2018 ; 
Li et al., 2019 ), recently the use of data and machine learning 
has been proposed to find more customized uncertainty sets ( Ning 
and You, 2018; Shang et al., 2017 ). In other recent related work, 
surrogate models have been used to find the convex subregions 
( Zhang et al., 2015 ) and the uncertainty sets from available data 
( Ning and You, 2018; Shang et al., 2017 ). The work of Bertsimas 

et al. (2010a, 2010b ) is the most relevant work to this paper. This 
work tackles the challenge of parameter and model mismatch un- 
certainty in simulation-based optimization, through a robust lo- 
cal search algorithm that requires the simulation to provide input- 
output values and the gradient of the objective function. In this 
work we use the definition of the robust formulation presented 
by Bertsimas et al. to build a robust counterpart surrogate model, 
while global optimization is used to optimize the surrogate-based 
formulations and the gradients of the simulation are not required. 

One of the major decisions in robust counterpart optimization 
is the selection of the parameter uncertainty set, which signifi- 
cantly affects the conservativeness of the final solution ( Ben-Tal 
et al., 2009; Bertsimas et al., 2018; Guzman et al., 2016 ; Li et al., 
2011 ). In this work we formulate the constrained surrogate-based 
optimization problem as a robust counterpart formulation with 
box uncertainty, where the uncertain parameters are the fitted pa- 
rameters of the surrogate models ( P2 ). 

max N ∑ 
n =1 ˜ b n, Prod g n ( x ) 

subject to : 
N ∑ 

n =1 ˜ b n,m g n ( x ) ≤ c m m = { Rec , Pur , Ene } (P2) 
where ˜ b n,m represent the uncertain parameters of the surrogate 
models for the objective function (productivity) and constraints 
(recovery, purity, energy), respectively. Parameters c m represent 
the right-hand side of the feasibility constraints that are set to a 
known deterministic value. One of the pre-requisites of this formu- 
lation is that the uncertain parameters must participate linearly in 
the model, which makes this approach applicable only with a sub- 
set of the surrogate models. As a result, we can only formulate the 
above Robust Counterpart (RC) surrogate problem with polynomial 
functions, since neural network functions is a convoluted nonlin- 
ear function with respect to the parameters. Consequently, func- 
tions g n represent the basis functions of the polynomials shown in 
Eq. (5) . In RC optimization, uncertain parameters are represented 
as the sum of the nominal value and their perturbation, as shown 
in Eq. (7) . 
˜ b n,m = b n,m + ξn,m ˆ b n,m ∀ n = 1 , .., N m = { P rod, P ur, Rec, Ene } 

(7) 
where b n, m represent the nominal value, ˆ b n,m represent a posi- 
tive perturbation and ξ n, m represent independent random variables 
which are subject to uncertainty that is bounded by the selected 
uncertainty set. The final RC formulation takes different forms de- 
pending on the uncertainty set that is selected to describe the un- 
certain parameters. By writing the objective function as an uncer- 
tain constraint and using a box uncertainty set, ( P2 ) can be written 
as follows: 

max z 
subject to: 
z − N ∑ 

n =1 b n, Prod g n (x ) + # N ∑ 
n =1 ˆ b n, Prod | g n (x ) | ≤ 0 

N ∑ 
n =1 b n,m g n (x ) + #

[ 
N ∑ 

n =1 ˆ b n,m | g n ( x ) | 
] 

≤ c m m = { Rec , Pur , Ene } 
(P3) 

where # represents the uncertain set parameter. For the simplest 
case of box uncertainty within an interval, # = 1 . One of the ad- 
vantages of robust optimization when compared to stochastic op- 
timization is that the size of the robust formulation does not in- 
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crease from the nominal formulation in size or complexity. De- 
tails about how we calculate b n, m and ˆ b n,m for the surrogate-based 
direct-air capture problem, given the data that is available, will be 
provided in the Results. 
4.2. Stochastic programming 

Stochastic programming is another commonly used technique 
of decision-making under uncertainty, which is introduced in the 
1950s by Dantzig (1955 ). In the contrast to robust optimization, 
the uncertain parameters in stochastic programming are assumed 
to follow a probability distribution obtained from historical data or 
prior knowledge ( Birge and Louveaux, 2011 ). The different realiza- 
tions of the uncertain parameters are scenarios which are used to 
formulate the stochastic optimization problem. The objective func- 
tion of stochastic programming is to optimize the expectation of 
the productivity, subject to constraints that represent multiple sce- 
narios. Therefore, to calculate the expectation of the productivity, a 
probability distribution assumption is needed. Given the data that 
has been collected, the key assumption made here is that all ten 
scenarios are identically-distributed in the DAC process, which is 
essentially equivalent to the sample average approach ( Birge and 
Louveaux, 2011 ). In order to formulate a stochastic programming 
surrogate-based formulation, the different scenarios are the differ- 
ent realizations of the simulation outputs for different values of 
mass transfer coefficient k. In other words, the stochastic formula- 
tion aims to find the expected optimal solution when the param- 
eters of the surrogate models are uncertain. More specifically, the 
expectation of the productivity E( P i ) can be expressed as: 
E ( P i ) = N ∑ 

i =1 p i P i (8) 
where P i is the productivity for each instance i , and p i = 1 

N . N = 
10 is the number of scenarios. The full stochastic formulation ( P4 ) 
is: 

max 
t ads , t des 1 

N 
N ∑ 

i =1 P i ( t ads , t des , k i ) 
s.t. 15 ≤ 1 

N 
N ∑ 
1 recover y i ( t ads , t des , k i ) ≤ 100 

95 ≤ 1 
N 

N ∑ 
1 purit y i ( t ads , t des , k i ) ≤ 100 

0 ≤ 1 
N 

N ∑ 
1 energ y i ( t ads , t des , k i ) ≤ 0 . 2 

25 ≤ t ads ≤ 250 
25 ≤ t des ≤ 250 (P4) 

Notably, this is a simple one-stage stochastic programming 
problem with t ads and t des as the two variables. If more data 
is collected, or additional knowledge about the system becomes 
available, different assum ptions regarding the distribution or the 
weights of the objective function can be used. 
4.3. Discrepancy modeling 

The final approach for handling uncertainty differs from the 
above two, because it does not provide a single robust or ex- 
pected optimal solution, but it can be used to develop a “map”
of the uncertainty in the form of a surrogate model. This approach 
also allows us to combine the two surrogate modeling approaches 
(i.e., polynomials and Neural Networks) in the form of a hybrid 
model. The concept of discrepancy modeling can be found in dif- 
ferent variations in different fields which use different terminology. 

Fig. 8. Structure of hybrid nominal/discrepancy model structure. 
Kennedy and O’Hagan discuss the concept of lumping many differ- 
ent forms of uncertainty, such as parameter uncertainty, model in- 
adequacy, residual variability, and code uncertainty into a discrep- 
ancy model term ( δ( x )) ( Kennedy and O’Hagan, 2001 ). The discrep- 
ancy model is essentially a model of the nominal model ( η( x )) er- 
ror, without accounting for the randomly distributed measurement 
error ( ɛ ): 
f ( x ) = η( x ) + δ( x ) + ε (9) 

This concept is based on the realization that all models are ap- 
proximations of real systems and uncertainty exists in many forms. 
All of the aforementioned forms of uncertainty can be lumped into 
the modeling of the “systematic error”. This idea has been ex- 
tended and applied into modeling of dynamical systems, by com- 
bining a reduced-model error with a dynamic discrepancy model 
( Li et al., 2017 ). This concept shares some similarities with the 
concept of hybrid modeling that has been used in the PSE litera- 
ture extensively ( von Stosch et al., 2014 ). Specifically, researchers 
have proposed several hybrid modeling structures (i.e., serial or 
parallel) that combine inaccurate or incomplete mechanistic mod- 
els with black-box models that capture the residuals between the 
model and the experimental data ( Duarte et al., 2004; Thompson 
and Kramer, 1994; Van Can et al., 1996 ). Particularly Neural Net- 
work models have been found to be very useful in modeling such 
residuals between a model and experimental observations. 

We merge concepts from the area of hybrid modeling and dis- 
crepancy modeling, as our last proposed alternative for handling 
uncertainty for data-driven surrogate-based optimization. We de- 
velop a hybrid model that can capture the nominal effects, but 
also provide corrections of the nominal predictions depending on 
the uncertainty caused by the mass transfer coefficient k . In our 
approach, the nominal model is a polynomial model, ηpoly ( t ads , 
t des ), fitted only with data from a single (nominal) k value ( Fig. 8 ). 
Our discrepancy model, δNN ( t ads , t des , k ), is a FFN model that is fit- 
ted using as inputs all of the remaining available data, while the 
output is the error between the nominal prediction and the sim- 
ulation data ( Eq. (10) ). Since this is a simulation-based case study, 
we can assume that the measurement error is negligible. 
f hybrid ( t ads , t des ) = ηpoly ( t ads , t des ) + δNN ( t ads , t des , k ) (10) 

The discrepancy model δNN ( t ads , t des , k ) is essentially a map of 
the effects of the uncertain parameter k on the predicted out- 
puts. Undoubtedly, an alternative approach would use all of the 
data, treating the uncertain parameter k as an input variable, 
and fit a single 3-variable model directly in one pass. However, 
since k is not a controllable input, the hybrid model structure of 
Eq. (10) aims to represent the typical case where one would have 
a nominal or mechanistic model available, and thus the goal would 
be to model the trends of the residuals or the systematic bias of 
that model in a second stage. In addition, it has been claimed that 
if the nominal model is sufficiently accurate, the map of the resid- 
uals is a smoother function with less variability, and as a result 
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Table 1 
Applied hyperparameter combinations for FFN training. 

Model Surrogate type Shape Training algorithm Hidden layer activation Output layer activation 
All (MiMo) MiMo 2–8–6–4 Nadam tanh linear 
Energy MiSo 2–7–1 Adam tanh linear 
Productivity MiSo 2–4–2–1 Adam tanh linear 
Purity MiSo 2–4–2–1 Nadam tanh linear 
Recovery MiSo 2–7–1 Nadam tanh linear 

an easier output to fit using a surrogate model. We will test this 
hypothesis in the results, by comparing the quality of approxima- 
tion and optimization via the proposed hybrid model and the sin- 
gle black-box three-variable model, where t ads , t des and k are all 
treated as inputs. 
5. Results 
5.1. Quality of approximations 

In this section, we will compare the performance of the two 
surrogate modeling techniques used to approximate the simulation 
data. We have performed all of the studies in this work by col- 
lecting the following data from the simulation: (1) 29 sparse grid 
samples for 10 realizations of k (290 points); (b) 39 Latin Hyper- 
cube points for 10 realizations of k (390 points); (c) 9 validation 
points for 10 realizations of k (90 points), (d) 8 points outside the 
experimental region for extrapolation (80 points). A figure of all 
of the sampling locations is provided in Supplementary Informa- 
tion. The first set of points was used for training the polynomial 
approximations, the second was used for training and validation of 
the FFN models and the last category was not used for any training 
or testing procedure, and thus served as the validation set of both 
surrogate model types. 

One of the key findings of this comparative work is that the se- 
lection of sampling sizes, training, validation and test sets played 
a significant effect on the final results and conclusions, especially 
because we are operating in a “small-data” regime. The fitting 
and validation procedure of polynomial models was described pre- 
viously. Training and validation of FFNs is performed in epochs, 
where one epoch represents one iteration of the training algorithm 
in which the FFN is exposed to training points and the weights are 
adjusted according to the output errors. During each epoch, the 
number of training points that are used before a weight update 
is performed can be tuned. The choices are after every point, after 
all points or after a certain number of points, and this parameter is 
referred as mini batch size ( Ruder, 2016 ). In this work a maximum 
number of 10 0,0 0 0 epochs with 29 points of training data (to be 
directly comparable with the polynomial surrogate models) using a 
mini batch size of four. To prevent overfitting 10 additional points 
of validation data are used, which corresponds to a validation split 
of 25.6%. If in 10,0 0 0 epochs the error on the validation points re- 
mains constant, then early stopping is employed to terminate the 
training. The minimum validation error is taken as a measure of 
quality for the obtained FFN. For each surrogate model developed, 
the training was done 40 times with the same set of hyperparam- 
eters and the best obtained FFN was selected for further use as 
surrogate model. 

The identified hyperparameter combinations of the optimally 
identified FFN for the Multiple Input-Multiple Output (MiMo) 
model, and the Multiple Input-Single Output (MiSo) models are 
shown in Table 1 . The identified set of hyperparameters for one 
value of the mass transfer coefficient is assumed to be suitable for 
all other FFNs representing the same input-output relation at dif- 
ferent values of k . 

Despite their very different structure and sample locations, both 
surrogate model types were able to capture the four different out- 

Table 2 
Relative average and maximum absolute Errors (%) for validation points. 

Purity Recovery Productivity Energy 
FFN – MiMo (rMAE) 0.029 0.809 0.574 0.681 
FFN – MiSo (rMAE) 0.028 0.385 0.977 0.669 
SG – Poly (rMAE) 0.020 0.522 1.232 2.177 
FFN – MiMo (rMaxAE) 0.157 5.233 3.231 5.084 
FFN – MiSo (rMaxAE) 0.248 1.998 8.871 5.811 
SG – Poly (rMaxAE) 0.053 1.279 2.922 7.596 

Table 3 
Relative average and maximum absolute errors (%) for extrapolation points. 

Purity Recovery Productivity Energy 
FFN – MiMo (rMAE) 1.925 20.727 45.430 15.049 
FFN – MiSo (rMAE) 1.715 10.028 41.041 15.289 
SG – Poly (rMAE) 0.801 12.708 19.179 13.631 
FFN – MiMo (rMaxAE) 19.567 351.267 197.381 52.265 
FFN – MiSo (rMaxAE) 19.407 78.971 173.083 45.574 
SG – Poly (rMaxAE) 3.562 43.811 57.778 53.769 

puts of Productivity, Recovery, Purity and Energy with sufficient 
accuracy. In Table 2 , we report the relative mean absolute error 
(rMAE) and relative maximum absolute error (rMaxAE) for the 
three different types of surrogate models and all outputs for the 
same validation points. In Table 3 , we report the same error mea- 
sures for 8 sample points collected outside the [ 25 − 250 ] range to 
test the extrapolating capabilities of the models. When it comes 
to predictions within the experimental region, we observe that the 
rMAE is below 1% for most models and FFNs perform better for 
three out of the four outputs. However, polynomial surrogates typ- 
ically have reduced absolute maximum errors between the surro- 
gate and the simulation. This result validates the theory of Sparse- 
Grid polynomial interpolation, which states the maximum error 
between the true function and the surrogate model converges to 
zero, as the level of approximation increases. Based on the re- 
sults shown in Table 3 , we observe that polynomials tend to per- 
form better in the case of extrapolation, apart from two excep- 
tions. This result could be because Sparse Grid points cover the 
extreme points of the search space. Overall, we observe that the 
performance of these surrogates is not promising for extrapolation 
and should not be used for predictions outside the range of the 
original experimental design. In Figs. 9 and 10 we show the surro- 
gate model predictions for both polynomial functions and FFN for 
a nominal k = 18 . 6 h −1 . As expected, the plots look similar and we 
observe that all of the four outputs are nonlinearly dependent on 
the two inputs. 
5.2. Deterministic optimization results 

If the uncertainty of k was not considered and one performed 
a surrogate-based optimization study for the nominal k value, a 
deterministic optimal solution would be obtained from each of 
the surrogate models ( Table 4 ). Both surrogate formulations were 
solved in GAMS using BARON ( Tawarmalani, 2005 ). The FFN mod- 
els were solved in Pyomo ( Hart et al., 2017 ), which generates a 
reduced-space formulation of the FFN models ( Schweidtmann and 
Mitsos, 2019 ) that is solved in GAMS using the same solver. Despite 
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Fig. 9. Surrogate functions using Sparse Grids and polynomials for nominal k = 18.6 h -1 . 
the fact that both surrogate models are accurate, and the same 
global optimizer is used to optimize them, we observe that the op- 
timal solution varies significantly when using a different surrogate 
model. In addition, since these results are based on a nominal k 
value, we should not expect these solutions to be feasible when 
k varies. In fact, by fixing the values of t ads and t des to the values 
in Table 4 for the polynomial and FFN respectively, and evaluating 
the prediction of the outputs for different values of k , we found 
that recovery and energy constraints were violated in almost half 
of the realizations of k . 

In addition to the variability in optimal solutions that may be 
observed when using different surrogate models, we expect to ob- 
tain different optimal solutions when individually optimizing dif- 
ferent surrogate models for each k value. This analysis was per- 
formed using polynomial surrogate models and the results are 
shown in Table 5 , where we see that adsorption time varies within 
[ 70 . 6 − 101 . 4 ] and desorption time varies within [ 128 − 195 ] . This 
variation in solutions validates our assumption that k plays a sig- 
nificant role and that the effects of k in the optimal solutions are 
also nonlinear. We observed similar variations when optimizing 
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Fig. 10. Surrogate functions using Hypercube samples and neural networks for nominal k = 18.6 h −1 . 
the FFN models. In the next sections we will provide the results 
obtained when accounting for uncertainty and we will compare 
the obtained results with this nominal deterministic case. 
5.3. Robust optimization with polynomial surrogate models 

Solving the robust surrogate-based formulation ( P3 ) can be con- 
sidered as solving of a problem comprised of surrogate functions 
that are under estimations of the different surrogate realizations. 
Due to the nonlinearity of the problem, we cannot guarantee that 

these are valid under-estimators of all of the realizations of the 
uncertain parameter space. However, by using the most conserva- 
tive uncertainty set, namely interval uncertainty, we aim to get a 
conservative underestimation of the outputs we are approximating. 
This is shown in Fig. 11 , where we overlay the polynomial surro- 
gate models for the objective function of productivity for all values 
of the uncertain mass transfer coefficient, as well as the robust- 
counterpart surrogate model which bounds all of the realizations 
from below. The optimal solution of formulation ( P3 ) is expected 
to highly increase the probability of obtaining a solution that will 
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satisfy all constraints throughout the uncertain parameter space of 
k . Also, it is important to note that through this formulation, we 
are grouping the effects of both forms of uncertainty ( k and surro- 
gate modeling) together. 

One of the challenges of formulation ( P3 ) is the calculation of 
the nominal ( b n, m ) and deviation parameters ( ̂ b n,m ) . Here, we used 
the average of each of the polynomial term parameters over all re- 
alizations of k as our nominal parameters. The deviation parame- 
ters are calculated using the standard deviation of the optimal pa- 
rameters of individual surrogate models. We carefully studied the 
behavior of the optimal surrogate parameter distributions and ob- 
served that they are narrow bell-shaped distributions. This can be 
explained by the fact that although k influences the surrogate func- 
tions, the trends remain similar and thus the optimized parameter 
values tend to cluster towards similar values. Selecting the devia- 
tion parameter has a significant effect on the conservativeness of 
the solution. In this work, we used a deviation equal to the stan- 
dard deviation of the optimized parameters for different k values, 
which resulted to a reasonable bound of all of our four outputs 
( Fig. 11 ). Using the above statistics, the robust formulation ( P3 ) 
was globally optimized using BARON and the optimal solution was 
identified as t ads = 48 s , t des = 138 sec , which differs from the de- 
terministic solutions obtained in Table 4 . 

We validated this solution ( Table 6 ) by running the simulation 
for all realizations of k that were initially used to build the models, 
and three additional k values that were not used to train any mod- 
els: k new = [ 7 . 2 , 14 . 4 , 21 . 6 ] . The most important result to observe 
in Table 6 is that no constraints are violated for any of the origi- 
nal or new mass transfer coefficients. In addition, the maximum 
objective function obtained is 0.372 mol C O 2 

kg Sorbent h , the minimum is 
0.198 and the average is 0.305. These values are lower but com- 
parable to the values of Table 5 , when each surrogate model was 
optimized individually. 

Fig. 11. Productivity polynomial surrogate models for all realizations of k bounded 
below by robust counterpart surrogate polynomial. 

5.4. Stochastic optimization with surrogate models 
Unlike the Robust surrogate approach, one advantage of formu- 

lation ( P4 ) is that it can be solved for any surrogate model. As 
a result, two versions of ( P4 ) were solved, namely one with all 
of the constraints and the objective are approximated by poly- 
nomial functions, and the second where all functions in P4 are 
FFN models. We performed this analysis to compare the perfor- 
mance of the different surrogate models, but nothing prohibits us 
from combining scenarios obtained by different types of surrogate 
models. The solution of the stochastic formulation does not pro- 
vide a worst-case solution like in the case of the robust formula- 
tion, but it provides an expected maximum productivity. The ex- 
pected solution when using polynomial models is: ( t ads , t des ) = 
( 73 , 176 ) , where the expected productivity is 0.327, while the op- 
timal solution when the formulation is comprised solely on Neural 
Networks is: ( t ads , t des ) = ( 78 , 132 ) , where the expected produc- 
tivity is 0.328. 

From the above two solutions we observe that the adsorption 
times are very similar for both problems, while desorption times 
differ. However, overall both formulations have led to relatively 
similar solutions, compared to the variability in solutions obtained 
when solving separate deterministic problems ( Table 5 ). This is a 
promising indication of considering uncertainty when using surro- 
gate models, since the result becomes less prone to the variation 
caused by all the different forms of uncertainty. However, varia- 
tion in the solutions still exists, and this might be because of lack 
of sufficient data (or scenarios). 

Finally, we validated the results of the solution obtained by the 
stochastic formulations, by running the simulation for the same k 
values as in the robust optimization study. This allows us to check 
whether the stochastic solution violates any constraints for differ- 
ent k values, and to calculate the accuracy of the expected produc- 
tivity. As can be seen in Table 7 , the obtained solution using the 
polynomial stochastic formulation does not violate any constraints 
and the average productivity is 0.315 (4% relative error from pre- 
dicted expected productivity). It is also important to note that the 
solution obtained using the polynomial stochastic programming 
formulation has a higher average than the one obtained by the ro- 
bust formulation. This is expected due to the conservativeness of 
the robust counterpart approach. However, the solution obtained 
using the FFN-based stochastic formulation has an expected pro- 
ductivity of 0.322 (2% relative error from predicted expected pro- 
ductivity), but violates the recovery constraint in 3 out of the 13 
simulated scenarios. We hypothesize that this may be caused by 
the fact that polynomial models are less flexible than FFN mod- 
els, and thus a larger number of scenarios of FFN models would be 
necessary to obtain more consistent and reliable sample average 
approximations. 
5.5. Discrepancy modeling coupling polynomial approximations with 
neural networks 

In this final section, we present the results for a hybrid model 
comprised of a nominal polynomial surrogate model and a FFN 
model of the error between the nominal model predictions and the 
simulated results. In order to develop this hybrid model, we used 
the 29 SG points for a nominal k to develop a model for predict- 
ing the purity, recovery, productivity and energy as a function of 

Table 4 
Deterministic global optimization results using different surrogate formulations for nominal k. 

Model t ads (s) t des (s) Recovery (predicted) (%) Productivity (predicted) ( mole C O 2 
kg Sorbent ×h ) Energy (predicted) ( MJ 

mole C O 2 ) Purity (predicted) (%) 
( P1 ) Poly 88.7 165 20.4 0.340 0.106 98.104 
( P1 ) FFN 76.0 132 19.98 0.341 0.112 97.751 
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Table 5 
Globally optimal solutions of polynomial surrogates when different each realization of k is fitted and opti- 
mized individually. 

k ( 1 
h ) t ads (s) t des (s) Recovery (%) Productivity ( mole C O 2 

kg Sorbent ×h ) Energy ( MJ 
mole C O 2 ) Purity (%) 

30.9 70.6 128.0 23.82 0.387 0.10 97.65 
18.6 88.7 165.0 20.40 0.341 0.11 98.10 
31.1 72.6 133.6 23.92 0.386 0.09 97.72 
5.7 79.6 195.0 15.00 0.209 0.15 97.74 
9.6 101.4 176.8 15.44 0.271 0.14 98.14 
25.9 74.8 140.5 23.04 0.372 0.10 97.81 
29.9 85.6 162.7 23.42 0.386 0.09 98.05 
26.1 75.3 141.9 23.11 0.372 0.09 97.83 
12.1 96.3 171.4 17.15 0.296 0.12 98.14 
8.0 97.0 182.0 15.00 0.252 0.14 98.06 

Table 6 
Simulation results for robust optimal solution ( t ads , t des ) = 
( 48 , 138 ) . 

k ( 1 
h ) Recovery 

(%) Productivity 
( mole C O 2 

kg Sorbent ×h ) Energy 
( MJ 

mole C O 2 ) Purity 
(%) 

30.9 31.1 0.372 0.078 97.4 
18.6 27.0 0.322 0.090 97.4 
31.1 31.2 0.372 0.078 97.4 
5.7 16.6 0.198 0.146 96.8 
9.6 21.1 0.252 0.115 97.2 
25.9 29.8 0.355 0.081 97.5 
29.9 30.9 0.369 0.078 97.4 
26.1 29.9 0.356 0.081 97.5 
12.1 23.3 0.277 0.104 97.3 
8.0 19.5 0.233 0.124 97.1 
7.2 18.6 0.222 0.130 97.0 
14.4 24.8 0.296 0.098 97.4 
21.6 28.3 0.338 0.085 97.4 

t ads and t des . The nominal model is one out of the ten models, for 
which approximation results were provided in Table 2 . Once this 
model is fitted, we use all of the available Latin Hypercube data for 
all realizations of ( N = 39 × 10 points ) , and calculate the error (or 
discrepancy) between the nominal model prediction and the simu- 
lated output ( δ( k, t ads , t des )) ( Fig. 8 ). These errors are now the out- 
puts of the discrepancy model ( δNN ( k, t ads , t des )), which are approx- 
imated using a FFN. The error models were trained and validated 
and we were able to identify optimal structures and hyperparam- 
eters that fit the errors with sufficient accuracy. This was the first 
indication that a systematic model can be fitted by a surrogate ap- 
proximation. Indicative surface plots of the discrepancy model for 
a fixed k = 30 . 9 h −1 are shown in Fig. 12 . 

In order to validate the hybrid model, we calculate the error 
between its predictions and the simulation, for the same valida- 
tion points of Table 2 ( Table 8 ). We observe that the errors are 
comparable to the errors shown in Table 2 , and thus the accuracy 
of this model for the entire search space of k is comparable to the 
model obtained by modeling each k individually. As a result, we 
can conclude that the discrepancy model can be used as a map of 
the error between the nominal case and different realizations of 
the uncertain parameter in the input space, and could be used to 
formulate various optimization problems. One of the main advan- 
tages of this approach is that it provides the ability to predict the 
discrepancy, or else the correction we need to add to our nominal 
predictions, for k values that have not been simulated. 

Although this approach aims to develop a “correction” map, 
which will be additive to the prediction of a deterministic nom- 
inal model, one may argue that a simpler approach would be to 
treat the uncertain parameter as an additional input and fit a sin- 
gle three-input surrogate model. In order to assess the predictive 
ability of this larger model, we used all of the simulated data for 
all k values to train a single MiMo NN model with three inputs. 
Surprisingly, the size of the FFN for the 3-variable input model, 
is a slightly more accurate surrogate model ( Table 8 ), and it is 
a network with 2 layers but an increased number of nodes (3–
15–22–4). The optimal discrepancy FFN is a deeper network with 
less nodes in each layer (3–10–8–6–4). When comparing the total 
number of parameters of the discrepancy FFN model to the single 
3-variable FFN model, the latter requires more fitted parameters. 
However, if the polynomial parameters are considered, the over- 
all hybrid model (Poly + FFN) contains more parameters than the 
single-state 3-variable FFN. This is a surprising result that could be 

Table 7 
Simulated results for stochastic formulation using polynomials ( t _ ads , t _ des ) = ( 73 , 176 ) (Poly) 
and NN ( t _ ads , t _ des ) = ( 78 , 132 ) (NN). Constraint violations shown in bold. 

k ( 1 
h ) Recovery (%) Productivity ( mole C O 2 

kg Sorbent ×h ) Energy ( MJ 
mole C O 2 ) Purity (%) 

Poly NN Poly NN Poly NN Poly NN 
30.9 27.62 22.62 0.381 0.388 0.08 0.10 98.05 97.75 
18.6 24.20 19.82 0.334 0.340 0.09 0.11 98.07 97.77 
31.1 27.66 22.65 0.381 0.389 0.08 0.10 98.05 97.75 
5.7 15.10 12.54 0.208 0.215 0.15 0.18 97.61 97.28 
9.6 19.10 15.72 0.263 0.270 0.12 0.14 97.92 97.61 
25.9 26.51 21.70 0.365 0.372 0.08 0.10 98.07 97.77 
29.9 27.43 22.46 0.378 0.385 0.08 0.10 98.05 97.75 
26.1 26.57 21.75 0.366 0.373 0.08 0.10 98.07 97.77 
12.1 20.96 17.20 0.289 0.295 0.11 0.13 98.00 97.69 
8.0 17.67 14.58 0.244 0.250 0.13 0.15 97.83 97.52 
7.2 16.87 13.95 0.233 0.239 0.13 0.16 97.77 97.45 
14.4 22.30 18.27 0.307 0.314 0.10 0.12 98.04 97.74 
21.6 25.28 20.69 0.348 0.355 0.09 0.11 98.07 97.77 
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Fig. 12. Discrepancy models fitted using neural networks. The surfaces are shown for fixed k = 30 . 9 h −1 . 
Table 8 
Relative absolute average and maximum errors (%) of hybrid discrepancy model over all 
values of k . 

Purity Recovery Productivity Energy 
Hybrid Discrepancy Model (rMAE) 0.035 1.616 1.400 3.124 
Hybrid Discrepancy Model (rMaxAE) 0.096 3.534 4.052 7.260 
3-input FFN Model (rMAE) 0.006 0.554 0.192 0.716 
3-input FFN Model (rMaxAE) 0.020 2.268 0.614 2.069 

explained by the fact that the residual mapping is a nonlinear re- 
sponse surface, and thus it is harder to fit than the smoother map- 
ping between the 3 variables and the original outputs. However, 
the hybrid approach is still a promising approach that leads to an 
accurate overall model, especially when a widely-accepted nominal 
model pre-exists. 
6. Conclusions 

In this work we discuss the challenges caused by different 
forms of uncertainty in simulation-based optimization; advocate 
the need to consider uncertainty when performing surrogate-based 
optimization; and propose three basic ideas to manage this uncer- 
tainty. Our motivating case study is the optimization of a simula- 
tion for direct air capture by maximizing the productivity of the 
process, while satisfying purity, recovery and energy constraints. 
The two decision variables of the system are adsorption and des- 
orption times, while the model outputs are nonlinearly dependent 
on the value of a mass transfer coefficient that is an uncertain sim- 
ulation parameter. Due to the complexity of the simulation and 
lack of algebraic equations connecting the inputs to the outputs, 

this problem is optimized following a surrogate-based optimiza- 
tion approach, based on which input-output data is collected, sur- 
rogate models are fitted and subsequently optimized. We use two 
very different types of surrogate models in this work (i.e., Sparse 
Grid polynomials and Neural Network models) to approximate the 
input-output data, and validate our obtained solutions with the 
rigorous simulation. 

We show that both the uncertainty of the mass transfer coeffi- 
cient and the selection of the surrogate model lead to variability in 
the obtained optimal values. Most importantly, we observe that of- 
ten the solutions that are obtained when treating this problem as 
a deterministic case study are infeasible when simulated for differ- 
ent mass transfer coefficients. We compare three ideas for mitigat- 
ing the effects of uncertainty by combining existing literature on 
robust optimization, stochastic optimization and discrepancy mod- 
eling, with surrogate approximations. The results show that we can 
obtain more conservative but feasible solutions when formulating 
a surrogate-based robust optimization problem, and a slightly less 
conservative solution when formulating a surrogate-based stochas- 
tic formulation. Finally, we show that we can accurately combine 
different surrogate models to capture both nominal effects but also 
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the discrepancy between the nominal and simulation model accu- 
rately. We observe that all three methods have merits and limita- 
tions, which are discussed throughout the paper. 

The analysis performed in this work mainly aims to stress the 
issue of uncertainty embedded within surrogate-based optimiza- 
tion, which is not discussed enough in the PSE and black-box opti- 
mization literatures. The proposed techniques can serve as a guide 
for selecting the most appropriate approach to manage uncertainty 
in a variety of simulation-based optimization studies, depending 
on the chosen surrogate model, the availability of the data and the 
size of the problem. The results in this paper also aim to point 
to a more general debate for the simulation-based optimization 
literature; on whether investing on more sampling to achieve in- 
cremental improvements in deterministic optimal results is more 
valuable than sampling to characterize the unavoidable embedded 
uncertainty. In the future, it will be of high interest to compare the 
employed methods with recently proposed methods for Bayesian 
optimization under uncertainty, which have been used in other ap- 
plications for robust optimization and discrepancy modeling. 
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