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Abstract

The ability to use complex computer simulations in quantitative analysis and decision-making is
highly desired in science and engineering at the same rate as computation capabilities and first-principle
knowledge advance. Due to the complexity of simulation models, direct embedding of equation-based
optimization solvers may be impractical and data-driven optimization techniques are often needed. In this
work, we present a novel data-driven spatial branch-and-bound algorithm for simulation-based optimization
problems with box constraints, aiming for consistent globally convergent solutions. The main contribution
of this paper is the introduction of the concept data-driven convex underestimators of data and surrogate
functions, which are employed within a spatial branch-and-bound algorithm. The algorithm is showcased
by an illustrative example and is then extensively studied via computational experiments on a large set of

benchmark problems.
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Introduction

Review of Black-Box Optimization and Challenges

Advances in computational capabilities have led to more frequent use of high-fidelity computer
simulations for quantitative studies and decision-making in science and engineering in the recent
decades[1,2]. The ability to solve design and optimization problems with embedded simulations is of high
interest, often bridging the gap among multidisciplinary or multiscale knowledge. Simulations are often
treated as “black-box” input-and-output data-generators within optimization frameworks, either because
the details of the models are inaccessible under a proprietary license, or because the algebraic formulations
are intractable due to transformations of systems of differential equations and if-then operators [3-5]. As a
result, optimization of such black-box problems usually relies on the input-and-output data solely. Many
recent contributions from the engineering literature aim to improve the performance of black-box

optimization techniques for a wide variety of applications [6-11].

Existing black-box optimization methods can be categorized into two groups: a) sampling-based
and b) model-based. Under the sampling-based category, there are deterministic and stochastic methods.
Widely used examples of deterministic sampling-based methods include Nelder-Mead simplex algorithm
[12], Pattern-Search [13,14], Mesh Adaptive Direct Search [15], the DIRECT algorithm [16,17] and
Multilevel Coordinate Search (MCS) [18]. Among the aforementioned deterministic methods, DIRECT
and MCS methods are global search methods that aim to approach the global optimum by progressively
partitioning the search space. This approach can also be categorized as a deterministic Lipschitz
optimization method with an unknown Lipschitz constant. Another class of sampling-based methods
employ stochastic steps to randomize the search within bounded spaces, and popular examples are
Simulated Annealing [19], Evolutionary Algorithms [20,21] (i.e., Genetic algorithms) and Particle Swarm
Optimization Algorithms [22]. These methods have been widely adopted because of their global nature and
user-friendly software implementations [1,23]. However, they typically require a significantly large number

of samples to guarantee global convergence, and this may limit their application for certain simulation-
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based case studies [24]. Sampling-based local search methods may converge to local stationary points and
multistart approaches can be used to increase the chance of locating the global solution [23,25]. The
literature is very rich and continuously growing in this area and we do not aim to perform a thorough review
of these methods here. However, several excellent review articles have outlined the distinction between the

these categories and provide a comprehensive list of methods and tools available [23,1,25-27].

Model-based methods, also referred to as surrogate-based methods, use surrogate models as
mathematical approximations of the relationship between the input and output data. Local model-based
methods, such as trust-region search (i.e., Powel’s method) and implicit filtering, used surrogate models in
a local search region to expedite the search. Global model-based methods construct surrogate models that
represent the entire search space or subspaces generated by partitioning to find the global optimum.
Sequential Design for Optimization (SDO) [28], Efficient Global Optimization (EGO) [29], and Stable
Noisy Optimization by Branch-and-Fit (SNOBFIT) [30] are some of the most popular and high performing
implementations of global model-based methods with search space partitioning. Earlier literature focused
on linear or quadratic approximation models as the surrogates, but more recent work has been exploring
more complex Machine Learning surrogate functions (i.e., Gaussian Process Models (GP), Artificial Neural
Networks (ANN), Support Vector Regression (SVR), Generalized Linear Regression, Regression Trees

(RT), etc.) [31,10,11,32,33].

Most of the current existing black-box solvers, shown in computational studies and reviews, exhibit
varying performance that depends highly on the characteristics of the optimization problems and no single
solver clearly outperforms all others for a wide range of problems [23,1,25]. Many authors have observed
that the fitted surrogate models generally accelerate the search because they allow predictions to be made
even in regions where samples are not collected [5,34]. There are also several drawbacks to using surrogate
models, such as the added computational cost of fitting (optimization of parameters), tuning

(hyperparameters) and validating these models, as well as challenges in optimizing them using deterministic
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global optimization solvers [32,5,35]. Moreover, selecting the type of surrogate model and its training

procedure given the available samples creates uncertainty in the outcome of each method run.

In this work, we adopt some of the characteristics of model-based methods due to their previously
reported promising potential in exploring search spaces fast, but we propose a novel framework that aims
to tackle some of the aforementioned challenges. Specifically, one common phenomenon is the
inconsistency in solutions given different sample sets. Many efforts have been devoted to improve the
accuracy of surrogate models in the sampling and modeling methodologies [9,36,32,11]. However, the
best surrogate modeling and sampling strategy is still an open question and the answer depends heavily on
the characteristics of the problem [5,34]. Moreover, most algorithms employ non-rigorous termination
criteria, such as termination at sampling and/or computation limits, or no significant improvement in
executive iterations. Therefore, it is usually impossible to know whether the solution would improve with
more samples collected and no further information is provided at convergence regarding the quality of the
incumbent solution. In the case where equations are available, deterministic derivative-based optimization
solvers employ ways to search the space efficiently and provide upper and lower bounds on the final
solution. In this work, we propose an algorithm that aims to provide better quality solutions and
approximate bounds on these for problems that rely on input-output data. The current challenges and

motivation of this work will be shown through a simple motivating example below.

Motivating Example

Many of the aforementioned surrogate-based optimization algorithms employ adaptive sampling
techniques in an effort to limit sampling requirements. The typical steps are:(a) start with a low number of
samples, (b) fit a surrogate model, (c) optimize surrogate formulation and identify new sampling locations
using exploration and/or exploitation criteria and (d) repeat the process until convergence. These adaptive
model-based algorithms have been shown to exhibit good performance, however, the issue of convergence
to different solutions if initialized with different samples, or if a different surrogate model is used, always

exists [32,5]. Another approach to solve black-box optimization problems (especially if sampling is not the
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limiting factor) has been to collect many samples a-priori in order to train a sophisticated Machine Learning
model that is then optimized globally in a single iteration. Recent promising work makes this possible due
to development of customized global optimization algorithms specialized for artificial Neural Networks
and Gaussian Process models [10]. However, even this approach may still lead to variation in the final

optimal solution due to the uncertainty introduced by sampling and model fitting.

To show this challenge, we implement a surrogate-based algorithm that can train a support vector
regression (SVR) model with radial basis function kernels via 10-fold cross-validation, and then embed it
within a formulation which is optimized globally using equation-based global solver BARON [37]. The
‘six-hump camel function’ (6) is chosen as a motivating example and in this case we treat it as a black-box
function. The test function contains only two input variables and the function is evaluated within x; €

[—3, 3] and x, € [-2,2].
4
feo = (4 —21x% + x?l) xf +x0xp + (=4 + 4x5)xd (6)

This problem has two global minima f* = —1.0316 at (0.0898, —0.7126) and (—0.0898, 0.7126), which

are marked with two red dots in the contour plot of the problem in Figure 1.

T3 -2 -1 0 1 2 3
X

Figure 1 Contour plot of six-hump camel function (Global optima (e))
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To examine the effect of sampling and fitting uncertainty, we optimize the test function after the
SVR model is trained with varying sizes of Latin Hypercube sampling (LHS) sets[38]. The size of the LHS
designs ranges from 100, to 500 and to 1000 samples and for each case we repeat the process 10 times. For
each of the replications, a different SVR function is fitted with a different randomly created LHS design of
the same size, and the optimal SVR model parameters are trained using the same k-fold cross-validation
procedure. This simple test is used to assess the variability in identified optimal solutions, even when a
large number of samples is available a-priori, the surrogate model is trained using thorough training-
validation practices and the surrogate function is then globally optimized. The distribution of the solutions
found with respect to the number of samples collected is plotted in Figure 2, where it can be observed that
the variation in globally identified solutions decreases with increasing number of samples used. However,
variation is still observed in the solutions found by globally optimizing the SVR models trained with 1000
samples. This variability in final solutions, even when a deterministic global optimization solver is applied,
may come mainly from the fact that slight changes in training samples lead to differences in the parameters
and eventually the global optima of these SVR models. This variability may be slightly higher or lower if
a different surrogate model was used, but we have observed this behavior with other types of surrogate
models, including Neural Networks and Kriging models[39]. It is this uncertainty that has led partially to
lack of adoption of surrogate-based optimization techniques and mistrust of these methods. It must also be
noted that we have just showed the variability observed with the singe-stage optimization approach and not
the adaptive sampling-fitting procedure that many algorithms use. However, variability in obtained
solutions has been reported in many previous works, for the same reasons of different initialization of

samples or surrogate model selection and fitting even when an adaptive approach is used [32,34,36].



10

11

12

O 100 samples

04 + X 500 samples
O 1000 samples
05 o = = True Global Minimum

Incumbent Solution Value
S
3
T

0 100 200 300 400 500 600 700 800 900 1000 1100
Number of Samples

Figure 2 10 repetitions of incumbent solutions found by globally optimize SVR models trained
with sample sets with 100, 500, and 1000 points

Problem Formulation and Novelty of Proposed Work

In this work, we propose a novel black-box optimization algorithm aiming to provide consistent

solutions and indicate the potential improvement of the solution for box-constrained problems (F1).
Q) mxin f®
St X S XS Xy
x €R"

Where f(x) is the black-box objective function and variable x is bounded by an n-dimensional box
[x1p, Xup]. The key novelty of our approach is the adoption of the structure of deterministic spatial branch-
and-bound (SBB) algorithms. Deterministic SBB algorithms are implemented in many equation-based
global solvers for mix-integer nonlinear programming problems (MINLP) such as ANTIGONE [40], a —
BB [41], BARON [37]. As shown in Figure 3(a), with a known mathematical formulation of the

optimization problem, a deterministic SBB algorithm first identifies a feasible solution as the upper bound
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(UB) of the unknown global optima. Then, a convex underestimator (f;;,) for the nonconvex objective
function is derived and its minimum serves as the lower bound (LB) of the global optima [40,37,42,25].
Next, the algorithm will progressively partition the search space, and repeat the local search and
underestimating process. Eventually, the deterministic SBB algorithm converges when the gap between the
lower bound and the upper bound becomes smaller than some tolerance value € [40,37,42,25]. By
comparing the lower bound in each subspace to the incumbent solution, some search spaces can also be
pruned. For example, subspace S; is pruned because LB, is higher than UB, inferring that the global

optimum is not in S;.

(a) R / US 52/
Ul o~ /,’1 \ 11/,2\ UB, /
e’ N { RAANYY;
| \N_7/ 3t Ny
f® \ U "X,
‘\\ "If LBI \
Y L‘J / LB,
8- = = = Known Function
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(b) » L4 s -
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f(x) \ / fx) ! Y.
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L? LB,
\\K(,’
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Figure 3 Schemes of (a) deterministic spatial branch-and-bound algorithm and (b) data-driven
spatial branch-and-bound algorithm

In this work, we adopt the algorithmic structure of deterministic spatial branch-and-bound
algorithms (SBB) and develop a data-driven equivalent. The key novelty of the framework is the use of
data-driven convex underestimators (DDCU) with similar functions as the deterministic equation-based
underestimators as in Figure 3(b). Data-driven convex underestimators are trained purely from the data in
a way that we guarantee convexity and boundness of all current samples from below. We achieve this by

solving a linear programing problem. By subdividing the search space, the data-driven convex
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underestimator is expected to become closer to the unknown function and provide tighter lower bounds.
Through the comparison of lower bounds and the incumbent solution, the search space can be reduced so
that more samples can be collected in the areas that are more promising to find the global optima. Our
method differs from Convex Relaxation Regression (CoRR) proposed by Azar et. al. [43] because CoORR
focuses on training a global convex regression function for optimization while DDSBB-DDCU trains many
local convex underestimators as it is partitioning the search space. In addition, we use various ML
techniques to improve the convergence of the algorithm. Specifically, ML models are trained with high-
fidelity samples collected from the black-box function to provide cheap low-fidelity samples. These ML

models are also used to select the variables to be branched on.

Although some methods in the literature also incorporate partition strategies and the idea of
underestimators, DDSBB-DDCU distinguishes itself in the way that the underestimators are derived from
data solely and are practically used to guide the search and the pruning of the search spaces. In contrast,
empirical stochastic branch-and-bound algorithm (ESBB) [44] employs stochastic sampling-based bounds
to guide the branch and the search for the optimal solution. However, the lower bound and upper bounds
of all the subregions are assumed to be equal. Some methods require additional information on the
derivatives of the black-box simulation in order to derive the understimators. The SmoothD [45] algorithm
derives smooth convex auxiliary underestimating functions assuming the objective function values and
derivatives of the objective function can be obtained as black-box simulations simultaneously. Nonetheless,
the subspaces are never pruned by comparing the lower bound with the incumbent solution but are
prioritized by the lower bounds. A branch-and-bound approach is also proposed by Bajaj et al. [7], but the
implementation requires the knowledge of a bound of the Hessian matrix of the black-box function to

develop concave understimators.

Methods

Data-driven Convex Underestimators
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Convex underestimators are one of the most important components of a spatial branch-and-bound
algorithm. Convex relaxations of known functional forms are well-studied in the literature, such as
McCormick relaxations [46] and outer approximation [47]. The underestimator guarantees convexity and
underestimation of the original non-convex function. In the absence of the mathematical formulation of the
black-box function, the derivation of the convex underestimator has to be purely data-driven. As a result,
we do not claim any guarantees of building a convex underestimator of the true unknown black-box function,
but we can claim to find a valid convex underestimator of all of our samples. To do so, we propose a linear

programming formulation (F2) to obtain a data-driven convex underestimator that bounds all samples from

below.

(F2) min ZiN(f(xi) — fib (X1)) )
st fX) —fipx) 20 Vi=1toN )
fin(Xi) = ax{ + bx;+c Vi=1toN 3)
a=o0 4
a,beRP,ceR (%)

where D is the dimension of the input space and N is the total number of samples collected. The objective
function (1) is to minimize the distance of all sample points X; within a search subspace Xj. The first
constraint (2) guarantees that the underestimator fj, bounds all sample points from below. The
underestimator is convex by enforcing parameter a for the squared term to be non-negative in constraints
(3 - 4). Noticeably, formulation (F2) is a linear programming problem and can be solved using linear solvers
without adding significant computational cost. This approach is different from any similar approach in the
literature which tries to employ underestimators [45,7] in the sense that DDCU does not require any

derivative information. After the formulation of fj, (X;) is obtained, the lower bound (LBy) of the local
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search space can be found analytically as the minimum of fj,. The minimum of the samples f(x;) then

serves as the upper bound (UBy) of the local search space.

Returning to our motivating example, in Figure 4, we plot the DDCU obtained using 23 LHS
samples for the ‘six hump camel’ function. The convex underestimator is able to bound all samples from
below; however, it does not bound the black-box function in all of the search space. In this example, with
only 23 samples the upper bound obtained is -0.041 and the lower bound is —12.766 which successfully
underestimates the true global optimum ( -1.0316). In order to quantify the overestimation of the unknown
black-box function, we simulated 10,000 grid points in the 2D space and found that 81.8% of those are
bounded by the underestimator trained with only 23 points. This core concept of data-driven convex
underestimators forms the basis of our algorithm. However, the algorithm is comprised of many other
components that aim to continuously improve the validity of underestimators, prune subspaces, and

converge to the global optimum with high probability.

X1 2 3
4 o 1 150
3 -2
(] ® Samples
150
< 100
100
fix)
= 50
50 N .
.
' 0
0 L
N M)
a2 X2

Figure 4 Data-driven convex underestimator trained with 23 LHS samples
One promising approach to improve the validity of the data-driven convex underestimators with

respect to the underlying unknown black-box function is to add more samples. The hypothesis is that with

increasing samples collected, the convex underestimator will be able to bound from below more regions
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that have not yet been sampled. To validate this, we repeat the above experiment by adaptively collecting
more samples to train the convex underestimator and the percentage of the 10,000 grid points bounded by
these convex underestimators are shown in Table 1. As shown in Table 1, more percentage of validation
points are bounded by the data-driven convex underestimator trained with more samples. It must also be
mentioned that we are able to bound 98.8% of the samples with 300 samples, which is lower than the
samples used to fit a single model in the motivating example and still observe variability. However, in many

applications, collecting high-fidelity samples from the black-box simulation can be very expensive.

Table 1. Percentage of 10,000 validation points bounded by DDCU trained with increasing
samples

Number of Samples 23 50 75 100 125 150 300
Percentage Bounded 81.8% 81.9% 943% 943% 96.9% 96.8% 98.8%

To tackle the potential limit on high-fidelity samples, we propose a multi-fidelity data approach (MF)
which combines the high-fidelity samples and some low-fidelity samples collected using a ML model.
Specifically, SVR with radial basis function kernel (RBF) [48,49] models are trained in the subregions
using the high-fidelity samples. Although we select this specific type of ML model in this example, the
type of ML model used to fit the data and produce the low-fidelity samples can be any regression or
interpolating or ensembles of models, including Neural Networks, Gaussian Process Models, Generalized
Regression Models, and many more. The enhanced formulation (F3) incorporates additional constraints
(9,11) to ensure the trained convex underestimator also bounds the “cheap” low-fidelity samples from
below, where xp,, represent the inputs to collect the low-fidelity samples fj¢(Xy,) and M is the number of
low-fidelity samples collected. More importantly, the objective function is revised to minimize the distance

between the low-fidelity samples and the lower bound.
(F3) min Z{'(f(xi) —fip (xi)) + Zl{"(f(xm) —fip (xm)) 7)

s.t fxi) —fip(xi) 20 Vi=1toN ®)



1 flf(xm)—flb(xm)zo Vm=1toM

2 flb(xi):axi2+bxi+c Vi=1toN

3 flb(xm):ax,zn+bxm+c Vvm=1toM
4 a=0

5 abeRPceR

(12)

(€)

(10)

1n

(13)

6  An example of the convex underestimator obtained using the same set of high-fidelity samples and 100

7 low-fidelity points using random sample strategy is shown in Figure 5. In this case, the upper bound found

8  isthe same as in the previous approach, while the lower bound becomes -11.203. The percentage of 10,000

9  validation points bounded by the underestimator increases from 81.8% to 87.3%, which indicates the

10 underestimator trained with multi-fidelity samples is more conservative than the one trained with high-

11 fidelity samples only. With adaptively collecting more high-fidelity samples to train the SVR model, we

3 -2 1
o
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@ High-fidelity Samples
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Figure 5 Data-driven convex unacresumator wrameda wiun 25 mgan-uaeity sampies and 100 low-fidelity

samples
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also observe that the percentage of validation points bounded increases from 87.3% to 99.6%, as shown in

Table 2.

Table 2. Percentage of 10,000 validation points bounded by DDCU trained with increasing
high-fidelity samples and fixed number of low-fidelity samples

Number of Samples 23 50 75 100 125 150 300
Percentage Bounded 87.3% 82.8% 942% 932% 943% 98.5% 99.6%

There are two key observations to be made here. First, as expected, increasing the samples leads to
more conservative and more “valid” under-estimators. More importantly, the effect of low-fidelity samples
is more significant when high-fidelity samples are scarce, and these low-fidelity samples are “cheap” to

evaluate.

To summarize, we see that in this motivating example with only 23 high-fidelity samples and no
assumption about the nature of the underlying black-box function, the DDCU does not bound the function
entirely. However, we have not used adaptive sampling or branching in this example. These initial “global”
underestimators showed in the above examples are trained in the head node, where no pruning is happening.
Our hypothesis is that as more samples are collected, and the search-space is reduced (using branching) the
under-estimators will become more accurate. As a result, the aim of this work is to explore if the overall
approach of DDCU coupled with branch-and-bound leads to better and more consistent performance than
previously proposed approaches. However, no guarantees of global convergence in the deterministic sense
are made, as it is not possible unless assumptions regarding the form of the “black-box” function or its

derivatives are made a-priori, which will be the focus of future work.

Data-driven Spatial Branch-and-bound Algorithm

The data-driven spatial branch-and-bound algorithm is an iterative procedure that progressively
partitions the search space and uses the underestimating method to fathom some search subspaces. As

shown in Figure 6(a), the algorithm consists of three main blocks (solid-line) and one alternative block
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(dashed-line). The pathway following the solid arrows is the “essential” flow of the algorithm. By activating
the “alternative” pathway, surrogate models are added to improve the performance of the algorithm by
providing additional information, such as variable ranking and/or multi-fidelity sampling. The algorithm
starts from the root node and as the full search space subdivides, each node branches into two child nodes
and eventually develops a tree structure similar to the example shown in Figure 6(b). The algorithm is
implemented in Python with dependent packages: numpy[50,51], pyomo [52], pyDOE [53] and scikit-learn

[54].
Essential Path of DDSBB

To initialize the algorithm, the initial search space [xﬂ,,xgp] must be provided to the first
algorithmic block that represents sampling. Latin Hypercube Sampling (LHS) is implemented for initial
sampling in the root node and adaptive sampling to ensure that at least min (IMJ +1,12D) + 1)
samples are in the child node k, where | is the level of the tree. Since LHS designs result in samples that
are never located on the boundaries of the search space and this is important for convex underestimators,
we also sample the corner points x{; and x{jp in each node. This is a sampling heuristic that allows us to

add corner points without significantly increasing sampling requirements.

The second algorithmic block of the algorithm represents the process of deriving the convex
underestimators and applying the DDCU method to obtain UBy, LBy and xﬁ, for each subregion k.
Additionally, the minimizer xllf, of the convex underestimator fl]f) of subspace k is validated by obtaining
f(x}i,) from the black-box simulation. We also ensure x}‘b is not resampled if xﬁ, is already in the sample
set. Note that the training process of DDCU in each node is iterative, because the new sample point f(x}‘b)
may be higher than the current UBy when validated by inquiring the high-fidelity simulation. Therefore,

the UBy is updated with the new samples until LBy is lower bounding the local minimum.
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Figure 6 (a) Overview of the data-driven spatial branch-and-bound algorithm and (b) scheme of a
branch-and-bound tree

After searching all active nodes, the upper bounds and lower bounds are compared across all active
nodes and the minima among all local upper bounds and lower bounds are logged as the global upper bound
(UB) and the global lower bound (LB), respectively. Next, the “Branch & Prune” block prunes some nodes
if the lower bound is higher than the global upper bound and then determines the search region [x{‘u, X'pr]
for the next level by bisecting the selected dimension. The simplest rule to follow is to select the dimension

d that has the maximum distance between xlko qand x}ljp 4+ The algorithm converges when the absolution
gap |UB —LB| < 0.05 or the relative gap J%L < 0.001. More stopping criteria are imposed to

terminate the algorithm when the number of samples and CPU exceed a certain budget, however, to test the
convergence behavior of our algorithm we set those criteria to very large specifications. The algorithm also
stops if the maximum bound distance on the active subspace is smaller than an absolute tolerance of 0.05,

which implies that the search space is very small and as a result this would lead to unnecessary sampling
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and overfitting of surrogate models. Since decision-making depends on the high-fidelity samples from the
black-box simulation in the essential pathway, this pathway is also referred to as high-fidelity (HF)

approach in the rest of the paper.
Alternative Path of DDSBB

The alternative block applies ML techniques to improve the validity of the convex underestimators
and the accuracy of the incumbent solution using the multi-fidelity approach. This block can be an add-on
to provide many cheap low-fidelity samples to train the underestimator using formulation (F3). In addition
to the minimizer of the fll,‘J, the minimizer x¥ of the low-fidelity samples in node k will also be validated by
evaluating f(xX) from the black-box function. Before validating any new points, the algorithm makes sure

%X does not already exist in the sample set.

Moreover, the SVR model trained to provide low-fidelity samples, can also help the algorithm
determine the variable to be branched on. In our previous work [55], we presented an SVR-based variable
selection algorithm ranks the input variables by a sensitivity-based criterion implying their relative
importance to the training accuracy of the SVR model [56,55]. It is hypothesized that branching on the most
important variable is a more informative heuristic that could expedite the convergence of the algorithm.
These two ML-based features (ML-based branching and ML-regression for multi-fidelity sampling) do not
have to always be used in tandem. In other words, one could use SVR-based variable selection for branching,
but not turn on the multi-fidelity sampling feature, and we will explore different combinations of such

features in the following sections.
Results
Motivating Example

Figure 7 shows the visualization of the branch-and-bound processes of four variations to solve the
motivating example with 23 initial LHS samples: (a) the high-fidelity approach without variable selection

for branching (HF), (b) the high-fidelity approach with variable selection for branching (HF _VS), (c) the



1 multi-fidelity approach without variable selection for branching (MF) , and (d) the multi-fidelity approach
2 with variable selection for branching (MF_VS). In all subplots of Figure 7, the search spaces are shaded
3 with grey colors in different gradients; the lighter the color, the earlier the subspace gets pruned in the
4 process. We observe that larger subregions that are less promising to find the global optimum are pruned
5 faster in the process with variable selection (7 (b) and (d)) than in those without variable selection (7(a) and
6  (c)). All variations of the algorithm are able to locate at least one of the global optima of the test function.
7  While the high-fidelity approaches are subject to higher risk of pruning regions that contain one of the
8  global optima, MF and MF_VS are able to concentrate the search in the regions containing both global

9  optima with the help of the low-fidelity samples.
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Figure 7 Illustration of data-driven spatial branch-and-bound algorithms: (a) HF, (b) HF VS, (c)
MF, and (d)MF_VS.

10 To address the issue on the variability introduced by different initial sample sets, we repeat the
11 above computational experiments 10 times for each DDSBB algorithm variations. Due to the randomness

12 in data-driven processes, the algorithms may converge with different number of samples and iterations, but
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what is more important is that upon convergence all runs converge to a global optimum. In Figure 8, we
align the results shown in Figure 1 with the upper bounds found with the number of samples collected in
the progress of HF, HF VS, MF and MF_VS. By comparing Figure 8 (a) and (c¢) with (b) and (d), we notice
that variable selection is able to reduce the variation in the incumbent solution found after the third iteration
across different runs. Even though the multi-fidelity approach requires more samples to converge eventually,
the upper bounds approach the global minimum with less samples and the variability of the upper bounds
as the algorithm progresses is smaller when compared to that of the high-fidelity approaches. Above all, all
versions of the DDSBB algorithm are able to find consistent solutions in all 10 runs initialized with different
sample sets and the variability in the incumbent solutions is much smaller than the solutions found by
globally optimizing the SVR models with an equivalent number of samples. It is also important to note here
that the DDSBB algorithm converged each time either due to closing the absolute or relative gap and not

due to sampling or CPU limitations.
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Figure 8 History of the upper bounds for ‘six hump camel’ function with increasing number of
samples collected in 10 runs of data-driven spatial branch-and-bound algorithms: (a) HF, (b)
HF_VS, (c) MF, and (d)MF_VS.

In addition to the variability of the upper bounds, the variability in the lower bounds under different
initial samples is also crucial to the data-driven spatial branch-and-bound algorithm, because the lower
bound controls the speed of convergence and the accuracy of pruning. The record of the lower bounds in
the same 10 runs are shown in Figure 9. Due to the randomness in sampling and the lack of derivative
information, the low bounds found by the data-driven convex underestimators do not follow a strict
monotonous convergence behavior as those in the equation-based branch-and-bound algorithms in the first
iterations. Noticeably, trained with the same number of high-fidelity samples, the lower bounds found by
the multi-fidelity approach are more conservative; thus, the algorithm converges with more samples than
those found by the high-fidelity approach. In the absence of derivative information, the increased

conservativeness can help the algorithms prune the search space more cautiously. We also observe fewer



cases where the lower bound is higher than the true global optimum in the multi-fidelity approaches (Figure
9 (c,d)) than in the high-fidelity approaches (Figure 9 (a,b)). These results validate our hypothesis that
adding more samples (even low-fidelity samples) the underestimators become more conservative, which

eventually lead to more accurate solutions.
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Figure 9 Lower bounds found for ‘six hump camel’ function with increasing number of samples
collected in 10 runs of data-driven spatial branch-and-bound algorithms: (a) HF, (b) HF_VS, (c)
MF, and (d)MF_VS.

Computational Studies on Benchmark Problems (Deleted:

Solution Accuracy

Besides the illustrative example, the performance of the DDSBB algorithms is further examined on

a large set of continuous box-constrained benchmark problems with known global optima obtained from
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[57]. These benchmark problems have been divided into two groups depending on the dimensionality. The
lower dimensional group contains 118 problems with 2-3 variables and the higher dimensional group
contains 69 problems with 4-10 variables. The complete list of the test problems is available in the Appendix.
The performance of the four variations of the data-driven spatial branch-and-bound algorithms is compared
with two current state-of-art algorithms, DIRECT and SNOBFIT, under the same sampling and CPU

limitations. DDSBB algorithms are initialized with 10N + 1 initial samples and converge at |UB — LB| <

0.05 or the relative gap %S0.00L The commercially available solvers initialization and

convergence criteria depend on the settings of the available implementations. DIRECT is set to stop when
the absolute difference in the solutions found between two iterations is smaller than 0.05. SNOBFIT settings
dictate that the number of initial samples and adaptive samples in each call are both N + 6, the minimum
sampling requirement is 10N+1, and the algorithm stops when the solutions found in five consecutive

iterations remain the same.

In order to make solution profiles for the fraction of problems solved by a specific solver with
respect to sampling and CPU requirements, a proper performance criterion that can distinguish between the
solvers is needed. We propose a performance criterion (14) to determine whether a problem is solved based

on the incumbent solution.

frest < max (f* +a, (1 + a)f") (14)

where a is a scaling factor between 0 and 0.15. This criterion reflects whether the incumbent solution f, ¢
is within a small distance scaled by a to the known global optimum f*. By gradually increasing a, the
fraction of problems solved is expected to increase as this criterion is being relaxed. In Figure 10 (a) and
(b), the cumulative fraction of problems solved is plotted with increasing a for the lower dimensional and
higher dimensional groups, respectively. As shown in Figure 10 (a), the fraction of problems solved
plateaus for all six methods after a reaches 0.05 and MF_VS solves the most fraction of problems among

all methods. In the higher dimensional group, the fraction of problems levels out when a is larger than 0.1,
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and the differences in performances among the four variations of DDSBB algorithm gradually diminish as
a increases. In both groups of test problems, DDSBB algorithms solve significantly more problems than
SNOBFIT and DIRECT even with relaxed characterization criteria, which indicates SNOBFIT and

DIRECT may terminate prematurely at local minima more easily than DDSBB algorithms.

e
bt
T

o
@
T
e
@
T

e HE
HF_VS

o HE_LS
HF_VS
MF MF_LS
MF_VS L MF_VS
< DIRECT 3 < DIRECT

+-- SNOBFIT +-- SNOBFIT
0 n n 0 n .
0 0.05 0.1 0.15 0 0.05 0.1 0.15
a a

o

kS
§

=

kS
T

Fraction of Problems Solved
o o
w3 m B L
T T
Fraction of Problems Solved
=
o
T

o

LY

T

e @

oW
T

o
T
o
T

Figure 10 Fraction of problems solved with relaxed criterion (a) the lower dimensional group
and (b) the higher dimensional group by HF, HF_VS, MF, MF_VS, DIRECT and SNOBFIT.

Sampling Requirements

Based on the results in Figure 10, at the conservative value of a = 0.01, the fractions of problems
solved is distinguishable across six algorithms; thus, a = 0.01 is chosen to study the performance of the
algorithms with respect to sampling and CPU requirements. Figure 11 (a) and (b) show the cumulative
fraction of problems solved with the number of samples collected at termination for the two test problem
groups. In both the lower and the higher dimensional group, DDSBB algorithms solve more problems but
require more samples, which are needed to converge the lower bound and upper bounds. DIRECT solves a
small fraction of problems with very little number of samples, because there is no stopping criterion on the
minimum number of samples. In the lower dimensional group, we see that MF_VS converges and solves
more problems than three other variations of DDSBB with the same number of samples. In the higher
dimensional group, high-fidelity approaches converge with a smaller number of samples but solve less

problems than the multi-fidelity approaches. Noticeably, HF VS and MF_VS converges with less sampling
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requirements than HF and MF, respectively, implying that variable selection plays an important role in

accelerating the search in higher dimensional problems.
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Figure 11 Fraction of problems solved with number of samples collected at termination in (a) the
lower dimensional group and (b) the higher dimensional group by HF, HF_VS, MF, MF_VS,
DIRECT and SNOBFIT.

CPU requirements

As for the CPU requirements, we plot the fraction of problems solved with increasing
computational resources needed for the two groups of test problems in Figure 12 (a) and (b), respectively.
Overall, we observe that DDSBB algorithms with embedded variable selection converge faster than the
corresponding versions with branching on the longest dimension, which indicates the extra computation for
the embedded variable selection algorithm is balanced off by the acceleration in search and pruning.
Meanwhile, the employment of low-fidelity samples increases CPU requirements because the data-driven
convex underestimator becomes more conservative and its training requires more CPU as well due to
increasing number of constraints in (F3). Admittedly, DIRECT and SNOBFIT have significant advantages
in sampling requirements over DDSBB algorithms, indicated by the CPU requirements at termination.
However, if accuracy in solution is desired, we believe that the improvement in solution quality by DDSBB
algorithms and the provided bounds on the solution outweigh the disadvantages in computational

requirement in the cases when global optimization is the ultimate goal.
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Pre-Convergence Solution Quality

In many engineering applications where simulations are expensive, it is not always practical or
feasible to allow global search algorithms, like DDSBB, to collect as many samples as needed. Therefore,
the capability of approaching the global optimal with limited number of samples is an important aspect to
evaluate. We record the minimum number of samples required to solve the problems before the algorithms
terminate and plot the cumulative fraction of problems solved with the number of samples collected in
Figure 13 (a) and (b) for all six algorithms. In both the lower and the higher dimensional groups, there is
no significant difference in performance among the four DDSBB algorithms, which indicates the
convergence behavior in Figure 11 (a) and (b) depends heavily on the conservativeness of the data-driven
convex underestimators and on the branching rules. Overall, DDSBB algorithms are able to solve more
problems with less samples compared to DIRECT. SNOBFIT, as discussed previously, is able to solve a
relatively large portion of the problems with less samples than DDSBB algorithms and DIRECT but
converges locally for the rest of the problems. Notably, DDSBB allows users to resume the search after it
terminates with the preset limits after evaluating the potential gains with more samples invested, and after

having pruned non promising regions entirely.
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Figure 13 Fraction of problems solved with minimum number of samples collected in (a) the
lower dimensional group and (b) the higher dimensional group by HF, HF VS, MF, MF VS,
DIRECT and SNOBFIT.

Bounding Accuracy

Lastly, the validity of the lower bounds with respect to the known global optimum across different
variations of DDSBB algorithms is investigated. Since the data-driven convex underestimators are derived
with samples solely, it is misleading to claim the validity of the data driven convex underestimator under
the same measure for the equation-based convex underestimators. However, some metrics on the gap
between the global optimum and the lower bound from the equation-based global optimization literature
would still be necessary and informative to assess the performance of our proposed approach, especially in
the context of black-box optimization where no other method provides such information. Here, we calculate
the absolute gap (14) between the known global optimum f* and the best lower bound LB to character the

validity.

Relative Gap = f* — LB (14)

Unlike the equation-based convex underestimators, which theoretically guarantee underestimating of the
objective function, data-driven convex underestimators only guarantee underestimating all samples
collected. Therefore, the proposed absolute gap may bear a negative value meaning that the lower bound

fails to underestimate the global optimum, which is referred as a violation instance in the rest of the
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discussion. In order to show the fraction of violation instances using different DDSBB algorithms, the
absolute of solved and unsolved problems with various ranges of absolute gaps obtained at the termination
of the algorithms are plotted in Figure 14. As shown in Figure 14 (a) and (b), the absolute gaps found mostly
lies in the valid range of [0, 0.5), where above 98% and 95% of these problems in the lower and the higher
dimensional groups, respectively. In the higher dimensional group, there are more problems with large
absolute gaps above 100 than in the lower dimensional group because the algorithms terminate prematurely

by hitting the sampling or CPU limit.

Most importantly, the summation of all violation instances makes up a relatively small portion of
all test problems and the absolute gaps of most violation instances fall in the range of [-0.5,0), which
indicates the lower bounds are very close to the global optimum at termination. Noticeably, majority of the
slight violation instances are solved while severe violation instances with absolute gaps below -0.5 are
never solved. Furthermore, violation instances happen more frequently when the high-fidelity approach is
used, especially for the lower dimensional group, which agrees with the observations on the illustrative
example that the introduction of low-fidelity samples improves the data-driven underestimators. The most
conservative approach, MF, can provide a valid lower bound for above 90% problems in both the lower
and the higher dimensional groups. Overall, the fractions of problems with a relative gap higher than -0.5

are above 90% by all four DDSBB algorithms regardless of dimensionality.
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Figure 14 Distribution of absolute gaps of (a) lower dimensional group and (b) higher dimensional group
at termination of HF, HF VS, MF, and MF_VS

Discussion and Future Directions

In this paper, we present a novel data-driven spatial branch-and-bound algorithm (DDSBB) for
simulation-based black-box optimization problems aiming to provide consistently global-convergent
solutions. The DDSBB algorithm mimics the basic structure of traditional equation-based branch-and-
bound algorithms but employs data-driven convex underestimators which are trained directly from samples
and do not require any derivative information. The main purpose of this work is to introduce the new idea

of the data-driven convex underestimators (DDCU) and showcase the capabilities of DDSBB algorithms
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with DDCUs using data sources with different fidelities via a large set of benchmark problems. Although
the data-driven convex underestimators are developed to underestimate all samples collected, we show that
DDCU is able to provide a valid lower bound with respect to the true global optimum for the majority of
the test problems. Among the cases that the lower bound is higher than the true global optimum, most of
them are within a relatively gap of 0.5. The computational studies on the motivating example and the
benchmark test problems suggest that DDSBB algorithms are capable of providing consistently globally
convergent solutions to box-constrained black-box optimization problems. We also show that DDSBB
algorithms with different features outperform current state-of-art solvers in certain aspects and show

convergent behavior when one can afford to collect more samples.

DDSBB algorithms, aiming for globally convergent solutions, may require a large number of
samples to reduce the gap between the lower bound and the upper bound. There is a trade-off between
obtaining an acceptable solution with small number of samples and locating a solution that is much closer
to the global optimum at higher sampling cost. Meanwhile, we have showed that DDSBB algorithms are
able to locate a good solution even before they converge or terminate by reaching other stopping criteria.
At the same time, the biggest advantage of DDSBB is that the lower bound information is always available
so that the users can assess the potential improvement and decide whether to allocate more computational
resources for a better solution. Based on the results, we have observed that data-driven convex
underestimators in test problems with very steep changes are highly conservative, which leads to very wide
bounds and slow convergence. To tighten the bounds and eventually reduce the sampling requirements, we
are currently working on exploring different types of data-driven convex underestimators which may
include bilinear terms and polynomial terms. Future improvement of the algorithm will also be devoted to

reducing the computational load by parallelization and algorithmic optimization.

Other limitations of DDSBB are the scalability with increased dimensionality of the input space.
In order to improve the scalability with increasing dimensionality, techniques for decoupling the input space

as well as dimensionality projection methods are under exploration. Nonetheless, we believe that the
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general concept of data-driven convex underestimators is a promising approach to solve simulation-based
optimization problems, because it circumvents the need to optimize highly complex surrogate models
directly, which is a key computational challenge of many surrogate-based optimization solvers. Based on
its globally convergent behavior, we foresee this algorithm to be highly applicable in simulation-based
problems where global optimum is strongly desired; for example, parameter estimation and process

optimization for dynamic models.
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Appendix I. List of lower dimensional problems

Table 1 List of lower dimensional problems

No. Name N Xip Xub i

1 AluffiPentini 2 [1.1513, -1.1] [:0.942, 1.1] -0.3524

2 BeckerLago 2 [45,45] [5.5, 5.5] 0

3 Camel3 2 [1.1,-11] [1.1,1.1] 0

4 DekkersAarts 2 [-1.1, -16.4396] [1.1, -13.4506] 24776.5
2

5 GoldPrice 2 [11,-11] [1.1,1.1] 3

6 Hartman3 3 [0.0,0.0,0.0] [1.0, 1.0, 1.0] -3.8628

7 Hosaki 2 36, 18] [4.4,2.2] -2.3458

8 MeyerRoth 3 [3.1667,9.0,-1.1] [3.8704, 10.0, 1.1] 0.0019

9 ModRosenbrock 2  [-1.1,-1.1] [1.1,1.1] 0

10 MuliGauss 2 [1.1,-11] [1.1,1.1] 1.207

11 box3 3 11,414, -1.1] [1.1,1.1,1.1] 0

12 brownbs 2 [900000.0, -1.1] [1100000.0, 1.1] 0

13 camelt 2 [3.0,-2.0] 3.0, 2.0] -1.0316

14 diff 2 [2.7,2.8348] [3.3, 3.4648] 0.1998

15 conchal 2 [-4443.6025,596.1299] [-3635.6748, 728.6033] 4.254

16 conchal0 2 [1.1,-1.0] [1.1,1.0] 9.7258

17 conchal 2 [9000.0,-10.0] [10000.0, -9.0] 5.8026

18 conchal2 2 [-4143.4454, 2928.5789] ggg’g%%’g ’ 6.1635

19 concha3 2 [3859.0955, -6994.0971] ?772126_464732135’ " 7.3971

20 conchas 3 E9332.€1%9686]55‘ 10966224, [13398877.'27405262,'113.8009] 1.4885

21 conchaba 3 [-100.0,-100.0,29.7399] [-90.0,-90.0,36.3487]  2.9675

22 concha8 2 [9000.0, 0.0] [10000.0, 1.1] 5.7115

23 concha9 2 [4861.7199,-31428]  [5942.1022, -2.5714]  7.7031

24 cube 2 [0.9,0.9] [1.1,1.1] 0

25  denschna 2 [1.1,-11] [1.1,1.1] 0

26 denschnb 2 1.8 -11] [2.2,1.1] 0

27 denschnc 2 [1.1,09] [1.1,1.1] 0

28 denschnd 3 11,414, -1.1] [1.1,1.1, 1.1] 0

29 denschne 3 11,414, -1.1] [1.1,1.1,1.1] 0

30  drapert 2 [0.0,0.0] [1.0,1.0] 0.005

3 draperg s [21402361372]2, 2.0796, [11922.265691]6, 25417, - 0 oo



32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

68

69

draperj
drapero
engval2
ex005

ex4 1.5
ex8_1_3
ex8 1. 4
ex8_1.5
ex8_1_6
fermat2_eps
fermat2_vareps
fermat_eps
fermat_vareps
gold

hatfldd

hatflde
himmelbb
himmelbg
himmelbh

himmelp1

hs001
hs002
hs003
hs004
hs3mod
jensmp
logros
maratosb
median_vareps
mexhat
model19
model2
model23
model24
model3
model31

model32

model33

W W WWWNDNNDNNNNNDNDNNDNODNDND DN DNDMNDDNOWODNWOWDNWDNDNNMNDNDNMNDNDDNDNDDNDWDNDW

w

[3.2122, 11.5163, 0.0]

[0.0, 1.6902]
[-1.1,-1.1, -1.1]
[-1.0, 1.8]

1.1, -1.1]
[-1.1,-1.1]
[-1.1,-1.1]

1.1, -1.1]

(3.6, 3.6]
[1.8,-1.1]
[1.8,-1.1,0.0]
[1.8, 1.0392]
[1.8, 1.0392, 0.0]
1.1, -1.1]

[2.8795, -1.1196, -1.1]
[2.8776, -1.1103, -1.1]

1.1,-1.1]
1.1, -1.1]
[-1.1,-1.1]

[73.0725, 62.2421]

[0.9, 0.9]
[1.1019, 1.5]
[-1.1, 0.0]

[1.0, 0.0]

[-1.1, 0.0]

[-1.1, -1.1]

[0.0, 0.0]

[-1.1, -1.1]

[0.0, -1.1]
[1.0276, 1.1733]
[215.0479, 0.0]
[192.4285, -1.0]
[2.388, 0.0, -0.1]

[65.216, 2.3563, 0.0]

[0.001, 0.0, 0.0]

[2.8184, 13.6434, 0.0]
[11.9168, 1.3507, 18.09]
1.35609,

[58.4694,
17.9283]

[3.926, 14.0755, 1.1]

[1.1, 2.0658]
[1.1,1.1,1.1]
[1.1, 2.0]
[1.1,1.1]
[1.1,1.1]
[1.1,1.1]
[1.1,1.1]
[4.3999, 4.3999]
2.2, 1.1]
[2.2,1.1,11]
[2.2,1.2702]
[2.2,1.2702, 1.1]
[1.1,1.1]

[3.5194, -0.916, 1.1]
[3.5171, -0.9084, 1.1]

1.1, 1.1]
(1.1, 1.1]
(1.1, 1.1]

[89.3108, 75.0]

[1.1,1.1]
[1.3468, 1.65]
[1.1,1.1]
[1.1,1.1]
[1.1,1.1]
[1.1,1.1]
[1.1,1.1]

[-0.9, 1.1]
[1.1,1.1]

[1.256, 1.434]
[262.8363, 1.1]
[235.1903, 1.1]
[2.9187, 1.1, 0.0]

[79.7085, 2.8799, 1.1]

[1.0,0.01, 0.1]

[3.4447, 16.6753, 1.1]

[14.565,
22.1099]
[71.4626,
21.9124]

0.0079
2.864

0

-4

0

3

0
-1.0316
-10.086
4.4722
4.4721
7.4641
7.4641
3

o O O o

4.9424
-0.0401
0.1246
1.168
5.9731
8.0565
2.3845
0

0.0001

1.2519



70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

model36
model39
model4
model42
model45
model5
nasty
price
ratkasymptotic
ratkbates
rosenbr
s201
5202
s204
s205
s206
s207
s208
s209
s210
s211
s212
s214
s229
s240
s242
s244
s245
s246
s274
5290
s307
s309
s311
s312
s328
s332
s333
s386
sim2bqgp

NN OWNNNNDNNNDNNNNDNOWWWWWNDNNDNNNMNODNNNMNDNNNMNDNDMNNDNDNDNNMNDNODNMDNDDNDWWWWDNDN

[-1.1, -1.1]
[-1.1, -1.1]
[14.1058, 0.0, 0.0]
[0.0, 4.5, 1.1196]

[13.9498, 1.0802, 0.0]

[9.0, 990.0, 47.8124]
[-1.1, -1.1]

1.1, -1.1]

[0.0, 0.0]

[0.0, 90000.0, 0.0]
[0.9,0.9]

[4.5, 5.4]

[4.5, 3.6]

1.1, -1.1]
[2.7,-1.1]

[0.9, 0.9]

1.1, -1.1]

[0.9, 0.9]

[-1.1, -1.1]

[-1.1, -1.1]

[0.9, 0.9]

1.1, -1.1]

[-1.1, -1.1]

[0.9, 0.9]

[-1.1, -1.1, -1.1]
[0.0, 0.0, 0.0]

[0.0, 9.0, 4.5]
1.1, -1.1,-11]
1.1, -1.1,-11]
[-1.1, -1.1]

[-1.1, -1.1]

[0.0, 0.0]

[3.1344, 3.51]
[-4.1572, -3.6115]
[18.4114, -38.2704]
[1.5691, 1.8267]
[0.0, 0.0]
[80.9118, -1.1, -1.1]
[4.5, 5.4]
[-1.1,0.0]

[1.1,1.1]
[1.1,1.1]

[17.2404, 1.1, 1.0]
[1.1,5.0, 1.3684]
[17.0498, 1.3202, 1.1]

[10.0, 1100.0, 58.4374]

(1.1, 1.1]
(1.1, 1.1]

[1.0, 1.0]

[1.1, 100000.0, 1.1]
1.1, 1.1]

(5.5, 6.6]

(5.5, 4.4]

(1.1, 1.1]

3.3, 1.1]

(1.1, 1.1]

1.1,
1.1,
1.1,
1.1,
1.1,
1.1,
1.1,
1.1,
(1.1, 1.1, 1.1]
(1.1, 1.1, 1.1]

[1.1, 10.0, 5.5]
[1.1,1.1, 1.1]
[1.1,1.1, 1.1]

(1.1, 1.1]

(1.1, 1.1]

(1.1, 1.1]

[3.831, 4.29]
[-3.4014, -2.9549]
[22.5029, -31.3122]
[1.9178, 2.2327]
(1.1, 1.1]

[98.8922, 1.1, 1.1]
5.5, 6.6]

[1.1,0.5]

1]

JEE L (U U UK UL U UL G UL G

A]

1.2436
0.0089
0.006
2.0397
0
5.8496

.2436
-3.9872

1.7442
2.7191
0.0433



110 simbgp 2 [-1.1,0.0] [1.1,0.5] 0
111 sisser 2 [11,-11] [1.1,1.1] 0
112 st_cqpjk2 3 [0.0,0.0,0.0] [1.0,1.0,1.0] -12.5
113 st_e39 2 [3.6,3.6] [4.3999, 4.3999] -10.086
114 stattools 2 [0.9909, 0.0] [1.2111, 1.1] 0.0418
115 tranter2 3 [0.0,-1.0,0.0] [0.1, 0.0, 0.1] 0.0003
116 tre 2 [11,-11] [1.1,1.1] 0
117 zangwil2 2 [3.6,8.1] [4.4,9.9] -18.2
118 zhenglog 3 [65.216, 2.3563, 0.0] [79.7085, 2.8799, 1.0] 8.0565
1
2 Appendix II. List of high dimensional problems
Table 2 List of higher dimenional problems
No. Name N
[-1.0, 1.0, 1.0, 1.0, -
1.0, -1.0, 1.0, -1.0, -1.0, [1.0, 1.0, 1.0, 1.0, 1.0,
1 Expo 10 -1.0] 1.0,1.0, 1.0, 1.0, 1.0] -1
2 Neumaier2 4 [0.0,1.7999, 1.8001, 2.7] [1.0, 2.0, 2.2002, 3.3] 0
[9.0, 16.2, 21.6, 25.2, [11.0, 19.8, 26.4, 30.8,
27.0, 27.0, 25.2, 21.6, 33.0, 33.0, 30.8, 26.4,
3 Neumaier3 10 16.2, 9.0] 19.8, 11.0] -210
[8.4152, 8.4152, 8.4152,
8.4152, 8.4152, 8.4152, [10.0, 10.0, 10.0, 10.0,
8.4152, 8.4152, 8.4152, 10.0, 10.0, 10.0, 10.0,
4 Paviani 10 8.4152] 10.0, 10.0] -45.7785
5 PowellQ 4 [-1.1,-1.1,-11,-1.1] [1.1,1.1,1.1,1.1] 0
[1.1, 1.1, 1.1, 2.2001,
PriceTransisto [0.0, 0.0, 0.9, 1.8001, 8.8, 8.7997, 55, 1.1,
6 r 9 7.2,7.1997,4.5,0.0,1.8] 2.2001] 0
[3.6007, 3.6005, 3.5997, [4.4008, 4.4007,
7 Shekel10 4 3.5996] 4.3996, 4.3995] -10.5364
[3.6005, 3.6006, 3.5995, [4.4006, 4.4008,
8 Shekel7 4 3.5996] 4.3994, 4.3996] -10.4029
[7.2225, 8.2367, 4.6026, [8.8275, 10.0, 5.6254,
6.8589, 4.1076, 4.2399, 8.3831, 5.0204, 5.1821,
2.6964, 55134, 0.0, 3.2956, 6.7386, 1.1,
9 Shekelfox10 10 4.4838] 5.4802] -10.2088
[7.2224, 8.2366, 4.6025, [8.8274, 10.0, 5.6253,
10  Shekelfox5 5 6.8588, 4.1077] 8.3829, 5.0205] -10.4056
11 Wood 4 [-1.1,-1.1,-11,-1.1] [1.1,1.1,11,11] 0
[15675174.0197, [1925212.6907,
15.9149, -110000000.0, 19.4515, -90000000.0,
12 biggs6 6 4.6679, 1.5403, 2.0937] 5.7052, 1.8826, 2.5589] 0.0057
[-1.1, 1.1, 1.1, 1.1, -
11,-11,-11,-11,-11, [11, 11, 1.1, 1.1, 11,
13 brownal 10 0.9] 1.1,11,11,1.1,1.1] 0



14

15

16

17
18
19
20

21

22
23
24

25
26

27

28

29
30

31

32

33

34

35

brownden

dixon3dq

extrosnb

hart6é

hatflda
hatfldb
hatfldc

heart8ls

hilberta
hs038
hs045

hs110
kowalik

model13
model14

model15
model16

model18

oslbgp

palmeric

palmerid

palmer2c

10

A A b o

[-12.7539, 11.8833, -1.1,
-11]
1.1, 1.1, 1.1, -1.1, -
11, -1.1, -1.1, -1.1, -1.1,
1]
1.1, 1.1, -1.1, -1.1, -
1.1, -1.1, -1.1, -1.1, -1.1,
1.1
[0.0, 0.0, 0.0, 0.0, 0.0,
0.0]

[0.0, 0.0, 0.0, 0.0]
[0.0, 0.0, 0.0, 0.0]

[0.9, 0.0, 0.0, -1.1]
1.4, -1.4, -1.1, -1.1,
22449,  -1.4104, -
1.5231, 1.3994]

1.4, -1.1, 1.4, 1.1, -
11, -1.1,-1.1, -1.1, -1.1,
-1.1]

[-1.1,-1.1,0.9, 0.9]

[0.0, 1.8, 2.7, 3.6, 4.5]
[8.4152, 8.4152, 8.4152,
8.4152, 8.4152, 8.4152,
8.4152, 8.4152, 8.4152,
8.4152]

[0.0, 0.0, 0.0, 0.0]
00, 00, 00, 27,
1.4018, 4.5]

[0.0, 2.7071, 1.3976,
4.5026, 0.0, 0.9052]
[0.0, 0.0, 0.0, 2.6564,
1.4243, 4.4877]

[0.0, 0.0, 0.0, 0.0]

[0.0, 1.7423, -1.6112,
0.0, 0.0]

[2.5, 0.0, 0.0, 0.0, 0.5,
0.0, 0.0, 0.0]

[79.4675, ~ -180.8224,
131.4538,  -113.7649,
50.3336, -19.6229,
2.738,-1.1]

[79.3008, 175177,
1107352,  -71.2179,
22.361, -5.4716, -1.1]
[17.4504, -61.5965,
59.6872, -61.8856,
36.9104, -19.8414,
3.8019, -1.1]

[-10.435,
1.1]

14.524, 1.1,

1.1, 1.1, 1.1, 1.1, 1.1,
1.1,1.1,11,1.1,11]

(1.1, 1.1, 1.1, 1.1
1.1,1.1,1.1,1.1, 1
[1.0, 1.0, 1.0, 1.0
1.0]

1.1,1.1,1.1,1.1]
[1.1,0.8,1.1,1.1]

[1.1,1.1,1.1,1.1]
.1, 11, 11, 141,
2.7437,-1.154, -1.2462,
1.7104]

1,
A]
1.0,

3

1.1, 11,11, 1.1, 11,
1.1,1.1,1.1,1.1,11]

[1.1,1.1, 1.1, 1.1]

[1.0, 2.0, 3.0, 4.0, 5.0]
[9.999, 9.999, 9.999,

9.999, 9.999, 9.999,
9.999, 9.999, 9.999,
9.999]

[0.42,0.42, 0.42, 0.42]
[1.0, 11, 1.0, 33,
1.7134, 5.5]

[1.1, 3.3086, 1.7082,
5.5032, 1.1, 1.1063]
[1.0, 1.0, 1.0, 3.2467,

1.7408, 5.485]
[1.1,1.1, 1.1, 1.1]

[1.0, 2.1294, -1.3182,
0.05, 0.05]

[2.75, 1.1, 1.1, 1.1, 1.1,
11,11, 1.1]

[97.1269,  -147.9456,
160.6658,  -93.0804,
61.5188, -16.0551,
3.3465, 1.1]

[96.9232,  -143.3266,
135.343, -58.2692,
27.3301, -4.4768, 1.1]
[21.3282,  -50.3971,
72.951, -50.6336,
45.1127, -16.2339,
4.6468, 1.1]

8.5822

-3.3229

0.0056

-45.7785
0.0003

0

0

0
0.0003

0.0001

6.25

0.0976

0.6527

0.0144



36

37

38

39

40

41

42
43
44
45
46
47

48
49

50

51

52

53
54

55

56

palmer3c

palmer4c

palmer5c

palmer5d

palmer6c

palmer7c

palmer8c
powell
pspdoc
s256
s257
s258

s259
$260

s266
s271
s272

s273
s275

s276

s281

A D ADNMDNO®

NN

10

[8.8357, -46.723,
61.6137, -69.2331,
42.0604, -23.1822,
4.5807, -1.1]

[8.716, -52.2234,
80.4934,  -105.4979,
67.6167, -38.0683,
7.5732, -1.1]

[33.7833, -1.9033,
36.7144, -1.1, 3.3381, -
1.1]

[72.2262,  -145.3165,
46.4761, -1.1]

[9.5573, -58.0874,
984797,  -165.0954,
140.3039,  -102.3164,
25.7913, -3.8617]
[4.0889, -58.043,
218.1999, -617.6092,
646.5388,  -514.1436,
132.1612, -19.4072]
[4.1178, -50.6413,
139.4599,  -261.0124,
208.3661, -138.9187,

32.0861, -4.442]
[-1.1,-1.1, -1.1, -1.1]
1.1, -1.1, 1.1, -1.1]
1.1, -1.1, 1.1, -1.1]
[0.0,-1.1, 0.0, -1.1]

1.1,-1.1,-1.1,-1.1]
[1.2923, 1.8568, -1.1, -
1.1]

[-1.1, -1.1, 1.1, -1.1]
1.1, 1.1, 1.1, -1.1, -
1.1]

1.1, 1.1, 1.1, -1.1, -
1.1, -1.1]

[0.0, 9.0, 3.6, 0.0, 4.5,
2.7]

1.1, 1.1, -1.1, -1.1, -
1.1, -1.1]

[-1.1,-1.1,-1.1, -1.1]
1.1, 1.1, =11, -1, -
1.1, -1.1]

[1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0]

[10.7992,  -38.2279,
75.3057, -56.6453,
51.4071, -18.9673,
5.5986, 1.1]

[10.6529,  -42.7283,
98.3808, -86.3165,
82.6427, -31.1468,
9.2562, 1.1]

[41.2907, -1.5572,
44.8732, 1.1, 4.0798,
1.1]

[88.2764,  -118.8954,
56.8041, 1.1]

[11.6811,  -47.5261,
120.364,  -135.0781,
171.4826,  -83.7134,
31.5227, -3.1596]
[4.9975, -47.4897,
266.6888, -505.3166,
790.2141, -420.6629,
161.5304, -15.8786]
[5.0329, -41.4338,
170.4509, -213.5556,
254.6697, -113.6607,

39.2164, -3.6344]
[1.1,1.1,1.1,1.1]
[-1.0, 1.1, 1.1, 1.1]
[1.1,1.1,1.1,1.1]
1.1,1.1,1.1,1.1]

[1.1,1.1, 1.1, 1.1]
[1.5794, 2.2695, 1.1,
1.0]

[1.1,1.1, 1.1, 1.1]

[1.1,1.1,1.1,1.1,1.1]
(1.1, 1.1, 1.1, 1.1, 1.1,
1.1]
[1.1, 11.0, 4.4, 1.1, 5.5,
3.3]
1.1, 1.1, 1.1, 1.1, 1.1,
1.1]

1.1,1.1,1.1,1.1]
[1.1, 1.1, 1.1, 1.1, 0.8,
1.1]

1.1, 1.1, 1.1, 1.1, 1.1,
11,11, 1.1, 1.1, 1.1]

0.0195

0.0503

2.1281

8.7339

0.0164

0.602

0.1598

24142



57

58

59

60

61

62

63

64

65

66

67

68

69

$282

$291

$294

s295
352
s358

s370

s371
schwefel

sheke

st_bsj3
tranter

weibull3

10

10

1.1, <11, =11, -1.1, -
11,11, -1.1, -1.1, -1.1,
11

1.1, 1.1, =11, 11, -
1.1, -1.1, -1.1, -1.1, -1.1,
-11]

1.4, 1.1, =11, 11, -
1.1, -1.1]

1.1, <11, =11, -1.1, -
11, -1.1, -1.1, -1.1, -1.1,

-11]
[-11.2459, 10.7176, -1.1,
-1.1]

[-0.5, 1.7423, -1.6112,

0.001, 0.001]

1.1, 09112, -1.1,
1.1344, -1.6651, -1.1]
1.1, =14, 1.4, -1.1,
0.9007, -2.8795, 3.694, -
3.458, 0.9474]

[-0.5, -0.5, -0.5, -0.5, -
0.5]

[3.6, 3.6001, 3.6, 3.6001]

[89.1, 89.1, 89.1, 89.1,
89.1, 89.1]

[-1.0, 0.0, -1.0, 0.0, -1.1,
-1.1]

[5.9903, 4.9944, 0.0,
1.5865]

(1.1, 1.1, 11, 1.1, 1.1,
1.1,1.1,11,1.1,11]

[-0.6, 1.1, 1.1, 1.1, 1.1,
1.1,1.1,1.1, 1.1, 1.1]
[-9.2012, 13.0993, 1.1,
1.1]

[0.5, 2.1294, -1.3182,
0.1,0.1]

1.1, 11137, 141,
1.3865, -1.3624, 1.1]
M1, 11, 11, 14,
1.1009, -2.356, 4.5148,
-2.8293, 1.1579]

[0.4,0.4, 0.4, 0.4, 0.4]
[4.4, 44001, 4.4,
4.4001]

[99.0, 99.0, 99.0, 99.0,
99.0, 99.0]

[0.0, 1.0, 0.0, 1.1, 0.0,
0.0]

[7.3215, 6.1042, 1.0,
1.939]

3.9739

3.9866
9.0323
0.0001

0.0023

0
0
-10.1532

86768.5
5

0.0045

0.1338






