
Data-driven Spatial Branch-and-bound Algorithm for Box-constrained Simulation-based Optimization 1

Jianyuan Zhai, Fani Boukouvala* 2

Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, 311 Ferst Dr., Atlanta, 3

GA, 30332, USA 4

Abstract 5

 The ability to use complex computer simulations in quantitative analysis and decision-making is 6

highly desired in science and engineering at the same rate as computation capabilities and first-principle 7

knowledge advance. Due to the complexity of simulation models, direct embedding of equation-based 8

optimization solvers may be impractical and data-driven optimization techniques are often needed. In this 9

work, we present a novel data-driven spatial branch-and-bound algorithm for simulation-based optimization 10

problems with box constraints, aiming for consistent globally convergent solutions. The main contribution 11

of this paper is the introduction of the concept data-driven convex underestimators of data and surrogate 12

functions, which are employed within a spatial branch-and-bound algorithm. The algorithm is showcased 13

by an illustrative example and is then extensively studied via computational experiments on a large set of 14

benchmark problems. 15

Keywords: black-box optimization, simulation-optimization, branch-and-bound, global optimization, 16

convex underestimators 17

Declaration 18

Funding: National Science Foundation (NSF-1805724), RAPID and Georgia Institute of Technology 19
Georgia Tech Startup Funding 20

Data-availability statement: My manuscript data will be available as supplementary materials 21

Conflicts of interest/Competing interests: None 22

*Corresponding author. 23
Email address: fani.boukouvala@chbe.gatech.edu (F. Boukouvala). 24

Introduction 1

 Review of Black-Box Optimization and Challenges 2

Advances in computational capabilities have led to more frequent use of high-fidelity computer 3

simulations for quantitative studies and decision-making in science and engineering in the recent 4

decades[1,2]. The ability to solve design and optimization problems with embedded simulations is of high 5

interest, often bridging the gap among multidisciplinary or multiscale knowledge. Simulations are often 6

treated as “black-box” input-and-output data-generators within optimization frameworks, either because 7

the details of the models are inaccessible under a proprietary license, or because the algebraic formulations 8

are intractable due to transformations of systems of differential equations and if-then operators [3-5]. As a 9

result, optimization of such black-box problems usually relies on the input-and-output data solely. Many 10

recent contributions from the engineering literature aim to improve the performance of black-box 11

optimization techniques for a wide variety of applications [6-11]. 12

 Existing black-box optimization methods can be categorized into two groups: a) sampling-based 13

and b) model-based. Under the sampling-based category, there are deterministic and stochastic methods. 14

Widely used examples of deterministic sampling-based methods include Nelder-Mead simplex algorithm 15

[12], Pattern-Search [13,14], Mesh Adaptive Direct Search [15], the DIRECT algorithm [16,17] and 16

Multilevel Coordinate Search (MCS) [18]. Among the aforementioned deterministic methods, DIRECT 17

and MCS methods are global search methods that aim to approach the global optimum by progressively 18

partitioning the search space. This approach can also be categorized as a deterministic Lipschitz 19

optimization method with an unknown Lipschitz constant. Another class of sampling-based methods 20

employ stochastic steps to randomize the search within bounded spaces, and popular examples are 21

Simulated Annealing [19], Evolutionary Algorithms [20,21] (i.e., Genetic algorithms) and Particle Swarm 22

Optimization Algorithms [22]. These methods have been widely adopted because of their global nature and 23

user-friendly software implementations [1,23]. However, they typically require a significantly large number 24

of samples to guarantee global convergence, and this may limit their application for certain simulation-25

based case studies [24]. Sampling-based local search methods may converge to local stationary points and 1

multistart approaches can be used to increase the chance of locating the global solution [23,25]. The 2

literature is very rich and continuously growing in this area and we do not aim to perform a thorough review 3

of these methods here. However, several excellent review articles have outlined the distinction between the 4

these categories and provide a comprehensive list of methods and tools available [23,1,25-27]. 5

Model-based methods, also referred to as surrogate-based methods, use surrogate models as 6

mathematical approximations of the relationship between the input and output data. Local model-based 7

methods, such as trust-region search (i.e., Powel’s method) and implicit filtering, used surrogate models in 8

a local search region to expedite the search. Global model-based methods construct surrogate models that 9

represent the entire search space or subspaces generated by partitioning to find the global optimum. 10

Sequential Design for Optimization (SDO) [28], Efficient Global Optimization (EGO) [29], and Stable 11

Noisy Optimization by Branch-and-Fit (SNOBFIT) [30] are some of the most popular and high performing 12

implementations of global model-based methods with search space partitioning. Earlier literature focused 13

on linear or quadratic approximation models as the surrogates, but more recent work has been exploring 14

more complex Machine Learning surrogate functions (i.e., Gaussian Process Models (GP), Artificial Neural 15

Networks (ANN), Support Vector Regression (SVR), Generalized Linear Regression, Regression Trees 16

(RT), etc.) [31,10,11,32,33]. 17

Most of the current existing black-box solvers, shown in computational studies and reviews, exhibit 18

varying performance that depends highly on the characteristics of the optimization problems and no single 19

solver clearly outperforms all others for a wide range of problems [23,1,25]. Many authors have observed 20

that the fitted surrogate models generally accelerate the search because they allow predictions to be made 21

even in regions where samples are not collected [5,34]. There are also several drawbacks to using surrogate 22

models, such as the added computational cost of fitting (optimization of parameters), tuning 23

(hyperparameters) and validating these models, as well as challenges in optimizing them using deterministic 24

global optimization solvers [32,5,35]. Moreover, selecting the type of surrogate model and its training 1

procedure given the available samples creates uncertainty in the outcome of each method run. 2

In this work, we adopt some of the characteristics of model-based methods due to their previously 3

reported promising potential in exploring search spaces fast, but we propose a novel framework that aims 4

to tackle some of the aforementioned challenges. Specifically, one common phenomenon is the 5

inconsistency in solutions given different sample sets. Many efforts have been devoted to improve the 6

accuracy of surrogate models in the sampling and modeling methodologies [9,36,32,11]. However, the 7

best surrogate modeling and sampling strategy is still an open question and the answer depends heavily on 8

the characteristics of the problem [5,34]. Moreover, most algorithms employ non-rigorous termination 9

criteria, such as termination at sampling and/or computation limits, or no significant improvement in 10

executive iterations. Therefore, it is usually impossible to know whether the solution would improve with 11

more samples collected and no further information is provided at convergence regarding the quality of the 12

incumbent solution. In the case where equations are available, deterministic derivative-based optimization 13

solvers employ ways to search the space efficiently and provide upper and lower bounds on the final 14

solution. In this work, we propose an algorithm that aims to provide better quality solutions and 15

approximate bounds on these for problems that rely on input-output data. The current challenges and 16

motivation of this work will be shown through a simple motivating example below. 17

Motivating Example 18

Many of the aforementioned surrogate-based optimization algorithms employ adaptive sampling 19

techniques in an effort to limit sampling requirements. The typical steps are:(a) start with a low number of 20

samples, (b) fit a surrogate model, (c) optimize surrogate formulation and identify new sampling locations 21

using exploration and/or exploitation criteria and (d) repeat the process until convergence. These adaptive 22

model-based algorithms have been shown to exhibit good performance, however, the issue of convergence 23

to different solutions if initialized with different samples, or if a different surrogate model is used, always 24

exists [32,5]. Another approach to solve black-box optimization problems (especially if sampling is not the 25

limiting factor) has been to collect many samples a-priori in order to train a sophisticated Machine Learning 1

model that is then optimized globally in a single iteration. Recent promising work makes this possible due 2

to development of customized global optimization algorithms specialized for artificial Neural Networks 3

and Gaussian Process models [10]. However, even this approach may still lead to variation in the final 4

optimal solution due to the uncertainty introduced by sampling and model fitting. 5

To show this challenge, we implement a surrogate-based algorithm that can train a support vector 6

regression (SVR) model with radial basis function kernels via 10-fold cross-validation, and then embed it 7

within a formulation which is optimized globally using equation-based global solver BARON [37]. The 8

‘six-hump camel function’ (6) is chosen as a motivating example and in this case we treat it as a black-box 9

function. The test function contains only two input variables and the function is evaluated within !! ∈10

[−3, 3] and !" ∈ [−2, 2]. 11

)(!) = -4 − 2.1!!
" +

#!"

$ 2 !!
" + !!!" + (−4 + 4!"

"
)!"

" (6) 12

This problem has two global minima)∗ = −1.0316	at (0.0898,−0.7126) and (−0.0898, 0.7126), which 13

are marked with two red dots in the contour plot of the problem in Figure 1. 14

Figure 1 Contour plot of six-hump camel function (Global optima (●))

To examine the effect of sampling and fitting uncertainty, we optimize the test function after the 1

SVR model is trained with varying sizes of Latin Hypercube sampling (LHS) sets[38]. The size of the LHS 2

designs ranges from 100, to 500 and to 1000 samples and for each case we repeat the process 10 times. For 3

each of the replications, a different SVR function is fitted with a different randomly created LHS design of 4

the same size, and the optimal SVR model parameters are trained using the same k-fold cross-validation 5

procedure. This simple test is used to assess the variability in identified optimal solutions, even when a 6

large number of samples is available a-priori, the surrogate model is trained using thorough training-7

validation practices and the surrogate function is then globally optimized. The distribution of the solutions 8

found with respect to the number of samples collected is plotted in Figure 2, where it can be observed that 9

the variation in globally identified solutions decreases with increasing number of samples used. However, 10

variation is still observed in the solutions found by globally optimizing the SVR models trained with 1000 11

samples. This variability in final solutions, even when a deterministic global optimization solver is applied, 12

may come mainly from the fact that slight changes in training samples lead to differences in the parameters 13

and eventually the global optima of these SVR models. This variability may be slightly higher or lower if 14

a different surrogate model was used, but we have observed this behavior with other types of surrogate 15

models, including Neural Networks and Kriging models[39]. It is this uncertainty that has led partially to 16

lack of adoption of surrogate-based optimization techniques and mistrust of these methods. It must also be 17

noted that we have just showed the variability observed with the singe-stage optimization approach and not 18

the adaptive sampling-fitting procedure that many algorithms use. However, variability in obtained 19

solutions has been reported in many previous works, for the same reasons of different initialization of 20

samples or surrogate model selection and fitting even when an adaptive approach is used [32,34,36]. 21

 22

Problem Formulation and Novelty of Proposed Work 1

In this work, we propose a novel black-box optimization algorithm aiming to provide consistent 2

solutions and indicate the potential improvement of the solution for box-constrained problems (F1). 3

(9)			:;<#
)(=) 4

>. ?. =&' ≤ = ≤ =() 5

= ∈ ℝ* 6

 Where)(!) is the black-box objective function and variable ! is bounded by an n-dimensional box 7

[=&+, =()]. The key novelty of our approach is the adoption of the structure of deterministic spatial branch-8

and-bound (SBB) algorithms. Deterministic SBB algorithms are implemented in many equation-based 9

global solvers for mix-integer nonlinear programming problems (MINLP) such as ANTIGONE [40], B −10

CC [41], BARON [37]. As shown in Figure 3(a), with a known mathematical formulation of the 11

optimization problem, a deterministic SBB algorithm first identifies a feasible solution as the upper bound 12

Figure 2 10 repetitions of incumbent solutions found by globally optimize SVR models trained
with sample sets with 100, 500, and 1000 points

(UB) of the unknown global optima. Then, a convex underestimator (),-) for the nonconvex objective 1

function is derived and its minimum serves as the lower bound (LB) of the global optima [40,37,42,25]. 2

Next, the algorithm will progressively partition the search space, and repeat the local search and 3

underestimating process. Eventually, the deterministic SBB algorithm converges when the gap between the 4

lower bound and the upper bound becomes smaller than some tolerance value D [40,37,42,25]. By 5

comparing the lower bound in each subspace to the incumbent solution, some search spaces can also be 6

pruned. For example, subspace E! is pruned because FC! is higher than GC" inferring that the global 7

optimum is not in E!. 8

In this work, we adopt the algorithmic structure of deterministic spatial branch-and-bound 9

algorithms (SBB) and develop a data-driven equivalent. The key novelty of the framework is the use of 10

data-driven convex underestimators (DDCU) with similar functions as the deterministic equation-based 11

underestimators as in Figure 3(b). Data-driven convex underestimators are trained purely from the data in 12

a way that we guarantee convexity and boundness of all current samples from below. We achieve this by 13

solving a linear programing problem. By subdividing the search space, the data-driven convex 14

Figure 3 Schemes of (a) deterministic spatial branch-and-bound algorithm and (b) data-driven
spatial branch-and-bound algorithm

underestimator is expected to become closer to the unknown function and provide tighter lower bounds. 1

Through the comparison of lower bounds and the incumbent solution, the search space can be reduced so 2

that more samples can be collected in the areas that are more promising to find the global optima. Our 3

method differs from Convex Relaxation Regression (CoRR) proposed by Azar et. al. [43] because CoRR 4

focuses on training a global convex regression function for optimization while DDSBB-DDCU trains many 5

local convex underestimators as it is partitioning the search space. In addition, we use various ML 6

techniques to improve the convergence of the algorithm. Specifically, ML models are trained with high-7

fidelity samples collected from the black-box function to provide cheap low-fidelity samples. These ML 8

models are also used to select the variables to be branched on. 9

Although some methods in the literature also incorporate partition strategies and the idea of 10

underestimators, DDSBB-DDCU distinguishes itself in the way that the underestimators are derived from 11

data solely and are practically used to guide the search and the pruning of the search spaces. In contrast, 12

empirical stochastic branch-and-bound algorithm (ESBB) [44] employs stochastic sampling-based bounds 13

to guide the branch and the search for the optimal solution. However, the lower bound and upper bounds 14

of all the subregions are assumed to be equal. Some methods require additional information on the 15

derivatives of the black-box simulation in order to derive the understimators. The SmoothD [45] algorithm 16

derives smooth convex auxiliary underestimating functions assuming the objective function values and 17

derivatives of the objective function can be obtained as black-box simulations simultaneously. Nonetheless, 18

the subspaces are never pruned by comparing the lower bound with the incumbent solution but are 19

prioritized by the lower bounds. A branch-and-bound approach is also proposed by Bajaj et al. [7], but the 20

implementation requires the knowledge of a bound of the Hessian matrix of the black-box function to 21

develop concave understimators. 22

Methods 23

 Data-driven Convex Underestimators 24

 Convex underestimators are one of the most important components of a spatial branch-and-bound 1

algorithm. Convex relaxations of known functional forms are well-studied in the literature, such as 2

McCormick relaxations [46] and outer approximation [47]. The underestimator guarantees convexity and 3

underestimation of the original non-convex function. In the absence of the mathematical formulation of the 4

black-box function, the derivation of the convex underestimator has to be purely data-driven. As a result, 5

we do not claim any guarantees of building a convex underestimator of the true unknown black-box function, 6

but we can claim to find a valid convex underestimator of all of our samples. To do so, we propose a linear 7

programming formulation (F2) to obtain a data-driven convex underestimator that bounds all samples from 8

below. 9

		(F2)	min 	∑ Mf(O.) − f/0(O.)P
1
2 (1) 10

s. t.			f(O.) − f/0(O.) ≥ 0				∀	i = 1	to	N (2) 11

f/0(O.) = WO.
3 + XO. + c			∀	i = 1	to	N (3) 12

W ≥ 0 (4) 13

W, X ∈ ℝ4, c ∈ ℝ (5) 14

where D is the dimension of the input space and N is the total number of samples collected. The objective 15

function (1) is to minimize the distance of all sample points x2 within a search subspace X5 . The first 16

constraint (2) guarantees that the underestimator f/0 bounds all sample points from below. The 17

underestimator is convex by enforcing parameter W for the squared term to be non-negative in constraints 18

(3 - 4). Noticeably, formulation (F2) is a linear programming problem and can be solved using linear solvers 19

without adding significant computational cost. This approach is different from any similar approach in the 20

literature which tries to employ underestimators [45,7] in the sense that DDCU does not require any 21

derivative information. After the formulation of f/0(O.) is obtained, the lower bound (LB5)	of the local 22

search space can be found analytically as the minimum of f/0. The minimum of the samples f(O.) then 1

serves as the upper bound (UB5)	of the local search space. 2

Returning to our motivating example, in Figure 4, we plot the DDCU obtained using 23 LHS 3

samples for the ‘six hump camel’ function. The convex underestimator is able to bound all samples from 4

below; however, it does not bound the black-box function in all of the search space. In this example, with 5

only 23 samples the upper bound obtained is -0.041 and the lower bound is –12.766 which successfully 6

underestimates the true global optimum (-1.0316). In order to quantify the overestimation of the unknown 7

black-box function, we simulated 10,000 grid points in the 2D space and found that 81.8% of those are 8

bounded by the underestimator trained with only 23 points. This core concept of data-driven convex 9

underestimators forms the basis of our algorithm. However, the algorithm is comprised of many other 10

components that aim to continuously improve the validity of underestimators, prune subspaces, and 11

converge to the global optimum with high probability. 12

One promising approach to improve the validity of the data-driven convex underestimators with 13

respect to the underlying unknown black-box function is to add more samples. The hypothesis is that with 14

increasing samples collected, the convex underestimator will be able to bound from below more regions 15

Figure 4 Data-driven convex underestimator trained with 23 LHS samples

that have not yet been sampled. To validate this, we repeat the above experiment by adaptively collecting 1

more samples to train the convex underestimator and the percentage of the 10,000 grid points bounded by 2

these convex underestimators are shown in Table 1. As shown in Table 1, more percentage of validation 3

points are bounded by the data-driven convex underestimator trained with more samples. It must also be 4

mentioned that we are able to bound 98.8% of the samples with 300 samples, which is lower than the 5

samples used to fit a single model in the motivating example and still observe variability. However, in many 6

applications, collecting high-fidelity samples from the black-box simulation can be very expensive. 7

Table 1. Percentage of 10,000 validation points bounded by DDCU trained with increasing
samples

Number of Samples 23 50 75 100 125 150 300

Percentage Bounded 81.8% 81.9% 94.3% 94.3% 96.9% 96.8% 98.8%
 8

 To tackle the potential limit on high-fidelity samples, we propose a multi-fidelity data approach (MF) 9

which combines the high-fidelity samples and some low-fidelity samples collected using a ML model. 10

Specifically, SVR with radial basis function kernel (RBF) [48,49] models are trained in the subregions 11

using the high-fidelity samples. Although we select this specific type of ML model in this example, the 12

type of ML model used to fit the data and produce the low-fidelity samples can be any regression or 13

interpolating or ensembles of models, including Neural Networks, Gaussian Process Models, Generalized 14

Regression Models, and many more. The enhanced formulation (F3) incorporates additional constraints 15

(9,11) to ensure the trained convex underestimator also bounds the “cheap” low-fidelity samples from 16

below, where x6 represent the inputs to collect the low-fidelity samples f/7(O8) and M is the number of 17

low-fidelity samples collected. More importantly, the objective function is revised to minimize the distance 18

between the low-fidelity samples and the lower bound. 19

		(F3)	min∑ Mf(O.) − f/0(O.)P
1
! + ∑ Mf(O8) − f/0(O8)P

9
! 	 (7) 20

s. t.			f(O.) − f/0(O.) ≥ 0				∀	i = 1	to	N (8) 21

f/7(O8) − f/0(O8) ≥ 0				∀	m = 1	to	M (9) 1

f/0(O.) = WO.
3 + XO. + c			∀	i = 1	to	N (10) 2

f/0(O8) = WO83 + XO8 + c			∀	m = 1	to	M (11) 3

W ≥ 0 (12) 4

W, X ∈ ℝ4, c ∈ ℝ (13) 5

An example of the convex underestimator obtained using the same set of high-fidelity samples and 100 6

low-fidelity points using random sample strategy is shown in Figure 5. In this case, the upper bound found 7

is the same as in the previous approach, while the lower bound becomes -11.203. The percentage of 10,000 8

validation points bounded by the underestimator increases from 81.8% to 87.3%, which indicates the 9

underestimator trained with multi-fidelity samples is more conservative than the one trained with high-10

fidelity samples only. With adaptively collecting more high-fidelity samples to train the SVR model, we 11

Figure 5 Data-driven convex underestimator trained with 23 high-fideity samples and 100 low-fidelity
samples

also observe that the percentage of validation points bounded increases from 87.3% to 99.6%, as shown in 1

Table 2. 2

Table 2. Percentage of 10,000 validation points bounded by DDCU trained with increasing
high-fidelity samples and fixed number of low-fidelity samples

Number of Samples 23 50 75 100 125 150 300

Percentage Bounded 87.3% 82.8% 94.2% 93.2% 94.3% 98.5% 99.6%
 3

There are two key observations to be made here. First, as expected, increasing the samples leads to 4

more conservative and more “valid” under-estimators. More importantly, the effect of low-fidelity samples 5

is more significant when high-fidelity samples are scarce, and these low-fidelity samples are “cheap” to 6

evaluate. 7

To summarize, we see that in this motivating example with only 23 high-fidelity samples and no 8

assumption about the nature of the underlying black-box function, the DDCU does not bound the function 9

entirely. However, we have not used adaptive sampling or branching in this example. These initial “global” 10

underestimators showed in the above examples are trained in the head node, where no pruning is happening. 11

Our hypothesis is that as more samples are collected, and the search-space is reduced (using branching) the 12

under-estimators will become more accurate. As a result, the aim of this work is to explore if the overall 13

approach of DDCU coupled with branch-and-bound leads to better and more consistent performance than 14

previously proposed approaches. However, no guarantees of global convergence in the deterministic sense 15

are made, as it is not possible unless assumptions regarding the form of the “black-box” function or its 16

derivatives are made a-priori, which will be the focus of future work. 17

 Data-driven Spatial Branch-and-bound Algorithm 18

 The data-driven spatial branch-and-bound algorithm is an iterative procedure that progressively 19

partitions the search space and uses the underestimating method to fathom some search subspaces. As 20

shown in Figure 6(a), the algorithm consists of three main blocks (solid-line) and one alternative block 21

(dashed-line). The pathway following the solid arrows is the “essential” flow of the algorithm. By activating 1

the “alternative” pathway, surrogate models are added to improve the performance of the algorithm by 2

providing additional information, such as variable ranking and/or multi-fidelity sampling. The algorithm 3

starts from the root node and as the full search space subdivides, each node branches into two child nodes 4

and eventually develops a tree structure similar to the example shown in Figure 6(b). The algorithm is 5

implemented in Python with dependent packages: numpy[50,51], pyomo [52], pyDOE [53] and scikit-learn 6

[54]. 7

Essential Path of DDSBB 8

To initialize the algorithm, the initial search space [O:;< , O=><] must be provided to the first 9

algorithmic block that represents sampling. Latin Hypercube Sampling (LHS) is implemented for initial 10

sampling in the root node and adaptive sampling to ensure that at least min-a
?@*(!BC,"EB)

, b + 1, ⌊2d⌋ + 12 11

samples are in the child node k, where l is the level of the tree. Since LHS designs result in samples that 12

are never located on the boundaries of the search space and this is important for convex underestimators, 13

we also sample the corner points O:;G and O=>G in each node. This is a sampling heuristic that allows us to 14

add corner points without significantly increasing sampling requirements. 15

The second algorithmic block of the algorithm represents the process of deriving the convex 16

underestimators and applying the DDCU method to obtain UB5 , LB5 and O:HG for each subregion k . 17

Additionally, the minimizer O:HG of the convex underestimator f/05 of subspace k is validated by obtaining 18

fMO:H
G
P from the black-box simulation. We also ensure O:HG is not resampled if O:HG is already in the sample 19

set. Note that the training process of DDCU in each node is iterative, because the new sample point fMO:H
G
P 20

may be higher than the current UB5 when validated by inquiring the high-fidelity simulation. Therefore, 21

the UB5 is updated with the new samples until LB5 is lower bounding the local minimum. 22

After searching all active nodes, the upper bounds and lower bounds are compared across all active 1

nodes and the minima among all local upper bounds and lower bounds are logged as the global upper bound 2

(UB) and the global lower bound (LB), respectively. Next, the “Branch & Prune” block prunes some nodes 3

if the lower bound is higher than the global upper bound and then determines the search region [O:;G , O=>G] 4

for the next level by bisecting the selected dimension. The simplest rule to follow is to select the dimension 5

d that has the maximum distance between x/I5 J and xKL#
5 . The algorithm converges when the absolution 6

gap |GC − FC| ≤ 0.05 or the relative gap 	|NOPQO|
|QO|

≤ 0.001 . More stopping criteria are imposed to 7

terminate the algorithm when the number of samples and CPU exceed a certain budget, however, to test the 8

convergence behavior of our algorithm we set those criteria to very large specifications. The algorithm also 9

stops if the maximum bound distance on the active subspace is smaller than an absolute tolerance of 0.05, 10

which implies that the search space is very small and as a result this would lead to unnecessary sampling 11

Figure 6 (a) Overview of the data-driven spatial branch-and-bound algorithm and (b) scheme of a
branch-and-bound tree

and overfitting of surrogate models. Since decision-making depends on the high-fidelity samples from the 1

black-box simulation in the essential pathway, this pathway is also referred to as high-fidelity (HF) 2

approach in the rest of the paper. 3

Alternative Path of DDSBB 4

The alternative block applies ML techniques to improve the validity of the convex underestimators 5

and the accuracy of the incumbent solution using the multi-fidelity approach. This block can be an add-on 6

to provide many cheap low-fidelity samples to train the underestimator using formulation (F3). In addition 7

to the minimizer of the f/05 , the minimizer xk5 of the low-fidelity samples in node k will also be validated by 8

evaluating f(xk5) from the black-box function. Before validating any new points, the algorithm makes sure 9

xk
5 does not already exist in the sample set. 10

Moreover, the SVR model trained to provide low-fidelity samples, can also help the algorithm 11

determine the variable to be branched on. In our previous work [55], we presented an SVR-based variable 12

selection algorithm ranks the input variables by a sensitivity-based criterion implying their relative 13

importance to the training accuracy of the SVR model [56,55]. It is hypothesized that branching on the most 14

important variable is a more informative heuristic that could expedite the convergence of the algorithm. 15

These two ML-based features (ML-based branching and ML-regression for multi-fidelity sampling) do not 16

have to always be used in tandem. In other words, one could use SVR-based variable selection for branching, 17

but not turn on the multi-fidelity sampling feature, and we will explore different combinations of such 18

features in the following sections. 19

Results 20

Motivating Example 21

Figure 7 shows the visualization of the branch-and-bound processes of four variations to solve the 22

motivating example with 23 initial LHS samples: (a) the high-fidelity approach without variable selection 23

for branching (HF), (b) the high-fidelity approach with variable selection for branching (HF_VS), (c) the 24

multi-fidelity approach without variable selection for branching (MF) , and (d) the multi-fidelity approach 1

with variable selection for branching (MF_VS). In all subplots of Figure 7, the search spaces are shaded 2

with grey colors in different gradients; the lighter the color, the earlier the subspace gets pruned in the 3

process. We observe that larger subregions that are less promising to find the global optimum are pruned 4

faster in the process with variable selection (7 (b) and (d)) than in those without variable selection (7(a) and 5

(c)). All variations of the algorithm are able to locate at least one of the global optima of the test function. 6

While the high-fidelity approaches are subject to higher risk of pruning regions that contain one of the 7

global optima, MF and MF_VS are able to concentrate the search in the regions containing both global 8

optima with the help of the low-fidelity samples. 9

To address the issue on the variability introduced by different initial sample sets, we repeat the 10

above computational experiments 10 times for each DDSBB algorithm variations. Due to the randomness 11

in data-driven processes, the algorithms may converge with different number of samples and iterations, but 12

Figure 7 Illustration of data-driven spatial branch-and-bound algorithms: (a) HF, (b) HF_VS, (c)
MF, and (d)MF_VS.

what is more important is that upon convergence all runs converge to a global optimum. In Figure 8, we 1

align the results shown in Figure 1 with the upper bounds found with the number of samples collected in 2

the progress of HF, HF_VS, MF and MF_VS. By comparing Figure 8 (a) and (c) with (b) and (d), we notice 3

that variable selection is able to reduce the variation in the incumbent solution found after the third iteration 4

across different runs. Even though the multi-fidelity approach requires more samples to converge eventually, 5

the upper bounds approach the global minimum with less samples and the variability of the upper bounds 6

as the algorithm progresses is smaller when compared to that of the high-fidelity approaches. Above all, all 7

versions of the DDSBB algorithm are able to find consistent solutions in all 10 runs initialized with different 8

sample sets and the variability in the incumbent solutions is much smaller than the solutions found by 9

globally optimizing the SVR models with an equivalent number of samples. It is also important to note here 10

that the DDSBB algorithm converged each time either due to closing the absolute or relative gap and not 11

due to sampling or CPU limitations. 12

In addition to the variability of the upper bounds, the variability in the lower bounds under different 1

initial samples is also crucial to the data-driven spatial branch-and-bound algorithm, because the lower 2

bound controls the speed of convergence and the accuracy of pruning. The record of the lower bounds in 3

the same 10 runs are shown in Figure 9. Due to the randomness in sampling and the lack of derivative 4

information, the low bounds found by the data-driven convex underestimators do not follow a strict 5

monotonous convergence behavior as those in the equation-based branch-and-bound algorithms in the first 6

iterations. Noticeably, trained with the same number of high-fidelity samples, the lower bounds found by 7

the multi-fidelity approach are more conservative; thus, the algorithm converges with more samples than 8

those found by the high-fidelity approach. In the absence of derivative information, the increased 9

conservativeness can help the algorithms prune the search space more cautiously. We also observe fewer 10

Figure 8 History of the upper bounds for ‘six hump camel’ function with increasing number of
samples collected in 10 runs of data-driven spatial branch-and-bound algorithms: (a) HF, (b)
HF_VS, (c) MF, and (d)MF_VS.

cases where the lower bound is higher than the true global optimum in the multi-fidelity approaches (Figure 1

9 (c,d)) than in the high-fidelity approaches (Figure 9 (a,b)). These results validate our hypothesis that 2

adding more samples (even low-fidelity samples) the underestimators become more conservative, which 3

eventually lead to more accurate solutions. 4

Computational Studies on Benchmark Problems 5

Solution Accuracy 6

 Besides the illustrative example, the performance of the DDSBB algorithms is further examined on 7

a large set of continuous box-constrained benchmark problems with known global optima obtained from 8

Figure 9 Lower bounds found for ‘six hump camel’ function with increasing number of samples
collected in 10 runs of data-driven spatial branch-and-bound algorithms: (a) HF, (b) HF_VS, (c)
MF, and (d)MF_VS.

Deleted: ¶9

[57]. These benchmark problems have been divided into two groups depending on the dimensionality. The 1

lower dimensional group contains 118 problems with 2-3 variables and the higher dimensional group 2

contains 69 problems with 4-10 variables. The complete list of the test problems is available in the Appendix. 3

The performance of the four variations of the data-driven spatial branch-and-bound algorithms is compared 4

with two current state-of-art algorithms, DIRECT and SNOBFIT, under the same sampling and CPU 5

limitations. DDSBB algorithms are initialized with 10l + 1 initial samples and converge at |GC − FC| ≤6

0.05 or the relative gap 	|NOPQO|
|QO|

≤ 0.001 . The commercially available solvers initialization and 7

convergence criteria depend on the settings of the available implementations. DIRECT is set to stop when 8

the absolute difference in the solutions found between two iterations is smaller than 0.05. SNOBFIT settings 9

dictate that the number of initial samples and adaptive samples in each call are both l + 6, the minimum 10

sampling requirement is 10N+1, and the algorithm stops when the solutions found in five consecutive 11

iterations remain the same. 12

In order to make solution profiles for the fraction of problems solved by a specific solver with 13

respect to sampling and CPU requirements, a proper performance criterion that can distinguish between the 14

solvers is needed. We propose a performance criterion (14) to determine whether a problem is solved based 15

on the incumbent solution. 16

)-RST ≤ max	()∗ + n, (1 + n))
∗) (14) 17

where n is a scaling factor between 0 and 0.15. This criterion reflects whether the incumbent solution)-RST 18

is within a small distance scaled by n to the known global optimum)∗. By gradually increasing n, the 19

fraction of problems solved is expected to increase as this criterion is being relaxed. In Figure 10 (a) and 20

(b), the cumulative fraction of problems solved is plotted with increasing n for the lower dimensional and 21

higher dimensional groups, respectively. As shown in Figure 10 (a), the fraction of problems solved 22

plateaus for all six methods after n reaches 0.05 and MF_VS solves the most fraction of problems among 23

all methods. In the higher dimensional group, the fraction of problems levels out when n is larger than 0.1, 24

and the differences in performances among the four variations of DDSBB algorithm gradually diminish as 1

n increases. In both groups of test problems, DDSBB algorithms solve significantly more problems than 2

SNOBFIT and DIRECT even with relaxed characterization criteria, which indicates SNOBFIT and 3

DIRECT may terminate prematurely at local minima more easily than DDSBB algorithms. 4

Sampling Requirements 5

Based on the results in Figure 10, at the conservative value of n = 0.01, the fractions of problems 6

solved is distinguishable across six algorithms; thus, n = 0.01 is chosen to study the performance of the 7

algorithms with respect to sampling and CPU requirements. Figure 11 (a) and (b) show the cumulative 8

fraction of problems solved with the number of samples collected at termination for the two test problem 9

groups. In both the lower and the higher dimensional group, DDSBB algorithms solve more problems but 10

require more samples, which are needed to converge the lower bound and upper bounds. DIRECT solves a 11

small fraction of problems with very little number of samples, because there is no stopping criterion on the 12

minimum number of samples. In the lower dimensional group, we see that MF_VS converges and solves 13

more problems than three other variations of DDSBB with the same number of samples. In the higher 14

dimensional group, high-fidelity approaches converge with a smaller number of samples but solve less 15

problems than the multi-fidelity approaches. Noticeably, HF_VS and MF_VS converges with less sampling 16

Figure 10 Fraction of problems solved with relaxed criterion (a) the lower dimensional group
and (b) the higher dimensional group by HF, HF_VS, MF, MF_VS, DIRECT and SNOBFIT.

requirements than HF and MF, respectively, implying that variable selection plays an important role in 1

accelerating the search in higher dimensional problems. 2

CPU requirements 3

As for the CPU requirements, we plot the fraction of problems solved with increasing 4

computational resources needed for the two groups of test problems in Figure 12 (a) and (b), respectively. 5

Overall, we observe that DDSBB algorithms with embedded variable selection converge faster than the 6

corresponding versions with branching on the longest dimension, which indicates the extra computation for 7

the embedded variable selection algorithm is balanced off by the acceleration in search and pruning. 8

Meanwhile, the employment of low-fidelity samples increases CPU requirements because the data-driven 9

convex underestimator becomes more conservative and its training requires more CPU as well due to 10

increasing number of constraints in (F3). Admittedly, DIRECT and SNOBFIT have significant advantages 11

in sampling requirements over DDSBB algorithms, indicated by the CPU requirements at termination. 12

However, if accuracy in solution is desired, we believe that the improvement in solution quality by DDSBB 13

algorithms and the provided bounds on the solution outweigh the disadvantages in computational 14

requirement in the cases when global optimization is the ultimate goal. 15

Figure 11 Fraction of problems solved with number of samples collected at termination in (a) the
lower dimensional group and (b) the higher dimensional group by HF, HF_VS, MF, MF_VS,
DIRECT and SNOBFIT.

Pre-Convergence Solution Quality 1

In many engineering applications where simulations are expensive, it is not always practical or 2

feasible to allow global search algorithms, like DDSBB, to collect as many samples as needed. Therefore, 3

the capability of approaching the global optimal with limited number of samples is an important aspect to 4

evaluate. We record the minimum number of samples required to solve the problems before the algorithms 5

terminate and plot the cumulative fraction of problems solved with the number of samples collected in 6

Figure 13 (a) and (b) for all six algorithms. In both the lower and the higher dimensional groups, there is 7

no significant difference in performance among the four DDSBB algorithms, which indicates the 8

convergence behavior in Figure 11 (a) and (b) depends heavily on the conservativeness of the data-driven 9

convex underestimators and on the branching rules. Overall, DDSBB algorithms are able to solve more 10

problems with less samples compared to DIRECT. SNOBFIT, as discussed previously, is able to solve a 11

relatively large portion of the problems with less samples than DDSBB algorithms and DIRECT but 12

converges locally for the rest of the problems. Notably, DDSBB allows users to resume the search after it 13

terminates with the preset limits after evaluating the potential gains with more samples invested, and after 14

having pruned non promising regions entirely. 15

Figure 12 Fraction of problems solved with CPU requirement at termination in (a) the lower
dimensional group and (b) the higher dimensional group by HF, HF_VS, MF, MF_VS, DIRECT
and SNOBFIT.

Bounding Accuracy 1

Lastly, the validity of the lower bounds with respect to the known global optimum across different 2

variations of DDSBB algorithms is investigated. Since the data-driven convex underestimators are derived 3

with samples solely, it is misleading to claim the validity of the data driven convex underestimator under 4

the same measure for the equation-based convex underestimators. However, some metrics on the gap 5

between the global optimum and the lower bound from the equation-based global optimization literature 6

would still be necessary and informative to assess the performance of our proposed approach, especially in 7

the context of black-box optimization where no other method provides such information. Here, we calculate 8

the absolute gap (14) between the known global optimum)∗ and the best lower bound FC to character the 9

validity. 10

opqn?;rp	snt =)∗ − FC (14) 11

Unlike the equation-based convex underestimators, which theoretically guarantee underestimating of the 12

objective function, data-driven convex underestimators only guarantee underestimating all samples 13

collected. Therefore, the proposed absolute gap may bear a negative value meaning that the lower bound 14

fails to underestimate the global optimum, which is referred as a violation instance in the rest of the 15

Figure 13 Fraction of problems solved with minimum number of samples collected in (a) the
lower dimensional group and (b) the higher dimensional group by HF, HF_VS, MF, MF_VS,
DIRECT and SNOBFIT.

discussion. In order to show the fraction of violation instances using different DDSBB algorithms, the 1

absolute of solved and unsolved problems with various ranges of absolute gaps obtained at the termination 2

of the algorithms are plotted in Figure 14. As shown in Figure 14 (a) and (b), the absolute gaps found mostly 3

lies in the valid range of [0, 0.5), where above 98% and 95% of these problems in the lower and the higher 4

dimensional groups, respectively. In the higher dimensional group, there are more problems with large 5

absolute gaps above 100 than in the lower dimensional group because the algorithms terminate prematurely 6

by hitting the sampling or CPU limit. 7

Most importantly, the summation of all violation instances makes up a relatively small portion of 8

all test problems and the absolute gaps of most violation instances fall in the range of [-0.5,0), which 9

indicates the lower bounds are very close to the global optimum at termination. Noticeably, majority of the 10

slight violation instances are solved while severe violation instances with absolute gaps below -0.5 are 11

never solved. Furthermore, violation instances happen more frequently when the high-fidelity approach is 12

used, especially for the lower dimensional group, which agrees with the observations on the illustrative 13

example that the introduction of low-fidelity samples improves the data-driven underestimators. The most 14

conservative approach, MF, can provide a valid lower bound for above 90% problems in both the lower 15

and the higher dimensional groups. Overall, the fractions of problems with a relative gap higher than -0.5 16

are above 90% by all four DDSBB algorithms regardless of dimensionality. 17

 18

 19

 20

 1

 2

Discussion and Future Directions 3

 In this paper, we present a novel data-driven spatial branch-and-bound algorithm (DDSBB) for 4

simulation-based black-box optimization problems aiming to provide consistently global-convergent 5

solutions. The DDSBB algorithm mimics the basic structure of traditional equation-based branch-and-6

bound algorithms but employs data-driven convex underestimators which are trained directly from samples 7

and do not require any derivative information. The main purpose of this work is to introduce the new idea 8

of the data-driven convex underestimators (DDCU) and showcase the capabilities of DDSBB algorithms 9

Figure 14 Distribution of absolute gaps of (a) lower dimensional group and (b) higher dimensional group
at termination of HF, HF_VS, MF, and MF_VS

with DDCUs using data sources with different fidelities via a large set of benchmark problems. Although 1

the data-driven convex underestimators are developed to underestimate all samples collected, we show that 2

DDCU is able to provide a valid lower bound with respect to the true global optimum for the majority of 3

the test problems. Among the cases that the lower bound is higher than the true global optimum, most of 4

them are within a relatively gap of 0.5. The computational studies on the motivating example and the 5

benchmark test problems suggest that DDSBB algorithms are capable of providing consistently globally 6

convergent solutions to box-constrained black-box optimization problems. We also show that DDSBB 7

algorithms with different features outperform current state-of-art solvers in certain aspects and show 8

convergent behavior when one can afford to collect more samples. 9

DDSBB algorithms, aiming for globally convergent solutions, may require a large number of 10

samples to reduce the gap between the lower bound and the upper bound. There is a trade-off between 11

obtaining an acceptable solution with small number of samples and locating a solution that is much closer 12

to the global optimum at higher sampling cost. Meanwhile, we have showed that DDSBB algorithms are 13

able to locate a good solution even before they converge or terminate by reaching other stopping criteria. 14

At the same time, the biggest advantage of DDSBB is that the lower bound information is always available 15

so that the users can assess the potential improvement and decide whether to allocate more computational 16

resources for a better solution. Based on the results, we have observed that data-driven convex 17

underestimators in test problems with very steep changes are highly conservative, which leads to very wide 18

bounds and slow convergence. To tighten the bounds and eventually reduce the sampling requirements, we 19

are currently working on exploring different types of data-driven convex underestimators which may 20

include bilinear terms and polynomial terms. Future improvement of the algorithm will also be devoted to 21

reducing the computational load by parallelization and algorithmic optimization. 22

Other limitations of DDSBB are the scalability with increased dimensionality of the input space. 23

In order to improve the scalability with increasing dimensionality, techniques for decoupling the input space 24

as well as dimensionality projection methods are under exploration. Nonetheless, we believe that the 25

general concept of data-driven convex underestimators is a promising approach to solve simulation-based 1

optimization problems, because it circumvents the need to optimize highly complex surrogate models 2

directly, which is a key computational challenge of many surrogate-based optimization solvers. Based on 3

its globally convergent behavior, we foresee this algorithm to be highly applicable in simulation-based 4

problems where global optimum is strongly desired; for example, parameter estimation and process 5

optimization for dynamic models. 6

Acknowledgements 7

The authors acknowledge financial support from the National Science Foundation (NSF-1805724) (JZ, FB), 8

RAPID (FB) and Georgia Institute of Technology Startup Funding (JZ, FB). 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 1

References 1

1. Amaran, S., Sahinidis, N.V., Sharda, B., Bury, S.J.: Simulation optimization: a review of algorithms 2
and applications. 4OR 12(4), 301-333 (2014). doi:10.1007/s10288-014-0275-2 3

2. Gosavi, A.: Background. In: Gosavi, A. (ed.) Simulation-Based Optimization: Parametric Optimization 4
Techniques and Reinforcement Learning. pp. 1-12. Springer US, Boston, MA (2015) 5

3. Caballero, J.A., Grossmann, I.E.: An algorithm for the use of surrogate models in modular flowsheet 6
optimization. AIChE Journal 54(10), 2633-2650 (2008). doi:doi:10.1002/aic.11579 7

4. Henao, C.A., Maravelias, C.T.: Surrogate-based superstructure optimization framework. AIChE 8
Journal 57(5), 1216-1232 (2011). doi:doi:10.1002/aic.12341 9

5. Bhosekar, A., Ierapetritou, M.: Advances in surrogate based modeling, feasibility analysis, and 10
optimization: A review. Computers & Chemical Engineering 108, 250-267 (2018). 11
doi:https://doi.org/10.1016/j.compchemeng.2017.09.017 12

6. McBride, K., Sundmacher, K.: Overview of Surrogate Modeling in Chemical Process Engineering. 13
Chemie Ingenieur Technik 91(3), 228-239 (2019). doi:10.1002/cite.201800091 14

7. Bajaj, I., Hasan, M.M.F.: Deterministic global derivative-free optimization of black-box problems with 15
bounded Hessian. Optimization Letters (2019). doi:10.1007/s11590-019-01421-0 16

8. Kieslich, C.A., Boukouvala, F., Floudas, C.A.: Optimization of black-box problems using Smolyak 17
grids and polynomial approximations. Journal of Global Optimization (2018). 18
doi:10.1007/s10898-018-0643-0 19

9. Cozad, A., Sahinidis, N.V., Miller, D.C.: Learning surrogate models for simulation-based optimization. 20
AIChE Journal 60(6), 2211-2227 (2014). doi:10.1002/aic.14418 21

10. Schweidtmann, A.M., Mitsos, A.: Deterministic Global Optimization with Artificial Neural Networks 22
Embedded. Journal of Optimization Theory and Applications 180(3), 925-948 (2019). 23
doi:10.1007/s10957-018-1396-0 24

11. Garud, S.S., Mariappan, N., Karimi, I.A.: Surrogate-based black-box optimisation via domain 25
exploration and smart placement. Computers & Chemical Engineering 130, 106567 (2019). 26
doi:https://doi.org/10.1016/j.compchemeng.2019.106567 27

12. Nelder, J.A., Mead, R.: A Simplex Method for Function Minimization. The Computer Journal 7(4), 28
308-313 (1965). doi:10.1093/comjnl/7.4.308 29

13. Torczon, V.: On the Convergence of Pattern Search Algorithms. SIAM J. on Optimization 7(1), 1-25 30
(1997). doi:10.1137/s1052623493250780 31

14. Lewis, R.M., Torczon, V.: Pattern Search Algorithms for Bound Constrained Minimization. SIAM 32
Journal on Optimization 9(4), 1082-1099 (1999). doi:10.1137/s1052623496300507 33

15. Audet, C., J. E. Dennis, J.: Mesh Adaptive Direct Search Algorithms for Constrained Optimization. 34
SIAM Journal on Optimization 17(1), 188-217 (2006). doi:10.1137/040603371 35

16. Jones, D.R.: Direct global optimization algorithmDirect Global Optimization Algorithm. In: Floudas, 36
C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization. pp. 725-735. Springer US, Boston, 37
MA (2009) 38

17. Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz 39
constant. Journal of Optimization Theory and Applications 79(1), 157-181 (1993). 40
doi:10.1007/bf00941892 41

18. Huyer, W., Neumaier, A.: Global Optimization by Multilevel Coordinate Search. Journal of Global 42
Optimization 14(4), 331-355 (1999). doi:10.1023/a:1008382309369 43

19. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated Annealing. Science 44
220(4598), 671-680 (1983). doi:10.1126/science.220.4598.671 45

20. Reeves, C.R.: Feature Article—Genetic Algorithms for the Operations Researcher. INFORMS 46
Journal on Computing 9(3), 231-250 (1997). doi:10.1287/ijoc.9.3.231 47

21. Whitley, D.: A genetic algorithm tutorial. Statistics and Computing 4(2), 65-85 (1994). 48
doi:10.1007/bf00175354 49

22. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN'95 - International 1
Conference on Neural Networks, 27 Nov.-1 Dec. 1995 1995, pp. 1942-1948 vol.1944 2

23. Rios, L.M., Sahinidis, N.V.: Derivative-free optimization: a review of algorithms and comparison of 3
software implementations. Journal of Global Optimization 56(3), 1247-1293 (2013). 4
doi:10.1007/s10898-012-9951-y 5

24. Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-free Optimization. Society for 6
Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 7
19104), (2009) 8

25. Boukouvala, F., Misener, R., Floudas, C.A.: Global optimization advances in Mixed-Integer 9
Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO. 10
European Journal of Operational Research 252(3), 701-727 (2016). 11
doi:https://doi.org/10.1016/j.ejor.2015.12.018 12

26. Larson, J., Menickelly, M., Wild, S.M.: Derivative-free optimization methods. Acta Numerica 28, 13
287-404 (2019). doi:10.1017/S0962492919000060 14

27. Audet, C., Hare, W.: The Beginnings of DFO Algorithms. In: Derivative-Free and Blackbox 15
Optimization. pp. 33-54. Springer International Publishing, Cham (2017) 16

28. Cox, D.D., John, S.: A statistical method for global optimization. In: [Proceedings] 1992 IEEE 17
International Conference on Systems, Man, and Cybernetics, 18-21 Oct. 1992 1992, pp. 1241-18
1246 vol.1242 19

29. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient Global Optimization of Expensive Black-Box 20
Functions. Journal of Global Optimization 13(4), 455-492 (1998). doi:10.1023/A:1008306431147 21

30. Huyer, W., Neumaier, A.: SNOBFIT -- Stable Noisy Optimization by Branch and Fit. ACM Trans. 22
Math. Softw. 35(2), 1-25 (2008). doi:10.1145/1377612.1377613 23

31. Thebelt, A., Kronqvist, J., Mistry, M., Lee, R.M., Sudermann-Merx, N., Misener, R.: ENTMOOT: A 24
Framework for Optimization over Ensemble Tree Models. arXiv e-prints (2020). 25

32. Boukouvala, F., Floudas, C.A.: ARGONAUT: AlgoRithms for Global Optimization of coNstrAined 26
grey-box compUTational problems. Optimization Letters 11(5), 895-913 (2017). 27
doi:10.1007/s11590-016-1028-2 28

33. Müller, J., Park, J., Sahu, R., Varadharajan, C., Arora, B., Faybishenko, B., Agarwal, D.: Surrogate 29
optimization of deep neural networks for groundwater predictions. Journal of Global 30
Optimization (2020). doi:10.1007/s10898-020-00912-0 31

34. Forrester, A.I.J., Keane, A.J.: Recent advances in surrogate-based optimization. Progress in Aerospace 32
Sciences 45(1), 50-79 (2009). doi:https://doi.org/10.1016/j.paerosci.2008.11.001 33

35. Barton, R.R., Meckesheimer, M.: Chapter 18 Metamodel-Based Simulation Optimization. In: 34
Henderson, S.G., Nelson, B.L. (eds.) Handbooks in Operations Research and Management 35
Science, vol. 13. pp. 535-574. Elsevier, (2006) 36

36. Eason, J., Cremaschi, S.: Adaptive sequential sampling for surrogate model generation with artificial 37
neural networks. Computers & Chemical Engineering 68, 220-232 (2014). 38
doi:https://doi.org/10.1016/j.compchemeng.2014.05.021 39

37. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. 40
Mathematical Programming 103(2), 225-249 (2005). doi:10.1007/s10107-005-0581-8 41

38. McKay, M.D., Beckman, R.J., Conover, W.J.: Comparison of Three Methods for Selecting Values of 42
Input Variables in the Analysis of Output from a Computer Code. Technometrics 21(2), 239-245 43
(1979). doi:10.1080/00401706.1979.10489755 44

39. Hüllen, G., Zhai, J., Kim, S.H., Sinha, A., Realff, M.J., Boukouvala, F.: Managing Uncertainty in 45
Data-Driven Simulation-Based Optimization. Computers & Chemical Engineering, 106519 46
(2019). doi:https://doi.org/10.1016/j.compchemeng.2019.106519 47

40. Misener, R., Floudas, C.A.: ANTIGONE: Algorithms for coNTinuous / Integer Global Optimization 48
of Nonlinear Equations. Journal of Global Optimization 59(2), 503-526 (2014). 49
doi:10.1007/s10898-014-0166-2 50

41. Androulakis, I.P., Maranas, C.D., Floudas, C.A.: αBB: A global optimization method for general 1
constrained nonconvex problems. Journal of Global Optimization 7(4), 337-363 (1995). 2
doi:10.1007/bf01099647 3

42. Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs: A 4
theoretical and computational study. Mathematical Programming 99(3), 563-591 (2004). 5
doi:10.1007/s10107-003-0467-6 6

43. Azar, M.G., Dyer, E.L., K, K.P., #246, rding: Convex relaxation regression: black-box optimization 7
of smooth functions by learning their convex envelopes. Paper presented at the Proceedings of the 8
Thirty-Second Conference on Uncertainty in Artificial Intelligence, Jersey City, New Jersey, 9
USA, 10

44. Xu, W.L., Nelson, B.L.: Empirical stochastic branch-and-bound for optimization via simulation. IIE 11
Transactions 45(7), 685-698 (2013). doi:10.1080/0740817X.2013.768783 12

45. Sergeyev, Y.D., Kvasov, D.E.: A deterministic global optimization using smooth diagonal auxiliary 13
functions. Communications in Nonlinear Science and Numerical Simulation 21(1), 99-111 14
(2015). doi:https://doi.org/10.1016/j.cnsns.2014.08.026 15

46. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: Part I — 16
Convex underestimating problems. Mathematical Programming 10(1), 147-175 (1976). 17
doi:10.1007/BF01580665 18

47. Duran, M.A., Grossmann, I.E.: An outer-approximation algorithm for a class of mixed-integer 19
nonlinear programs. Mathematical Programming 36(3), 307-339 (1986). 20
doi:10.1007/BF02592064 21

48. Vapnik, V.: The Nature of Statistical Learning Theory. Springer New York, (1999) 22
49. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Statistics and Computing 14(3), 23

199-222 (2004). doi:10.1023/b:stco.0000035301.49549.88 24
50. Oliphant, T.E.: A guid to Numpy. Trelgol Publishing USA, (2006) 25
51. Walt, S.v.d., Colbert, S.C., Varoquaux, G.: The NumPy Array: A Structure for Efficient Numerical 26

Computation. Computing in Science & Engineering 13(2), 22-30 (2011). 27
doi:10.1109/MCSE.2011.37 28

52. Hart, W.E., Laird, C., Watson, J.-P., Woodruff, D.L.: Pyomo - Optimization Modeling in Python. 29
Springer Publishing Company, Incorporated, (2012) 30

53. Baudin, M., Christopoulou, M., Collette, Y., Martinez, J.-M.: pyDOE: The experimental design 31
package for python. In. 32

54. Pedregosa, F., Ga, #235, Varoquaux, l., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., 33
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, 34
M., Perrot, M., #201, Duchesnay, d.: Scikit-learn: Machine Learning in Python. J. Mach. Learn. 35
Res. 12, 2825-2830 (2011). 36

55. Zhai, J., Boukouvala, F.: Nonlinear Variable Selection Algorithms for Surrogate Modeling. AIChE 37
Journal 0(ja), e16601. doi:10.1002/aic.16601 38

56. Guzman, Y.A.: Theoretical Advances in Robust Optimization, Feature Selection, and Biomarker 39
Discovery. Academic dissertations (Ph.D.), Princeton University (2016) 40

57. Bound-constrained programs. http://www.minlp.com/nlp-and-minlp-test-problems. 2019 41

 42

 43

 44

 45

 1

Appendix I. List of lower dimensional problems 2

Table 1 List of lower dimensional problems
No. Name N =&+ =(+ u∗
1 AluffiPentini 2 [-1.1513, -1.1] [-0.942, 1.1] -0.3524
2 BeckerLago 2 [4.5, 4.5] [5.5, 5.5] 0
3 Camel3 2 [-1.1, -1.1] [1.1, 1.1] 0

4 DekkersAarts 2 [-1.1, -16.4396] [1.1, -13.4506]
-
24776.5
2

5 GoldPrice 2 [-1.1, -1.1] [1.1, 1.1] 3
6 Hartman3 3 [0.0, 0.0, 0.0] [1.0, 1.0, 1.0] -3.8628
7 Hosaki 2 [3.6, 1.8] [4.4, 2.2] -2.3458
8 MeyerRoth 3 [3.1667, 9.0, -1.1] [3.8704, 10.0, 1.1] 0.0019
9 ModRosenbrock 2 [-1.1, -1.1] [1.1, 1.1] 0
10 MultiGauss 2 [-1.1, -1.1] [1.1, 1.1] -1.297
11 box3 3 [-1.1, -1.1, -1.1] [1.1, 1.1, 1.1] 0
12 brownbs 2 [900000.0, -1.1] [1100000.0, 1.1] 0
13 camel1 2 [-3.0, -2.0] [3.0, 2.0] -1.0316
14 cliff 2 [2.7, 2.8348] [3.3, 3.4648] 0.1998
15 concha1 2 [-4443.6025, 596.1299] [-3635.6748, 728.6033] 4.254
16 concha10 2 [-1.1, -1.0] [1.1, 1.0] 9.7258
17 concha11 2 [9000.0, -10.0] [10000.0, -9.0] 5.8026

18 concha12 2 [-4143.4454, 2928.5789] [-3390.0917,
3579.3742] 6.1635

19 concha3 2 [3859.0955, -6994.0971] [4716.6723, -
5722.4431] 7.3971

20 concha5 3 [3262.6655, -1695.5224,
93.1098]

[3987.7022, -
1387.2456, 113.8009] 1.4885

21 concha5a 3 [-100.0, -100.0, 29.7399] [-90.0, -90.0, 36.3487] 2.9675
22 concha8 2 [9000.0, 0.0] [10000.0, 1.1] 5.7115
23 concha9 2 [4861.7199, -3.1428] [5942.1022, -2.5714] 7.7031
24 cube 2 [0.9, 0.9] [1.1, 1.1] 0
25 denschna 2 [-1.1, -1.1] [1.1, 1.1] 0
26 denschnb 2 [1.8, -1.1] [2.2, 1.1] 0
27 denschnc 2 [-1.1, 0.9] [1.1, 1.1] 0
28 denschnd 3 [-1.1, -1.1, -1.1] [1.1, 1.1, 1.1] 0
29 denschne 3 [-1.1, -1.1, -1.1] [1.1, 1.1, 1.1] 0
30 draper1 2 [0.0, 0.0] [1.0, 1.0] 0.005

31 draperg 3 [103.6322, 2.0796, -
24.2317]

[126.6616, 2.5417, -
19.8259] 7.0133

32 draperj 3 [3.2122, 11.5163, 0.0] [3.926, 14.0755, 1.1] 0.0079
33 drapero 2 [0.0, 1.6902] [1.1, 2.0658] 2.864
34 engval2 3 [-1.1, -1.1, -1.1] [1.1, 1.1, 1.1] 0
35 ex005 2 [-1.0, 1.8] [1.1, 2.0] -4
36 ex4_1_5 2 [-1.1, -1.1] [1.1, 1.1] 0
37 ex8_1_3 2 [-1.1, -1.1] [1.1, 1.1] 3
38 ex8_1_4 2 [-1.1, -1.1] [1.1, 1.1] 0
39 ex8_1_5 2 [-1.1, -1.1] [1.1, 1.1] -1.0316
40 ex8_1_6 2 [3.6, 3.6] [4.3999, 4.3999] -10.086
41 fermat2_eps 2 [1.8, -1.1] [2.2, 1.1] 4.4722
42 fermat2_vareps 3 [1.8, -1.1, 0.0] [2.2, 1.1, 1.1] 4.4721
43 fermat_eps 2 [1.8, 1.0392] [2.2, 1.2702] 7.4641
44 fermat_vareps 3 [1.8, 1.0392, 0.0] [2.2, 1.2702, 1.1] 7.4641
45 gold 2 [-1.1, -1.1] [1.1, 1.1] 3
46 hatfldd 3 [2.8795, -1.1196, -1.1] [3.5194, -0.916, 1.1] 0
47 hatflde 3 [2.8776, -1.1103, -1.1] [3.5171, -0.9084, 1.1] 0
48 himmelbb 2 [-1.1, -1.1] [1.1, 1.1] 0
49 himmelbg 2 [-1.1, -1.1] [1.1, 1.1] 0
50 himmelbh 2 [-1.1, -1.1] [1.1, 1.1] -1

51 himmelp1 2 [73.0725, 62.2421] [89.3108, 75.0] -
62.0539

52 hs001 2 [0.9, 0.9] [1.1, 1.1] 0
53 hs002 2 [1.1019, 1.5] [1.3468, 1.65] 0.0504
54 hs003 2 [-1.1, 0.0] [1.1, 1.1] 0
55 hs004 2 [1.0, 0.0] [1.1, 1.1] 2.6667
56 hs3mod 2 [-1.1, 0.0] [1.1, 1.1] 0
57 jensmp 2 [-1.1, -1.1] [1.1, 1.1] 1.2436
58 logros 2 [0.0, 0.0] [1.1, 1.1] 0
59 maratosb 2 [-1.1, -1.1] [-0.9, 1.1] -1
60 median_vareps 2 [0.0, -1.1] [1.1, 1.1] 4.9424
61 mexhat 2 [1.0276, 1.1733] [1.256, 1.434] -0.0401
62 model19 2 [215.0479, 0.0] [262.8363, 1.1] 0.1246
63 model2 2 [192.4285, -1.0] [235.1903, 1.1] 1.168
64 model23 3 [2.388, 0.0, -0.1] [2.9187, 1.1, 0.0] 5.9731
65 model24 3 [65.216, 2.3563, 0.0] [79.7085, 2.8799, 1.1] 8.0565
66 model3 3 [0.001, 0.0, 0.0] [1.0, 0.01, 0.1] 2.3845
67 model31 3 [2.8184, 13.6434, 0.0] [3.4447, 16.6753, 1.1] 0

68 model32 3 [11.9168, 1.3507, 18.09] [14.565, 1.6508,
22.1099] 0.0001

69 model33 3 [58.4694, 1.3569,
17.9283]

[71.4626, 1.6584,
21.9124] 1.2519

70 model36 2 [-1.1, -1.1] [1.1, 1.1] 1.2436
71 model39 2 [-1.1, -1.1] [1.1, 1.1] 0.0089
72 model4 3 [14.1058, 0.0, 0.0] [17.2404, 1.1, 1.0] 0.006
73 model42 3 [0.0, 4.5, 1.1196] [1.1, 5.0, 1.3684] 2.0397
74 model45 3 [13.9498, 1.0802, 0.0] [17.0498, 1.3202, 1.1] 0
75 model5 3 [9.0, 990.0, 47.8124] [10.0, 1100.0, 58.4374] 5.8496
76 nasty 2 [-1.1, -1.1] [1.1, 1.1] 0
77 price 2 [-1.1, -1.1] [1.1, 1.1] 0
78 ratkasymptotic 2 [0.0, 0.0] [1.0, 1.0] 6.3502
79 ratkbates 3 [0.0, 90000.0, 0.0] [1.1, 100000.0, 1.1] 3.3199
80 rosenbr 2 [0.9, 0.9] [1.1, 1.1] 0
81 s201 2 [4.5, 5.4] [5.5, 6.6] 0
82 s202 2 [4.5, 3.6] [5.5, 4.4] 0
83 s204 2 [-1.1, -1.1] [1.1, 1.1] 0.0485
84 s205 2 [2.7, -1.1] [3.3, 1.1] 0
85 s206 2 [0.9, 0.9] [1.1, 1.1] 0
86 s207 2 [-1.1, -1.1] [1.1, 1.1] 0
87 s208 2 [0.9, 0.9] [1.1, 1.1] 0
88 s209 2 [-1.1, -1.1] [1.1, 1.1] 0
89 s210 2 [-1.1, -1.1] [1.1, 1.1] 0
90 s211 2 [0.9, 0.9] [1.1, 1.1] 0
91 s212 2 [-1.1, -1.1] [1.1, 1.1] 0
92 s214 2 [-1.1, -1.1] [1.1, 1.1] 0
93 s229 2 [0.9, 0.9] [1.1, 1.1] 0
94 s240 3 [-1.1, -1.1, -1.1] [1.1, 1.1, 1.1] 0
95 s242 3 [0.0, 0.0, 0.0] [1.1, 1.1, 1.1] 0
96 s244 3 [0.0, 9.0, 4.5] [1.1, 10.0, 5.5] 0
97 s245 3 [-1.1, -1.1, -1.1] [1.1, 1.1, 1.1] 0
98 s246 3 [-1.1, -1.1, -1.1] [1.1, 1.1, 1.1] 0
99 s274 2 [-1.1, -1.1] [1.1, 1.1] 0
100 s290 2 [-1.1, -1.1] [1.1, 1.1] 0
101 s307 2 [0.0, 0.0] [1.1, 1.1] 1.2436
102 s309 2 [3.1344, 3.51] [3.831, 4.29] -3.9872
103 s311 2 [-4.1572, -3.6115] [-3.4014, -2.9549] 0
104 s312 2 [18.4114, -38.2704] [22.5029, -31.3122] 0
105 s328 2 [1.5691, 1.8267] [1.9178, 2.2327] 1.7442
106 s332 2 [0.0, 0.0] [1.1, 1.1] 2.7191
107 s333 3 [80.9118, -1.1, -1.1] [98.8922, 1.1, 1.1] 0.0433
108 s386 2 [4.5, 5.4] [5.5, 6.6] 0
109 sim2bqp 2 [-1.1, 0.0] [1.1, 0.5] 0

110 simbqp 2 [-1.1, 0.0] [1.1, 0.5] 0
111 sisser 2 [-1.1, -1.1] [1.1, 1.1] 0
112 st_cqpjk2 3 [0.0, 0.0, 0.0] [1.0, 1.0, 1.0] -12.5
113 st_e39 2 [3.6, 3.6] [4.3999, 4.3999] -10.086
114 stattools 2 [0.9909, 0.0] [1.2111, 1.1] 0.0418
115 tranter2 3 [0.0, -1.0, 0.0] [0.1, 0.0, 0.1] 0.0003
116 tre 2 [-1.1, -1.1] [1.1, 1.1] 0
117 zangwil2 2 [3.6, 8.1] [4.4, 9.9] -18.2
118 zhenglog 3 [65.216, 2.3563, 0.0] [79.7085, 2.8799, 1.0] 8.0565

 1

Appendix II. List of high dimensional problems 2

Table 2 List of higher dimenional problems
No. Name N

1 Expo 10

[-1.0, -1.0, -1.0, -1.0, -
1.0, -1.0, -1.0, -1.0, -1.0,
-1.0]

[1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0] -1

2 Neumaier2 4 [0.0, 1.7999, 1.8001, 2.7] [1.0, 2.0, 2.2002, 3.3] 0

3 Neumaier3 10

[9.0, 16.2, 21.6, 25.2,
27.0, 27.0, 25.2, 21.6,
16.2, 9.0]

[11.0, 19.8, 26.4, 30.8,
33.0, 33.0, 30.8, 26.4,
19.8, 11.0] -210

4 Paviani 10

[8.4152, 8.4152, 8.4152,
8.4152, 8.4152, 8.4152,
8.4152, 8.4152, 8.4152,
8.4152]

[10.0, 10.0, 10.0, 10.0,
10.0, 10.0, 10.0, 10.0,
10.0, 10.0] -45.7785

5 PowellQ 4 [-1.1, -1.1, -1.1, -1.1] [1.1, 1.1, 1.1, 1.1] 0

6
PriceTransisto
r 9

[0.0, 0.0, 0.9, 1.8001,
7.2, 7.1997, 4.5, 0.0, 1.8]

[1.1, 1.1, 1.1, 2.2001,
8.8, 8.7997, 5.5, 1.1,
2.2001] 0

7 Shekel10 4
[3.6007, 3.6005, 3.5997,
3.5996]

[4.4008, 4.4007,
4.3996, 4.3995] -10.5364

8 Shekel7 4
[3.6005, 3.6006, 3.5995,
3.5996]

[4.4006, 4.4008,
4.3994, 4.3996] -10.4029

9 Shekelfox10 10

[7.2225, 8.2367, 4.6026,
6.8589, 4.1076, 4.2399,
2.6964, 5.5134, 0.0,
4.4838]

[8.8275, 10.0, 5.6254,
8.3831, 5.0204, 5.1821,
3.2956, 6.7386, 1.1,
5.4802] -10.2088

10 Shekelfox5 5
[7.2224, 8.2366, 4.6025,
6.8588, 4.1077]

[8.8274, 10.0, 5.6253,
8.3829, 5.0205] -10.4056

11 Wood 4 [-1.1, -1.1, -1.1, -1.1] [1.1, 1.1, 1.1, 1.1] 0

12 biggs6 6

[1575174.0197,
15.9149, -110000000.0,
4.6679, 1.5403, 2.0937]

[1925212.6907,
19.4515, -90000000.0,
5.7052, 1.8826, 2.5589] 0.0057

13 brownal 10

[-1.1, -1.1, -1.1, -1.1, -
1.1, -1.1, -1.1, -1.1, -1.1,
0.9]

[1.1, 1.1, 1.1, 1.1, 1.1,
1.1, 1.1, 1.1, 1.1, 1.1] 0

14 brownden 4
[-12.7539, 11.8833, -1.1,
-1.1]

[-10.435, 14.524, 1.1,
1.1] 8.5822

15 dixon3dq 10

[-1.1, -1.1, -1.1, -1.1, -
1.1, -1.1, -1.1, -1.1, -1.1,
-1.1]

[1.1, 1.1, 1.1, 1.1, 1.1,
1.1, 1.1, 1.1, 1.1, 1.1] 0

16 extrosnb 10

[-1.1, -1.1, -1.1, -1.1, -
1.1, -1.1, -1.1, -1.1, -1.1,
-1.1]

[1.1, 1.1, 1.1, 1.1, 1.1,
1.1, 1.1, 1.1, 1.1, 1.1] 0

17 hart6 6
[0.0, 0.0, 0.0, 0.0, 0.0,
0.0]

[1.0, 1.0, 1.0, 1.0, 1.0,
1.0] -3.3229

18 hatflda 4 [0.0, 0.0, 0.0, 0.0] [1.1, 1.1, 1.1, 1.1] 0
19 hatfldb 4 [0.0, 0.0, 0.0, 0.0] [1.1, 0.8, 1.1, 1.1] 0.0056
20 hatfldc 4 [0.9, 0.0, 0.0, -1.1] [1.1, 1.1, 1.1, 1.1] 0

21 heart8ls 8

[-1.1, -1.1, -1.1, -1.1,
2.2449, -1.4104, -
1.5231, 1.3994]

[1.1, 1.1, 1.1, 1.1,
2.7437, -1.154, -1.2462,
1.7104] 0

22 hilberta 10

[-1.1, -1.1, -1.1, -1.1, -
1.1, -1.1, -1.1, -1.1, -1.1,
-1.1]

[1.1, 1.1, 1.1, 1.1, 1.1,
1.1, 1.1, 1.1, 1.1, 1.1] 0

23 hs038 4 [-1.1, -1.1, 0.9, 0.9] [1.1, 1.1, 1.1, 1.1] 0
24 hs045 5 [0.0, 1.8, 2.7, 3.6, 4.5] [1.0, 2.0, 3.0, 4.0, 5.0] 1

25 hs110 10

[8.4152, 8.4152, 8.4152,
8.4152, 8.4152, 8.4152,
8.4152, 8.4152, 8.4152,
8.4152]

[9.999, 9.999, 9.999,
9.999, 9.999, 9.999,
9.999, 9.999, 9.999,
9.999] -45.7785

26 kowalik 4 [0.0, 0.0, 0.0, 0.0] [0.42, 0.42, 0.42, 0.42] 0.0003

27 model13 6
[0.0, 0.0, 0.0, 2.7,
1.4018, 4.5]

[1.0, 1.1, 1.0, 3.3,
1.7134, 5.5] 0

28 model14 6
[0.0, 2.7071, 1.3976,
4.5026, 0.0, 0.9052]

[1.1, 3.3086, 1.7082,
5.5032, 1.1, 1.1063] 0

29 model15 6
[0.0, 0.0, 0.0, 2.6564,
1.4243, 4.4877]

[1.0, 1.0, 1.0, 3.2467,
1.7408, 5.485] 0

30 model16 4 [0.0, 0.0, 0.0, 0.0] [1.1, 1.1, 1.1, 1.1] 0.0003

31 model18 5
[0.0, 1.7423, -1.6112,
0.0, 0.0]

[1.0, 2.1294, -1.3182,
0.05, 0.05] 0.0001

32 oslbqp 8
[2.5, 0.0, 0.0, 0.0, 0.5,
0.0, 0.0, 0.0]

[2.75, 1.1, 1.1, 1.1, 1.1,
1.1, 1.1, 1.1] 6.25

33 palmer1c 8

[79.4675, -180.8224,
131.4538, -113.7649,
50.3336, -19.6229,
2.738, -1.1]

[97.1269, -147.9456,
160.6658, -93.0804,
61.5188, -16.0551,
3.3465, 1.1] 0.0976

34 palmer1d 7

[79.3008, -175.177,
110.7352, -71.2179,
22.361, -5.4716, -1.1]

[96.9232, -143.3266,
135.343, -58.2692,
27.3301, -4.4768, 1.1] 0.6527

35 palmer2c 8

[17.4504, -61.5965,
59.6872, -61.8856,
36.9104, -19.8414,
3.8019, -1.1]

[21.3282, -50.3971,
72.951, -50.6336,
45.1127, -16.2339,
4.6468, 1.1] 0.0144

36 palmer3c 8

[8.8357, -46.723,
61.6137, -69.2331,
42.0604, -23.1822,
4.5807, -1.1]

[10.7992, -38.2279,
75.3057, -56.6453,
51.4071, -18.9673,
5.5986, 1.1] 0.0195

37 palmer4c 8

[8.716, -52.2234,
80.4934, -105.4979,
67.6167, -38.0683,
7.5732, -1.1]

[10.6529, -42.7283,
98.3808, -86.3165,
82.6427, -31.1468,
9.2562, 1.1] 0.0503

38 palmer5c 6

[33.7833, -1.9033,
36.7144, -1.1, 3.3381, -
1.1]

[41.2907, -1.5572,
44.8732, 1.1, 4.0798,
1.1] 2.1281

39 palmer5d 4
[72.2262, -145.3165,
46.4761, -1.1]

[88.2764, -118.8954,
56.8041, 1.1] 8.7339

40 palmer6c 8

[9.5573, -58.0874,
98.4797, -165.0954,
140.3039, -102.3164,
25.7913, -3.8617]

[11.6811, -47.5261,
120.364, -135.0781,
171.4826, -83.7134,
31.5227, -3.1596] 0.0164

41 palmer7c 8

[4.0889, -58.043,
218.1999, -617.6092,
646.5388, -514.1436,
132.1612, -19.4072]

[4.9975, -47.4897,
266.6888, -505.3166,
790.2141, -420.6629,
161.5304, -15.8786] 0.602

42 palmer8c 8

[4.1178, -50.6413,
139.4599, -261.0124,
208.3661, -138.9187,
32.0861, -4.442]

[5.0329, -41.4338,
170.4509, -213.5556,
254.6697, -113.6607,
39.2164, -3.6344] 0.1598

43 powell 4 [-1.1, -1.1, -1.1, -1.1] [1.1, 1.1, 1.1, 1.1] 0
44 pspdoc 4 [-1.1, -1.1, -1.1, -1.1] [-1.0, 1.1, 1.1, 1.1] 2.4142
45 s256 4 [-1.1, -1.1, -1.1, -1.1] [1.1, 1.1, 1.1, 1.1] 0
46 s257 4 [0.0, -1.1, 0.0, -1.1] [1.1, 1.1, 1.1, 1.1] 0
47 s258 4 [-1.1, -1.1, -1.1, -1.1] [1.1, 1.1, 1.1, 1.1] 0

48 s259 4
[1.2923, 1.8568, -1.1, -
1.1]

[1.5794, 2.2695, 1.1,
1.0] -8.5446

49 s260 4 [-1.1, -1.1, -1.1, -1.1] [1.1, 1.1, 1.1, 1.1] 0

50 s266 5
[-1.1, -1.1, -1.1, -1.1, -
1.1] [1.1, 1.1, 1.1, 1.1, 1.1] 1

51 s271 6
[-1.1, -1.1, -1.1, -1.1, -
1.1, -1.1]

[1.1, 1.1, 1.1, 1.1, 1.1,
1.1] 0

52 s272 6
[0.0, 9.0, 3.6, 0.0, 4.5,
2.7]

[1.1, 11.0, 4.4, 1.1, 5.5,
3.3] 0

53 s273 6
[-1.1, -1.1, -1.1, -1.1, -
1.1, -1.1]

[1.1, 1.1, 1.1, 1.1, 1.1,
1.1] 0

54 s275 4 [-1.1, -1.1, -1.1, -1.1] [1.1, 1.1, 1.1, 1.1] 0

55 s276 6
[-1.1, -1.1, -1.1, -1.1, -
1.1, -1.1]

[1.1, 1.1, 1.1, 1.1, -0.8,
1.1] 0

56 s281 10
[1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0]

[1.1, 1.1, 1.1, 1.1, 1.1,
1.1, 1.1, 1.1, 1.1, 1.1] 0

57 s282 10

[-1.1, -1.1, -1.1, -1.1, -
1.1, -1.1, -1.1, -1.1, -1.1,
-1.1]

[1.1, 1.1, 1.1, 1.1, 1.1,
1.1, 1.1, 1.1, 1.1, 1.1] 0

58 s291 10

[-1.1, -1.1, -1.1, -1.1, -
1.1, -1.1, -1.1, -1.1, -1.1,
-1.1]

[1.1, 1.1, 1.1, 1.1, 1.1,
1.1, 1.1, 1.1, 1.1, 1.1] 0

59 s294 6
[-1.1, -1.1, -1.1, -1.1, -
1.1, -1.1]

[-0.6, 1.1, 1.1, 1.1, 1.1,
1.1] 3.9739

60 s295 10

[-1.1, -1.1, -1.1, -1.1, -
1.1, -1.1, -1.1, -1.1, -1.1,
-1.1]

[-0.6, 1.1, 1.1, 1.1, 1.1,
1.1, 1.1, 1.1, 1.1, 1.1] 3.9866

61 s352 4
[-11.2459, 10.7176, -1.1,
-1.1]

[-9.2012, 13.0993, 1.1,
1.1] 9.0323

62 s358 5
[-0.5, 1.7423, -1.6112,
0.001, 0.001]

[0.5, 2.1294, -1.3182,
0.1, 0.1] 0.0001

63 s370 6
[-1.1, 0.9112, -1.1,
1.1344, -1.6651, -1.1]

[1.1, 1.1137, 1.1,
1.3865, -1.3624, 1.1] 0.0023

64 s371 9

[-1.1, -1.1, -1.1, -1.1,
0.9007, -2.8795, 3.694, -
3.458, 0.9474]

[1.1, 1.1, 1.1, 1.1,
1.1009, -2.356, 4.5148,
-2.8293, 1.1579] 0

65 schwefel 5
[-0.5, -0.5, -0.5, -0.5, -
0.5] [0.4, 0.4, 0.4, 0.4, 0.4] 0

66 shekel 4 [3.6, 3.6001, 3.6, 3.6001]
[4.4, 4.4001, 4.4,
4.4001] -10.1532

67 st_bsj3 6
[89.1, 89.1, 89.1, 89.1,
89.1, 89.1]

[99.0, 99.0, 99.0, 99.0,
99.0, 99.0]

-
86768.5
5

68 tranter 6
[-1.0, 0.0, -1.0, 0.0, -1.1,
-1.1]

[0.0, 1.0, 0.0, 1.1, 0.0,
0.0] 0.0045

69 weibull3 4
[5.9903, 4.9944, 0.0,
1.5865]

[7.3215, 6.1042, 1.0,
1.939] 0.1338

 1

 1

