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Simulation-based optimization using surrogate models enables decision-making through the exchange of
data from high-fidelity models and development of approximations. Many chemical engineering opti-
mization problems, such as process design and synthesis, rely on simulations and contain both discrete
and continuous decision variables. Surrogate-based optimization with continuous variables has been stud-
ied extensively; however, there are many open challenges for the case of mixed-variable inputs. In this
work, we propose an algorithm for mixed-integer nonlinear simulation-based problems that uses adap-
tive sampling and surrogate modeling with one-hot encoding. We propose techniques for the design of
experiments for mixed-variable problems, surrogate modeling for mixed-variable response surfaces, and
iterative approximation-optimization procedure that leads to optimal solutions. Results show that one-hot
encoding leads to accurate and robust mixed-variable Gaussian Process and Neural Network models that
are effective surrogates for optimization. The proposed algorithm is tested on mixed-integer nonlinear

benchmark problems and a chemical process synthesis case study.

© 2020 Published by Elsevier Ltd.

1. Introduction

Many optimization problems today depend on highly compli-
cated computer simulations, which provide accurate and useful
data that represent complex physical phenomena (Amaran et al.,
2016; Bhosekar and lerapetritou, 2018; Boukouvala et al., 2016;
McBride and Sundmacher, 2019; Rios and Sahinidis, 2013). These
simulations are typically comprised of a large system of equa-
tions, such as partial differential and ordinary differential equa-
tions, to model processes and systems accurately. In certain cases,
due to the large size and complexity of the simulation or the pres-
ence of discontinuities caused by periodic boundary conditions, a
simulation-based optimization approach may be the most practi-
cal and efficient way to optimize these problems (Amaran et al.,
2016; Bhosekar and lerapetritou, 2018; Boukouvala et al., 2017;
Cozad et al, 2014; McBride and Sundmacher, 2019). In chem-
ical engineering, one can observe a significant growth on the
interest in simulation-based, or black/gray-box, or derivative-
free optimization (Balasubramanian et al., 2018; Beykal et al.,
2020; Bhosekar and lerapetritou, 2018; Boukouvala et al., 2017;
Cozad et al, 2015; Davis and lerapetritou, 2008; Davis et al.,
2018; Dias and lerapetritou, 2020; Garud et al, 2019, 2018;
Graciano and Le Roux, 2013; KeRler et al., 2019; Kim and Boukou-
vala, 2019; McBride and Sundmacher, 2019; Mencarelli et al., 2020,
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2020; Schweidtmann et al., 2019; Schweidtmann and Mitsos, 2018;
Tso et al., 2019; Wilson and Sahinidis, 2019; Zantye et al., 2019).
In this work, we will interchangeably use the term “black-box”
or “surrogate-based” optimization to refer to problems that rely
on simulation input-output data and the derivatives of the origi-
nal model are not directly used by the optimization solver (also
known as derivative-free optimization) (Boukouvala et al., 2016;
Conn et al., 2009; Rios and Sahinidis, 2013).

Black-box optimization heavily relies on data generated from
complex simulations instead of first principle models consisting
of explicit analytical equations. Existing black-box optimization al-
gorithms proposed in the literature can be divided broadly into
three categories: sampling-based, surrogate-based, and stochas-
tic or evolutionary methods (Bhosekar and lerapetritou, 2018;
Boukouvala et al., 2016; Rios and Sahinidis, 2013). These three
methods do not involve direct computation of the derivatives
of the objective or constraints of the simulation, but they dif-
fer in how the simulation data is used to find the optimal so-
lution. Sampling-based methodologies involve generating a set of
points to guide the search, and different algorithms use unique
metrics to choose the next sampling locations in order to either
refine the solution or explore other areas of the search space
(Hooke and Jeeves, 1961; Nelder and Mead, 1965; Reeves, 1997).
Surrogate-based algorithms involve constructing an approxima-
tion model that relates the sampled input-output data, which
is then optimized directly. These approximation models are also
known as meta- or reduced-order models (Bhosekar and lerapetri-
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tou, 2018; Boukouvala and Floudas, 2017; Cozad et al., 2014;
Davis et al., 2018; Forrester and Keane, 2009; Garud et al., 2018;
KeRler et al., 2019; Kim and Boukouvala, 2019; McBride and Sund-
macher, 2019; Queipo et al., 2005). Stochastic or evolutionary-type
algorithms solely rely on sampling large populations, but they dif-
fer from direct-search methods due to the presence of stochastic
criteria to generate populations of samples scattered in the en-
tire search space. Most popular examples of such algorithms are
Genetic Algorithms (Holland, 1992), Particle Swarm Optimization
(Eberhart and Kennedy, 1995; Kennedy and Eberhart, 1995), and
Simulated Annealing (Romeo and Sangiovanni-Vincentelli, 1991).
Of the three aforementioned categories, the surrogate-based op-
timization literature has attracted significant attention lately, and
this is undoubtedly linked to the recent developments in Ma-
chine Learning (ML) (Hastie et al., 2009). Many researchers from
diverse fields have observed that surrogate-based optimization is
a very promising method (Booker et al., 1999; Boukouvala and
Floudas, 2017; Yondo et al., 2018; Zhang et al., 2019), and this is
mainly due to the ability of the surrogate models to expedite the
search for global optima and reduce the sampling requirements.
In all of the aforementioned literature, the majority of contri-
butions is motivated by nonlinear optimization problems (NLPs)
with only continuous input or decision variables (Boukouvala and
Floudas, 2017; Cozad et al., 2014; Zhai and Boukouvala, 2019).
However, many chemical engineering problems contain both con-
tinuous and discrete (integer or binary) decision variables. For ex-
ample, the design of a distillation column involves continuous vari-
ables for operating conditions and discrete variables for the num-
ber of stages. Similarly, a superstructure synthesis optimization
problem contains binary variables to represent design configura-
tions, while nonlinear relationships represent phenomena within
the processes (Caballero and Grossmann, 2008; Davis and Ier-
apetritou, 2008; Graciano and Le Roux, 2013; Henao and Mar-
avelias, 2011; Sangbum et al., 2003). In (Larson et al., 2019), a case
study on the design of solar plants is discussed, in which the dis-
crete decisions are embedded in the simulation. This leads to a
simulation-based optimization problem that cannot be relaxed or
decoupled with respect to discrete and continuous variables.
There are a few black-box mixed integer nonlinear program-
ming (bb-MINLP) optimization algorithms proposed in the direct-
search literature (Abramson et al, 2008; Deep et al., 2009;
Liuzzi et al., 2012; Liuzzi et al., 2015) and in the surrogate-based
literature (Holmstrom et al., 2008; Miiller, 2016, 2013; Rashid et al.,
2013), which are described in detail in the next section. Never-
theless, the optimization of bb-MINLPs is still a difficult prob-
lem due to several open challenges that are intrinsic to MINLP
(Miiller, 2016). The first challenge is obtaining a representative,
tractable, and balanced sample set when both discrete and con-
tinuous variables are present. When all of the decision variables
are continuous, space-filling sample designs (e.g., Latin hypercube
(McKay et al., 1979), orthogonal arrays (Owen, 1992), and Sobol
sequences (Sobol, 1967)) are used to generate balanced sample
sets, and the simulation is inquired at these points. These sam-
pling methods cannot be directly applied for bb-MINLP problems
because the simulation may not provide output values at non-
integral values of the discrete variables (Miiller et al., 2013). An-
other challenge is surrogate model fitting in the case of mixed-
variable inputs. Existing surrogate modeling algorithms for bb-
MINLP (Holmstrom et al., 2008; Miiller, 2016; Miiller et al., 2013;
Rashid et al., 2013) assume all variables are continuous in or-
der to obtain a smooth and continuous surrogate model. At the
same time, surrogate models assume that all input variables are
ordinal, which means that a higher value corresponds to higher
intensity, such as temperature or pressure levels. Binary vari-
ables do not satisfy this assumption as “0” and “1” usually rep-
resent different choices, as opposed to intensity. While this limi-

tation can be overcome by using multiple surrogates and patching
them at discontinuities (e.g., piecewise functions), this could com-
plicate the surrogate-based optimization formulation significantly
(Swiler et al., 2014).

A mixed-variable response surface introduced in (Swiler et al.,
2014) will be used here to demonstrate the aforementioned chal-
lenges (Fig. 1). This response surface has one continuous vari-
able (x) and one discrete variable (y) with three possible levels
y =[-2,0,2]. When plotting the response surface for different lev-
els of y,one can observe that the behavior of the output is very
different (Fig. 1a). There are multiple ways to approximate and
subsequently optimize this problem, such as (a) treat each level
of y as an independent problem by fitting and optimizing separate
surrogate models, or (b) assume continuity in all variables and fit
a single continuous response surface with sparse sampling in the
y direction. The first approach is possible in low dimensions but
would become intractable as the number of discrete variables and
levels increases. On the other hand, if continuity in all variables
is assumed, this could lead to inaccurate surrogate models since
there will be no samples in between non-integral values of the
discrete variables. For the same example, if this black-box input-
output relationship is assumed to be a 2D continuous function
(Fig. 1b), the complexity of the surface becomes apparent. More
specifically, at the middle level of y, the function has a very sud-
den and steep change in response; thus, assuming continuity when
fitting this response surface may lead to inaccurate surrogate mod-
els. Most importantly, if the level values of y do not represent
an intensity, then the assumption of continuity in y is problem-
atic. In this work, we study various techniques to obtain a repre-
sentative set of samples and fit appropriate surrogate models for
mixed-variable optimization problems. The presence of nonlinear
constraints, both inequality and equality, and non-convexity of the
problems all pose further challenges for the solution of bb-MINLP
problems (Boukouvala et al., 2016).

In this work, we aim to develop an algorithm to solve the fol-
lowing black-/gray-box MINLP (P1):

min f(x,y)

st. gpXx.y) <0

gk(x.y) <0

hep(x,y) =0 (P1)
hex(2,y) =0

X <x<x ye{0,1}
xeRM, k=k +k

ky

where x represents continuous variables, y represents binary vari-
ables, x! and x* represent the lower and upper bounds of the con-
tinuous variables, k; and k, represent the dimensions of contin-
uous and binary variables respectively, f{ - ) represents black-box
objective, gig( - ) and gi( - ) represent inequality constraints that
are unknown (black-box) and known, respectively. Similarly, and
heg( - ) and hgg( - ) represent equality constraints that may be
unknown and known, respectively. Sets IBand EB represent the
set of black-box inequality and equality constraints, respectively.
Similarly, sets IK and EKdenote the sets of known inequality and
equality constraints, respectively. If all constraints and objective are
unknown (i.e., IK =@, EK = ¢), the problem will be referred as a
black-box MINLP (bb-MINLP). If some constraints are known, the
problem will be referred as a gray-box MINLP (gb-MINLP). gj(x,
y) and hgg(x, y) represent the known inequality and equality con-
straints, and these can be handled directly without constructing
surrogate models.

Through this work, we aim to answer several key questions re-
lated to bb-MINLP and propose a new algorithm that can solve
bb/gb-MINLP problems of moderate sizes (i.e., up to 15 variables
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Fig. 1. Goldstein price function adapted from (Swiler et al., 2014). For each value of discrete variable y, the function exhibits a drastically different behavior. In (a) different

y level values are plotted separately, in (b) the 2D surface is plotted.

and 23 constraints). First, to solve bb/gb- MINLP problems, we
propose the use of mixed-integer surrogate models that can han-
dle discrete variables directly, rather than relaxing the integral-
ity constraints. Our framework utilizes, compares, and combines
two types of surrogate models, namely Artificial Neural Network
(ANN) and Gaussian Process (GP) models. A data-preprocessing
technique, one-hot encoding, is used to address the modeling
of mixed-variable problems, and the optimization problem is re-
formulated to reflect this transformation. In addition, we study
the performance of three different sampling strategies for mixed-
integer problems and propose the most appropriate method that
balances solution accuracy and sampling requirements. Finally, we
develop an algorithm that can solve both black- and gray-box for-
mulations of (P1) using a hybrid combination of ANN and GP mod-
els for the MINLP and NLP stages, respectively. The performance of
the algorithm is analyzed with respect to solution accuracy, sam-
pling requirements, and computational efficiency and compared to
those of two competing existing algorithms for bb-MINLP.

This paper is organized as follows. Section 2 introduces the nec-
essary background on surrogate-based optimization and reviews
some existing work on bb-MINLP. In Section 3, sampling, data-
preprocessing, and surrogate modeling strategies for bb-MINLP are
presented in detail. The overall proposed algorithm is described in
Section 4 to illustrate how these strategies are integrated into the
overall framework. Section 5 presents a comprehensive compari-
son of the proposed methodology on a set of benchmark problems.
Finally, Section 6 introduces the surrogate formulation for a case
study on superstructure optimization. We demonstrate how the
MINLP problem can be decoupled into a gray-box problem and re-
port the performance of our algorithm. A discussion of the findings
is provided before the conclusions and future perspectives. The de-
tailed formulations of the process synthesis case study are pro-
vided in the Appendix and detailed tables of all the results shown
in this paper are provided as Supplementary Material.

2. Overview of surrogate-based optimization
2.1. Existing literature on derivative-free MINLP optimization

Existing work on derivative-free MINLP optimization algo-
rithms can be divided into three broad categories: sampling-
based/direct-search, model-based, and stochastic or evolutionary
methods (Rios and Sahinidis, 2013). Direct-search bb-MINLP algo-
rithms have been proposed as extensions to existing NLP direct-

search methods (Abramson et al.,, 2008; Audet and Dennis, 2001;
Cocchi et al,, 2019; Larson et al., 2019; Giampaolo Liuzzi et al.,
2015). One of the most popular existing software for constrained
bb-MINLP is NOMAD (Nonsmooth Optimization by Mesh Adaptive
Direct Search) adapted from (Audet and Dennis, 2006).

Due to their purely sampling-based nature, evolutionary-
type methods (i.e., Genetic Algorithms (Reeves, 1997), Particle
Swarm Optimization (Eberhart and Kennedy, 1995), and Simulated-
Annealing (Romeo and Sangiovanni-Vincentelli, 1991)) could also
be applied to solve (P1). The most widely used algorithm for bb-
MINLP problems under this category is developed in a MATLAB
“global optimization” toolbox, which employs a genetic algorithm
(Deb, 2000; Deep et al., 2009). In addition, MEIGO (Egea et al.,
2014) is an open source software tool that uses enhanced scatter
search for global optimization of NLP and MINLP formulations.

There have also been a few developments for solving bb-MINLP
problems in the surrogate-based optimization literature. Existing
surrogate-based MINLP algorithms start with relaxing the discrete
variables to create smooth surrogate functions. For example, SO-MI
introduced in (Miiller et al., 2013) and MI-SO (Miiller, 2016) use a
cubic radial basis function (RBF) model to solve expensive black-
box problems. An RBF-based algorithm for mixed-integer nonlinear
constrained optimization has been proposed in (Rashid et al., 2013)
and (Holmstrom et al., 2008). Both methods have been shown to
perform well for problems up to 8 binary and 4 continuous vari-
ables and less than 10 constraints. All of these aforementioned
surrogate-based MINLP optimization algorithms do not handle dis-
crete variables directly. Instead, the integrality constraint is relaxed
to construct a smooth surrogate model, even if the simulation can-
not be inquired at non-integral locations of the discrete variables.
Recently, the use of gradient-boosted tree has been proposed for
mixed-integer convex nonlinear optimization (Mistry et al., 2018).
While this method handles discrete variables directly, the result-
ing gradient-boosted tree model is discontinuous. Additional rel-
evant work from the process systems engineering community in-
volve optimization of MINLP formulations with embedded surro-
gate functions (Caballero and Grossmann, 2008; Davis and ler-
apetritou, 2008; Henao and Maravelias, 2011). However, in these
contributions, the discrete variables are decoupled from the surro-
gate models. All surrogate models are only a function of continu-
ous variables, and the trained surrogate models are embedded in
the overall MINLP formulation.

In the approximation literature, several efforts have been made
to study mixed-variable surrogate models that can directly han-
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Fig. 2. General framework of adaptive surrogate-based optimization. Surrogate models approximate the data from expensive black-box simulations and are iteratively opti-

mized and updated to find an optimal solution.

dle discrete variables (Gramacy and Lee, 2008; Qian et al., 2008;
Swiler et al., 2014). These surrogate model techniques have been
studied only with respect to approximation accuracy, and the op-
timization of these models has not been studied. This is very im-
portant because although certain functions might be accurate ap-
proximations, the formulation that needs to be embedded within
the surrogate-based optimization problem may lead to intractable
problems. For example, in (Qian et al., 2008), a Gaussian pro-
cess with a special correlation function is proposed. This corre-
lation function models interactions between discrete-discrete and
discrete-continuous variables. We have found that optimizing this
model requires many additional constraints to allow the selection
of appropriate correlation coefficients, in addition to the number of
constraints that increases proportionally with the number of sam-
ples that are used to construct the model. Thus, this leads to a
very large surrogate bb-MINLP that is very challenging to optimize
even with state-of-the-art deterministic optimization solvers. An-
other way to construct mixed-integer surrogate models is using
regression trees as proposed in (Gramacy and Lee, 2008). Since re-
gression tree methods involve dividing the search space into sev-
eral partitions, this allows for a natural development of differ-
ent regression functions for different realizations of discrete vari-
ables. For each partition, or a “node” of a tree, a Gaussian process
model can be constructed. While this method is straightforward
and easy to adapt, the resulting optimization problem is a piece-
wise function, which may require a generalized disjunctive pro-
gramming formulation for its optimization. As these models were
developed solely for the purpose of prediction, the optimization of
these mixed-integer surrogate models may be infeasible or diffi-
cult. In this work, we have limited our study to methods that bal-
ance accuracy and tractability of formulation for optimization.

2.2. Overview of adaptive surrogate-based optimization

In this section, we provide an overview of the typical steps for
adaptive surrogate-based optimization that will form the basis of
our algorithm. The algorithmic steps will then be extended to han-
dle specific challenges of bb-MINLP (Section 3). As computer sim-
ulations are becoming more and more computationally expensive,
taking minutes, hours, or even days to generate one data point, an
ideal black-box optimization algorithm should locate optimal so-
lutions with a small number of function evaluations and within a
reasonable computation time (Kim and Boukouvala, 2019). In order
to locate an optimal solution, surrogate-based algorithms are based
on the general notion that an initial limited set of samples can be
used to develop an approximation model, and iterative optimiza-
tion and resampling can be used to refine this model in promis-
ing locations. Surrogate-based algorithms generally consist of four
steps: 1) initial sampling, 2) surrogate model construction, 3) opti-
mization, and 4) adaptive sampling and optimization (Fig. 2).

First, the construction of a surrogate model begins with choos-
ing an efficient sampling strategy to maximize the information
gained while minimizing the number of samples. Samples should
be uniformly distributed in the search space. Space-filling designs
are based on the general concept that if we project the sam-
ple points onto each variable axis, no projections of the sample
points will overlap. Latin Hypercube sampling (LHS) is one of the
most commonly used type of non-collapsing space-filling design
(McKay et al., 1979).

Next, a surrogate model type is selected to approximate the
collected simulation data. Several types of surrogate models cur-
rently exist: Gaussian process (Boukouvala and lerapetritou, 2013;
Jones et al., 1998; Olofsson et al., 2018; Quirante et al., 2015;
Rasmussen, 2004; Williams and Rasmussen, 1995), Radial Ba-
sis Functions (Chen et al., 1991; Miiller et al., 2013; Regis and
Shoemaker, 2005), Neural Networks (Henao and Maravelias, 2011;
Schweidtmann and Mitsos, 2018; Specht, 1991), quadratic, and
polynomial regression (Forrester and Keane, 2009; Hiillen et al.,
2019), to name a few. The selection and parameter fitting of sur-
rogate model are coupled with a k-fold cross-validation procedure
to prevent overfitting. This procedure ensures that the surrogate
model parameters are trained only on a subset of samples (train-
ing set), while the other subset of remaining samples is left out
for validation (validation set). A prediction error on the validation
set is calculated using the optimal model, and the procedure is
repeated k times to allow the selection of the best model with
the minimum cross-validation error to proceed to the optimiza-
tion stage. Several approaches have been proposed for handling
constraints, such as fitting a separate model for each constraint
(Boukouvala and Floudas, 2017) or for a grouped penalty function
(Ben-Tal and Zibulevsky, 1997; Deb, 2000). In this work, surrogate
models are constructed for all black-box constraints and the objec-
tive function.

Finally, the surrogate formulation can be optimized using a
derivative-based or deterministic optimization solver. However, re-
gardless of the type of surrogate model used, it is unlikely that a
highly accurate solution is obtained in just one iteration. This is
mainly due to the limited number of samples collected in the first
iteration. Hence, surrogate modeling is usually coupled with adap-
tive sampling to determine the location of next sampling points
and to iteratively update the incumbent solution. An existing adap-
tive sampling approach determines the location of new samples
in promising regions with the aim of improving the optimal so-
lution, rather than constructing the best approximation over the
entire search space (Boukouvala and Floudas, 2017; Jones et al.,
1998; Kim and Boukouvala, 2019). This approach seeks to main-
tain a balance between diversity in sampling (i.e., exploration) and
optimization (i.e., exploitation) of the feasible space and the objec-
tive function. As a result, the surrogate model is used only as an
intermediate step to guide the search toward better directions and
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does not guarantee convergence (Boukouvala and Floudas, 2017;
Jones et al.,, 1998; Kim and Boukouvala, 2019). In this work, we
use the aforementioned adaptive sampling and optimization strat-
egy (i.e., strategy that facilitates the search of optimum). Once the
locations of new sample points have been determined, the sim-
ulation is re-inquired and the surrogate models are updated. The
entire process repeats until certain convergence criteria are met.

3. Methods for surrogate-based bb-MINLP
3.1. Design of mixed-variable computer experiments

The accuracy of a surrogate model depends both on the num-
ber and the location of points. Hence, finding a good initial sam-
pling design is an important step that highly affects the accuracy
of the final solution (Bhosekar and lerapetritou, 2018; Eason and
Cremaschi, 2014; Forrester and Keane, 2009). When only continu-
ous variables are present, LHS is typically used to generate an ini-
tial sampling design (Boukouvala and Floudas, 2017; Cozad et al.,
2014; Kim and Boukouvala, 2019). However, for MINLPs, the stan-
dard way of obtaining a space-filling sampling design is an open
question that we aim to study in this work.

To illustrate some existing sampling methodologies, let us de-
fine ny, to be the number of points selected for each LHS and m
to be the total the number of discrete combinations. If all variables
are continuous, the total number of LHS points is typically fixed to
a number based on heuristics (e.g., nys = 10k; + 1). If L; represents
the number of discrete levels for each discrete variable y; (e.g.,
a binary variable y;has two levels: L; = 2), then m = ]‘[’;2=1 Lj. In
(Miiller, 2016; Miiller et al., 2013), the LHS points corresponding to
discrete variables are rounded to closest integers. In (Rashid et al.,
2013) and (Holmstrom et al., 2008), an auxiliary problem is solved
to eliminate infeasible samples. These approaches, however, do not
guarantee that the same number of samples is collected for each
discrete realization. Thus, this may lead to data imbalance: certain
discrete combinations may contain more data points than the oth-
ers, which may lead to inconsistency in the accuracy of the surro-
gate model for certain levels.

Swiler et al.,(2014) propose and compare different sampling
techniques, such as standard Latin hypercube and k-Latin hyper-
cube sampling for building accurate approximation models. When
using the standard Latin hypercube approach, one LHS of size mny,
is generated in the continuous space, and the points are then ran-
domly split into m groups of equal size sets, so that each group
is assigned to a unique discrete level. In the k-Latin hypercube
approach, a separate LHS of size nj, is generated for each dis-
crete level. Both methods generate mnys points. Although these
methods have been compared for their approximation accuracy of
low-dimensional functions, they have not been systematically com-
pared with respect to their performance for surrogate-based opti-
mization. In this work, we compare the performance of three dif-
ferent sampling strategies from the approximation and surrogate-
based optimization literatures: k-Latin hypercube (Sampling Strat-
egy 1), standard Latin hypercube (Sampling Strategy 2), and Latin
hypercube sampling with simply rounding any discrete variables to
their nearest integer value (Sampling strategy 3).

3.2. Surrogate modeling

While various surrogate models have been used in the litera-
ture, we only consider Artificial Neural Networks (ANN) and Gaus-
sian Process (GP) models in this work. These two surrogate models
have been widely used for surrogate modeling for NLP due to their
accuracy and flexibility in representing a complicated nonlinear re-
lationship between input and output data. A brief introduction to

these two methods for continuous variables will be presented in
this section, followed by a description on how these models can
be modified to accommodate the presence of discrete variables.

3.2.1. Artificial neural network modeling

An Artificial Neural Network (ANN) is a nonlinear statistical
model that has been used for both classification and regression
(Hastie et al., 2009; Heaton, 2008). Following a standard ANN ar-
chitecture, the input variable nodes represent the input layer, and
the response variable nodes represent the output layer. The input
and output layers are connected by hidden layers. The mathemati-
cal expression of an ANN with a single input node (x) and a single
hidden layer can be expressed as follows:

ROEA DA DI TACER A B (1)
I n

where h and [ represent the number of nodes in hidden and output
layers, respectively. The function o is an activation function, which
transfers the input of a node to an output, and W™ and b are the
weights and biases for input-hidden (W(® andb(®)) and hidden-
output (W) and b)) layers. The functional form of ANNs depends
on the activation function, the number of hidden layers, and the
number of nodes in each layer. One commonly used activation
function is the hyperbolic tangent function (o (x) = tanh(x)), while
others have been proposed, including sigmoid and ReLU functions
(Heaton, 2008). For the final layer, an identity activation func-
tion (o (x) = x) is used for regression problems (Schweidtmann and
Mitsos, 2018). One challenge in constructing a neural network
model is hyperparameter optimization. Hyperparameters are vari-
ables that determine the structure and training of the network
(e.g., number of hidden nodes, number of hidden layers), and these
must be set before optimizing the weights and bias values of the
neural network. Several strategies can be used to find the optimal
hyperparameters, such as grid search, stochastic optimization using
a genetic algorithm, and heuristics (Heaton, 2008). Depending on
the desired accuracy of the ANN, we can choose different hyperpa-
rameter optimization strategies. After the optimal hyperparameters
are determined, we can then optimize the weights and bias values
of the neural network.

3.2.2. Gaussian process modeling

Gaussian process (GP) modeling, also known as Kriging, is an
interpolating function that assumes that two points that are close
to each other are likely to be correlated. This relationship is ex-
pressed using a correlation function, which depends on the dis-
tance between two points ¥?) and x(%) (Jones et al., 1998):

k
cor(e(xP), (@) = exp| — Y 6;(x;? — qu))z (2)

i=1

The correlation function in Eq. (2) captures the following: when
two points are close to each other (i.e., distance is small), the cor-
relation approaches to one (high correlation), while when the dis-
tance between two points is large, the correlation approaches zero.
Using this correlation function, we can obtain the final functional
form of GP models:

N k
Jor®) = 1+ cexp| = > 6;(x; — xi("))2 3)
n=1 i=1
where N represents the number of data points used to train the
model, k represents the dimension of the problem, 6; and c, rep-
resent correlation parameters, and w is the estimated mean. The
parameters can be found by using maximum likelihood estimation
(MLE) (Jones et al., 1998). The final functional form is directly cor-
related with the number of data points used to train the model.
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Fig. 3. Neural network without one-hot encoding (a) and with one-hot encoding (b).

Hence, the complexity of the functional form increases as more
data points are used to construct the model (Jones et al., 1998).

3.3. Mixed-integer surrogate model construction via one-hot
encoding

The simplest way to build surrogate models for mixed-variable
functions is to assume that all k, discrete variables are continuous
and proceed with training an ANN or a GP model with k inputs.
This approach has been used in the model-based surrogate opti-
mization literature thus far (Holmstrom et al., 2008; Miiller, 2016;
Miiller et al., 2013; Rashid et al., 2013). This approach is attrac-
tive due to its simplicity, but it assumes that all inputs are con-
tinuous and ordinal. Instead, we propose an alternative way of
constructing a mixed-variable surrogate model without relaxing
the integrality constraint through the use of one-hot encoding
(Brownlee, 2017). One-hot encoding involves converting binary or
integer variables to dummy variables. Through one-hot encoding,
we can make sure that regardless of the values of the discrete vari-
ables, the effect of this input on the output prediction does not di-
minish (McCaffrey, 2013). For example, Fig. 3 shows a simple ANN
with one hidden layer with 3 nodes and 1 output node. The orig-
inal problem has one continuous (x) variable and one binary (y)
variable. If we are using a standard ANN, the functional form will
be:

hy =0 (WX +wyy+by), 1=1,2,3 (4)

fan = 0(W1,fh1 + W, rhy +ws ¢hs + bout) (5)

where h; represents the three nodes in the hidden layer, w; 4 rep-
resents the weight of the ANN (s = source and d = destination),
and b; and by are bias values of the hidden and the output lay-
ers, respectively. If y = 0, then all signals from the binary variable
node y will become zero and all of the terms wy, jy in Eq. (4) will
be equal to zero. On the other hand, if y = 1, then all signals from
node y will now become one. This is problematic as {0,1} does not
represent an intensity, and y = 0 might represent a certain effect
on the output that must be captured (e.g., the presence of a pro-
cess unit or not).

One-hot encoding can be used to overcome this problem and
improve model accuracy in the case of mixed-variable problems.
One-hot encoding converts the original binary variable into two
dummy variables, each representing a distinct value of the origi-
nal binary variable. Consequently, the structural complexity of the
model (i.e., number of input nodes in the neural network) in-
creases due to additional dummy variables. If we have one binary
variable (y = {0, 1}), two dummy variables are created as follows:

doz{lifyzo d {Oifyzo

0ify=1 """ |1ify=1 (6)

1=

The resulting functional form of the ANN is:

h = O'(Wx’lX+ Wclo,ldO +Wd1,ld1 + b]), 1=1,2,3 (7)

v = U(W1,fh1 + wy shy + w5 ths + bout) (8)

Thus, depending on the value of y, only one of dy or d; is
active. While the dummy variables are still discrete, one-hot en-
coding allows that the effect of variable y on of h, is represented
evenly regardless of the value of y by allowing either dy or d,
to be always equal to one. As a result, the overall signal from
the binary node remains undiminished regardless of the value of
the binary variable. For the case of integer variables, the surro-
gate model could be constructed without one-hot encoding if in-
teger variables represent ordinal relationships. The integer values
can then be scaled between 0 and 1 before constructing a surro-
gate model (Miiller et al., 2013). If integer variables do not repre-
sent ordinal relationships, one-hot encoding can be used to repre-
sent the different integer variable levels, or the integer variables
can be transformed to binary variables. Subsequently, Eq (6) can
be used directly (Rall et al., 2019).

To optimize a model with one-hot encoding, we need to add
an additional constraint to make sure only one of the dummy vari-
ables is selected (i.e., dy + d; = 1). Throughout this paper, the sur-
rogate model generated using one-hot encoding will be noted as
“mixed-integer (MI)” surrogate; the one generated without one-
hot encoding (i.e., relaxing the integrality constraint) will be noted
as “relaxed (RE)” surrogate. One-hot encoding is performed dur-
ing the data-processing stage, where the dataset for binary vari-
able is transformed into dummy variables. For example, if the orig-
inal dataset is [X, Y], where X represents a set of data for contin-
uous inputs and Y represents a set of data for binary inputs, the
transformed dataset is [X, Dy, D;], where D, and D, represent each
dummy inputs created for each binary value. After this transforma-
tion, a MI surrogate model is constructed using either ANN or GP
using the transformed, augmented dataset.

4. Proposed algorithm

In order to solve (P1), the MI and RE surrogate models are in-
tegrated into a black-/gray-box optimization framework described
previously. The overall algorithm can be decomposed into two
main steps: 1) MINLP search, and 2) NLP search. Surrogate models
are constructed in both search steps for all black-box constraints,
and both the MINLP and NLP search steps are illustrated in de-
tail in Tables 2 and 3. First, all black-box equality constraints hgg
are transformed into two inequalities and are added to set IB. The
MINLP search is first performed to find a solution with respect
to all variables (i.e., both continuous and discrete variables). The
NLP search is then performed by fixing discrete variables at opti-
mal values determined from the MINLP step and optimizing only
with respect to continuous variables. The NLP search step allows
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Table 1
Three sampling strategies for initial design of experiment.

Algorithm 1: Initial Design of Experiment

Input: problem dimension k, continuous dimension k;, binary dimension k,, total number of levels m = ]'[;Yi] Lj

Output: Latin hypercube design Sy,
Initialization:
Nyps = max(5, [ 11 ])

Sampling Strategy 1 (SS1):

Sis < (1
fori=1tom do

Generate a Latin hypercube design X of size nj,s x ki for x
Construct a dataset Y of size ny; x ky, where all rows represent a single unique combination of binary variables

Sis < [X, Y]
End

Sampling Strategy 2 (SS2):

Generate a Latin hypercube design X of size mny,, x k; for x

fori=1tom do
Randomly select ny, rows from X

Construct a dataset Y of size ny; x ky, where all rows represent a single unique combination of binary variables

Sps < [X Y]
End

Sampling Strategy 3 (SS3):

Generate a Latin hypercube design S = [X, Y] of size mnj,s x k
For k; columns, round the values to the closest integer: Sy, < [X, |

return Sy

the algorithm to further reduce constraint violations and refine
the incumbent solution. The overall algorithmic steps for both the
MINLP and NLP search stages consist of three main steps: 1) initial
sampling, 2) surrogate modeling, and 3) optimization and adaptive
sampling. The main differences between the MINLP and NLP step
are: (a) whether one-hot encoding is used to construct a mixed-
integer surrogate model or not, and (b) how the incumbent solu-
tion is selected at each iteration. The general framework is writ-
ten in Python and the optimization is performed via an in-house
Python-GAMS interface (Figure 4 and 5).

4.1. Initial sample design

For simulation-dependent optimization problems, choosing an
initial sampling design is important since the simulation may fail
to converge if a continuous value is used instead of a discrete
value. Three sampling strategies are compared in this work as
described earlier. For all sampling strategies, we generate a total of
m x max(5, W) points. The minimum number of 5 points
is a heuristic on the minimum number of points that must be
included in each level to ensure that at least this many points
are sampled from each level. All collected samples are scaled
between 0 and 1 using xﬁ and x{ before proceeding to fit any
surrogate models. The three sampling strategies (SS1, SS2, SS3) are
illustrated in Table 1.

4.2. Surrogate model construction

During this stage, surrogate models are developed in the scaled
domain using either an ANN or GP to represent each of the
outputs (i.e., objective function and unknown constraints). For
mixed-integer surrogates, one-hot encoding is performed to con-
vert the original binary variables to dummy variables. 10-fold
cross-validation is used to find the best model during each iter-
ation of the overall algorithm. While 10-fold cross-validation al-
lows the algorithm to construct a model that generalizes well to
a new set of data, one disadvantage of k-fold cross validation is
the increased computational cost due to training k models at each
iteration. In our work, we have observed that the CPU time for
model construction is negligible relative to the optimization CPU
time. Nevertheless, when model construction becomes computa-

tionally more expensive, surrogate fitting could happen in parallel
using multiple processors to reduce the CPU time.

For the ANN, both the objective and all constraints are modeled
simultaneously by using multiple output nodes (Multiple Input -
Multiple Output ANN). In our work, we use a hyperbolic tangent
function as an activation function; for the final layer, a linear acti-
vation function is used. As our goal is to locate a global optimum
rather than finding a perfect surrogate representation, we are not
necessarily interested in finding a good approximation in regions
of low interest (i.e., areas far away from global optimum). Thus,
the balance between model accuracy and sampling requirement is
achieved by keeping the overall model complexity low while main-
taining high accuracy in regions of high interest (i.e., areas where
the global optimum is likely to be located). Instead of using an
extensive search methodology to find the number of hidden lay-
ers and hidden nodes, we use a simple heuristic to determine the
number of nodes in a hidden layer. Specifically, only one hidden
layer is used and the number of nodes is 2/3 of the number of
input nodes plus the number of output nodes (i.e., total number
of constraints and the objective) (Heaton, 2008). This strategy al-
lows us to locate a good optimum within a reasonable computa-
tion time. While methods such as grid search and stochastic opti-
mization may lead to a more accurate ANN, it can be computation-
ally too expensive for surrogate-modeling, especially when several
iterations are required to converge to a solution. After the optimal
hyperparameters are determined, we then compute optimal weight
and bias values for the network using back propagation. For GP
models, the training procedure does not require the selection of
hyperparameters, but just the optimization of the surrogate model
parameters. Another distinction is that all constraints and the ob-
jective are fitted separately using a multiple-input single output
approach.

4.3. Surrogate model optimization and adaptive sampling

After constructing surrogate models for both the constraints
and objective, an optimization problem is formulated. For ANN, the
hyperbolic tangent function needs to be reformulated since opti-
mization solvers cannot handle hyperbolic tangent functions. As
suggested in (Schweidtmann and Mitsos, 2018), the hyperbolic tan-
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Table 2
bb-MINLP optimization algorithm.

Algorithm 2. Bb-MINLP optimization

Initialization: Initial Sampling
1. Create an initial LHS S,y = [X, Y] using the selected sampling strategy

2. Inquire simulation at So = [X,Y] to compute Zy = f,,,(So). Assume one function evaluation provides the values of all constraints and the objective.

Data pre-processing

1. Scale Sy and Z, between 0 and 1 and obtain Sy and Zy'.

2. If fitting type = ‘MI’, perform one-hot encoding so that the binary variables y; are transformed into dummy variables d; o and d; .

Surrogate model construction and optimization

Initialization: S’ < S;.Z" < Z;

1. Use the chosen surrogate type to construct a surrogate model for all constraints and objective. Use 10-fold cross validation to find the best model.
Formulate the surrogate optimization problem and solve using both global and local solvers. If infeasible, solve infeasibility problem (P2).

2.
3. Obtain plocal and global solutions S, = [Xnew, Ynew]-
4. Compute Euclidean distance between S},, and existing sample set §':

) Lk , k )
dlStp =% Xi (Xn.i - Xnew.i) + Z; (Yn‘j *ynew,j)
i= j=

If dist, > 1e~1°, unscale S, to the original bound and inquire simulation at Spew and compute Zyew = feya(Snew) and v. Else, remove the solution from Spew.

6. Compute the solution score for all collected intermediate solutions:
a. Seon = rank(v), Sep; = rank( faew)
b. S =' (Swn;rsabj)

7. fmin = argmin(S)

8. If one of the convergence criteria is met, end iteration

Else, S’ < Spew and Z' <« Zy.y; repeat steps 1-2 for data preprocessing and steps 1-7 for surrogate model construction and optimization.

return x*, y*

gent function is reformulated as tanh(x) =1 — ﬁ since it was
shown to outperform other reformulations. When a mixed-integer
surrogate model is used, an additional constraint is needed to al-
low the selection of only one dummy variable for each binary
variable. This can be formulated into a simple linear constraint:
dy +dy = 1. For a gray-box problem, where we can assume certain
constraints are known, we need to formulate and scale the gray-
box constraints accordingly (see Section 6). A diverse set of local
and global solutions are collected using global and multistart lo-
cal optimization using BARON (Tawarmalani and Sahinidis, 2005)
and DICOPT (Grossmann et al., 2002) solvers, respectively. This ap-
proach aims to find a balance between exploration and exploita-
tion and avoids premature convergence to a local optimum.

In some instances, surrogate models might have failed to accu-
rately approximate the constraints within the entire search space.
As a result, the resulting surrogate optimization formulation is in-
feasible, even though this does not immediately imply that the
original problem is infeasible. When this occurs, the algorithm
then solves an infeasibility problem to locate the most feasible so-
lution with the least constraint violation. Instead of minimizing
the surrogate objective ( f(x, y)) subject to surrogate constraints
(&(x,y)), we minimize the sum of slack variables s., as shown in
(P2).

C
minZsc
c=1
st.gxy)—s.<0,c=1,...,C
0<s.<01,c=1,...,C

In the above formulation, set ¢ represents unknown inequality
constraints and g. represents the surrogate approximations of all
unknown inequality constraints.

All local and global solutions are added to the sampling set and
the best incumbent solution is found at each iteration by calculat-
ing a score. The solutions are ranked in ascending order based on
the value of the objective function value (after sampling the sim-
ulation) f{x*, y¥*) and the total constraint violation v. Consequently,
among a set of all local and global solutions, the solution with the
smallest objective function value gets the lowest objective function
score (Sp;); the solution with the smallest constraint violation gets
the lowest constraint violation score (Scon ). Each solution is charac-

(P2)

terized by two scores, which is equal to their rank with respect to
feasibility Scon and objective function value So,,j. The overall score is

. Scon+Sob;
computed by averaging these two scores: § = M. The solu-

tion with the lowest Sscore is chosen and added to the intermedi-
ate solution set. By considering both Sobj and Scon, we hypothesize
that we can achieve a balance between finding a global solution
and finding a feasible solution when assessing the best solution
found during each iteration.

These steps are repeated until one of the following termina-
tion criteria is met: 1) negligible constraint violation and model
error (both < 1e~>), 2) no improvement in the objective value over
ten consecutive iterations, and 3) maximum number of samples is
reached.

4.4. NLP search

After the MINLP search step is complete, the algorithm pro-
ceeds to the NLP search to refine the best solution (x*,y*) found
during the MINLP search step (Table 3). This step also allows us
to further reduce constraint violations, a crucial step when many
equality constraints are present. The discrete values are fixed at
y* and the solution is refined with only respect to the continuous
variables. The overall algorithm for NLP step is similar to that of
the MINLP search step, except that one-hot encoding is not per-
formed and CONOPT is used as a local solver (Drud, 1994). In the
final step, the algorithm reduces the bounds of all continuous vari-
ables to =+ 1% of the best solution found so far to further refine
the solution. Assuming that the algorithm has already found an
approximate solution, we only consider the constraint violation v
to evaluate the solution quality during this final stage. The termi-
nation criterion of the NLP stage is identical to that of the MINLP
stage.

5. Results

The performance of the proposed bb-MINLP algorithm is first
tested on a set of benchmark problems obtained from MINLPLib
(“MINLPLib: A library of mixed-integer and continuous nonlinear
programming instances,” 2019). In order to evaluate the perfor-
mance of the algorithm on the most difficult possible scenario (i.e.,
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Table 3
bb-NLP Algorithm.

Algorithm 3: bb-NLP optimization

Input: Best solution found from MINLP search step (x*,y*), variable bounds (xﬁ, Xt

Initialization: LHS sampling

Un-scale initial LHS: Xjpq; = X}, ; (X —x}) + !

W=

Check if previously sampled points S’ can be reused. If yes, add to the sampling set.
Create an initial LHS So = [x},,, y*] of size 10k; + 1 only for continuous variables.

Inquire simulation at Sp = [Xj5q, Ying] to compute Zy = fo,(So). Assume one function evaluation provides the values of all constraints and objective.

Data-Preprocessing

1. Scale Sy and Z, between 0 and 1 and obtain Sj and Zy'.

Surrogate model construction and optimization

Initialization: S’ < S, Z' < Z

1. Use the chosen surrogate type to construct a surrogate model for all constraints and objective. Use 10-fold cross validation to find the best model.
Formulate the surrogate optimization problem and solve using both global and local solvers. If infeasible, solve infeasibility problem (P2).

2.
3. Obtain plocal and global solutions Sj,, = [Xnew.y*].
4. Compute Euclidean distance between S}, and existing sample set S':

X 1 ky 9 ky 2
dlStp =% Zl (an _xnewj) + 2:1 (Yn.j _ynew,j)
i= j=

5. If dist, > 1e~'°, unscale S
6. Compute the solution score for all collected intermediate solutions:
Sp = rank(v)

7. fmin = argmin(Sp)

8. If one of the convergence criteria is met, end iteration

rew to original bound and inquire simulation at Spew and compute Zuew = feyq (Snew) and v. Else, remove the solution from Spey.

Else, S' < Spew and Z' < Zy.w; repeat step 1 for data preprocessing and steps 1-7 for surrogate model construction and optimization.

return x*, y*

Table 4

Names and descriptions of the
MINLP test problems from MINLPLib
(“MINLPLib: A library of mixed-integer
and continuous nonlinear program-
ming instances,” 2019). The equality
constraints are transformed into two
inequalities.

Problem k

=
)
=
T
2
=
<

q

alan
ex1221
ex1222
ex1223
ex1223a
ex1224
ex1225
ex1226
fuel

gbd
gkocis
oaer
procsel
st_el3
st_el4
st_el5
st_e27
st_e29
synthes1

LA)‘.»JI\)l\-J\lv—l\lO‘)O(!v—‘[v:‘)I\JI\)L&)&N\II\!I\)J>
WoOONWA—=WWWWWWNOOWLALA= WSS
DU OAOWONWDAWDDODMOUIOOWWWU
oONON MO WULOOO=NNOMMONMDN

unknown objective function, equality and inequality constraints),
we treat all problems as purely black-box systems. Table 4 shows
the characteristics of the MINLP problems that are used as bench-
marks in this work. Columns k; and k, represent the number of
continuous and binary variables, and nj; and neq are the num-
ber of inequality and equality constraints, respectively. The dimen-
sionality of the problems ranges from 1-12 continuous variables
(ky < 12) and 1-8 binary variables (k; < 8). The problems also
have a varying amount of equality and inequality constraints, with

Table 5

Description of 6 surrogate model settings that are tested in
Results. MI represents a mixed-integer surrogate model with
one-hot encoding used in the MINLP stage, and RE represents
a surrogate model with all variables assumed to be continu-

ous.
Name MINLP surrogate NLP surrogate
ANNMI  ANN (w. one-hot encoding)  ANN
ANNRE  ANN ANN
hyMI ANN (w. one-hot encoding)  GP
hyRE ANN GP
GPMI GP (w. one-hot encoding) GP
GPRE GP GP

the most challenging problem having 9 inequality constraints and
6 equality constraints.

Through the results shown in this work, we aim to study the
performance of the proposed algorithm with respect to (a) the se-
lection of a surrogate model type (i.e., ANN versus GP), (b) the use
of one-hot encoding versus relaxation of integrality, and (c) the
sampling strategy. A selection of the surrogate modeling type must
be made for both the MINLP search stage and the NLP search stage
of the algorithm. To compare different surrogate models, we have
performed an analysis between a purely ANN-based and a purely
GP-based versions of the proposed algorithm. However, based on
findings described in the next section, we have also proposed a
hybrid approach (i.e., the use of ANN models for MINLP search and
GP models for NLP search). Thus, there are overall six approaches
that are tested in this work with respect to the selection of the
surrogate model as well as the use of one-hot encoding (Table 5).
Finally, we compare the performance of the proposed approach
with two other existing algorithms for bb-MINLP. Specifically, a
Mesh-Adaptive Direct Search algorithm (NOMAD (Audet and Den-
nis, 2006)) and a Genetic Algorithm (Deep et al., 2009) are com-
pared at their default settings.

The algorithm is tested 3 times for each setting, and the best,
average, and standard deviation of the solutions obtained are re-
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Fig. 4. Illustration of adaptive sampling for a mixed-integer problem with one continuous x and one binary y variable. The true global optimum occurs when y = 1. For
each case of y, the true model exhibits a different behavior. At each iteration, all unique local and global optima of a surrogate model is collected, and the simulation is
re-inquired at these points. The final surrogate model can accurately approximate the global optimum f{x*, y*), which occurs when y = 1.

ported. The maximum number of samples allowed for each prob-
lem is 4000, since sampling is expensive in most simulation-based
optimization studies and thus must be limited. Comparing both the
best and the average results allows us to evaluate the performance
of the algorithm and its consistency in locating global optimum.
A problem is assumed to be solved if the relative error between
the actual and predicted optimum is less than an error tolerance

(¢ = 0.01), where: gg,; = ||M’_f < €. A very small constraint
actua

violation is allowed (i.e., ¥ < 1e~?), and this is mainly due to the
difficulty in exact satisfaction of equality constraints in a black-box
setting .

5.1. Selection of surrogate modeling type

First, the performance of mixed-integer and relaxed surrogate
models is compared for both ANN and GP (ANNMI, ANNRE, GPMI,
and GPRE). In order to eliminate the effect of the sampling strategy
for these experiments, we only use the k-LHS sampling approach
(Sampling Strategy 1). In the proposed algorithm, the MINLP search
step aims mainly to locate the optimal discrete solution, while
the NLP search step aims to refine the solution with only respect
to the continuous variables. Consequently, the performance of the
MINLP search step is important, since the algorithm will converge
to a local solution during the NLP step if an incorrect binary so-
lution is found during the MINLP step. Fig. 6 shows the percent-
age of correct binary solutions found by each method during the
MINLP search step. For both ANN and GP surrogate models, the
mixed-integer approach (i.e., the use of one-hot-encoding) allows
the algorithm to more accurately locate binary solutions. This is
due to the increased prediction accuracy of the MI model. For all
of benchmark problems, the discrete variables are binary variables,
and these are not ordinal. The results indicate that one-hot en-
coding enables the algorithm to search more efficiently through
the use of more accurate surrogate models that capture the ef-
fect of both the “0” and the “1” cases. Hence, even if the result-
ing optimization model is more complex (i.e., increased problem
dimension due to additional dummy variables and additional con-
straints relating new variables), the MI approach still outperforms
the relaxation approach for the sizes of problems we are solving in
this work. If the number of binary variables further increases, then
tractability issues may arise, a potential limitation of our proposed
methodology.

After the MINLP step terminates, the proposed algorithm pro-
ceeds to the NLP step. The goal of NLP step is to refine the so-
lution obtained during the MINLP stage and locate the optimum
while further reducing existing constraint violations. Fig. 7 shows
the performance profiles of the obtained best result (out of 3 rep-
etitions) with respect to the number of samples and CPU time. The

MINLP/NLP Search

Initial sampling using
SS1, SS2, or SS3

!

Surrogate modeling,
parameter estimation, and |«
cross-validation

v

Surrogate model
’—P optimization via BARON
and DICOPT/CONOPT
Solve
infeasibility
problem

No

Found a feasible
solution?

Add all solutions to
solution set

Add all unique solutions
to solution set and re-
sample simulation

Convergence

Yes

A

Fig. 5. Overall algorithm for MINLP and NLP search steps.

results show that GPMI outperforms the three other methods, fol-
lowed by GPRE. However, both GPMI and GPRE require more CPU
time to converge compared to ANNMI and ANNRE. In addition,
while ANNMI is able to better locate the correct discrete solution
during the MINLP search step than ANNRE, Fig. 7 shows that AN-
NMI and ANNRE solve the same number of problems. This implies
that even when a correct discrete solution has been identified, the
algorithm can still fail to locate a globally optimal solution during
the NLP search step. This indicates that both the MINLP and NLP
search steps are crucial in locating a global solution.
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Fig. 6. Performance of algorithm with respect to the capability to accurately locate
correct discrete solution during the MINLP search step.

In addition to the best obtained result, it is important to assess
the consistency of the methods. In Fig. 8, the average and stan-
dard deviation of the three repetitions are reported with respect
to solution accuracy and computational efficiency. When both the
best and the average results are considered, it becomes clearer that
the MI approaches on average perform better than RE approaches.
This is attributed to the fact that the MI approaches locate the

global binary solutions more consistently. For both ANNMI and
GPMI, the average objective errors are smaller than those of AN-
NRE and GPRE, while the difference is much clearer for the ANN
case. However, it is notable that while ANNMI has a smaller aver-
age objective error than that of GPMI (Fig. 8), GPMI overall solves
more problems (Fig. 7). As we used strict criteria to generate a per-
formance profile in Fig. 7 ( € = 0.01 and v = 1e~%), this result in-
dicates that GP is better at accurately locating the solution and re-
ducing constraint violations due to its interpolating nature. On the
other hand, ANN models are good at finding the approximate loca-
tion of the solution faster, but ANN models do not manage to con-
tinue improving the obtained solution and may converge to a local
or infeasible solution. In addition, note that approximately 30% of
the problems are not solved by any of the proposed methodologies.
We observed that most of these unsolved problems have several
equality constraints. Thus, the exact satisfaction of constraint vio-
lation criterion (v = 1e~>) becomes increasingly challenging. Nev-
ertheless, we can test the limit of our algorithm by including these
challenging problems in our benchmark problem set.

One notable difference between the performance of ANN and
GP is the CPU time for model construction and optimization. The
most time-consuming step when using GP is optimization, but
its model construction CPU time is negligible. In contrast to GP,
the majority of the computation time for ANN is attributed to
model construction (i.e., optimization of parameters). Therefore, GP
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Fig. 7. Performance profile of the best run for € = 0.01 and v = 1e~>. The model types are described in Table 4.
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Fig. 8. Statistics of three runs for MI and RE models. The standard deviation is plotted with the average to show the consistency of each method.

and ANN exhibit a very contrasting trend: GP models are easy to
construct but difficult to optimize, while ANN models are time-
consuming to construct but require less cost to optimize. This dif-
ference is due to their algebraic expressions: for ANN, the model
expression depends only on the number of hidden nodes and lay-
ers, while for GP, the model expression is dependent on the num-
ber of data points used to construct the model. As a result, as the
algorithm collects more samples during each iteration, the com-
plexity of a GP model increases, and the CPU time for globally op-
timizing the model increases significantly, especially for the MINLP
search step. Our results have confirmed that the majority of op-
timization CPU for the GP cases is resulting from the global op-
timization of the MINLP model. One potential suggestion to cir-
cumvent this problem is through the sole use of multi-start lo-
cal optimization of the surrogate models. We performed this test
and observed that the performance of the algorithm deteriorated;
thus, we have concluded that global optimization of the surrogate
models is important, because it leads to the location of new and
more informative sampling solutions (i.e., better exploitation of the
search space).

5.2. Hybrid surrogate modeling approach

Based on the results obtained in the previous section, we have
observed that ANN models have certain advantages over GP mod-
els due to their simpler functional form, which results in faster
model optimization. On the other hand, all formulations with em-
bedded GP models lead to more accurate approximations but are
very difficult to optimize. These observations led to the idea of
exploiting the advantages of ANN and GP by creating a hybrid
model, which combines ANN and GP. In particular, the algorithm
uses ANNs for the MINLP search step, followed by GP for the NLP
search step. Using ANN models initially allows the algorithm to
expedite the MINLP search step and obtain a somewhat accurate
solution, especially with respect to the discrete variables. Subse-
quently, since the aim of the NLP search is refinement, it is impor-
tant to improve the accuracy of the final solution, which can be
accomplished better using GP models. During the NLP stage, we
have fixed the values of the discrete variables, so the dimensional-
ity has been reduced and the algorithm suffers less from the com-
putational expense of GP optimization. It is important to note that
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Fig. 9. Performance profile of 4 surrogate types compared with existing bb-MINLP algorithms.

our algorithm has the capability to keep multiple potential discrete
solutions, which will further be refined through the NLP search.
However, in this work we have only shown its performance for
the case where the best single solution is kept at the end of the
MINLP search step. If a mixed-integer model with one-hot encod-
ing is used for the MINLP step, the model is referred as “hyMI”;
if not, we refer the model as “hyRE”". In this work, we have not
looked into the reverse case, where GP is used for MINLP step and
ANN is used for NLP step, because this approach is expected to
deteriorate solution accuracy and/or make optimization computa-
tionally more demanding.

We present the hybrid results (hyMI and hyRE) compared to
those of ANNMI and GPMI, since the MI surrogate models were

previously shown to perform better than the relaxed models. Fig. 9
shows the performance profiles of the hybrid approach compared
to ANNMI, GPMI, and existing solvers (GA and NOMAD). The same
criteria are used to generate the performance profile: € = 0.01 and
v =1e~>. As these methods heavily rely on sampling, they tend to
require a large number of samples to converge. However, GA and
NOMAD algorithms require less CPU time than surrogate-based al-
gorithms, because GA and NOMAD do not require the construction
and optimization of surrogate models. However, when sampling
becomes computationally expensive, GA and NOMAD are likely to
be more time-consuming than surrogate-based approaches, since
GA and NOMAD tend to require many function evaluations. It must
also be mentioned that both NOMAD and GA contain a set of pa-
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Fig. 10. Average result of three runs for MI and RE models. The standard deviation is plotted with the average to show the consistency of each method. Hybrid MI approach

shows the most consistent performance and solves the most problem.

rameters that can be tuned to affect the performance of the algo-
rithm, while in this work we compared all algorithms with their
default settings.

When only the hybrid models are compared, hyMI outperforms
hyRE. This is due to the capability of MI models to accurately lo-
cate binary solutions, which allows the algorithm to find a globally
optimal as well as a feasible solution. After the correct binary solu-
tion is determined, the algorithm uses GP models to further refine
the solution. The interpolating characteristic of GP is advantageous,
particularly when the problem has several black-box equality con-
straints, because a good approximation of an equality constraint is
crucial to find a feasible solution. Since the RE approach cannot
find the correct binary solution as consistently as the MI approach,
the hyRE model often converges to a local solution. As a result, the
hyMI version of our algorithm combines all of the desirable char-
acteristics and solves the most problems (about 80%), followed by
GPMI and hyRE.

Fig. 10 shows the average results of three runs with their as-
sociated standard deviations to illustrate the performance as well
as the consistency of the algorithms. The hyMI approach overall

performs the best with the smallest average objective error and
constraint violation. It is also one of the most consistent meth-
ods suggested by its small standard deviation. Compared to AN-
NMI, hyMI exhibits a significant improvement in solution accu-
racy. When the computation time is analyzed, hyMI can achieve
a good balance between model construction and optimization CPU.
Consequently, the optimization CPU for hyMI is significantly less
than that of GPMI, which allows the algorithm to go through
more iterations within a given time limit and further enhance
the solution. The hyRE model performs better than ANNMI; how-
ever, it is outperformed by GPMI and hyMI since MI allows the
algorithm to more accurately locate binary solutions. These re-
sults overall indicate that the MI approach using one-hot encod-
ing outperforms the relaxation approach. Note that the hybrid ap-
proach has been proposed as a practical way of efficiently locat-
ing the solution within a reasonable CPU time. When no limit on
computation resources exists, using GP for both the MINLP and
NLP search steps may further improve the performance of the
algorithm.
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5.3. Sampling strategies for MINLP

Three sampling strategies are compared in this section while
fixing all other algorithmic parameters. As we previously have de-
termined that hyMI outperforms all other methods, we use the
hyMI to test three sampling strategies (SS1, SS2, and SS3). Each
sampling strategy is repeated 3 times and the best as well as the
average results are calculated to evaluate its performance. Fig. 11
shows a performance curve of the best result with respect to both
the number of samples and the total computation time for € <
0.01 and v < 1e~5. When only the best result is considered out of
all runs, SS1 solves about 80% of the problems and outperforms
other sampling strategies. Fig. 12 shows the average result of three
runs with respect to solution accuracy (¢ and v), the number of
samples, and the computation time. Both the average and the best
result indicate that SS1 outperforms all other sampling methods.
Unlike SS2 and SS3, SS1 covers the entire search space evenly by
generating a LHS of size ny, for all discrete levels. For SS2 and
SS3, the points are randomly distributed into each discrete level,
and thus the entire search space might not be represented evenly.
Thus, even though all sampling strategies use the same number of
samples, the ability to cover the entire search space evenly proves
to be quite important for surrogate-based optimization. SS1 is also
the most consistent approach, as shown by the small standard de-
viation values, while SS2 and SS3 are prone to data imbalance re-
sulting from randomness.

6. Gray-box MINLP: a process synthesis case study

Up to this point, we have tested our algorithm for a black-
box case, assuming all constraints and objective are unknown. In
this section, we present a more challenging process synthesis case
study and show how it can be solved as a gray-box MINLP for-
mulation. When a problem has many constraints or variables, de-
coupling a problem into a gray-box could reduce the complexity
and improve the solution accuracy. This is representative of a typi-
cal process synthesis problem because constraints that connect in-
dividual units, such as material balance and logical constraints to
control process synthesis, will typically be known a-priori. As the
surrogate models are constructed in a scaled space, these known
constraints must be scaled properly. Furthermore, when a mixed-
integer surrogate model with one-hot encoding is used, the result-
ing optimization formulation is now in terms of dummy variables,
instead of original binary variables. We will illustrate how the orig-
inal constraints can be modified accordingly.

6.1. Problem description

A superstructure optimization problem presented in (Duran and
Grossmann, 1986) is used to demonstrate the proposed methodol-
ogy. The objective is to determine the optimal structure and op-
erating parameters for a process to minimize the sum of oper-
ating and capital costs. The binary variables are associated with
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each process unit, and continuous variables represent total mass
flowrate. The nonlinearities in the model are due to nonlinear
input-output relationship of process units. Although this bench-
mark problem contains simplified nonlinear relationships to rep-
resent process units, in a real case study, these nonlinear relation-
ships represent the underlying phenomena captured by expensive
simulations. The original MINLP formulation has 9 continuous and
8 binary variables with 23 constraints, and the original problem is
shown in Appendix A. The superstructure is shown in Fig. 13.

For process synthesis problems, we can safely assume that cer-
tain constraints related to mass conservation and process configu-
ration will be known explicitly. For example, y; +y, =1 enforces
the selection of only one process unit; 1.25xg — 10y3 < 0 is a big-
M constraint, which makes sure that a flow is set to zero when a
process unit is not selected. These gray-box constraints can be han-
dled explicitly (marked as (G) in Appendix A). Appendix B shows
the re-formulation of the original problem, which is explained in
the subsequent sections.

6.2. Reformulation and scaling of gray-box constraints

In order to generate an accurate surrogate model, normalization
of input and output data is required. In this work, all input and
output variables are scaled between 0 and 1 to construct a sur-
rogate model. As a result, gray-box constraints need to be scaled
properly so that optimization can now be performed in a scaled
space. This is simple as all continuous variables embedded within
any known constraints can be scaled using the following transfor-
mation: x; = x] (x! —xé) +x$, where x; is a continuous variable in
the original domain, x;/ is a continuous variable in 0-1 scaled do-
main, and xf and x! are lower and upper bounds of the variable,
respectively. No scaling is required for binary variables as they are
already scaled between 0 and 1.

For MI surrogate models with one-hot encoding, the surrogate
models are in terms of continuous and dummy variables, instead of
original binary variables. As a result, gray-box constraints also need
to be in terms of dummy variables. For a binary variable y; with
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. lify;=0
dummy variables d; o and d; ; where dj = {0 if yj- 1 and dj; =
lifyj=1
constraints:
dj’o(l —yj) + dj.1yj =1
The original binary variable y; can now be expressed as in
terms of dummy variables:
1-djp
Yi= g =4
Ji1 .0

the following transformation is required for gray-box

Furthermore, to allow the selection of only one dummy vari-
able for each binary variable, an additional constraint is required
for each y;: djo+d;j1 = 1. These are the overall set of steps that
needs to be performed in order to re-formulate the original prob-
lem constraints, so that they are compatible with the surrogate-
based formulation of our proposed algorithm.

6.3. Process synthesis case study results

For the initial sampling design, SS1 is used. At each discrete
level L;, a Latin hypercube design of size njy is generated. The
input and output datasets are both scaled between 0 and 1, and
hyMI model is constructed. As the problem consists of 9 continu-
ous and 8 binary variables, the resulting neural network has 25 in-
put nodes (i.e., 9 nodes for continuous variables and 16 nodes for
dummy variables) and 18 output nodes for the objective and black-
box constraints. In total, 6 out of 23 constraints are assumed to be
known, while the rest are assumed to be unknown. This catego-
rization of unknown and known constraints was performed such
that only the very simple constraints (activation of flowrates and
unit selection) are considered as known. A different decomposition
of known and unknown constraints may lead to different results,
with the expectation that more known constraints will help the
algorithm converge faster. All gray-box constraints are scaled and

reformulated with respect to dummy variables, and the final for-
mulation is shown in Appendix B. Both global and local solvers are
used to collect a diverse set of intermediate solutions. The model
is optimized, and the algorithm terminates when one of the termi-
nation criteria is met.

Table 6 shows the final solution obtained using the proposed
methodology, and Fig. 14 shows the improvement in solution dur-
ing each iteration. At the end of each iteration, we select the best
solution based on both the objective function value and constraint
violation v to find a solution that is not only globally optimal but
also feasible. Note that at iteration 5, ,p; temporarily increases be-
cause the algorithm found a more feasible solution with smaller
constraint violation. During the next iteration, it quickly converges
back to the actual solution. After 19 iterations, the algorithm finds
a global solution with less than 1% error and v = 5e~4. After 22 it-
erations, the algorithm converges to an exact global solution with
&opj =0 and v = 0. The computational cost of this run is high and
this is mainly attributed to both the training of the surrogate mod-
els and their optimization. However, the total number of samples
required to solve this 17-variable problem is very low, consider-
ing the state-of-the-art in surrogate-based optimization. It should
be noted that this problem is quite challenging when treated as
a bb-MINLP problem. In fact, our proposed algorithm could not
solve this problem within the given sampling and CPU limitations,
when all constraints were treated as unknown. However, known
constraints and the ability to incorporate them together with sur-
rogate models, significantly facilitates the performance of the algo-
rithm.

Table 6

Optimization result of process synthesis case study.
By using the gray-box approach, the algorithm is
able to find a global optimum with v = 0.

f* factuul v N
68.0072 68.0072 0 1492 7.4

CPU (hr)
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Fig. 14. Solution error and constraint violation vs. the number of samples and computation time. Each point represents a single iteration. The algorithm locates an optimal
solution with less than 1% error and negligible constraint violation in just a few iterations.

7. Conclusions and future perspectives

In this work, we propose a data-dependent mixed-integer op-
timization algorithm for black-/gray- box problems. Unlike exist-
ing bb-MINLP algorithms, we do not relax the integrality con-
straint to construct a surrogate model. Instead, one-hot encod-
ing is used to explicitly handle binary variables. Two surrogate
types are considered in this work (ANN and GP) as well as a
hybrid model (ANN+GP). These surrogate models are tested and
compared with existing bb-MINLP solvers and the results indi-
cate that mixed-integer surrogate models outperform relaxed sur-
rogate models with respect to both solution quality and compu-
tational efficiency. We also demonstrate how known constraints
can be explicitly incorporated within surrogate-based MINLP for-
mulations through a process synthesis case study to facilitate the
search of global optimum. Lastly, we compare different sampling
strategies for bb-MINLP optimization and conclude that this has
an important effect in the overall performance of the algorithm.
The most effective sampling approach ensures that the sampling
design is balanced in all combinations of the discrete variables.
Our results indicate that when certain constraints are known a-
priori, these should be directly incorporated within the surrogate-
based formulation, because they will significantly limit the feasi-
ble search space and will allow the algorithm to focus the explo-
ration and exploitation within feasible subspaces. In addition, we
have found that satisfaction of equality constraints is exceptionally
difficult in a black-box optimization setting, and this was quite ef-
fectively overcome by the incorporation of a surrogate-based feasi-
bility sampling stage.

The proposed work can be applied to numerous simulation-
based problems with both continuous and discrete variables em-
bedded in the simulation. One specific example that is currently
being studied is the synthesis of adsorption cycles. Adsorption pro-
cesses contain different operating steps and cycle configurations
that can be represented by binary variables. Decoupling these steps
and the associated continuous and binary variables that are em-
bedded in the simulation is not often possible. Using the proposed
bb-MINLP algorithm, one can determine the optimal cycle design
using input-output data from rigorous adsorption simulation mod-
els. Another MINLP case study that is currently being studied is the
design of mixed-material, hybrid modular separation systems, for
which discrete variables represent the selection of materials and
units that are optimal for the separation of different gas mixtures.

Overall our algorithm shows promise for the solution of MINLP
problems with moderate number of variables and constraints. For

applications on problems with significantly more degrees of free-
dom, the current algorithmic implementation will require improve-
ments to reduce its computational cost by taking advantage of par-
allel computing, heuristics, and recent exciting advances towards
globally optimizing complex NN and GP surrogate formulations.
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Appendix

A. Process Synthesis Case Study: Original Problem Formulation
adapted from (Duran and Grossmann, 1986)

minimize z = 5y + 8y, + 6y3 + 10y4 + 6ys5 + 7y + 4y7 + 5y3
—10x3 — 15x5 + 15x19 + 80x,7 + 25x19
+35x31 — 40Xg + 15X14 — 35Xz5 + €Xp (x3) + exp (1%)
—6.51n (x99 +x17 + 1)

st. —15In(x9+1)—In(xy; +1) —x14 <0
—In(Xjp+x7+1) <0
—X3 — X5 + X10 + 2X17 + 0.8x%19 + 0.8x34 — 0.5X9 — X14 — 2%25 <0

—X3 — X5 + 2X17 + 0.8x19 + 0.8x31 — 2Xg — X14 — 2X5 < 0
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—2X17 — 0.8%19 — 0.8%51 + 2X9 + X14 + 2%25 <0
—0.8x19 — 0.8x%1 +x14 <0

—X17 +Xg + X5 <0

—0.4x14 — 0.4x; +1.5%14, <0

0.16x19 + 0.16x51 — 1.2x14 <0

X10 —0.8x17 <0

—Xx10+0.4x17 <0

exp (x3) —10y; <1

exp (lx—sz) — 10y, <1
X9 —10y; < 0 (G)

0.8x19 +0.8x51 — 10y, <0
2X17 — 2Xg — 2X5 — 10y5 < 0
X19 — 10y < 0 (G)

Xa1 —10y7 <0 (G)

X10 + %17 — 10yg < 0 (G)

Y1+Y2=1(G), ya+ys < 1(G)

—Y4+Ys+y7=0(G), y3 -y3 <0 (G)

yef{0, 1)’ a<x<b,

X = (xj:j=3,510,17,19,21,9, 14, 25) € R

a’ ={0,0,0,0,0,0,0,0}, b" ={2,2,1,2,2,2,2,1,3}

B. Process Synthesis Case Study: Gray-box Formulation in the scaled
space

minimize f (X';. d;)

s.t. gc(x’,», dj) <0

2%, - 10( 3%, ) <0

6.17d6,0
7 1-d7o
219 — 10<d7,17dm> <0

1-d
X0+ 2X' 17 — 10<W) <0

1—-dipo 1-dypo
3 + 3 =1
(du d1,o) (d2,1 dz,o)

1—dspo 1—-dsp
5 + ) <‘l
(d4,1 —d4,o> (dS,l —d5,0> B
1—ds 1—dspo 1—-dg

- ' + ' +l 57— ) =1

<d4,1 —d4,0> (dﬁ.l —ds,o) <d7,1 —d7,0) -

A=dso )\ ([ 1-dso ) _,

ds1—dsp dg1—dso ) ~

dio+dj1=1,j=1,....8
d;e{0,1)® 0=x;<1
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