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a b s t r a c t 
Simulation-based optimization using surrogate models enables decision-making through the exchange of 
data from high-fidelity models and development of approximations. Many chemical engineering opti- 
mization problems, such as process design and synthesis, rely on simulations and contain both discrete 
and continuous decision variables. Surrogate-based optimization with continuous variables has been stud- 
ied extensively; however, there are many open challenges for the case of mixed-variable inputs. In this 
work, we propose an algorithm for mixed-integer nonlinear simulation-based problems that uses adap- 
tive sampling and surrogate modeling with one-hot encoding. We propose techniques for the design of 
experiments for mixed-variable problems, surrogate modeling for mixed-variable response surfaces, and 
iterative approximation-optimization procedure that leads to optimal solutions. Results show that one-hot 
encoding leads to accurate and robust mixed-variable Gaussian Process and Neural Network models that 
are effective surrogates for optimization. The proposed algorithm is tested on mixed-integer nonlinear 
benchmark problems and a chemical process synthesis case study. 

© 2020 Published by Elsevier Ltd. 
1. Introduction 

Many optimization problems today depend on highly compli- 
cated computer simulations, which provide accurate and useful 
data that represent complex physical phenomena ( Amaran et al., 
2016 ; Bhosekar and Ierapetritou, 2018 ; Boukouvala et al., 2016 ; 
McBride and Sundmacher, 2019 ; Rios and Sahinidis, 2013 ). These 
simulations are typically comprised of a large system of equa- 
tions, such as partial differential and ordinary differential equa- 
tions, to model processes and systems accurately. In certain cases, 
due to the large size and complexity of the simulation or the pres- 
ence of discontinuities caused by periodic boundary conditions, a 
simulation-based optimization approach may be the most practi- 
cal and efficient way to optimize these problems ( Amaran et al., 
2016 ; Bhosekar and Ierapetritou, 2018 ; Boukouvala et al., 2017 ; 
Cozad et al., 2014 ; McBride and Sundmacher, 2019 ). In chem- 
ical engineering, one can observe a significant growth on the 
interest in simulation-based, or black/gray-box, or derivative- 
free optimization ( Balasubramanian et al., 2018 ; Beykal et al., 
2020 ; Bhosekar and Ierapetritou, 2018 ; Boukouvala et al., 2017 ; 
Cozad et al., 2015 ; Davis and Ierapetritou, 2008 ; Davis et al., 
2018 ; Dias and Ierapetritou, 2020 ; Garud et al., 2019 , 2018 ; 
Graciano and Le Roux, 2013 ; Keßler et al., 2019 ; Kim and Boukou- 
vala, 2019 ; McBride and Sundmacher, 2019 ; Mencarelli et al., 2020 , 

∗ Corresponding author. 
E-mail address: fani.boukouvala@chbe.gatech.edu (F. Boukouvala). 

2020 ; Schweidtmann et al., 2019 ; Schweidtmann and Mitsos, 2018 ; 
Tso et al., 2019 ; Wilson and Sahinidis, 2019 ; Zantye et al., 2019 ). 
In this work, we will interchangeably use the term “black-box”
or “surrogate-based” optimization to refer to problems that rely 
on simulation input-output data and the derivatives of the origi- 
nal model are not directly used by the optimization solver (also 
known as derivative-free optimization) ( Boukouvala et al., 2016 ; 
Conn et al., 2009 ; Rios and Sahinidis, 2013 ). 

Black-box optimization heavily relies on data generated from 
complex simulations instead of first principle models consisting 
of explicit analytical equations. Existing black-box optimization al- 
gorithms proposed in the literature can be divided broadly into 
three categories: sampling-based, surrogate-based, and stochas- 
tic or evolutionary methods ( Bhosekar and Ierapetritou, 2018 ; 
Boukouvala et al., 2016 ; Rios and Sahinidis, 2013 ). These three 
methods do not involve direct computation of the derivatives 
of the objective or constraints of the simulation, but they dif- 
fer in how the simulation data is used to find the optimal so- 
lution. Sampling-based methodologies involve generating a set of 
points to guide the search, and different algorithms use unique 
metrics to choose the next sampling locations in order to either 
refine the solution or explore other areas of the search space 
( Hooke and Jeeves, 1961 ; Nelder and Mead, 1965 ; Reeves, 1997 ). 
Surrogate-based algorithms involve constructing an approxima- 
tion model that relates the sampled input-output data, which 
is then optimized directly. These approximation models are also 
known as meta- or reduced-order models ( Bhosekar and Ierapetri- 
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tou, 2018 ; Boukouvala and Floudas, 2017 ; Cozad et al., 2014 ; 
Davis et al., 2018 ; Forrester and Keane, 2009 ; Garud et al., 2018 ; 
Keßler et al., 2019 ; Kim and Boukouvala, 2019 ; McBride and Sund- 
macher, 2019 ; Queipo et al., 2005 ). Stochastic or evolutionary-type 
algorithms solely rely on sampling large populations, but they dif- 
fer from direct-search methods due to the presence of stochastic 
criteria to generate populations of samples scattered in the en- 
tire search space. Most popular examples of such algorithms are 
Genetic Algorithms ( Holland, 1992 ), Particle Swarm Optimization 
( Eberhart and Kennedy, 1995 ; Kennedy and Eberhart, 1995 ), and 
Simulated Annealing ( Romeo and Sangiovanni-Vincentelli, 1991 ). 
Of the three aforementioned categories, the surrogate-based op- 
timization literature has attracted significant attention lately, and 
this is undoubtedly linked to the recent developments in Ma- 
chine Learning (ML) ( Hastie et al., 2009 ). Many researchers from 
diverse fields have observed that surrogate-based optimization is 
a very promising method ( Booker et al., 1999 ; Boukouvala and 
Floudas, 2017 ; Yondo et al., 2018 ; Zhang et al., 2019 ), and this is 
mainly due to the ability of the surrogate models to expedite the 
search for global optima and reduce the sampling requirements. 

In all of the aforementioned literature, the majority of contri- 
butions is motivated by nonlinear optimization problems (NLPs) 
with only continuous input or decision variables ( Boukouvala and 
Floudas, 2017 ; Cozad et al., 2014 ; Zhai and Boukouvala, 2019 ). 
However, many chemical engineering problems contain both con- 
tinuous and discrete (integer or binary) decision variables. For ex- 
ample, the design of a distillation column involves continuous vari- 
ables for operating conditions and discrete variables for the num- 
ber of stages. Similarly, a superstructure synthesis optimization 
problem contains binary variables to represent design configura- 
tions, while nonlinear relationships represent phenomena within 
the processes ( Caballero and Grossmann, 2008 ; Davis and Ier- 
apetritou, 2008 ; Graciano and Le Roux, 2013 ; Henao and Mar- 
avelias, 2011 ; Sangbum et al., 2003 ). In ( Larson et al., 2019 ), a case 
study on the design of solar plants is discussed, in which the dis- 
crete decisions are embedded in the simulation. This leads to a 
simulation-based optimization problem that cannot be relaxed or 
decoupled with respect to discrete and continuous variables. 

There are a few black-box mixed integer nonlinear program- 
ming (bb-MINLP) optimization algorithms proposed in the direct- 
search literature ( Abramson et al., 2008 ; Deep et al., 2009 ; 
Liuzzi et al., 2012 ; Liuzzi et al., 2015 ) and in the surrogate-based 
literature ( Holmström et al., 2008 ; Müller, 2016 , 2013 ; Rashid et al., 
2013 ), which are described in detail in the next section. Never- 
theless, the optimization of bb-MINLPs is still a difficult prob- 
lem due to several open challenges that are intrinsic to MINLP 
( Müller, 2016 ). The first challenge is obtaining a representative, 
tractable, and balanced sample set when both discrete and con- 
tinuous variables are present. When all of the decision variables 
are continuous, space-filling sample designs (e.g., Latin hypercube 
( McKay et al., 1979 ), orthogonal arrays ( Owen, 1992 ), and Sobol 
sequences ( Sobol, 1967 )) are used to generate balanced sample 
sets, and the simulation is inquired at these points. These sam- 
pling methods cannot be directly applied for bb-MINLP problems 
because the simulation may not provide output values at non- 
integral values of the discrete variables ( Müller et al., 2013 ). An- 
other challenge is surrogate model fitting in the case of mixed- 
variable inputs. Existing surrogate modeling algorithms for bb- 
MINLP ( Holmström et al., 2008 ; Müller, 2016 ; Müller et al., 2013 ; 
Rashid et al., 2013 ) assume all variables are continuous in or- 
der to obtain a smooth and continuous surrogate model. At the 
same time, surrogate models assume that all input variables are 
ordinal, which means that a higher value corresponds to higher 
intensity, such as temperature or pressure levels. Binary vari- 
ables do not satisfy this assumption as “0” and “1” usually rep- 
resent different choices, as opposed to intensity. While this limi- 

tation can be overcome by using multiple surrogates and patching 
them at discontinuities (e.g., piecewise functions), this could com- 
plicate the surrogate-based optimization formulation significantly 
( Swiler et al., 2014 ). 

A mixed-variable response surface introduced in ( Swiler et al., 
2014 ) will be used here to demonstrate the aforementioned chal- 
lenges ( Fig. 1 ). This response surface has one continuous vari- 
able ( x ) and one discrete variable ( y ) with three possible levels 
y = [ −2 , 0 , 2 ] . When plotting the response surface for different lev- 
els of y , one can observe that the behavior of the output is very 
different ( Fig. 1 a). There are multiple ways to approximate and 
subsequently optimize this problem, such as (a) treat each level 
of y as an independent problem by fitting and optimizing separate 
surrogate models, or (b) assume continuity in all variables and fit 
a single continuous response surface with sparse sampling in the 
y direction. The first approach is possible in low dimensions but 
would become intractable as the number of discrete variables and 
levels increases. On the other hand, if continuity in all variables 
is assumed, this could lead to inaccurate surrogate models since 
there will be no samples in between non-integral values of the 
discrete variables. For the same example, if this black-box input- 
output relationship is assumed to be a 2D continuous function 
( Fig. 1 b), the complexity of the surface becomes apparent. More 
specifically, at the middle level of y , the function has a very sud- 
den and steep change in response; thus, assuming continuity when 
fitting this response surface may lead to inaccurate surrogate mod- 
els. Most importantly, if the level values of y do not represent 
an intensity, then the assumption of continuity in y is problem- 
atic. In this work, we study various techniques to obtain a repre- 
sentative set of samples and fit appropriate surrogate models for 
mixed-variable optimization problems. The presence of nonlinear 
constraints, both inequality and equality, and non-convexity of the 
problems all pose further challenges for the solution of bb-MINLP 
problems ( Boukouvala et al., 2016 ). 

In this work, we aim to develop an algorithm to solve the fol- 
lowing black-/gray-box MINLP (P1): 
min f ( x , y ) 
s.t. g IB ( x , y ) ≤ 0 
g IK ( x , y ) ≤ 0 
h EB ( x , y ) = 0 
h EK ( x , y ) = 0 

x l ≤ x ≤ x u , y ∈ { 0 , 1 } k 2 
x ∈ R k 1 , k = k 1 + k 2 

(P1) 

where x represents continuous variables, y represents binary vari- 
ables, x l and x u represent the lower and upper bounds of the con- 
tinuous variables, k 1 and k 2 represent the dimensions of contin- 
uous and binary variables respectively, f ( · ) represents black-box 
objective, g IB ( · ) and g IK ( · ) represent inequality constraints that 
are unknown (black-box) and known, respectively. Similarly, and 
h EB ( · ) and h EK ( · ) represent equality constraints that may be 
unknown and known, respectively. Sets IB and EB represent the 
set of black-box inequality and equality constraints, respectively. 
Similarly, sets IK and EK denote the sets of known inequality and 
equality constraints, respectively. If all constraints and objective are 
unknown (i.e., IK = ∅ , EK = ∅ ), the problem will be referred as a 
black-box MINLP (bb-MINLP). If some constraints are known, the 
problem will be referred as a gray-box MINLP (gb-MINLP). g IK ( x, 
y ) and h EK ( x, y ) represent the known inequality and equality con- 
straints, and these can be handled directly without constructing 
surrogate models. 

Through this work, we aim to answer several key questions re- 
lated to bb-MINLP and propose a new algorithm that can solve 
bb/gb-MINLP problems of moderate sizes (i.e., up to 15 variables 
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Fig. 1. Goldstein price function adapted from ( Swiler et al., 2014 ). For each value of discrete variable y, the function exhibits a drastically different behavior. In (a) different 
y level values are plotted separately, in (b) the 2D surface is plotted. 
and 23 constraints). First, to solve bb/gb- MINLP problems, we 
propose the use of mixed-integer surrogate models that can han- 
dle discrete variables directly, rather than relaxing the integral- 
ity constraints. Our framework utilizes, compares, and combines 
two types of surrogate models, namely Artificial Neural Network 
(ANN) and Gaussian Process (GP) models. A data-preprocessing 
technique, one-hot encoding, is used to address the modeling 
of mixed-variable problems, and the optimization problem is re- 
formulated to reflect this transformation. In addition, we study 
the performance of three different sampling strategies for mixed- 
integer problems and propose the most appropriate method that 
balances solution accuracy and sampling requirements. Finally, we 
develop an algorithm that can solve both black- and gray-box for- 
mulations of (P1) using a hybrid combination of ANN and GP mod- 
els for the MINLP and NLP stages, respectively. The performance of 
the algorithm is analyzed with respect to solution accuracy, sam- 
pling requirements, and computational efficiency and compared to 
those of two competing existing algorithms for bb-MINLP. 

This paper is organized as follows. Section 2 introduces the nec- 
essary background on surrogate-based optimization and reviews 
some existing work on bb-MINLP. In Section 3 , sampling, data- 
preprocessing, and surrogate modeling strategies for bb-MINLP are 
presented in detail. The overall proposed algorithm is described in 
Section 4 to illustrate how these strategies are integrated into the 
overall framework. Section 5 presents a comprehensive compari- 
son of the proposed methodology on a set of benchmark problems. 
Finally, Section 6 introduces the surrogate formulation for a case 
study on superstructure optimization. We demonstrate how the 
MINLP problem can be decoupled into a gray-box problem and re- 
port the performance of our algorithm. A discussion of the findings 
is provided before the conclusions and future perspectives. The de- 
tailed formulations of the process synthesis case study are pro- 
vided in the Appendix and detailed tables of all the results shown 
in this paper are provided as Supplementary Material. 
2. Overview of surrogate-based optimization 
2.1. Existing literature on derivative-free MINLP optimization 

Existing work on derivative-free MINLP optimization algo- 
rithms can be divided into three broad categories: sampling- 
based/direct-search, model-based, and stochastic or evolutionary 
methods ( Rios and Sahinidis, 2013 ). Direct-search bb-MINLP algo- 
rithms have been proposed as extensions to existing NLP direct- 

search methods ( Abramson et al., 2008 ; Audet and Dennis, 2001 ; 
Cocchi et al., 2019 ; Larson et al., 2019 ; Giampaolo Liuzzi et al., 
2015 ). One of the most popular existing software for constrained 
bb-MINLP is NOMAD (Nonsmooth Optimization by Mesh Adaptive 
Direct Search) adapted from ( Audet and Dennis, 2006 ). 

Due to their purely sampling-based nature, evolutionary- 
type methods (i.e., Genetic Algorithms ( Reeves, 1997 ), Particle 
Swarm Optimization ( Eberhart and Kennedy, 1995 ), and Simulated- 
Annealing ( Romeo and Sangiovanni-Vincentelli, 1991 )) could also 
be applied to solve (P1). The most widely used algorithm for bb- 
MINLP problems under this category is developed in a MATLAB 
“global optimization” toolbox, which employs a genetic algorithm 
( Deb, 20 0 0 ; Deep et al., 20 09 ). In addition, MEIGO ( Egea et al., 
2014 ) is an open source software tool that uses enhanced scatter 
search for global optimization of NLP and MINLP formulations. 

There have also been a few developments for solving bb-MINLP 
problems in the surrogate-based optimization literature. Existing 
surrogate-based MINLP algorithms start with relaxing the discrete 
variables to create smooth surrogate functions. For example, SO-MI 
introduced in ( Müller et al., 2013 ) and MI-SO ( Müller, 2016 ) use a 
cubic radial basis function (RBF) model to solve expensive black- 
box problems. An RBF-based algorithm for mixed-integer nonlinear 
constrained optimization has been proposed in ( Rashid et al., 2013 ) 
and ( Holmström et al., 2008 ). Both methods have been shown to 
perform well for problems up to 8 binary and 4 continuous vari- 
ables and less than 10 constraints. All of these aforementioned 
surrogate-based MINLP optimization algorithms do not handle dis- 
crete variables directly. Instead, the integrality constraint is relaxed 
to construct a smooth surrogate model, even if the simulation can- 
not be inquired at non-integral locations of the discrete variables. 
Recently, the use of gradient-boosted tree has been proposed for 
mixed-integer convex nonlinear optimization ( Mistry et al., 2018 ). 
While this method handles discrete variables directly, the result- 
ing gradient-boosted tree model is discontinuous. Additional rel- 
evant work from the process systems engineering community in- 
volve optimization of MINLP formulations with embedded surro- 
gate functions ( Caballero and Grossmann, 2008 ; Davis and Ier- 
apetritou, 2008 ; Henao and Maravelias, 2011 ). However, in these 
contributions, the discrete variables are decoupled from the surro- 
gate models. All surrogate models are only a function of continu- 
ous variables, and the trained surrogate models are embedded in 
the overall MINLP formulation. 

In the approximation literature, several efforts have been made 
to study mixed-variable surrogate models that can directly han- 



4 S.H. Kim and F. Boukouvala / Computers and Chemical Engineering 140 (2020) 106847 

Fig. 2. General framework of adaptive surrogate-based optimization. Surrogate models approximate the data from expensive black-box simulations and are iteratively opti- 
mized and updated to find an optimal solution. 
dle discrete variables ( Gramacy and Lee, 2008 ; Qian et al., 2008 ; 
Swiler et al., 2014 ). These surrogate model techniques have been 
studied only with respect to approximation accuracy, and the op- 
timization of these models has not been studied. This is very im- 
portant because although certain functions might be accurate ap- 
proximations, the formulation that needs to be embedded within 
the surrogate-based optimization problem may lead to intractable 
problems. For example, in ( Qian et al., 2008 ), a Gaussian pro- 
cess with a special correlation function is proposed. This corre- 
lation function models interactions between discrete-discrete and 
discrete-continuous variables. We have found that optimizing this 
model requires many additional constraints to allow the selection 
of appropriate correlation coefficients, in addition to the number of 
constraints that increases proportionally with the number of sam- 
ples that are used to construct the model. Thus, this leads to a 
very large surrogate bb-MINLP that is very challenging to optimize 
even with state-of-the-art deterministic optimization solvers. An- 
other way to construct mixed-integer surrogate models is using 
regression trees as proposed in ( Gramacy and Lee, 2008 ). Since re- 
gression tree methods involve dividing the search space into sev- 
eral partitions, this allows for a natural development of differ- 
ent regression functions for different realizations of discrete vari- 
ables. For each partition, or a “node” of a tree, a Gaussian process 
model can be constructed. While this method is straightforward 
and easy to adapt, the resulting optimization problem is a piece- 
wise function, which may require a generalized disjunctive pro- 
gramming formulation for its optimization. As these models were 
developed solely for the purpose of prediction, the optimization of 
these mixed-integer surrogate models may be infeasible or diffi- 
cult. In this work, we have limited our study to methods that bal- 
ance accuracy and tractability of formulation for optimization. 
2.2. Overview of adaptive surrogate-based optimization 

In this section, we provide an overview of the typical steps for 
adaptive surrogate-based optimization that will form the basis of 
our algorithm. The algorithmic steps will then be extended to han- 
dle specific challenges of bb-MINLP ( Section 3 ). As computer sim- 
ulations are becoming more and more computationally expensive, 
taking minutes, hours, or even days to generate one data point, an 
ideal black-box optimization algorithm should locate optimal so- 
lutions with a small number of function evaluations and within a 
reasonable computation time ( Kim and Boukouvala, 2019 ). In order 
to locate an optimal solution, surrogate-based algorithms are based 
on the general notion that an initial limited set of samples can be 
used to develop an approximation model, and iterative optimiza- 
tion and resampling can be used to refine this model in promis- 
ing locations. Surrogate-based algorithms generally consist of four 
steps: 1) initial sampling, 2) surrogate model construction, 3) opti- 
mization, and 4) adaptive sampling and optimization ( Fig. 2 ). 

First, the construction of a surrogate model begins with choos- 
ing an efficient sampling strategy to maximize the information 
gained while minimizing the number of samples. Samples should 
be uniformly distributed in the search space. Space-filling designs 
are based on the general concept that if we project the sam- 
ple points onto each variable axis, no projections of the sample 
points will overlap. Latin Hypercube sampling (LHS) is one of the 
most commonly used type of non-collapsing space-filling design 
( McKay et al., 1979 ). 

Next, a surrogate model type is selected to approximate the 
collected simulation data. Several types of surrogate models cur- 
rently exist: Gaussian process ( Boukouvala and Ierapetritou, 2013 ; 
Jones et al., 1998 ; Olofsson et al., 2018 ; Quirante et al., 2015 ; 
Rasmussen, 2004 ; Williams and Rasmussen, 1995 ), Radial Ba- 
sis Functions ( Chen et al., 1991 ; Müller et al., 2013 ; Regis and 
Shoemaker, 2005 ), Neural Networks ( Henao and Maravelias, 2011 ; 
Schweidtmann and Mitsos, 2018 ; Specht, 1991 ), quadratic, and 
polynomial regression ( Forrester and Keane, 2009 ; Hüllen et al., 
2019 ), to name a few. The selection and parameter fitting of sur- 
rogate model are coupled with a k -fold cross-validation procedure 
to prevent overfitting. This procedure ensures that the surrogate 
model parameters are trained only on a subset of samples (train- 
ing set), while the other subset of remaining samples is left out 
for validation (validation set). A prediction error on the validation 
set is calculated using the optimal model, and the procedure is 
repeated k times to allow the selection of the best model with 
the minimum cross-validation error to proceed to the optimiza- 
tion stage. Several approaches have been proposed for handling 
constraints, such as fitting a separate model for each constraint 
( Boukouvala and Floudas, 2017 ) or for a grouped penalty function 
( Ben-Tal and Zibulevsky, 1997 ; Deb, 20 0 0 ). In this work, surrogate 
models are constructed for all black-box constraints and the objec- 
tive function. 

Finally, the surrogate formulation can be optimized using a 
derivative-based or deterministic optimization solver. However, re- 
gardless of the type of surrogate model used, it is unlikely that a 
highly accurate solution is obtained in just one iteration. This is 
mainly due to the limited number of samples collected in the first 
iteration. Hence, surrogate modeling is usually coupled with adap- 
tive sampling to determine the location of next sampling points 
and to iteratively update the incumbent solution. An existing adap- 
tive sampling approach determines the location of new samples 
in promising regions with the aim of improving the optimal so- 
lution, rather than constructing the best approximation over the 
entire search space ( Boukouvala and Floudas, 2017 ; Jones et al., 
1998 ; Kim and Boukouvala, 2019 ). This approach seeks to main- 
tain a balance between diversity in sampling (i.e., exploration) and 
optimization (i.e., exploitation) of the feasible space and the objec- 
tive function. As a result, the surrogate model is used only as an 
intermediate step to guide the search toward better directions and 
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does not guarantee convergence ( Boukouvala and Floudas, 2017 ; 
Jones et al., 1998 ; Kim and Boukouvala, 2019 ). In this work, we 
use the aforementioned adaptive sampling and optimization strat- 
egy (i.e., strategy that facilitates the search of optimum). Once the 
locations of new sample points have been determined, the sim- 
ulation is re-inquired and the surrogate models are updated. The 
entire process repeats until certain convergence criteria are met. 
3. Methods for surrogate-based bb-MINLP 
3.1. Design of mixed-variable computer experiments 

The accuracy of a surrogate model depends both on the num- 
ber and the location of points. Hence, finding a good initial sam- 
pling design is an important step that highly affects the accuracy 
of the final solution ( Bhosekar and Ierapetritou, 2018 ; Eason and 
Cremaschi, 2014 ; Forrester and Keane, 2009 ). When only continu- 
ous variables are present, LHS is typically used to generate an ini- 
tial sampling design ( Boukouvala and Floudas, 2017 ; Cozad et al., 
2014 ; Kim and Boukouvala, 2019 ). However, for MINLPs, the stan- 
dard way of obtaining a space-filling sampling design is an open 
question that we aim to study in this work. 

To illustrate some existing sampling methodologies, let us de- 
fine n lhs to be the number of points selected for each LHS and m 
to be the total the number of discrete combinations. If all variables 
are continuous, the total number of LHS points is typically fixed to 
a number based on heuristics (e.g., n lhs = 10 k 1 + 1 ). If L j represents 
the number of discrete levels for each discrete variable y j (e.g., 
a binary variable y j has two levels: L j = 2 ), then m = ∏ k 2 

j=1 L j . In 
( Müller, 2016 ; Müller et al., 2013 ), the LHS points corresponding to 
discrete variables are rounded to closest integers. In ( Rashid et al., 
2013 ) and ( Holmström et al., 2008 ), an auxiliary problem is solved 
to eliminate infeasible samples. These approaches, however, do not 
guarantee that the same number of samples is collected for each 
discrete realization. Thus, this may lead to data imbalance: certain 
discrete combinations may contain more data points than the oth- 
ers, which may lead to inconsistency in the accuracy of the surro- 
gate model for certain levels. 

Swiler et al.,(2014 ) propose and compare different sampling 
techniques, such as standard Latin hypercube and k -Latin hyper- 
cube sampling for building accurate approximation models. When 
using the standard Latin hypercube approach, one LHS of size mn lhs 
is generated in the continuous space, and the points are then ran- 
domly split into m groups of equal size sets, so that each group 
is assigned to a unique discrete level. In the k -Latin hypercube 
approach, a separate LHS of size n lhs is generated for each dis- 
crete level. Both methods generate mn lhs points. Although these 
methods have been compared for their approximation accuracy of 
low-dimensional functions, they have not been systematically com- 
pared with respect to their performance for surrogate-based opti- 
mization. In this work, we compare the performance of three dif- 
ferent sampling strategies from the approximation and surrogate- 
based optimization literatures: k -Latin hypercube (Sampling Strat- 
egy 1), standard Latin hypercube (Sampling Strategy 2), and Latin 
hypercube sampling with simply rounding any discrete variables to 
their nearest integer value (Sampling strategy 3). 
3.2. Surrogate modeling 

While various surrogate models have been used in the litera- 
ture, we only consider Artificial Neural Networks (ANN) and Gaus- 
sian Process (GP) models in this work. These two surrogate models 
have been widely used for surrogate modeling for NLP due to their 
accuracy and flexibility in representing a complicated nonlinear re- 
lationship between input and output data. A brief introduction to 

these two methods for continuous variables will be presented in 
this section, followed by a description on how these models can 
be modified to accommodate the presence of discrete variables. 
3.2.1. Artificial neural network modeling 

An Artificial Neural Network (ANN) is a nonlinear statistical 
model that has been used for both classification and regression 
( Hastie et al., 2009 ; Heaton, 2008 ). Following a standard ANN ar- 
chitecture, the input variable nodes represent the input layer, and 
the response variable nodes represent the output layer. The input 
and output layers are connected by hidden layers. The mathemati- 
cal expression of an ANN with a single input node ( x ) and a single 
hidden layer can be expressed as follows: 
ˆ f NN ( x ) = σ

( 
∑ 

l W ( 1 ) 
l σ

( 
∑ 

h W ( 0 ) 
h x + b 0 

) 
+ b ( 1 ) 

) 
(1) 

where h and l represent the number of nodes in hidden and output 
layers, respectively. The function σ is an activation function, which 
transfers the input of a node to an output, and W ( n ) and b ( n ) are the 
weights and biases for input-hidden ( W (0) and b (0) ) and hidden- 
output ( W (1) and b (1) ) layers. The functional form of ANNs depends 
on the activation function, the number of hidden layers, and the 
number of nodes in each layer. One commonly used activation 
function is the hyperbolic tangent function ( σ (x ) = tanh (x ) ), while 
others have been proposed, including sigmoid and ReLU functions 
( Heaton, 2008 ). For the final layer, an identity activation func- 
tion ( σ (x ) = x ) is used for regression problems ( Schweidtmann and 
Mitsos, 2018 ). One challenge in constructing a neural network 
model is hyperparameter optimization. Hyperparameters are vari- 
ables that determine the structure and training of the network 
(e.g., number of hidden nodes, number of hidden layers), and these 
must be set before optimizing the weights and bias values of the 
neural network. Several strategies can be used to find the optimal 
hyperparameters, such as grid search, stochastic optimization using 
a genetic algorithm, and heuristics ( Heaton, 2008 ). Depending on 
the desired accuracy of the ANN, we can choose different hyperpa- 
rameter optimization strategies. After the optimal hyperparameters 
are determined, we can then optimize the weights and bias values 
of the neural network. 
3.2.2. Gaussian process modeling 

Gaussian process (GP) modeling, also known as Kriging, is an 
interpolating function that assumes that two points that are close 
to each other are likely to be correlated. This relationship is ex- 
pressed using a correlation function, which depends on the dis- 
tance between two points x (p) and x (q) ( Jones et al., 1998 ): 
cor (ε(x ( p ) ), ε(x ( q ) )) = exp 

[ 
−

k ∑ 
i =1 θi (x i ( p ) − x ( q ) 

i )2 ] 
(2) 

The correlation function in Eq. (2) captures the following: when 
two points are close to each other (i.e., distance is small), the cor- 
relation approaches to one (high correlation), while when the dis- 
tance between two points is large, the correlation approaches zero. 
Using this correlation function, we can obtain the final functional 
form of GP models: 
ˆ f GP ( x ) = µ + N ∑ 

n =1 c n exp 
[ 

−
k ∑ 

i =1 θi (x i − x ( n ) 
i )2 ] 

(3) 
where N represents the number of data points used to train the 
model, k represents the dimension of the problem, θ i and c n rep- 
resent correlation parameters, and µ is the estimated mean. The 
parameters can be found by using maximum likelihood estimation 
(MLE) ( Jones et al., 1998 ). The final functional form is directly cor- 
related with the number of data points used to train the model. 
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Fig. 3. Neural network without one-hot encoding (a) and with one-hot encoding (b). 
Hence, the complexity of the functional form increases as more 
data points are used to construct the model ( Jones et al., 1998 ). 
3.3. Mixed-integer surrogate model construction via one-hot 
encoding 

The simplest way to build surrogate models for mixed-variable 
functions is to assume that all k 2 discrete variables are continuous 
and proceed with training an ANN or a GP model with k inputs. 
This approach has been used in the model-based surrogate opti- 
mization literature thus far ( Holmström et al., 2008 ; Müller, 2016 ; 
Müller et al., 2013 ; Rashid et al., 2013 ). This approach is attrac- 
tive due to its simplicity, but it assumes that all inputs are con- 
tinuous and ordinal. Instead, we propose an alternative way of 
constructing a mixed-variable surrogate model without relaxing 
the integrality constraint through the use of one-hot encoding 
( Brownlee, 2017 ). One-hot encoding involves converting binary or 
integer variables to dummy variables. Through one-hot encoding, 
we can make sure that regardless of the values of the discrete vari- 
ables, the effect of this input on the output prediction does not di- 
minish ( McCaffrey, 2013 ). For example, Fig. 3 shows a simple ANN 
with one hidden layer with 3 nodes and 1 output node. The orig- 
inal problem has one continuous ( x ) variable and one binary ( y ) 
variable. If we are using a standard ANN, the functional form will 
be: 
h l = σ (

w x,l x + w y,l y + b l ), l = 1 , 2 , 3 (4) 
ˆ f NN = σ (

w 1 , f h 1 + w 2 , f h 2 + w 3 , f h 3 + b out ) (5) 
where h l represents the three nodes in the hidden layer, w s, d rep- 
resents the weight of the ANN ( s = source and d = destination), 
and b l and b out are bias values of the hidden and the output lay- 
ers, respectively. If y = 0 , then all signals from the binary variable 
node y will become zero and all of the terms w y, l y in Eq. (4) will 
be equal to zero. On the other hand, if y = 1 , then all signals from 
node y will now become one. This is problematic as {0,1} does not 
represent an intensity, and y = 0 might represent a certain effect 
on the output that must be captured (e.g., the presence of a pro- 
cess unit or not). 

One-hot encoding can be used to overcome this problem and 
improve model accuracy in the case of mixed-variable problems. 
One-hot encoding converts the original binary variable into two 
dummy variables, each representing a distinct value of the origi- 
nal binary variable. Consequently, the structural complexity of the 
model (i.e., number of input nodes in the neural network) in- 
creases due to additional dummy variables. If we have one binary 
variable ( y = { 0 , 1 } ), two dummy variables are created as follows: 
d 0 = {1 i f y = 0 

0 i f y = 1 , d 1 = {0 i f y = 0 
1 i f y = 1 (6) 

The resulting functional form of the ANN is: 
h l = σ (

w x,l x + w d 0 ,l d 0 + w d 1 ,l d 1 + b l ), l = 1 , 2 , 3 (7) 
ˆ f NN = σ (

w 1 , f h 1 + w 2 , f h 2 + w 3 , f h 3 + b out ) (8) 
Thus, depending on the value of y , only one of d 0 or d 1 is 

active. While the dummy variables are still discrete, one-hot en- 
coding allows that the effect of variable y on of h l is represented 
evenly regardless of the value of y by allowing either d 0 or d 1 
to be always equal to one. As a result, the overall signal from 
the binary node remains undiminished regardless of the value of 
the binary variable. For the case of integer variables, the surro- 
gate model could be constructed without one-hot encoding if in- 
teger variables represent ordinal relationships. The integer values 
can then be scaled between 0 and 1 before constructing a surro- 
gate model ( Müller et al., 2013 ). If integer variables do not repre- 
sent ordinal relationships, one-hot encoding can be used to repre- 
sent the different integer variable levels, or the integer variables 
can be transformed to binary variables. Subsequently, Eq (6) can 
be used directly ( Rall et al., 2019 ). 

To optimize a model with one-hot encoding, we need to add 
an additional constraint to make sure only one of the dummy vari- 
ables is selected (i.e., d 0 + d 1 = 1) . Throughout this paper, the sur- 
rogate model generated using one-hot encoding will be noted as 
“mixed-integer (MI)” surrogate; the one generated without one- 
hot encoding (i.e., relaxing the integrality constraint) will be noted 
as “relaxed (RE)” surrogate. One-hot encoding is performed dur- 
ing the data-processing stage, where the dataset for binary vari- 
able is transformed into dummy variables. For example, if the orig- 
inal dataset is [ X , Y ], where X represents a set of data for contin- 
uous inputs and Y represents a set of data for binary inputs, the 
transformed dataset is [ X , D 0 , D 1 ], where D 0 and D 1 represent each 
dummy inputs created for each binary value. After this transforma- 
tion, a MI surrogate model is constructed using either ANN or GP 
using the transformed, augmented dataset. 
4. Proposed algorithm 

In order to solve (P1), the MI and RE surrogate models are in- 
tegrated into a black-/gray-box optimization framework described 
previously. The overall algorithm can be decomposed into two 
main steps: 1) MINLP search, and 2) NLP search. Surrogate models 
are constructed in both search steps for all black-box constraints, 
and both the MINLP and NLP search steps are illustrated in de- 
tail in Tables 2 and 3 . First, all black-box equality constraints h EB 
are transformed into two inequalities and are added to set IB . The 
MINLP search is first performed to find a solution with respect 
to all variables (i.e., both continuous and discrete variables). The 
NLP search is then performed by fixing discrete variables at opti- 
mal values determined from the MINLP step and optimizing only 
with respect to continuous variables. The NLP search step allows 
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Table 1 
Three sampling strategies for initial design of experiment. 

Algorithm 1: Initial Design of Experiment 
Input : problem dimension k , continuous dimension k 1 , binary dimension k 2 , total number of levels m = ∏ k 2 

j=1 L j 
Output : Latin hypercube design S lhs 
Initialization : 
n lhs = max ( 5 , [ 10 k +1 

m ] ) 
Sampling Strategy 1 (SS1): 

S lhs ← [] 
for i = 1 to m do 

Generate a Latin hypercube design X of size n lhs × k 1 for x 
Construct a dataset Y of size n lhs × k 2 , where all rows represent a single unique combination of binary variables 
S lhs ← [ X , Y ] 

End 
Sampling Strategy 2 (SS2): 

Generate a Latin hypercube design X of size mn lhs × k 1 for x 
for i = 1 to m do 

Randomly select n lhs rows from X 
Construct a dataset Y of size n lhs × k 2 , where all rows represent a single unique combination of binary variables 
S lhs ← [ X , Y ] 

End 
Sampling Strategy 3 (SS3): 

Generate a Latin hypercube design S = [ X, Y ] of size mn lhs × k 
For k 2 columns, round the values to the closest integer: S lhs ← [ X , ] 

return S lhs 
the algorithm to further reduce constraint violations and refine 
the incumbent solution. The overall algorithmic steps for both the 
MINLP and NLP search stages consist of three main steps: 1) initial 
sampling, 2) surrogate modeling, and 3) optimization and adaptive 
sampling. The main differences between the MINLP and NLP step 
are: (a) whether one-hot encoding is used to construct a mixed- 
integer surrogate model or not, and (b) how the incumbent solu- 
tion is selected at each iteration. The general framework is writ- 
ten in Python and the optimization is performed via an in-house 
Python-GAMS interface ( Figure 4 and 5 ). 
4.1. Initial sample design 

For simulation-dependent optimization problems, choosing an 
initial sampling design is important since the simulation may fail 
to converge if a continuous value is used instead of a discrete 
value. Three sampling strategies are compared in this work as 
described earlier. For all sampling strategies, we generate a total of 
m × max ( 5 , 10( k 1 + k 2 )+1 

m ) points. The minimum number of 5 points 
is a heuristic on the minimum number of points that must be 
included in each level to ensure that at least this many points 
are sampled from each level. All collected samples are scaled 
between 0 and 1 using x l 

i and x u 
i before proceeding to fit any 

surrogate models. The three sampling strategies (SS1, SS2, SS3) are 
illustrated in Table 1 . 
4.2. Surrogate model construction 

During this stage, surrogate models are developed in the scaled 
domain using either an ANN or GP to represent each of the 
outputs (i.e., objective function and unknown constraints). For 
mixed-integer surrogates, one-hot encoding is performed to con- 
vert the original binary variables to dummy variables. 10-fold 
cross-validation is used to find the best model during each iter- 
ation of the overall algorithm. While 10-fold cross-validation al- 
lows the algorithm to construct a model that generalizes well to 
a new set of data, one disadvantage of k -fold cross validation is 
the increased computational cost due to training k models at each 
iteration. In our work, we have observed that the CPU time for 
model construction is negligible relative to the optimization CPU 
time. Nevertheless, when model construction becomes computa- 

tionally more expensive, surrogate fitting could happen in parallel 
using multiple processors to reduce the CPU time. 

For the ANN, both the objective and all constraints are modeled 
simultaneously by using multiple output nodes (Multiple Input –
Multiple Output ANN). In our work, we use a hyperbolic tangent 
function as an activation function; for the final layer, a linear acti- 
vation function is used. As our goal is to locate a global optimum 
rather than finding a perfect surrogate representation, we are not 
necessarily interested in finding a good approximation in regions 
of low interest (i.e., areas far away from global optimum). Thus, 
the balance between model accuracy and sampling requirement is 
achieved by keeping the overall model complexity low while main- 
taining high accuracy in regions of high interest (i.e., areas where 
the global optimum is likely to be located). Instead of using an 
extensive search methodology to find the number of hidden lay- 
ers and hidden nodes, we use a simple heuristic to determine the 
number of nodes in a hidden layer. Specifically, only one hidden 
layer is used and the number of nodes is 2/3 of the number of 
input nodes plus the number of output nodes (i.e., total number 
of constraints and the objective) ( Heaton, 2008 ). This strategy al- 
lows us to locate a good optimum within a reasonable computa- 
tion time. While methods such as grid search and stochastic opti- 
mization may lead to a more accurate ANN, it can be computation- 
ally too expensive for surrogate-modeling, especially when several 
iterations are required to converge to a solution. After the optimal 
hyperparameters are determined, we then compute optimal weight 
and bias values for the network using back propagation. For GP 
models, the training procedure does not require the selection of 
hyperparameters, but just the optimization of the surrogate model 
parameters. Another distinction is that all constraints and the ob- 
jective are fitted separately using a multiple-input single output 
approach. 
4.3. Surrogate model optimization and adaptive sampling 

After constructing surrogate models for both the constraints 
and objective, an optimization problem is formulated. For ANN, the 
hyperbolic tangent function needs to be reformulated since opti- 
mization solvers cannot handle hyperbolic tangent functions. As 
suggested in ( Schweidtmann and Mitsos, 2018 ), the hyperbolic tan- 
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Table 2 
bb-MINLP optimization algorithm. 

Algorithm 2. Bb-MINLP optimization 
Initialization: Initial Sampling 
1. Create an initial LHS S lhd = [ X, Y ] using the selected sampling strategy 
2. Inquire simulation at S 0 = [ X, Y ] to compute Z 0 = f e v al (S 0 ) . Assume one function evaluation provides the values of all constraints and the objective. 
Data pre-processing 
1. Scale S 0 and Z 0 between 0 and 1 and obtain S ′ 0 and Z 0 ′ . 
2. If fitting type = ‘MI’, perform one-hot encoding so that the binary variables y j are transformed into dummy variables d j , 0 and d j , 1 . 
Surrogate model construction and optimization 
Initialization : S ′ ← S ′ 0 , Z ′ ← Z ′ 0 
1. Use the chosen surrogate type to construct a surrogate model for all constraints and objective. Use 10-fold cross validation to find the best model. 
2. Formulate the surrogate optimization problem and solve using both global and local solvers. If infeasible, solve infeasibility problem (P2). 
3. Obtain p local and global solutions S ′ new = [ x new , y new ] . 
4. Compute Euclidean distance between S ′ new and existing sample set S ′ : 

dis t p = 1 
k √ 

k 1 ∑ 
i =1 ( X n,i − x new,i ) 2 + k 2 ∑ 

j=1 ( Y n, j − y new, j ) 2 
5. If dis t p ≥ 1 e −10 , unscale S ′ new to the original bound and inquire simulation at S new and compute Z new = f e v al ( S new ) and υ . Else, remove the solution from S new . 
6. Compute the solution score for all collected intermediate solutions: 

a. S con = rank (v ) , S ob j = rank ( f new ) 
b. S = ( s con + s obj ) 

2 
7. f min = argmin (S) 
8. If one of the convergence criteria is met, end iteration 

Else, S ′ ← S new and Z ′ ← Z new ; repeat steps 1–2 for data preprocessing and steps 1–7 for surrogate model construction and optimization. 
return x ∗ , y ∗

gent function is reformulated as tanh (x ) = 1 − 2 
e 2 x +1 since it was 

shown to outperform other reformulations. When a mixed-integer 
surrogate model is used, an additional constraint is needed to al- 
low the selection of only one dummy variable for each binary 
variable. This can be formulated into a simple linear constraint: 
d 0 + d 1 = 1 . For a gray-box problem, where we can assume certain 
constraints are known, we need to formulate and scale the gray- 
box constraints accordingly (see Section 6 ). A diverse set of local 
and global solutions are collected using global and multistart lo- 
cal optimization using BARON ( Tawarmalani and Sahinidis, 2005 ) 
and DICOPT ( Grossmann et al., 2002 ) solvers, respectively. This ap- 
proach aims to find a balance between exploration and exploita- 
tion and avoids premature convergence to a local optimum. 

In some instances, surrogate models might have failed to accu- 
rately approximate the constraints within the entire search space. 
As a result, the resulting surrogate optimization formulation is in- 
feasible, even though this does not immediately imply that the 
original problem is infeasible. When this occurs, the algorithm 
then solves an infeasibility problem to locate the most feasible so- 
lution with the least constraint violation. Instead of minimizing 
the surrogate objective ( ̂  f (x , y) ) subject to surrogate constraints 
( ̂  g (x , y)) , we minimize the sum of slack variables s c , as shown in 
(P2). 
min C ∑ 

c=1 s c 
s.t. ˆ g c ( x , y ) − s c ≤ 0 , c = 1 , . . . , C 
0 ≤ s c ≤ 0 . 1 , c = 1 , . . . , C 

(P2) 
In the above formulation, set c represents unknown inequality 

constraints and ˆ g c represents the surrogate approximations of all 
unknown inequality constraints. 

All local and global solutions are added to the sampling set and 
the best incumbent solution is found at each iteration by calculat- 
ing a score. The solutions are ranked in ascending order based on 
the value of the objective function value (after sampling the sim- 
ulation) f ( x ∗, y ∗) and the total constraint violation v . Consequently, 
among a set of all local and global solutions, the solution with the 
smallest objective function value gets the lowest objective function 
score ( S obj ); the solution with the smallest constraint violation gets 
the lowest constraint violation score ( S con ). Each solution is charac- 

terized by two scores, which is equal to their rank with respect to 
feasibility S con and objective function value S obj . The overall score is 
computed by averaging these two scores: S = (S con + S obj ) 

2 . The solu- 
tion with the lowest S score is chosen and added to the intermedi- 
ate solution set. By considering both S obj and S con , we hypothesize 
that we can achieve a balance between finding a global solution 
and finding a feasible solution when assessing the best solution 
found during each iteration. 

These steps are repeated until one of the following termina- 
tion criteria is met: 1) negligible constraint violation and model 
error (both ≤ 1 e −5 ), 2) no improvement in the objective value over 
ten consecutive iterations, and 3) maximum number of samples is 
reached. 
4.4. NLP search 

After the MINLP search step is complete, the algorithm pro- 
ceeds to the NLP search to refine the best solution ( x ∗, y ∗) found 
during the MINLP search step ( Table 3 ). This step also allows us 
to further reduce constraint violations, a crucial step when many 
equality constraints are present. The discrete values are fixed at 
y ∗ and the solution is refined with only respect to the continuous 
variables. The overall algorithm for NLP step is similar to that of 
the MINLP search step, except that one-hot encoding is not per- 
formed and CONOPT is used as a local solver ( Drud, 1994 ). In the 
final step, the algorithm reduces the bounds of all continuous vari- 
ables to ± 1% of the best solution found so far to further refine 
the solution. Assuming that the algorithm has already found an 
approximate solution, we only consider the constraint violation v 
to evaluate the solution quality during this final stage. The termi- 
nation criterion of the NLP stage is identical to that of the MINLP 
stage. 
5. Results 

The performance of the proposed bb-MINLP algorithm is first 
tested on a set of benchmark problems obtained from MINLPLib 
( “MINLPLib: A library of mixed-integer and continuous nonlinear 
programming instances,” 2019 ). In order to evaluate the perfor- 
mance of the algorithm on the most difficult possible scenario (i.e., 
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Table 3 
bb-NLP Algorithm. 

Algorithm 3: bb-NLP optimization 
Input : Best solution found from MINLP search step ( x ∗ , y ∗), variable bounds ( x l i , x u i ) 
Initialization : LHS sampling 
1. Check if previously sampled points S ′ can be reused. If yes, add to the sampling set. 
2. Create an initial LHS S 0 ′ = [ x ′ 

lhd , y ∗] of size 10 k 1 + 1 only for continuous variables. 
3. Un-scale initial LHS: x lhd,i = x ′ 

lhd,i ( x u i − x l i ) + x l i 
4. Inquire simulation at S 0 = [ x lhd , y lhd ] to compute Z 0 = f e v al ( S 0 ) . Assume one function evaluation provides the values of all constraints and objective. 
Data-Preprocessing 
1. Scale S 0 and Z 0 between 0 and 1 and obtain S ′ 0 and Z 0 ′ . 
Surrogate model construction and optimization 
Initialization : S ′ ← S ′ 0 , Z ′ ← Z ′ 0 
1. Use the chosen surrogate type to construct a surrogate model for all constraints and objective. Use 10-fold cross validation to find the best model. 
2. Formulate the surrogate optimization problem and solve using both global and local solvers. If infeasible, solve infeasibility problem (P2). 
3. Obtain p local and global solutions S ′ new = [ x new , y ∗] . 
4. Compute Euclidean distance between S ′ new and existing sample set S ′ : 

dis t p = 1 
k √ 

k 1 ∑ 
i =1 ( X n,i − x new,i ) 2 + k 2 ∑ 

j=1 ( Y n, j − y new, j ) 2 
5. If dis t p ≥ 1 e −10 , unscale S ′ new to original bound and inquire simulation at S new and compute Z new = f e v al ( S new ) and υ . Else, remove the solution from S new . 
6. Compute the solution score for all collected intermediate solutions: 
S p = rank (v ) 
7. f min = argmin ( S p ) 
8. If one of the convergence criteria is met, end iteration 

Else, S ′ ← S new and Z ′ ← Z new ; repeat step 1 for data preprocessing and steps 1–7 for surrogate model construction and optimization. 
return x ∗ , y ∗

Table 4 
Names and descriptions of the 
MINLP test problems from MINLPLib 
( “MINLPLib: A library of mixed-integer 
and continuous nonlinear program- 
ming instances,” 2019 ). The equality 
constraints are transformed into two 
inequalities. 

Problem k 1 k 2 n Ieq n eq 
alan 4 4 5 2 
ex1221 2 3 3 2 
ex1222 2 1 3 0 
ex1223 7 4 9 4 
ex1223a 3 4 9 0 
ex1224 3 8 5 2 
ex1225 2 6 8 2 
ex1226 2 3 4 1 
fuel 12 3 9 6 
gbd 1 3 4 0 
gkocis 8 3 3 5 
oaer 6 3 4 3 
procsel 7 3 3 4 
st_e13 1 1 2 0 
st_e14 7 4 9 4 
st_e15 2 3 3 2 
st_e27 2 2 6 0 
st_e29 3 8 5 2 
synthes1 3 3 6 0 

unknown objective function, equality and inequality constraints), 
we treat all problems as purely black-box systems. Table 4 shows 
the characteristics of the MINLP problems that are used as bench- 
marks in this work. Columns k 1 and k 2 represent the number of 
continuous and binary variables, and n Ieq and n eq are the num- 
ber of inequality and equality constraints, respectively. The dimen- 
sionality of the problems ranges from 1-12 continuous variables 
( k 1 ≤ 12) and 1-8 binary variables ( k 2 ≤ 8). The problems also 
have a varying amount of equality and inequality constraints, with 

Table 5 
Description of 6 surrogate model settings that are tested in 
Results. MI represents a mixed-integer surrogate model with 
one-hot encoding used in the MINLP stage, and RE represents 
a surrogate model with all variables assumed to be continu- 
ous. 

Name MINLP surrogate NLP surrogate 
ANNMI ANN (w. one-hot encoding) ANN 
ANNRE ANN ANN 
hyMI ANN (w. one-hot encoding) GP 
hyRE ANN GP 
GPMI GP (w. one-hot encoding) GP 
GPRE GP GP 

the most challenging problem having 9 inequality constraints and 
6 equality constraints. 

Through the results shown in this work, we aim to study the 
performance of the proposed algorithm with respect to (a) the se- 
lection of a surrogate model type (i.e., ANN versus GP), (b) the use 
of one-hot encoding versus relaxation of integrality, and (c) the 
sampling strategy. A selection of the surrogate modeling type must 
be made for both the MINLP search stage and the NLP search stage 
of the algorithm. To compare different surrogate models, we have 
performed an analysis between a purely ANN-based and a purely 
GP-based versions of the proposed algorithm. However, based on 
findings described in the next section, we have also proposed a 
hybrid approach (i.e., the use of ANN models for MINLP search and 
GP models for NLP search). Thus, there are overall six approaches 
that are tested in this work with respect to the selection of the 
surrogate model as well as the use of one-hot encoding ( Table 5 ). 
Finally, we compare the performance of the proposed approach 
with two other existing algorithms for bb-MINLP. Specifically, a 
Mesh-Adaptive Direct Search algorithm (NOMAD ( Audet and Den- 
nis, 2006 )) and a Genetic Algorithm ( Deep et al., 2009 ) are com- 
pared at their default settings. 

The algorithm is tested 3 times for each setting, and the best, 
average, and standard deviation of the solutions obtained are re- 
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Fig. 4. Illustration of adaptive sampling for a mixed-integer problem with one continuous x and one binary y variable. The true global optimum occurs when y = 1 . For 
each case of y , the true model exhibits a different behavior. At each iteration, all unique local and global optima of a surrogate model is collected, and the simulation is 
re-inquired at these points. The final surrogate model can accurately approximate the global optimum f ( x ∗ , y ∗), which occurs when y = 1 . 
ported. The maximum number of samples allowed for each prob- 
lem is 40 0 0, since sampling is expensive in most simulation-based 
optimization studies and thus must be limited. Comparing both the 
best and the average results allows us to evaluate the performance 
of the algorithm and its consistency in locating global optimum. 
A problem is assumed to be solved if the relative error between 
the actual and predicted optimum is less than an error tolerance 
( ε = 0.01), where: εobj = ‖ f actual − f ∗

f actual ≤ ε. A very small constraint 
violation is allowed (i.e., v ≤ 1 e −5 ) , and this is mainly due to the 
difficulty in exact satisfaction of equality constraints in a black-box 
setting . 
5.1. Selection of surrogate modeling type 

First, the performance of mixed-integer and relaxed surrogate 
models is compared for both ANN and GP (ANNMI, ANNRE, GPMI, 
and GPRE). In order to eliminate the effect of the sampling strategy 
for these experiments, we only use the k -LHS sampling approach 
(Sampling Strategy 1). In the proposed algorithm, the MINLP search 
step aims mainly to locate the optimal discrete solution, while 
the NLP search step aims to refine the solution with only respect 
to the continuous variables. Consequently, the performance of the 
MINLP search step is important, since the algorithm will converge 
to a local solution during the NLP step if an incorrect binary so- 
lution is found during the MINLP step. Fig. 6 shows the percent- 
age of correct binary solutions found by each method during the 
MINLP search step. For both ANN and GP surrogate models, the 
mixed-integer approach (i.e., the use of one-hot-encoding) allows 
the algorithm to more accurately locate binary solutions. This is 
due to the increased prediction accuracy of the MI model. For all 
of benchmark problems, the discrete variables are binary variables, 
and these are not ordinal. The results indicate that one-hot en- 
coding enables the algorithm to search more efficiently through 
the use of more accurate surrogate models that capture the ef- 
fect of both the “0” and the “1” cases. Hence, even if the result- 
ing optimization model is more complex (i.e., increased problem 
dimension due to additional dummy variables and additional con- 
straints relating new variables), the MI approach still outperforms 
the relaxation approach for the sizes of problems we are solving in 
this work. If the number of binary variables further increases, then 
tractability issues may arise, a potential limitation of our proposed 
methodology. 

After the MINLP step terminates, the proposed algorithm pro- 
ceeds to the NLP step. The goal of NLP step is to refine the so- 
lution obtained during the MINLP stage and locate the optimum 
while further reducing existing constraint violations. Fig. 7 shows 
the performance profiles of the obtained best result (out of 3 rep- 
etitions) with respect to the number of samples and CPU time. The 

Fig. 5. Overall algorithm for MINLP and NLP search steps. 
results show that GPMI outperforms the three other methods, fol- 
lowed by GPRE. However, both GPMI and GPRE require more CPU 
time to converge compared to ANNMI and ANNRE. In addition, 
while ANNMI is able to better locate the correct discrete solution 
during the MINLP search step than ANNRE, Fig. 7 shows that AN- 
NMI and ANNRE solve the same number of problems. This implies 
that even when a correct discrete solution has been identified, the 
algorithm can still fail to locate a globally optimal solution during 
the NLP search step. This indicates that both the MINLP and NLP 
search steps are crucial in locating a global solution. 
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Fig. 6. Performance of algorithm with respect to the capability to accurately locate 
correct discrete solution during the MINLP search step. 

In addition to the best obtained result, it is important to assess 
the consistency of the methods. In Fig. 8 , the average and stan- 
dard deviation of the three repetitions are reported with respect 
to solution accuracy and computational efficiency. When both the 
best and the average results are considered, it becomes clearer that 
the MI approaches on average perform better than RE approaches. 
This is attributed to the fact that the MI approaches locate the 

global binary solutions more consistently. For both ANNMI and 
GPMI, the average objective errors are smaller than those of AN- 
NRE and GPRE, while the difference is much clearer for the ANN 
case. However, it is notable that while ANNMI has a smaller aver- 
age objective error than that of GPMI ( Fig. 8 ), GPMI overall solves 
more problems ( Fig. 7 ). As we used strict criteria to generate a per- 
formance profile in Fig. 7 ( ε = 0.01 and v = 1 e −5 ), this result in- 
dicates that GP is better at accurately locating the solution and re- 
ducing constraint violations due to its interpolating nature. On the 
other hand, ANN models are good at finding the approximate loca- 
tion of the solution faster, but ANN models do not manage to con- 
tinue improving the obtained solution and may converge to a local 
or infeasible solution. In addition, note that approximately 30% of 
the problems are not solved by any of the proposed methodologies. 
We observed that most of these unsolved problems have several 
equality constraints. Thus, the exact satisfaction of constraint vio- 
lation criterion ( v = 1 e −5 ) becomes increasingly challenging. Nev- 
ertheless, we can test the limit of our algorithm by including these 
challenging problems in our benchmark problem set. 

One notable difference between the performance of ANN and 
GP is the CPU time for model construction and optimization. The 
most time-consuming step when using GP is optimization, but 
its model construction CPU time is negligible. In contrast to GP, 
the majority of the computation time for ANN is attributed to 
model construction (i.e., optimization of parameters). Therefore, GP 

Fig. 7. Performance profile of the best run for ε = 0.01 and v = 1 e −5 . The model types are described in Table 4 . 
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Fig. 8. Statistics of three runs for MI and RE models. The standard deviation is plotted with the average to show the consistency of each method. 
and ANN exhibit a very contrasting trend: GP models are easy to 
construct but difficult to optimize, while ANN models are time- 
consuming to construct but require less cost to optimize. This dif- 
ference is due to their algebraic expressions: for ANN, the model 
expression depends only on the number of hidden nodes and lay- 
ers, while for GP, the model expression is dependent on the num- 
ber of data points used to construct the model. As a result, as the 
algorithm collects more samples during each iteration, the com- 
plexity of a GP model increases, and the CPU time for globally op- 
timizing the model increases significantly, especially for the MINLP 
search step. Our results have confirmed that the majority of op- 
timization CPU for the GP cases is resulting from the global op- 
timization of the MINLP model. One potential suggestion to cir- 
cumvent this problem is through the sole use of multi-start lo- 
cal optimization of the surrogate models. We performed this test 
and observed that the performance of the algorithm deteriorated; 
thus, we have concluded that global optimization of the surrogate 
models is important, because it leads to the location of new and 
more informative sampling solutions (i.e., better exploitation of the 
search space). 

5.2. Hybrid surrogate modeling approach 
Based on the results obtained in the previous section, we have 

observed that ANN models have certain advantages over GP mod- 
els due to their simpler functional form, which results in faster 
model optimization. On the other hand, all formulations with em- 
bedded GP models lead to more accurate approximations but are 
very difficult to optimize. These observations led to the idea of 
exploiting the advantages of ANN and GP by creating a hybrid 
model, which combines ANN and GP. In particular, the algorithm 
uses ANNs for the MINLP search step, followed by GP for the NLP 
search step. Using ANN models initially allows the algorithm to 
expedite the MINLP search step and obtain a somewhat accurate 
solution, especially with respect to the discrete variables. Subse- 
quently, since the aim of the NLP search is refinement, it is impor- 
tant to improve the accuracy of the final solution, which can be 
accomplished better using GP models. During the NLP stage, we 
have fixed the values of the discrete variables, so the dimensional- 
ity has been reduced and the algorithm suffers less from the com- 
putational expense of GP optimization. It is important to note that 
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Fig. 9. Performance profile of 4 surrogate types compared with existing bb-MINLP algorithms. 
our algorithm has the capability to keep multiple potential discrete 
solutions, which will further be refined through the NLP search. 
However, in this work we have only shown its performance for 
the case where the best single solution is kept at the end of the 
MINLP search step. If a mixed-integer model with one-hot encod- 
ing is used for the MINLP step, the model is referred as “hyMI”; 
if not, we refer the model as “hyRE”. In this work, we have not 
looked into the reverse case, where GP is used for MINLP step and 
ANN is used for NLP step, because this approach is expected to 
deteriorate solution accuracy and/or make optimization computa- 
tionally more demanding. 

We present the hybrid results (hyMI and hyRE) compared to 
those of ANNMI and GPMI, since the MI surrogate models were 

previously shown to perform better than the relaxed models. Fig. 9 
shows the performance profiles of the hybrid approach compared 
to ANNMI, GPMI, and existing solvers (GA and NOMAD). The same 
criteria are used to generate the performance profile: ε = 0.01 and 
v = 1 e −5 . As these methods heavily rely on sampling, they tend to 
require a large number of samples to converge. However, GA and 
NOMAD algorithms require less CPU time than surrogate-based al- 
gorithms, because GA and NOMAD do not require the construction 
and optimization of surrogate models. However, when sampling 
becomes computationally expensive, GA and NOMAD are likely to 
be more time-consuming than surrogate-based approaches, since 
GA and NOMAD tend to require many function evaluations. It must 
also be mentioned that both NOMAD and GA contain a set of pa- 
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Fig. 10. Average result of three runs for MI and RE models. The standard deviation is plotted with the average to show the consistency of each method. Hybrid MI approach 
shows the most consistent performance and solves the most problem. 
rameters that can be tuned to affect the performance of the algo- 
rithm, while in this work we compared all algorithms with their 
default settings. 

When only the hybrid models are compared, hyMI outperforms 
hyRE. This is due to the capability of MI models to accurately lo- 
cate binary solutions, which allows the algorithm to find a globally 
optimal as well as a feasible solution. After the correct binary solu- 
tion is determined, the algorithm uses GP models to further refine 
the solution. The interpolating characteristic of GP is advantageous, 
particularly when the problem has several black-box equality con- 
straints, because a good approximation of an equality constraint is 
crucial to find a feasible solution. Since the RE approach cannot 
find the correct binary solution as consistently as the MI approach, 
the hyRE model often converges to a local solution. As a result, the 
hyMI version of our algorithm combines all of the desirable char- 
acteristics and solves the most problems (about 80%), followed by 
GPMI and hyRE. 

Fig. 10 shows the average results of three runs with their as- 
sociated standard deviations to illustrate the performance as well 
as the consistency of the algorithms. The hyMI approach overall 

performs the best with the smallest average objective error and 
constraint violation. It is also one of the most consistent meth- 
ods suggested by its small standard deviation. Compared to AN- 
NMI, hyMI exhibits a significant improvement in solution accu- 
racy. When the computation time is analyzed, hyMI can achieve 
a good balance between model construction and optimization CPU. 
Consequently, the optimization CPU for hyMI is significantly less 
than that of GPMI, which allows the algorithm to go through 
more iterations within a given time limit and further enhance 
the solution. The hyRE model performs better than ANNMI; how- 
ever, it is outperformed by GPMI and hyMI since MI allows the 
algorithm to more accurately locate binary solutions. These re- 
sults overall indicate that the MI approach using one-hot encod- 
ing outperforms the relaxation approach. Note that the hybrid ap- 
proach has been proposed as a practical way of efficiently locat- 
ing the solution within a reasonable CPU time. When no limit on 
computation resources exists, using GP for both the MINLP and 
NLP search steps may further improve the performance of the 
algorithm. 
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Fig. 11. Performance curve of the best out of three runs for three sampling strategies for ε = 0.01 and v = 1e-5. 
5.3. Sampling strategies for MINLP 

Three sampling strategies are compared in this section while 
fixing all other algorithmic parameters. As we previously have de- 
termined that hyMI outperforms all other methods, we use the 
hyMI to test three sampling strategies (SS1, SS2, and SS3). Each 
sampling strategy is repeated 3 times and the best as well as the 
average results are calculated to evaluate its performance. Fig. 11 
shows a performance curve of the best result with respect to both 
the number of samples and the total computation time for ε ≤
0.01 and v ≤ 1 e −5 . When only the best result is considered out of 
all runs, SS1 solves about 80% of the problems and outperforms 
other sampling strategies. Fig. 12 shows the average result of three 
runs with respect to solution accuracy ( ɛ and v ), the number of 
samples, and the computation time. Both the average and the best 
result indicate that SS1 outperforms all other sampling methods. 
Unlike SS2 and SS3, SS1 covers the entire search space evenly by 
generating a LHS of size n lhs for all discrete levels. For SS2 and 
SS3, the points are randomly distributed into each discrete level, 
and thus the entire search space might not be represented evenly. 
Thus, even though all sampling strategies use the same number of 
samples, the ability to cover the entire search space evenly proves 
to be quite important for surrogate-based optimization. SS1 is also 
the most consistent approach, as shown by the small standard de- 
viation values, while SS2 and SS3 are prone to data imbalance re- 
sulting from randomness. 

6. Gray-box MINLP: a process synthesis case study 
Up to this point, we have tested our algorithm for a black- 

box case, assuming all constraints and objective are unknown. In 
this section, we present a more challenging process synthesis case 
study and show how it can be solved as a gray-box MINLP for- 
mulation. When a problem has many constraints or variables, de- 
coupling a problem into a gray-box could reduce the complexity 
and improve the solution accuracy. This is representative of a typi- 
cal process synthesis problem because constraints that connect in- 
dividual units, such as material balance and logical constraints to 
control process synthesis, will typically be known a-priori. As the 
surrogate models are constructed in a scaled space, these known 
constraints must be scaled properly. Furthermore, when a mixed- 
integer surrogate model with one-hot encoding is used, the result- 
ing optimization formulation is now in terms of dummy variables, 
instead of original binary variables. We will illustrate how the orig- 
inal constraints can be modified accordingly. 
6.1. Problem description 

A superstructure optimization problem presented in ( Duran and 
Grossmann, 1986 ) is used to demonstrate the proposed methodol- 
ogy. The objective is to determine the optimal structure and op- 
erating parameters for a process to minimize the sum of oper- 
ating and capital costs. The binary variables are associated with 
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Fig. 12. Average result of three sampling strategies (SS1 = 1, SS2 = 2, SS3 = 3) with respect to solution accuracy and computational efficiency. 

each process unit, and continuous variables represent total mass 
flowrate. The nonlinearities in the model are due to nonlinear 
input-output relationship of process units. Although this bench- 
mark problem contains simplified nonlinear relationships to rep- 
resent process units, in a real case study, these nonlinear relation- 
ships represent the underlying phenomena captured by expensive 
simulations. The original MINLP formulation has 9 continuous and 
8 binary variables with 23 constraints, and the original problem is 
shown in Appendix A. The superstructure is shown in Fig. 13 . 

For process synthesis problems, we can safely assume that cer- 
tain constraints related to mass conservation and process configu- 
ration will be known explicitly. For example, y 1 + y 2 = 1 enforces 
the selection of only one process unit; 1 . 25 x 9 − 10 y 3 ≤ 0 is a big- 
M constraint, which makes sure that a flow is set to zero when a 
process unit is not selected. These gray-box constraints can be han- 
dled explicitly (marked as (G) in Appendix A). Appendix B shows 
the re-formulation of the original problem, which is explained in 
the subsequent sections. 

6.2. Reformulation and scaling of gray-box constraints 
In order to generate an accurate surrogate model, normalization 

of input and output data is required. In this work, all input and 
output variables are scaled between 0 and 1 to construct a sur- 
rogate model. As a result, gray-box constraints need to be scaled 
properly so that optimization can now be performed in a scaled 
space. This is simple as all continuous variables embedded within 
any known constraints can be scaled using the following transfor- 
mation: x i = x ′ 

i ( x u i − x l 
i ) + x l 

i , where x i is a continuous variable in 
the original domain, x i ′ is a continuous variable in 0–1 scaled do- 
main, and x l 

i and x u 
i are lower and upper bounds of the variable, 

respectively. No scaling is required for binary variables as they are 
already scaled between 0 and 1. 

For MI surrogate models with one-hot encoding, the surrogate 
models are in terms of continuous and dummy variables, instead of 
original binary variables. As a result, gray-box constraints also need 
to be in terms of dummy variables. For a binary variable y j with 
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Fig. 13. Superstructure of a process synthesis case study from ( Duran and Grossmann, 1986 ). Binary variables are used to represent 8 units, while continuous variables 
represent total mass flowrate. 
dummy variables d j , 0 and d j , 1 where d j, 0 = { 1 i f y j = 0 

0 i f y j = 1 and d j, 1 = 
{ 0 i f y j = 0 
1 i f y j = 1 , the following transformation is required for gray-box 

constraints: 
d j, 0 (1 − y j ) + d j, 1 y j = 1 

The original binary variable y j can now be expressed as in 
terms of dummy variables: 
y j = 1 − d j, 0 

d j, 1 − d j, 0 
Furthermore, to allow the selection of only one dummy vari- 

able for each binary variable, an additional constraint is required 
for each y j : d j, 0 + d j, 1 = 1 . These are the overall set of steps that 
needs to be performed in order to re-formulate the original prob- 
lem constraints, so that they are compatible with the surrogate- 
based formulation of our proposed algorithm. 
6.3. Process synthesis case study results 

For the initial sampling design, SS1 is used. At each discrete 
level L j , a Latin hypercube design of size n lhd is generated. The 
input and output datasets are both scaled between 0 and 1, and 
hyMI model is constructed. As the problem consists of 9 continu- 
ous and 8 binary variables, the resulting neural network has 25 in- 
put nodes (i.e., 9 nodes for continuous variables and 16 nodes for 
dummy variables) and 18 output nodes for the objective and black- 
box constraints. In total, 6 out of 23 constraints are assumed to be 
known, while the rest are assumed to be unknown. This catego- 
rization of unknown and known constraints was performed such 
that only the very simple constraints (activation of flowrates and 
unit selection) are considered as known. A different decomposition 
of known and unknown constraints may lead to different results, 
with the expectation that more known constraints will help the 
algorithm converge faster. All gray-box constraints are scaled and 

reformulated with respect to dummy variables, and the final for- 
mulation is shown in Appendix B . Both global and local solvers are 
used to collect a diverse set of intermediate solutions. The model 
is optimized, and the algorithm terminates when one of the termi- 
nation criteria is met. 

Table 6 shows the final solution obtained using the proposed 
methodology, and Fig. 14 shows the improvement in solution dur- 
ing each iteration. At the end of each iteration, we select the best 
solution based on both the objective function value and constraint 
violation v to find a solution that is not only globally optimal but 
also feasible. Note that at iteration 5, ɛ obj temporarily increases be- 
cause the algorithm found a more feasible solution with smaller 
constraint violation. During the next iteration, it quickly converges 
back to the actual solution. After 19 iterations, the algorithm finds 
a global solution with less than 1% error and v = 5 e −4 . After 22 it- 
erations, the algorithm converges to an exact global solution with 
ε ob j = 0 and v = 0 . The computational cost of this run is high and 
this is mainly attributed to both the training of the surrogate mod- 
els and their optimization. However, the total number of samples 
required to solve this 17-variable problem is very low, consider- 
ing the state-of-the-art in surrogate-based optimization. It should 
be noted that this problem is quite challenging when treated as 
a bb-MINLP problem. In fact, our proposed algorithm could not 
solve this problem within the given sampling and CPU limitations, 
when all constraints were treated as unknown. However, known 
constraints and the ability to incorporate them together with sur- 
rogate models, significantly facilitates the performance of the algo- 
rithm. 

Table 6 
Optimization result of process synthesis case study. 
By using the gray-box approach, the algorithm is 
able to find a global optimum with v = 0 . 

f ∗ f actual v N CPU (hr) 
68.0072 68.0072 0 1492 7.4 
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Fig. 14. Solution error and constraint violation vs. the number of samples and computation time. Each point represents a single iteration. The algorithm locates an optimal 
solution with less than 1% error and negligible constraint violation in just a few iterations. 

7. Conclusions and future perspectives 
In this work, we propose a data-dependent mixed-integer op- 

timization algorithm for black-/gray- box problems. Unlike exist- 
ing bb-MINLP algorithms, we do not relax the integrality con- 
straint to construct a surrogate model. Instead, one-hot encod- 
ing is used to explicitly handle binary variables. Two surrogate 
types are considered in this work (ANN and GP) as well as a 
hybrid model (ANN + GP). These surrogate models are tested and 
compared with existing bb-MINLP solvers and the results indi- 
cate that mixed-integer surrogate models outperform relaxed sur- 
rogate models with respect to both solution quality and compu- 
tational efficiency. We also demonstrate how known constraints 
can be explicitly incorporated within surrogate-based MINLP for- 
mulations through a process synthesis case study to facilitate the 
search of global optimum. Lastly, we compare different sampling 
strategies for bb-MINLP optimization and conclude that this has 
an important effect in the overall performance of the algorithm. 
The most effective sampling approach ensures that the sampling 
design is balanced in all combinations of the discrete variables. 
Our results indicate that when certain constraints are known a- 
priori , these should be directly incorporated within the surrogate- 
based formulation, because they will significantly limit the feasi- 
ble search space and will allow the algorithm to focus the explo- 
ration and exploitation within feasible subspaces. In addition, we 
have found that satisfaction of equality constraints is exceptionally 
difficult in a black-box optimization setting, and this was quite ef- 
fectively overcome by the incorporation of a surrogate-based feasi- 
bility sampling stage. 

The proposed work can be applied to numerous simulation- 
based problems with both continuous and discrete variables em- 
bedded in the simulation. One specific example that is currently 
being studied is the synthesis of adsorption cycles. Adsorption pro- 
cesses contain different operating steps and cycle configurations 
that can be represented by binary variables. Decoupling these steps 
and the associated continuous and binary variables that are em- 
bedded in the simulation is not often possible. Using the proposed 
bb-MINLP algorithm, one can determine the optimal cycle design 
using input-output data from rigorous adsorption simulation mod- 
els. Another MINLP case study that is currently being studied is the 
design of mixed-material, hybrid modular separation systems, for 
which discrete variables represent the selection of materials and 
units that are optimal for the separation of different gas mixtures. 

Overall our algorithm shows promise for the solution of MINLP 
problems with moderate number of variables and constraints. For 

applications on problems with significantly more degrees of free- 
dom, the current algorithmic implementation will require improve- 
ments to reduce its computational cost by taking advantage of par- 
allel computing, heuristics, and recent exciting advances towards 
globally optimizing complex NN and GP surrogate formulations. 
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Appendix 
A. Process Synthesis Case Study: Original Problem Formulation 
adapted from ( Duran and Grossmann, 1986 ) 
minimize z = 5 y 1 + 8 y 2 + 6 y 3 + 10 y 4 + 6 y 5 + 7 y 6 + 4 y 7 + 5 y 8 

−10 x 3 − 15 x 5 + 15 x 10 + 80 x !7 + 25 x 19 
+35 x 21 − 40 x 9 + 15 x 14 − 35 x 25 + exp ( x 3 ) + exp ( x 5 

1 . 2 )
−6 . 5 ln ( x 10 + x 17 + 1 ) 

s.t. − 1 . 5 ln ( x 19 + 1 ) − ln ( x 21 + 1 ) − x 14 ≤ 0 
− ln ( x 10 + x 17 + 1 ) ≤ 0 
−x 3 − x 5 + x 10 + 2 x 17 + 0 . 8 x 19 + 0 . 8 x 24 − 0 . 5 x 9 − x 14 − 2 x 25 ≤ 0 
−x 3 − x 5 + 2 x 17 + 0 . 8 x 19 + 0 . 8 x 21 − 2 x 9 − x 14 − 2 x 25 ≤ 0 
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−2 x 17 − 0 . 8 x 19 − 0 . 8 x 21 + 2 x 9 + x 14 + 2 x 25 ≤ 0 
−0 . 8 x 19 − 0 . 8 x 21 + x 14 ≤ 0 
−x 17 + x 9 + x 25 ≤ 0 
−0 . 4 x 14 − 0 . 4 x 21 + 1 . 5 x 14 ≤ 0 
0 . 16 x 19 + 0 . 16 x 21 − 1 . 2 x 14 ≤ 0 
x 10 − 0 . 8 x 17 ≤ 0 
−x 10 + 0 . 4 x 17 ≤ 0 
exp ( x 3 ) − 10 y 1 ≤ 1 
exp ( x 5 

1 . 2 
)

− 10 y 2 ≤ 1 
x 9 − 10 y 3 ≤ 0 ( G ) 
0 . 8 x 19 + 0 . 8 x 21 − 10 y 4 ≤ 0 
2 x 17 − 2 x 9 − 2 x 25 − 10 y 5 ≤ 0 
x 19 − 10 y 6 ≤ 0 ( G ) 
x 21 − 10 y 7 ≤ 0 ( G ) 
x 10 + x 17 − 10 y 8 ≤ 0 ( G ) 
y 1 + y 2 = 1 ( G ) , y 4 + y 5 ≤ 1 ( G ) 
−y 4 + y 6 + y 7 = 0 ( G ) , y 3 − y 8 ≤ 0 ( G ) 
y ∈ { 0 , 1 } 8 , a ≤ x ≤ b, 
x = (x j : j = 3 , 5 , 10 , 17 , 19 , 21 , 9 , 14 , 25 ) ∈ R 9 
a T = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } , b T = { 2 , 2 , 1 , 2 , 2 , 2 , 2 , 1 , 3 } 
B. Process Synthesis Case Study: Gray-box Formulation in the scaled 
space 
minimize ˆ f (x ′ i , d j )
s.t. ˆ g c (x ′ i , d j ) ≤ 0 
2 x ′ 9 − 10 ( 1 −d 6 , 0 

d 6 , 1 −d 6 , 0 ) ≤ 0 
2 x ′ 19 − 10 ( 1 −d 7 , 0 

d 7 , 1 −d 7 , 0 ) ≤ 0 
x ′ 10 + 2 x ′ 17 − 10 ( 1 −d 8 , 0 

d 8 , 1 −d 8 , 0 ) ≤ 0 
(

1 − d 1 , 0 
d 1 , 1 − d 1 , 0 

)
+ ( 1 − d 2 , 0 

d 2 , 1 − d 2 , 0 
)

= 1 

(
1 − d 4 , 0 

d 4 , 1 − d 4 , 0 
)

+ ( 1 − d 5 , 0 
d 5 , 1 − d 5 , 0 

)
≤ 1 

−
(

1 − d 4 , 0 
d 4 , 1 − d 4 , 0 

)
+ ( 1 − d 6 , 0 

d 6 , 1 − d 6 , 0 
)

+ ( 1 − d 7 , 0 
d 7 , 1 − d 7 , 0 

)
≤ 1 

(
1 − d 3 , 0 

d 3 , 1 − d 3 , 0 
)

−
(

1 − d 8 , 0 
d 8 , 1 − d 8 , 0 

)
≤ 0 

d j, 0 + d j, 1 = 1 , j = 1 , . . . , 8 
d j ∈ { 0 , 1 } 16 

, 0 ≤ x ′ i ≤ 1 
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