
Formal Methods in System Design
https://doi.org/10.1007/s10703-020-00353-1

Abstraction and subsumption in modular verification of C
programs

Lennart Beringer1 · Andrew W. Appel1

Received: 2 March 2020 / Accepted: 2 November 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
The type-theoretic notions of existential abstraction, subtyping, subsumption, and intersec-
tion have useful analogues in separation-logic proofs of imperative programs. We have
implemented these as an enhancement of the verified software toolchain (VST). VST is
an impredicative concurrent separation logic for the C language, implemented in the Coq
proof assistant, and proved sound in Coq. For machine-checked functional-correctness veri-
fication of software at scale, VST embeds its expressive program logic in dependently typed
higher-order logic (CiC). Specifications and proofs in the program logic can leverage the
expressiveness of CiC—so users can overcome the abstraction gaps that stand in the way of
top-to-bottom verification: gaps between source code verification, compilation, and domain-
specific reasoning, and between different analysis techniques or formalisms. Until now, VST
has supported the specification of a program as a flat collection of function specifications (in
higher-order separation logic)—one proves that each function correctly implements its spec-
ification, assuming the specifications of the functions it calls. But what if a function has more
than one specification? In this work, we exploit type-theoretic concepts to structure specifica-
tion interfaces for C code. This brings modularity principles of modern software engineering
to concrete program verification. Previous work used representation predicates to enable data
abstraction in separation logic. We go further, introducing function-specification subsump-
tion and intersection specifications to organize the multiple specifications that a function is
typically associated with. As in type theory, if φ is a funspec-sub of ψ , that is φ <: ψ ,
then x : φ implies x : ψ , meaning that any function satisfying specification φ can be used
wherever a function satisfying ψ is demanded. Subsumption incorporates separation-logic
framing and parameter adaptation, as well as step-indexing and specifications constructed
via mixed-variance functors (needed for C’s function pointers).

This work was funded by the National Science Foundation under the awards 1005849 (Verified High
Performance Data Structure Implementations, Beringer) and 1521602 Expedition in Computing: The
Science of Deep Specification, Appel).

B Lennart Beringer
eberinge@cs.princeton.edu

Andrew W. Appel
appel@princeton.edu

1 Department of Computer Science, Princeton University, 35 Olden St, Princeton, NJ 08540, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10703-020-00353-1&domain=pdf
http://orcid.org/0000-0002-1570-3492


Formal Methods in System Design

Keywords Foundational program verification · Separation logics · Specification
subsumption · Intersection specifications

1 Introduction

Even in the twentyfirst century, the world still runs on C: operating systems, runtime systems,
network stacks, cryptographic libraries, controllers for embedded systems, and large swaths of
critical infrastructure code are written in C, or employ C as intermediate target of compilation
or code synthesis.Analysismethods andverification tools forC remain a vital area of research.

Given the complexity of such code bases andC’sflexibility in organizing code intomultiple
layers and libraries, verification tools must scale both algorithmically and logically. Algorith-
mic scalability means reduced specification overhead and increased automation (less manual
interactivity) in verifying individual function bodies. Verification tools based on SAT/SMT
do this well. Tools based on interactive proof assistants have achieved scalability using tactic-
based and reflectional automation [10], although the performance still lags behind SMT-based
tools.

Logical scalability means modular verification of modular programs: the ability to com-
pose verified code units either horizontally or vertically in accordance with the principles
of modern software engineering, and to link them to verified compilers or domain-specific
reasoning formalisms. Compared to SMT-based tools, proof-assistant-based tools can use
more expressive (higher-order, or dependently typed) logics—which can be accessed in the
program logic’s assertion language, allowing more accurate modeling of the C program’s
functional correctness. And those expressive logics allow us to reason about the program
logic—that is, prove it sound from first principles—within the proof assistant, for end-to-end
machine-checkable assurance arguments.

This article focuses on aspects of logical scalability that allow modular reasoning about
modular programs: abstraction, subsumption, and intersection of function specifications for
C. We demonstrate that these concepts can be formulated in a way that mirrors the type-
theoretic formulations of (existential) abstraction, subtyping, and intersection types, in the
concrete setting of the verified software toolchain (VST) [5].
Background. VST is a semi-automated proof system for functional-correctness verification
of C programs, that integrates two long-standing lines of research: (i) program logics with
machine-checked proofs of soundness; (ii) practical verification tools for industrial strength
programming languages. VST consists of three main components:

Verifiable C [4] is a higher-order impredicative concurrent separation logic covering
almost all the control-flow and data-structuring features of C (we currently omit goto
and by-copy whole-struct assignment);
VST-Floyd [10] is a library of lemmas, definitions, and automation tactics that help
the user apply the program logic to a program, using forward symbolic execution, with
separation logic assertions as symbolic states;
The semanticmodel [5] justifies the proof rules, exploiting the theories of step-indexing,
impredicative quantification, separation algebras, and concurrent ghost state. The seman-
tic model is the basis of a machine-checked proof that the Verifiable C program logic is
sound w.r.t. the operational semantics of CompCert Clight. Thus the user’s Coq proof
in Verifiable C composes with our soundness proof of Verifiable C and with Leroy’s
CompCert compiler correctness proof [24] to yield an end-to-end proof of the functional
correctness of the assembly-language program.

123



Formal Methods in System Design

VST’s key feature—distinguishing it from tools such as VCC [12], Frama-C [19], or VeriFast
[15]—is that it is entirely implemented in the Coq proof assistant. A user imports C code
into the Coq development environment and applies VST-Floyd’s automation—computational
decision procedures from Coq’s standard library, plus custom-built tactics for forward sym-
bolic execution and entailment checking—to construct formal derivations in the Verifiable C
program logic. The full power of Coq and its libraries are available to manipulate application-
specific mathematics. The semantic validity of the proof rules—machine-checked by Coq’s
kernel—connects these derivations to Clight, i.e. CompCert’s representation of parsed and
determinized C code.

Applications of VST include the verification of cryptographic primitives from OpenSSL
[3,9] and mbedTLS [37], an asynchronous communication mechanism [26], an internet-
facing server component [21], a generational garbage collector [35], and amalloc-free library
[6]. Of these, the cryptographic applications [9,37] and the reactive server [21] best illustrate
the ability of proof-assistant-embedded program logics to bridge the abstraction gap between
code-level verification and model-level (semantic) reasoning: in the cryptographic examples,
Coq’s functional programming language, Gallina, is employed to implement executable (and
hence testable) specification programs that are referred to in the pre- and post-conditions
of the VST specifications. On the other hand, these functions are also the object of model-
level reasoning, to formally establish cryptographic security; the functional programs hence
decouple semantic reasoning fromC-level code verification. In the case of the server, theVST
specifications refer to interaction trees [36], an executable embedding of effectful functional
programs in Coq that is equipped with a theory of (weak) bisimulation. Again, model-level
reasoning is decoupled from but connected to the verification of the C code.
The need for subsumption.Appel and Nauman’s VST verification of a malloc-free system [6]
is an application of the new funspec-subsumption method that we describe here. That verifi-
cation uses abstract predicates with existentially hidden definitions (which verifiably prevent
user programs from breaking the abstraction barrier of the library); and it uses subsump-
tion: the implementations of malloc and free are first verified w.r.t. a library-wide abstraction
predicate (and corresponding function specifications) that exposes the existence of internal
freelists for objects of different size. This specification is immediately useful to clients that
are resource-aware at the granularity of (approximate) object sizes. As a benefit, such clients
need not check that a pointer returned by malloc is nonnull: allocation (provably) never fails.
A second, more abstract API specification employs a less informative predicate that does not
keep track of the available free space; clients using this interface must check the return value
of malloc against NULL, to learn whether malloc could satisfy the request for N bytes. The
two library specifications are related by the notion of funspec-sub developed in the present
paper.

The use of abstract predicates to facilitate data abstraction in separation logics is well
established [30], and captures the software engineering principle of representation hiding:
just as the client program of an abstract data type (ADT) can be written without knowing
the representation, verification of the client can proceed without knowing the representation
invariant. In type theory, this is the principle of existential types [27].

But as the malloc-free case study illustrates, the same function may want more than
one specification: different clients may need different abstractions; indeed, some clients
even require full representation exposure (see our running example below). Of course, one
should not have to verify the function-body twice, once for each specification; instead, one
should verify the function-body with respect to the most concrete specification and then
prove that it implies the more abstract one(s). Again, type theory provides an appropriate
notion: subtyping [31]. In other cases, it may be convenient to specify different use cases of a

123



Formal Methods in System Design

function—applying, for example, to different input configurations, or to different control flow
paths—using different specifications, perhaps using different abstract predicates. Yet again,
type theory provides a useful analogue: intersection types, a form of ad-hoc polymorphism.

These observations motivate to let type-theoretic principles guide the development of
specification mechanisms and automation features for abstraction. This article takes a princi-
pled step in this direction, focusing primarily on the notion of subtyping. The observation that
Hoare’s original rule of consequence is insufficiently powerful in languages with (recursive)
procedures motivated research into parameter adaptation, by (among others) Kleymann,
Nipkow, and Naumann [20,28,29]. Indeed, Kleymann observed that ([20], page 9)

– in proving that the postcondition has been weakened, one may also assume the precon-
dition of the conclusion holds…

– one may adjust the auxiliary variables in the premise. Their value may depend on the
value of auxiliary variables in the conclusion and the value of all program variables in
the initial state.

But these developments were carried out for small languages and predate the emergence of
separation logic. The present article revisits these ideas in the context of VST, by developing a
powerful notion of function-specification subtyping for higher-order impredicative separation
logic. Our treatment improves on previous work in several regards:

– We support specifications of function pointers, a key construct of the C programming
language that requires the program logic to support higher-order reasoning.When a func-
tion pointer at location v is communicated as an argument of a call to some function g,
g’s precondition needs to associate v with a specification— so that the invocation within
g of the function at v can be verified. A similar issue occurs in spawning threads. To
support these language features, VST’s semantic model contains—and specification sub-
sumption must hence support—a step-indexed “predicates-in-the-heap” construction [5]
that is substantially more complex that the simple state spaces employed in Kleymann’s
and Nipkow’s formalizations. Indeed, Kleymann only considers a single (anonymous,
parameterless, but possibly recursive) procedure, while Nipkow supports mutual recur-
sion between named procedures. In short, previous developments were carried out for
research languages whereas our work supports virtually all of C (i.e., as noted above,
except for goto and by-copy struct assignment).

– Our notion of subtyping avoids direct quantification over states. Indeed, “assertion” in
VST (and in the similarly expressive Iris framework [17]) is not simply state→Prop,
but is an abstract type that hides the complexities of the step-indexed model; no state
type is visible in the program logic. In contrast, Kleymann’s and Nipkow’s assertions are
predicates over states, and the side conditions of their adaptation rules explicitly quantify
universally over states. Naumann’s formulation using predicate transformers captures the
same relationship as Kleymann and Nipkow, slightly more abstractly.

– VST’s proof context Δ maps globally named functions to their specifications; VST’s
separation-logic assertion func-at attaches specifications to function-pointer values.
Our treatment integrates subsumption coherently into proof contexts, func-at, and the
soundness judgment. We support subsumption at function call sites but also incorporate
subsumption in a notion of proof-context subtyping that is reminiscent of record sub-
typing [31]. This allows bundling function specifications into specifications of objects
or modules that can be abstractly presented to client programs and are reminiscent of
behavioral subtyping [22,25,32].

– We introduce intersection specifications and show that their interactionwith subsumption
precisely matches that of intersection types.

123



Formal Methods in System Design

main.c

pile list
32

triang.c apile.conepile.c

pile.h pile_private.h

pile.c

onepile.h triang.h apile.h

main.c

pile
5

onepile.c triang.c fastapile.c

fastpile_private.hpile.h

fastpile.c

triang.honepile.h apile.h

Fig. 1 Module dependency diagrams of two configurations of the pile program

– A technical advance over the conference version of this paper [8] is that function
specifications avoid any mentioning of formal parameter names. This permits function
implementations to be modified more freely (α-conversion) and adds flexibility in the
definition of intersection specifications.

– VST’s program logic, including the new subsumption features, is proved sound with a
machine-checked proof in Coq.

Our presentation is example-driven: we illustrate several use cases of subsumption on
concrete code fragments in Verifiable C. Technical adaptations of the model that support
these verifications have been machine-checked for soundness, but are only sketched. The full
Coq proofs are in the VST repo, github.com/PrincetonUniversity/VST, commit
948f536: our running example is in directory progs/pile.

Relationship to conference version: a preliminary version of this article appeared at
FM’19, under the same title [8]. The main technical improvement, since that publication,
is the elimination of formal parameter names from the surface syntax and the semantic
interpretation of function specifications. A key aspect of this improvement is a restructuring
of the way parameter passing is modeled in VST’s function call rule. Besides simplifying
this proof rule and its associated automation tactics, this restructuring also enables the proof
of a technical lemma that mirrors the effect of subsumption (which is formulated from the
perspective of the caller) at the callee-side. Another ingredient is a new rule of adaptation
for VST’s statement-level judgment that again resembles Kleymann’s rule but additionally
supports framing and the multiple ways in which control flow may exit from a code block in
C.

Surface-level effects of these improvements are visible in the modified function specifi-
cations throughout this aricle; high-level aspects are described in Sects. 3 and 6. Technical
details are contained in the Coq formalization. Specifically, (i) the soundness proof required
intricate surgery, particularly in the rules for function calls and the interpretation of the aux-
iliary judgement form for function bodies; (ii) the automation scripts that drive concrete
verifications needed syntactically minor, but technically nontrivial modifications, in the tac-
tics for function calls, in the notations and definitions for introducing function specifications
and attaching them to function definitions, and in the tactic that initiates the verification of a
function body, to correctly treat the logical counterpart of frame stack creation and of binding
arguments to local variable names.

123



Formal Methods in System Design

/∗ pile.h ∗/
typedef struct pile ∗Pile;
Pile Pile-new(void);
void Pile-add(Pile p, int n);
int Pile-count(Pile p);
void Pile-free(Pile p);

/∗ onepile.h ∗/
void Onepile-init(void);
void Onepile-add(int n);
int Onepile-count(void);

/∗ apile.h ∗/
void Apile-add(int n);
int Apile-count(void);

/∗ triang.h ∗/
int Triang-nth(int n);

/∗ triang.c ∗/
#include ”pile.h”
int Triang-nth(int n) {
int i,c;
Pile p = Pile-new();
for (i=0; i<n; i++)
Pile-add(p,i+1);

c = Pile-count(p);
Pile-free(p);
return c;

}

/∗ onepile.c ∗/
#include ”pile.h”
Pile the-pile;
void Onepile-init(void)
{the-pile = Pile-new();}
void Onepile-add(int n)
{Pile-add(the-pile, n);}
int Onepile-count(void)
{return Pile-count(the-pile);}

/∗ pile-private.h ∗/
struct list {int n; struct list ∗next;};
struct pile {struct list ∗head;};

/∗ pile.c ∗/
#include <stddef.h>
#include ”stdlib.h”
#include ”pile.h”
#include ”pile-private.h”
Pile Pile-new(void) {
Pile p = (Pile)surely-malloc(sizeof ∗p);
p→ head=NULL;
return p;

}
void Pile-add(Pile p, int n) {
struct list ∗head = (struct list ∗)

surely-malloc(sizeof ∗head);
head→ n=n;
head→ next=p→ head;
p→ head=head;

}
int Pile-count(Pile p) {
struct list ∗q;
int c=0;
for(q=p→ head; q; q=q→ next)
c += q→ n;

return c;
}
void Pile-free(Pile p) { . . . }

/∗ apile.c ∗/
#include ”pile.h”
#include ”pile-private.h”
#include ”apile.h”
struct pile a-pile = {NULL};
void Apile-add(int n)

{Pile-add(&a-pile, n);}
int Apile-count(void)

{return Pile-count(&a-pile);}

Fig. 2 The pile.h abstract data type has operations new, add, count, free. The triang.c client adds the integers
1–n to the pile, then counts the pile. The pile.c implementation represents a pile as header node (struct pile)
pointing to a linked list of integers. At bottom, there are two modules that each implement a single “implicit”
pile in a module-local global variable: onepile.c maintains a pointer to a pile, while apile.c maintains a
struct pile for which it needs knowledge of the representation through pile-private.h

2 Motivating example: managing piles

Our main example is an abstract data type (ADT) for piles, simple collections of integers.
Figure 2 shows a modular C program that throws numbers onto a pile, then adds them up.

Figure 1(left) shows that pile.c is called upon by onepile.c (which manages a single pile),
apile.c (whichmanages a single pile in a different way), and triang.c (which computes the nth
triangular number). The latter three modules are imported bymain.c. Onepile.c and triang.c

123



Formal Methods in System Design

import the abstract interface pile.h; apile.c imports also the low-level concrete interface
pile-private.h that exposes the data representation—a typical use case for this organization
might bewhen apile.c implements representation-dependent debugging or performancemon-
itoring. Thus, representation-revealing and representation-hiding specifications must both
be supported.

Figure 1(right) shows that when pile.c is replaced by a faster implementation fastpile.c
(code in Fig. 4) using a different data structure, apile.cmust be replaced with fastapile.c, but
the othermodules need not be altered,and neither should their specification or verification. Of
course, the C language definition does not require the implementation fastpile.c to employ the
same formal parameter names aspile.c, and neither one necessarily uses the same identifiers as
the function prototype in pile.h. Thus, we use formal parameter name pp in Fig. 4. Language-
level modularity aspects of API’s, including the opacity of parameter names, should be
respected by specifications and their subsumption.

Figure 3 presents the specification of the pile module, in the Verifiable C separation logic.
Each C-language function identifier (such as -Pile-add) is bound to a funspec, a function
specification in separation logic.

Before specifying the functions (with preconditions and postconditions), we must first
specify the data structures they receive as arguments and return as results. Linked lists are
specified as usual in separation logic: listrep is a recursive definition over the abstract (“math-
ematical”) list value σ , specifying how it is laid out in a memory footprint rooted at address
p. Then pilerep describes a memory location containing a pointer to a listrep.

A funspec takes the formWITH−→x : −→τ PRE . . . POST . . .. For example, take Pile-add-spec
fromFig. 3: the−→x are boundCoq variables visible in both the precondition and postcondition,
in this case, p:val, n:Z, σ :list Z, gv:globals, where p is the address of a pile data structure, n
is the number to be added to the pile, σ is the sequence currently represented by the pile, and
gv is a way to access all named global variables. The PREcondition first lists the C-language
types of all formal parameters and then contains an assertion of the form

PROP(propositions) PARAMS(pvals)
GLOBALS(global bindings) SEP(spatial conjuncts).

In this case thePROP asserts that n is between 0 andmax-int;PARAMS lists the values received
via the formal parameters; GLOBALS associates the global bindings (typically, exactly gv, or
empty) to VST’s semantic space of global identifiers; SEP contains a list of spatial (memory
affecting) predicates. This precondition’s SEP clause has two conjuncts: the first one says that
there’s a pile data structure at address p representing sequence σ ; the second one represents
the memory-manager library. The spatial conjunct (mem_mgr gv) represents the private data
structure of thememory-manager library, that is, the global variables in which themalloc-free
system keeps its free lists.

The parameter values are all of (Coq) type val, i.e. are all CompCert values. Here, p
represents the pointer to the pile, wheras the second argument, Vint(Int.repr n) projects the
mathematical integer n into the space of 32-bit machine integers and then injects it into val
using the constructor Vint.

The Coq type of each spatial conjunct ismpred, VST’s opaque abstraction of step-indexed
memory predicates. To first approximation,mpred can be thought of as (mem× R) → Prop
where mem is the space of CompCert memories, R is the space of VST’s resource maps
(an instrumentation that assigns, among other things, specifications to locations that hold
function-pointers; see [5] for details on VST’s predicates-in-the-heap model) and Prop is
Coq’s type of propositions. However, an abstraction barrier hides this expansion from the
user, providing instead logical operators to combine and manipulate memory predicates;

123



Formal Methods in System Design

(∗ spec-pile.v ∗)
(∗ representation of linked lists in separation logic ∗)
Fixpoint listrep (σ: list Z) (x: val) : mpred :=
match σ with
| h::hs ⇒ EX y:val, !! (0≤ h ≤ Int.max-signed) &&

data-at Ews tlist (Vint (Int.repr h), y) x
∗ malloc-token Ews tlist x ∗ listrep hs y

| nil ⇒ !! (x = nullval) && emp
end.

(∗ representation predicate for piles ∗)
Definition pilerep (σ: list Z) (p: val) : mpred :=
EX x:val, data-at Ews tpile x p ∗ listrep σ x.

Definition pile-freeable (p: val) :=
malloc-token Ews tpile p.

Definition Pile-new-spec :=
DECLARE -Pile-new
WITH gv : globals
PRE [ ] PROP() PARAMS ()

GLOBALS (gv) SEP(mem-mgr gv)
POST[ tptr tpile ]
EX p: val,
PROP() RETURN(p)
SEP(pilerep nil p; pile-freeable p; mem-mgr gv).

Definition Pile-add-spec :=
DECLARE -Pile-add
WITH p: val, n: Z, σ: list Z, gv : globals
PRE [ tptr tpile, tint ]

PROP(0≤ n ≤ Int.max-signed)
PARAMS (p; Vint (Int.repr n))
GLOBALS (gv)
SEP(pilerep σ p; mem-mgr gv)

POST[ tvoid ]
PROP() LOCAL()
SEP(pilerep (n::σ) p; mem-mgr gv).

Definition sumlist : list Z →Z := List.fold-right Z.add 0.

Definition Pile-count-spec :=
DECLARE -Pile-count
WITH p: val, σ: list Z
PRE [ tptr tpile ]

PROP(0≤ sumlist σ ≤ Int.max-signed)
PARAMS (p) GLOBALS () SEP(pilerep σ p)

POST[ tint ]
PROP()
RETURN(Vint (Int.repr (sumlist σ)))
SEP(pilerep σ p).

Notation key

mpred predicate on memory

EX existential quantifier
!! injects Prop into mpred
&& nonseparating conjunction
data-at π τ v p is p �→ v,

separation-logic mapsto
at type τ , permission π

malloc-token π τ x represents
“capability to deallocate x”

Ews the “extern write share”
gives write permission

-Pile-new is a C identifier

WITH quantifies variables
over pre/post of funspec

The C function’s return type,
tptr tpile, is “pointer
to struct pile”

PROP(. . .) are pure
propositions on the
WITH-variables

PARAMS lists the arguments
that will be associated
with the formal parameters
during (logical) stack
frame construction

GLOBALS (gv) establishes gv as
mapping from C global
vars to their addresses

SEP(R1; R2) are separating
conjuncts R1 ∗ R2

mem-mgr gv represents
different states of the
malloc-free system in
PRE and POST of
any function that
allocates or frees

Fig. 3 Specification of the pile module (Pile-free-spec not shown)

123



Formal Methods in System Design

indeed, Coq’s list notation (semicolon) is interpreted as separating conjunction ∗ in SEP
clauses.

The SEP clause of the POSTcondition says that the pile at address p now represents the
list n::σ , and that the memory manager is still there. In addition, the POSTcondition lists
the return type. When the return type is nonvoid (see e.g. Pile-new), the POSTcondition’s
RETURN clause gives the value.

In VST, the proposition that a function body f satisfies its specification φ is written
semax-body, or in mathematical notation,

Γ �semax_body f : φ

where Γ is the list of all funspecs of functions that the body of f might call.
To prove a �semax_body claim, one does a Hoare-logic proof on the function-body f , with

respect to the precondition and postcondition of φ.
Verifying that pile.c’s functions satisfy the specifications in Fig. 3 using VST-Floyd is

done by proving Lemmas like this one (in file verif-pile.v):

Lemma body-Pile-add: semax-body Vprog Gprog f-Pile-add Pile-add-spec.
Proof. ... (∗16 lines of Coq proof script∗)....Qed.
This says, in the context Vprog of global-variable types, in the context Gprog of function-
specs (for functions that Pile-add might call), the function-body f-Pile-add satisfies the
function-specification Pile-add-spec.

Returning to the discussion of fastpile.c, note that while the optimized representation does
not actually maintain a list, the functions still satisfy the specifications in spec-pile.v, which
pretend maintenance of integer sequences. This is crucial for enabling the code substitution
as described above. However, we will (in Sect. 4) additionally equip fastpile.c with a second
specification, for a representation predicate that is not phrased in terms of sequences.

Linking. We organize a modular proof of a modular program as follows: For each module
M (such as M = pile), CompCert parses M.c into the AST file M.v. Then we write the
specification file spec-M.v containing funspecs as in Fig. 3.Wewrite verif-M.vwhich imports
spec files of all themodules fromwhichM.c calls functions, and contains semax-body proofs
of correctness for each of the functions in M.c.

So, for example, pile.c is parsed into the file pile.v that just contains its abstract syntax tree;
the user writes spec-pile.v containing specifications (funspecs) for the functions in pile.c,
and the user writes verif-pile.v containing correctness proofs for those functions.

What’s special about the main() function is that its separation-logic precondition has all
the initial values of the global variables, merged from the global variables of each module.
In spec-main we merge the ASTs (global variables and function definitions) of all the M.v
files by a simple, computational, syntactic function. This is illustrated in the Coq files in
VST/progs/pile.

VST’s main soundness statement is that, when runningmain() in CompCert’s operational
semantics, in the initial memory induced from all global-variable initializers, the program
is safe and correct—with a notion of partial correctness that interacts with the world via
effectful external function calls [21] and returns the “right” value from main.

3 Parameter-nameless function specifications

The previous section introduced the surface notation for specifications as typically seen
by VST users. Desugaring this notation indicates that such definitions yield nondependent

123



Formal Methods in System Design

function specifications, which suffice formost cases, except for certain higher-order situations
(see below):

NDmk-funspec (tsig: typesig) (cc: calling-convention)(A: Type)
(Pre: A → argsEnviron →mpred)(Post: A → environ →mpred): funspec.

To construct a nondependent (ND) function spec, one thus gives the function’s C-language
type signature (typesig), the calling convention (usually cc-default; this is also what the
notation mechanism silently expands to), the precondition, and the postcondition. A gives the
type of variable (or tuple of variables) “shared” between the precondition and postcondition.
Pre and Post are each applied to the shared value of type A and yield an mpred, i.e. a
spatial predicate on memories. Postconditions additionally take an environment, comprising
bindings for global variables, addressable local variables, and (nonaddressable) temporaries:

Inductive environ :=
mkEnviron: forall (ge: genviron) (ve: venviron) (te: tenviron), environ.

Preconditions take a global-variable envronment and a list of (CompCert) values:

Definition argsEnviron:Type := genviron ∗ (list val).

This definition of NDmk-funspec differs from the conference version of this article [8], and
from previous expositions of VST [5,10]; the previous definition

NDmk-funspec (funsig: funsig) (cc: calling-convention)(A: Type)
(Pre Post: A → environ →mpred): funspec.

included the formal parameter names in the signature and used a local-variable environment
for binding these to actual values in the precondition. The elimination of parameter names
has several benefits:

– it simplifies the proof rule for function calls by allowing us to define a simpler parameter-
passing mechanism;

– it captures the fact that formal parameter names are invisible (irrelevant) to callers of a
function;

– concretely, the previous notion of specification was not compatible with α-renaming of
parameters; trying to explicitly incorparate α-renaming into our earlier definitions of
funspec-sub [8] and of specification intersection turned out to be overly complex;

– the simplified parameter passing mechanism enables two additional lemmas related to
parameter adaptation – see rules semax-body-funspec-sub and semax-adapt-frame in
Sect. 6.

To illustrate, consider an increment function that has a formal parameter -p pointing to an
integer in memory. We let A = int. The previous system would express the contract as

Pre = λi : A. λρ. ρ(_p) �→ i and Post = λi : A. λρ. ρ(_p) �→ (i + 1).

Now, we can express the precondition without referring to -p:

Pre = λi : A. λ(g, [p]). p �→ i .

123



Formal Methods in System Design

Here, g represents the global-variable environment (ignored in the body of this simple pre-
condition) and [p] is a singleton list of arguments. Thus, a client can directly instantiate p
with some value v rather than having to construct the singleton environment ρ = _p �→ v

(which requires knowing _p).
General function specifications. Nondependent function specifications suffice for most C
programming. But sometimes in the presence of higher-order functions (and hence: function
pointers!), one wants impredicativity: Amay be a tuple of types that includes the typempred.
If this is done naively, it cannot typecheck in CiC (there will be universe inconsistencies).

While the details of higher-order function specifications are beyond the scope of this paper,
we briefly sketch some key aspects. First, when precondition and postcondition are higher-
order, in that their auxiliary variables are predicates (such as mpred), we must ensure that
each is a bifunctor. That is, wemust keep track of covariant and contravariant occurrences of
mpred. That means that the type of aWITH-list, A, must be given in (semi)deeply embedded
form called a TypeTree. That is: each “ordinary” Coq type τ may be shallowly embedded as
ConstType(τ ) constructor; τ may include arrow types, product types, etc., as long as there
are no mentions of mpred. Around this we wrap a deeply embedded description of types,
including the special constructor Mpred, and then ProdType for product types, ArrowType,
SigType, PiType, et cetera.

The purpose of this (semi)deep embedding is to keep track of the covariant and contravari-
ant occurrences of mpred; we can reflect TypeTree into Type, but we can also inspect the
TypeTree to calculate the required pattern of covariance and contravariance proofs required
as part of a funspec definition—concrete pre- and postconditions need to come equipped
with proofs that they are nonexpansive. This approach was outlined by America and Rutten
[2] and has been implemented both in Iris [17] and VST.1

For most functions, whose WITH-list does not mention mpred, all of this complexity is
hidden from the user: effectively, the entireWITH-list-type is embedded in a singleConstType
constructor, and the covariance/contravariance proofs are trivial. And therefore, for defining
subsumption of these nondependent (ND) funspecs, we can use the simple NDmk-funspec
constructor shown above. But really, NDmk-funspec is a shallowly embedded definition (in
Coq) for an instance of the general (dependent) case, that is, the mk-funspec constructor;
see the Appendix.

4 Subsumption of function specifications

We now turn to the replacement of pile.c by a more performant implementation, fastpile.c,
and its specification—see Fig. 4. As fastpile.c employs a different data representation than
pile.c, its specification employs a different representation predicate pilerep. As pilerep’s
type remains unchanged, the function specifications look virtually identical2; however, the
VST-Floyd proof scripts (in file verif-fastpile.v) necessarily differ. Clients importing only the
pile.h interface, like onepile.c or triang.c, cannot tell the difference (except that things run
faster and take less memory), and are specified and verified only once (files spec-onepile.v
/ verif-onepile.v and spec-triang.v / verif-triang.v).

1 Bifunctor function-specs in VST were originally the work of Qinxiang Cao, Robert Dockins, and Aquinas
Hobor, but were adapted to the new form of preconditions as part of the present work.
2 Existentially abstracting over the internal representation predicates would further emphasize the uniformity
between fastpile.c and pile.c—a detailed treatment of this is beyond the scope of the present article, but is a
key ingredient of an abstract component system that we are currently building on top of VST.

123



Formal Methods in System Design

/∗ fastpile-private.h ∗/
struct pile { int sum; };

/∗ fastpile.c ∗/
#include . . .
#include ”pile.h”
#include ”fastpile-private.h”
Pile Pile-new(void)

{Pile p = (Pile)surely-malloc(sizeof ∗p); p→ sum=0; return p; }
void Pile-add(Pile pp, int n)

{int s = pp→ sum; if (0≤ n && n≤ INT-MAX-s) pp→ sum = s+n; }
int Pile-count(Pile pp) {return pp→ sum;}
void Pile-free(Pile pp) {free(pp);}

(∗ spec-fastpile.v ∗)
Definition pilerep (σ: list Z) (p: val) : mpred :=
EX s:Z, !! (0≤ s ≤ Int.max-signed ∧ Forall (Z.le 0) σ ∧

(0≤ sumlist σ ≤ Int.max-signed → s=sumlist σ))
&& data-at Ews tpile (Vint (Int.repr s)) p.

Definition pile-freeable := (∗ looks identical to the one in fig.3 ∗)
Definition Pile-new-spec := (∗ looks identical to the one in fig.3 ∗)
Definition Pile-add-spec := (∗ looks identical to the one in fig.3 ∗)
Definition Pile-count-spec := (∗ looks identical to the one in fig.3 ∗)

Fig. 4 fastpile.c, a more efficient implementation of the pile ADT. Since the only query function is count,
there’s no need to represent the entire list, just the sum will suffice. In the verification of a client program, the
pilerep separation-logic predicate has the same signature: list Z → val →mpred, even though the represen-
tation is a single number rather than a linked list

But as we mentioned in Sect. 2, the functions in fastpile.c can also be equipped with
specifications that refer to a different representation predicate, countrep (see Fig. 5). In
reasoning about clients of this low-level interface, we do not need a notion of “sequence”—
in contrast to pilerep in Fig. 4. The new specification is less abstract than the one in Fig. 4,
and closer to the implementation. The subsumption rule (to be introduced shortly) allows
us to exploit this relationship: we only need to explicitly verify the code against the low-
level specification and can establish satisfaction of the high-level specification by recourse
to subsumption. This separation of concerns extends from VST specifications to model-
level reasoning: for example, in our verification of cryptographic primitives we found it
convenient to verify that the C program implements a low-level functional model and then
separately prove that the low-level functional model implements a high-level specification
(e.g. cryptographic security).3 In our running example, fastpile.c’s low-level functionalmodel
is integer (the Coq Z type), and its high level specification is list Z.

To formally state the desired subsumption lemma, observe that notation like
DECLARE -Pile-add WITH ... PRE ... POST ... is merely VST’s syntactic sugar for a pair that
ties the identifier -Pile-add to the funspecWITH...PRE...POST. For -Pile-addwe have two such
specifications,

3 For example: in our proof of HMAC-DRBG [37], before VST had function-spec subsumption, we had two
different proofs of the function f-mbedtls-hmac-drbg-seed, one with respect to a more concrete specification
drbg-seed-inst256-spec and one with respect to a more abstract specification drbg-seed-inst256-spec-abs.
The latter proof was 202 lines of Coq, at line 37 of VST/hmacdrbg/drbg_protocol_proofs.v in commit 3e61d29
of https://github.com/PrincetonUniversity/VST. Now, instead of reproving the function-body a second time,
we have a funspec_sub proof that is only 55 lines of Coq (at line 42 of the same file).

123

https://github.com/PrincetonUniversity/VST


Formal Methods in System Design

(∗ spec-fastpile-concrete.v ∗)
Definition countrep (s: Z) (p: val) : mpred := EX s′:Z,
!! (0≤ s ∧ 0≤ s′ ≤ Int.max-signed ∧ (s ≤ Int.max-signed → s′=s)) &&
data-at Ews tpile (Vint (Int.repr s′)) p.

Definition count-freeable (p: val) := malloc-token Ews tpile p.

Definition Pile-new-spec := ...

Definition Pile-add-spec :=
DECLARE -Pile-add
WITH p: val, n: Z, s: Z, gv : globals
PRE [ -p OF tptr tpile, -n OF tint ]

PROP(0≤ n ≤ Int.max-signed) PARAMS (p; Vint (Int.repr n)
GLOBALS (gv) SEP(countrep s p; mem-mgr gv)

POST[ tvoid ]
PROP() LOCAL() SEP(countrep (n + s) p; mem-mgr gv).

Definition Pile-count-spec := ...

Fig. 5 The fastpile.c implementation could be used in applications that simply need to keep a running total.
That is, a concrete specification can use a predicate countrep: Z → val →mpred that makes no assumption
about a sequence (list Z). In countrep, the variable s′ and the inequalities are needed to account for the
possibility of integer overflow

spec-fastpile.Pile-add-spec: ident∗funspec (∗ in Figure 4 ∗)
spec-fastpile-concrete.Pile-add-spec: ident∗funspec (∗ in Figure 5 ∗)
and our notion of funspec subtyping will satisfy the following lemma

Lemma sub-Pile-add: funspec-sub (snd spec-fastpile-concrete.Pile-add-spec)
(snd spec-fastpile.Pile-add-spec).

and similarly for Pile-new and Pile-count. Specifically, we permit related specifications to
have differentWITH-lists, in linewithKleymann’s adaptation-complete4 rule of consequence

� {P ′}c{Q′}
� {P}c{Q} ∀Z .∀σ. PZσ → ∀τ. ∃Z ′.(P ′Z ′σ ∧ (Q′Z ′τ → QZτ))

where assertions are binary predicates over auxiliary and ordinary states, and Z , Z ′ are the
WITH values.5 Our subsumption applies to function specifications, not arbitrary statements

4 Kleymann’s program logic, like ours, uses auxiliary variables (which we call WITH-lists) to relate the
precondition to the postcondition. When auxiliary variables are used, one must be able to choose them freely
to express this relation between pre and post. Two funspecs for the same function, related by funspec_sub, may
have quite different auxiliary variables. This is the parameter adaption aspect of Kleymann’s system, and of
ours. Kleymann pointed out that parameter adaption is necessary in order to achieve adaptation completeness,
which is the property that if ∀c. |
 {P}c{Q} ⇒|
 {P ′}c{Q′} then one can derive that � {P}{Q} implies
� {P ′}{Q′}, independent of c.
5 We give Kleymann’s rule for total correctness here. Kleymann’s partial-correctness adaptation rule cannot
guarantee safety. That is: Kleyman’s total-correctness Hoare triple says, “If the start state satisfies P , then the
command c will terminate, and will terminate in a state satisfying Q.” Kleymann’s partial-correctness Hoare
triple says, “If the start state satisfies P , then if the command c terminates, then the final state satisfies Q.”
The problem is that c might crash (or “get stuck” in operational-semantic terms), in which case Kleymann’s
partial-correctness Hoare triple is still satisfied. For unsafe languages such as C, that is not a very useful Hoare
triple, nor is his partial-correctness adaptation rule useful. VST is a logic for partial correctness, but its Hoare
triple means, “If the start satisfies P , then it is safe to execute c (c will not crash); c will either infinite-loop,
will safely exit by (e.g.) returning from the function, or will terminate in a state satisfying Q”. This is useful
for unsafe languages.

123



Formal Methods in System Design

c. In the rule for function calls, it ensures that a concretely specified function can be invoked
where callers expect an abstractly specified one, just like the subsumption rule of type theory:
Γ � e : σ σ <: τ

Γ � e : τ
. It is also reflexive and transitive.

Support for framing An important principle of separation logic is the frame rule:

{P}c{Q}
{P ∗ R}c{P ∗ R}modifiedvars(c) ∩ freevars(R) = ∅

We have found it useful to explicitly incorporate framing in funspec-sub, because abstract
specifications may have useless data. Consider a function that performs some action (e.g.,
increment a variable) using some auxiliary data (e.g., an array of 10 integers):

int incr1(int i, unsigned int ∗auxdata) { auxdata[i%10] += 1; return i+1; }

The function specification makes clear that the private contents of the auxdata is, from the
client’s point of view, unconstrained; the implementation is free to store anything in this
array:

Definition incr1-spec := DECLARE -incr1
WITH i : Z, a: val, π : share, private: list val
PRE [ tint, tptr tuint ]

PROP (0≤ i < Int.max-signed; writable-share π )
PARAMS (Vint (Int.repr i ); a) GLOBALS ()
SEP(data-at sh (tarray tuint 10) private a)

POST [ tint ]
EX private′: list val, PROP() RETURN(Vint (Int.repr (i+1)))

SEP(data-at π (tarray tuint 10) private′ a).

You might think the auxdata is useless, but (i) real-life interfaces often have useless or
vestigial fields; and (ii) this might be where the implementation keeps profiling statistics,
memoization, or other algorithmically useful information.

Here is a different implementation that should serve any client just as well:

int incr2(int i, unsigned int ∗auxdata) { return i+1; }

Its natural specification has an empty SEP clause:

Definition incr2-spec := DECLARE -incr2
WITH i : Z
PRE [ -i OF tint, -auxdata OF tptr tuint ]

PROP (0≤ i < Int.max-signed)
PARAMS (Vint (Int.repr i ); a) GLOBALS () SEP()

POST [ tint ]
PROP() RETURN(Vint (Int.repr (i + 1))) SEP().

The formal statement that incr2 serves any client just as well as incr1 is another case of
subsumption:

Lemma sub-incr12: funspec-sub (snd incr2-spec) (snd incr1-spec).

In the proof, we use (data_at π (tarray tuint 10) private a) as the frame.
If the auxdata is a global variable instead of a function parameter, all the same principles

apply:

123



Formal Methods in System Design

int global-auxdata[10];
int incr3(int i) { global-auxdata[i%10] += 1; return i+1; }
int incr4(int i) { return i+1; }

We define a funspec for incr3 whose SEP clause mentions the auxdata, we define a funspec
for incr4 whose SEP clause is empty, and we can prove,

Lemma sub-incr34: funspec-sub (snd incr4-spec) (snd incr3-spec).

For another example of framing, consider again Fig. 3, the specification of pilerep,
pile-freeable, Pile-new-spec, etc. One might think to combine pile-freeable (the memory-
deallocation capability) with pile-rep (capability to modify the contents) yielding a single
combined predicate pilerep’. That way, proofs of client programs would not have to manage
two separate conjuncts.

That would work for clients such as triang.c and onepile.c, but not for apile.c which has
an initialized global variable (a-pile) that satisfies pilerep but not pile-freeable (since it was
not obtained from the malloc-free system). Furthermore, the specifications of pile-add and
pile-count do not mention pile-freeable in their pre- or postconditions, since they have no
need for this capability.

By using funspec-sub (with its framing feature), we can have it both ways. One can easily
make a more abstract spec in which the funspecs of pile-new, pile-add, pile-count, pile-free
all take pilerep’ in their pre- and postconditions; onepile and triang will still be verifiable
using these specs. But in proving
funspec-sub, therefore, specifications for pile-add and pile-count now do implicitly take
pile-freeable in their pre- and postconditions, even though they have no use for it; this is the
essence of the frame rule.

5 Definitions of funspec subtyping

Too-special funspec subtyping. Let’s consider the obvious notion of funspec subtyping: φ1 is
a subtype of φ2 if the precondition of φ2 entails the precondition of φ1, and the postcondition
of φ1 entails the postcondition of φ2.

Definition far-too-special -NDfunspec-sub ( f1 f2 : funspec) :=
match f1, f2 with
NDmk-funspec tsig cc1 A1 P1 Q1, NDmk-funspec (ptypes, rt) cc2 A2 P2 Q2 ⇒
let Δ := rettype-tycontext rt in
tsig = (ptypes, rt) ∧ cc1 = cc2 ∧ A1=A2 ∧
(∀x : A1, Δ, P2 nil x � P1 nil x ) ∧
(∀x : A1, (ret0-tycon Δ), Q1 nil x � Q2 nil x )
end.

We write Δ, P2 nil x � P1 nil x , where P1 and P2 are the preconditions of f1 and f2, nil
expresses that these are nondependent funspecs (no bifunctor structure), and x is the value
shared between precondition and postcondition. The type-context Δ provides the additional
guarantee that the formal parameters are well typed, and ret0_tycon Δ guarantees that the
return-value is well typed.

This notion of funspec-sub is sound (w.r.t. subsumption), but barely useful: (1) it requires
that the witness types of the two funspecs be the same (A1 = A2), (2) it doesn’t support
framing, and (3) it requires Q1 � Q2 even when P2 is not satisfied. Each of these omissions

123



Formal Methods in System Design

prevents the practical use of funspec-sub in real verifications, but only (1) and (3) were
addressed in previous work [20,29].
Useful, ordinary funspec subtyping. If NDmk-funspec were a constructor, we could define,

Definition NDfunspec-sub ( f1 f2 : funspec) :=
match f1, f2 with
NDmk-funspec tsig cc1 A1 P1 Q1, NDmk-funspec (ptypes, rt) cc2 A2 P2 Q2 ⇒
let Δ := rettype-tycontext rt in
tsig = (ptypes, rt) ∧ cc1 = cc2 ∧
∀x2 : A2 ρ: argsEnviron,

Δ, P2 nil x2 ρ �
EX x1:A1, EX F :mpred, (F ∗ P1 nil x1 ρ) &&

!! (∀ τ . (tc-environ Δ), F ∗ Q1 nil x1 τ � Q2 nil x2 τ )
end.

Here, each of the three deficiencies is remedied: the witness value x1 : A1 is existentially
derived from x2 : A2, the frame F is existentially quantified, and the entailment Q1 � Q2 is
conditioned on the precondition P2 being satisfied.

This version of funspec-sub is, we believe, fully general for NDmk-funspec, that is, for
function specifications whose witness types A do not contain (covariant or contravariant)
occurrences of mpred. We present the general, dependent funspec-sub in the Appendix,
with its constructor mk-funspec, and show the construction of NDmk-funspec as a derived
form. And actually, since NDmk-funspec is not really a constructor (it is a function that
applies the constructormk-funspec), we must define NDfunspec-sub as a pattern-match on
mk-funspec; see the Appendix.

6 The subsumption rules

The purpose of funspec-sub is to support subsumption rules.
Our Hoare-logic judgment takes the form Δ � {P}c{Q} where the context Δ describes

the types of local and global variables and the funspecs of global functions. We say Δ <: Δ′
if Δ is at least as strong as Δ′; in Verifiable C this is written tycontext_sub ΔΔ′. Again,
this relation is reflexive and transitive.
Definition (glob_specs) If i is a global identifier, write (glob_specs Δ)!i to be the
option(funspec) that is either None or Some φ.
Lemma funspec_sub_tycontext_sub.
Suppose Δ agrees with Δ′ on,

– types attributed to global variables,
– types attributed to local variables,
– current function return type (if any);
– and differs only in specifications attributed to global functions, in particular: For

every global identifier i , if (glob_specs Δ)!i=Some φ then (glob_specs Δ′)!i=Some φ′
and funspec_sub φ φ′.

Then Δ <: Δ′.

Proof Trivial from the definition of Δ <: Δ′. ��

123



Formal Methods in System Design

Theorem (semax_Delta_subsumption)

Δ <: Δ′ Δ′ � {P}c{Q}
Δ � {P}c{Q}

Proof Nontrivial. Because this is a logic of higher-order recursive function pointers, our Coq
proof6 in the modal step-indexed model uses the Löb rule to handle recursion, and unfolds
our rather complicated semantic definition of the Hoare triple [5]. ��

But this is not the only subsumption rule we desire. Because C has function-pointers, the
general function-call rule is for Δ � {P}e f (e1, . . . , en){Q} where e f is an expression that
evaluates to a function-pointer. Therefore, we cannot simply look up e f as a global identifier
in Δ. Instead, the precondition P must associate the value of e f with a funspec. Without
subsumption, the rules are:

(glob_specs Δ)! f = Some φ
Δ � f ⇓ v

Δ � {func_ptr v φ ∧ P}c{Q}
Δ � {P}c{Q}

Δ � e f ⇓ v
Δ � e1 ⇓ v1 . . . Δ � en ⇓ vn

P ∗ F � func_ptr v φ
φ(w) = {P}{Q}

Δ � {P ∗ F}e f (e1, e2, . . . , en){Q ∗ F}
The rule semax-fun-id at left says, if the global contextΔ associates identifier f with funspec
φ, and if f evaluates to the address v, then for the purposes of proving {P}c{Q}we can assume
the stronger precondition in which address v has the funspec φ.

At right, the semax-call rule says, if e f evaluates to address v, and the precondition
factors into conjuncts P ∗ F that imply address v has the funspec φ, then choose a witness
w (for theWITH clause), instantiate the witness of φ with w, and match the precondition and
postcondition of φ(w) with P and Q; then the function-call is proved. (Functions can return
results, but we don’t show that here.)

To turn semax-call into a rule that supports subsumption, we simply replace the hypothesis
φ(w) = {P}{Q} with φ <: φ′ ∧ φ′(w) = {P}{Q}. That is,

call-with-subsumption

Δ � e f ⇓ v
Δ � e1 ⇓ v1 . . . Δ � en ⇓ vn

P ∗ F � func_ptr v φ
φ <: φ′ ∧ φ′(w) = {P}{Q}

Δ � {P ∗ F}e f (e1, e2, . . . , en){Q ∗ F}
To reconcile semax-Delta-subsumption and semax-fun-id, we build<: into the definition

of the predicate func_ptr v φ, i.e. we permit φ to be more abstract than the specification
associated with address v in VST’s semantic model (“rmap”).
Function-definition subsumption. Recall that the proposition “function f satisfies its speci-
fication φ” is written,

Γ �semax_body f : φ

where Γ is the list of all funspecs of functions that the body of f might call. The proof is
(typically) by proving the Hoare triple ∀x .{P}c{Q}, where x is the WITH-list of φ, where P
and Q are the precondition and postcondition of φ, and c is the function body of f .

For a fully expressive notion of subsumption, one wants to apply it also at function
definitions. Therefore, we have the rule,

semax_body_funspec_sub
φ <: φ′ Γ �semax_body f : φ

Γ �semax_body f : φ′

6 See file veric/semax_lemmas.v in the VST repo.

123



Formal Methods in System Design

We found this rule almost essential for a fully expressivemodule system that can describe data
abstraction; but (surprisingly)we could not prove it sound in our first-generation funspec-sub
system [8]. Now that we use nameless formal parameters in funspecs, we have been able to
prove this rule. As the �semax_body judgment is defined in terms of VST’s Hoare-logic judg-
ment for C statements, it is perhaps not surprising that the proof of semax-body-funspec-sub
utilizes a rule of consequence

semax_adapt_frame
Δ � {P ′}c{Q′} SideCondition

Δ � {P}c{Q}
with a side condition that—just like parameter adaption in funspec-sub—permits one to
exploit the satisfaction of the conclusion’s precondition, P , when proving the entailment
between the postconditions and also includes framing. In slightly simplified form, the Side
Condition is given by

Δ, P � (EX F . !!(closed-wrt-modvars c F) && (P ′ ∗ F ) && !!(Q′ ∗ F � Q)).

However, the notationQ′∗F � Q here actually abbreviates four slightly different entailments,
as statement-level postconditions in VST are quadruples of assertions, containing separate
components for each possible control flow continuation of a code block: function return,
break, continue, and fall-through.

7 Intersection specifications

In some of our verification examples, we found it useful to separate different use cases of
a function into separate function specifications. One can easily do this using a pattern that
discriminates on a boolean value from theWITH list jointly in the pre- and postcondition:

WITH b : bool,−→x : −→τ
PRE if b then P1 else P2
POST if b then Q1 else Q2.

To attach different WITH-lists to different cases, we may use Coq’s sum type to define a
type such as Variant T := case1: int | case2: string. and use it in a specification

WITH −→x : −→τ , t : T ,
−→y : −→σ

PRE [. . .] match t with case1 i ⇒ P1(
−→x , i,−→y ) | case2 s ⇒ P2(

−→x , s,−→y ) end
POST [. . .] match t with case1 i ⇒ Q1(

−→x , i,−→y ) | case2 s ⇒ Q2(
−→x , s,−→y ) end.

which amounts to the intersection of
WITH −→x : −→τ , i :int, −→y : −→σ PRE [. . .] P1(−→x , i,−→y ) POST [. . .] Q1(

−→x , i,−→y ) and
WITH −→x : −→τ , s:string,−→y : −→σ PRE [. . .] P2(−→x , i,−→y ) POST [. . .] Q2(

−→x , i,−→y ).
Generalizing to arbitrary index sets, we may—for a given function signature and calling

convention—combine specifications into specification families, by lifting the dependent sum
(i.e. sigma, sigT below) type construction from WITH-lists to function specifications:

Definition funspec-Sigma-ND tsig cc (I:Type) (A : I → Type)
(Pre: forall i, A i → argsEnviron →mpred):
(Post: forall i, A i → environ →mpred): funspec :=

Proof.
apply (NDmk-funspec sig cc (sigT A)).
intros [i Ai] rho; apply (Pre -Ai rho).

123



Formal Methods in System Design

intros [i Ai] rho; apply (Post -Ai rho).
Defined.

This shows—using Coq’s definition-by-proof-script feature—the nondependent (ND) case
only, but our Coq development also contains the general case (all this in veric/seplog.v).

The interaction between this construction and subtyping follows precisely that of inter-
section types in type theory: the lemmas

Lemma funspec-Sigma-ND-sub: forall tsig cc I A Pre Post i,
funspec-sub (funspec-Sigma-ND tsig cc I A Pre Post)

(NDmk-funspec tsig cc (A i) (Pre i) (Post i)).

Lemma funspec-Sigma-ND-sub3: forall tsig cc I A Pre Post g (i:I)
(HI: forall i, funspec-sub g (NDmk-funspec tsig cc (A i) (Pre i) (Post i))),

funspec-sub g (funspec-Sigma-ND tsig cc I A Pre Post).

are counterparts of the typing rules ∧ j∈I τ j <: τi (for all i ∈ I ) and
∀i, σ <: τi

σ <: ∧i∈I τi
, the

specializations of which to the binary case appear on page 206 of TAPL [31]. We expect
these rules to be helpful for formalizing Leavens and Naumann’s treatment of specification
inheritance in object-oriented programs [22].

An ad hoc form of (binary) intersection was already used in our verification of the hmac-
drbg cryptographic component [37]. A more general application of intersection occurs in
a rule for composition of VST-verified compilation units that is part of a component layer
on top of VST (under current development). Finally, we showed in previous work [7] how
relational (2-execution) specifications can be encoded as unary VDM-style specifications.
Intersection specifications may be seen as internalization of VDM’s “sets of specifications”.

8 Related work

There are other proof tools for languages such as C and Java, but none of them (to our knowl-
edge) has a full calculus for function-specification subsumption. Instead of being embedded
in a general proof assistant, most current verification tools embed their assertions directly in
the program code and employ verification condition discharge using SMT solving.VCC [12]
is a verifier for concurrent C programs, using the Boogie language-independent SMT-based
verifier as a back end. VeriFast [15] is a separation logic for C, that can relate C programs
to functional models with substantial automation based on SMT. Frama-C [19] is an anal-
ysis/verification tool that supports Hoare-logic verification of C programs with an assertion
language called ACSL [13], which uses C-like syntax for its first-order assertion language.
Dafny [23] is an SMT-based Hoare-logic verifier for a small but capable language (also
called Dafny), with substantial proof automation using Boogie.KeY [1] is a verifier for Java,
with specifications in JML and an assertion language based on dynamic logic [14]. It is an
interactive theorem prover, programmable by “strategy macros” and with SMT plug-ins (in
that sense, comparable to VST with Ltac programming and Coq’s linear-integer-arithmetic
plugin). A later extension [33] supports heap-modular reasoning using the theory of dynamic
frames [18], backed up by a formalization in Isabelle/HOL [34] for a core calculus.

None of these verifiers has a machine-checked soundness proof of the tool or program
logic, as VST does. All these verifiers have less expressive functional-modeling languages
than VST, to varying degrees—because VST uses the full power of Coq’s dependently typed

123



Formal Methods in System Design

higher-order logic (CiC) for this purpose. All of them have weaker systems than VST for
reasoning about logical properties of functional models (compared to the power of Coq’s
tactical proof assistant, that VST uses for this).

VeriFast has a form of funspec_sub, called produce-function-pointer-chunk, that verifies
a new specification for a function (with user assistance as for any VeriFast proof) by proving
a function call based on the old specification. This supports framing and parameter adaption,
but not transitivity of funspec_sub.7

As far as we can tell from reading the literature, VCC, Frama-C, Dafny, and KeY’s notion
of funspec_sub are not formally equipped with a subsumption rule but directly integrated
into proof rules for (virtual) methods. JML supports explicit intersection specifications using
the keyword also, and these are implicitly employed in these tools’ implementations of
behavioral subtyping. However, the user-interface design of VCC, Frama-C, Dafny, and
KeY make funspec_sub and intersection less natural than they are in VST. This has little
to do with VST’s more powerful (impredicative higher-order) semantic model: it is about
separating specifications from implementations. That is, in VST the function specification
is a self-contained syntactic unit, not intermingled in the same source file with the function
body. In those other systems, assertions (preconditions, postconditions, loop invariants) are
intermingled with the C or Java source code, as comments with a special form. Therefore,
one typically has the specification of a function, mixed into the implementation; syntactically
there is no room for more than one.8 In VST it is much more natural—if we can write one
funspec (in a different place from the function body), then it is easy enough to write more than
one, to relate them, and to have proofs of the same function w.r.t. different specifications,
perhaps with different loop invariants. Although this is not a fundamental, deep semantic
aspect, we believe that fully supporting subsumption in these program verifiers may benefit
from revisiting the design decision that mixes specifications into implementations.

The program logic framework that is most closely related to VST is Iris [17], which also
implements a higher-order concurrent separation logic in Coq and provides a step-indexed
model. At present, applications of Iris predominantly concern small-scale research languages.
However, we anticipate that our development could be rather easily transferred to emerging
applications of Iris to Rust [16] or Go [11], although neither of these developments are
currently linked to formally verified compilers.

9 Conclusion

Even without funspec subtyping, separation logic easily expresses data abstraction [30]. But
real-world code is modular (as in our running example) and reconfigurable (as in the substi-
tution of fastpile.c for pile.c). Therefore a notion of specification re-abstraction is needed.
We have demonstrated how to extend Kleymann’s notion from commands to functions, and
from first-order Hoare logic to higher-order separation logic with framing. We have a full
soundness proof for the extended program logic, in Coq. Our funspec-sub integrates nicely
with our existing proof automation tools and our existing methods of verifying individual
modules. As a bonus, one’s intuition that function-specs are like the “types” of functions is
borne out by our theorems relating funspec-sub to intersection types.

7 Bart Jacobs, by e-mail, September 2020.
8 VeriFast permits the function specification to be attached to the function definition in the .c file or to the
function declaration in the .h file. This is a limited formof separating the specification from the implementation.

123



Formal Methods in System Design

Future workWhen a client module respects data abstraction, such as onepile.c and triang.c
in our example, its Coq proof script does not vary if the implementation of the abstraction
changes (such as changing pile.c to fastpile.c). But our current proofs need to rerun the proof
scripts on the modified definition of pilerep. As footnote 2 suggests, this could be avoided
by the use of existential quantification, in Coq, to describe data abstraction at the C module
level.

Acknowledgements We are grateful to the members of the VST research group projects for their feedback,
and we greatly appreciate the comments and suggestions made by the FM’19 program committee and by this
journal’s referees.

Appendix: Fully general funspec_sub

NDfunspec_sub as introduced in Sect. 5 specializes the “real” subtype relation φ <: ψ in
two regards: first, it only applies if φ and ψ are of the NDfunspec form, i.e. the types of their
WITH-lists (“witnesses”) are trivial bifunctors as they do not contain co- or contravariant
occurrences of mpred. Second, it fails to exploit step-indexing and is hence unnecessarily
strong. Our full definition is as follows (Definition funspec-sub-si in veric/seplog.v):

Definition funspec-sub-si ( f1 f2 : funspec):mpred :=
match f1, f2 with
mk-funspec tsig cc1 A1 P1 Q1 - -, mk-funspec (ptypes, rt) cc2 A2 P2 Q2 - - ⇒
let Δ := rettype-tycontext rt in
!!(tsig = (ptypes, rt) ∧ cc1 =cc2) &&
! (ALL ts2:list Type, ALL x2: F A2, ALL gargs:argsEnviron,

(!!(tc-argsenv Δ ptypes gargs) && P2 ts2 x2 gargs)
EX ts1:list Type, EX x1: F A1, EX F ,
(F ∗ P1 ts1 x1 gargs) &&
ALL ρ:environ, !( (local (tc-environ Δ) ρ && F ∗ Q1 ts1 x1 ρ)

Q2 ts2 x2 ρ))
end.

We first note that funspec-sub-si is not a (Coq) Proposition but anmpred—indeed, step-
indexing has nothing interesting to say about pure propositions! That is, P � Q means,
“for all resource-maps s, P s implies Q s,” but this can be too strong: P Q means, “for
all resource-maps s whose step-index is ≤ the current ‘age’, P s implies Q s.” Recursive
equations of mpreds, of the kind that come up in object-oriented patterns, can tolerate
where they cannot tolerate � [5, Chapter 17].

Second, both funspecs are constructors (mk_funspec tsig cc A P Q_ _) as discussed in
Sect. 5, but the two final arguments (the proofs that P and Q are super-nonexpansive) are
irrelevant for the remainder of the definition and hence anonymous. We also abbreviate the
TypeTree-interpreting operator alluded to in Sect. 3, dependent-type-functor-rec, with F .

Third, the definition makes use of the following operators (details on the penultimate two
operators can be found in [5], Chapter 16):

123



Formal Methods in System Design

!! inject a Coq proposition into VST’s typempred
&& (logical) conjunction ofmpreds
ALL universal quantification lifted tompred
EX existential quantification lifted to mpred
! “unfash”

“fashionable implication”
In particular, the satisfaction of P2 implies, only with the “precision” (in the step-indexed

sense) at which P2 is satisfied, that Q1 implies Q2.
Finally, note that the definition internally existentially quantifies over yet anothermpred,

the frame F .
It is straightforward to prove that funspec-sub-si is reflexive, transitive, and specializes to

NDfunspec-sub. To obtain soundness of context subtyping
(semax-Delta-subsumption), we Kripke-extend the previous definition of VST’s main
semantic judgment semax. We also refined the definition of the predicate func-ptr: a stronger
version of rule semax-fun-id permits the exposed specification f to be a (step-indexed)
abstraction of the specification g stored in VST’s resource-instrumented model:

Definition func-ptr-si f (v: val): mpred := EX b: block,
!!(v = Vptr b Ptrofs.zero) && EX g, funspec-sub-si g f && func-at g (b, 0).

As func-at refers to the memory, this notion is again an mpred. Again, users who don’t
have complex object-oriented recursion patterns can avoid the step-indexing by using this
non-step-indexed variant,

Definition func-ptr f (v: val): mpred := EX b: block,
!!(v = Vptr b Ptrofs.zero) && EX g, !!(funspec-sub g f) && func-at g (b, 0).

as the following lemma shows:

Lemma func-ptr-fun-ptr-si f v: func-ptr f v � func-ptr-si f v.

As one might expect, both notions are compatible with further subsumption:

Lemma func-ptr-si-mono fs gs v:
funspec-sub-si f g && func-ptr-si f v � func-ptr-si g v.

Lemma func-ptr-mono fs gs v: funspec-sub f gs → (func-ptr f v � func-ptr g v).

With these modifications and auxiliary lemmas in place, we have formally reestablished
the soundness proof of VST’s proof rules, justifying all rules given in this paper.

References

1. AhrendtW,Beckert B, Bubel R,HähnleR, Schmitt PH,UlbrichM (2016)Deductive software verification-
the key book, volume 10001 of lecture notes in computer science. Springer, New York

2. America P, Rutten J (1989) Solving reflexive domain equations in a category of complete metric spaces.
J Comput Syst Sci 39(3):343–375

3. Appel AW (2015) Verification of a cryptographic primitive: SHA-256. ACM Trans Program Lang Syst
37(2):7:1–7:31

4. Appel AW, Beringer L, Cao Q, Dodds J (2019) Verifiable C: applying the verified software toolchain to
C programs. https://vst.cs.princeton.edu/download/VC.pdf. Accessed 10 Sept 2020

5. Appel AW, Dockins R, Hobor A, Beringer L, Dodds J, Stewart G, Blazy S, Leroy X (2014) Program
logics for certified compilers. Cambridge University Press, Cambridge

6. Appel AW, Naumann DA (2020) Verified sequential malloc/free. In: Proceedings of the 2020 ACM
SIGPLAN international symposium on memory management, pp 48–59

123

https://vst.cs.princeton.edu/download/VC.pdf


Formal Methods in System Design

7. Beringer Lennart (2011) Relational decomposition. In: Interactive theorem proving (LNCS 6898).
Springer, Berlin, pp 39–54

8. Beringer L, Appel AW (2019) Abstraction and subsumption in modular verification of C programs. In:
ter Beek Maurice H, Annabelle M, Oliveira JN (eds) Formal methods—the next 30 years—third world
congress, FM 2019, proceedings, vol 11800. LNCS. Springer, New York, pp 573–590

9. Beringer L, Petcher A, Katherine QY, Appel AW (2015) Verified correctness and security of OpenSSL
HMAC. In: 24th USENIX Security Symposium. USENIX Assocation, pp 207–221

10. Cao Q, Beringer L, Gruetter S, Dodds J, Appel AW (2018) VST-Floyd: a separation logic tool to verify
correctness of C programs. J Autom Reason 61(1–4):367–422

11. Chajed T Tassarotti J, Kaashoek MF, Zeldovich N (2019) Verifying concurrent, crash-safe systems with
perennial. In: Brecht T, Williamson C (eds) Proceedings of the 27th ACM symposium on operating
systems principles, SOSP 2019, Huntsville, ON, Canada, October 27–30, 2019. ACM, pp 243–258

12. Cohen E, Dahlweid M, Hillebrand MA, Leinenbach D, Moskal M, Santen T, Schulte W, Tobies S (2009)
VCC: a practical system for verifying concurrent C. In: Berghofer S, Nipkow T, Urban C,Wenzel M (eds)
theorem proving in higher order logics, 22nd international conference, TPHOLs 2009, proceedings, vol
5674. Lecture Notes in Computer Science. Springer, New York, pp 23–42

13. Gerlach J, Efremov D, Sikatzki T, Brodmann M, Burghardt J, Carben A, Clausecker R, Gu L, Hartig
K, Lapawczyk T, Pohl HW, Soto J, Völlinger K (2010) ACSL by example: towards a formally verified
standard library, version 21.1.0. https://github.com/fraunhoferfokus/acsl-by-example. Accessed 10 Sept
2020

14. Harel D, Kozen D, Tiuryn J (2000) Dynamic logic. MIT Press, Cambridge
15. Jacobs B, Smans J, Philippaerts P, Vogels F, Penninckx W, Piessens F (2011) Verifast: a powerful, sound,

predictable, fast verifier for C and Java. In: NASA formal methods symposium. Springer, pp 41–55
16. Jung R, Jourdan J-H, Krebbers R, Dreyer D (2018) Rustbelt: securing the foundations of the rust pro-

gramming language. Proc ACM Program Lang 2(POPL):66:1–66:34
17. Jung R, Krebbers R, Jourdan J-H, Bizjak A, Birkedal L, Dreyer D (2018) Iris from the ground up: a

modular foundation for higher-order concurrent separation logic. J Funct Program 28:E20. https://doi.
org/10.1017S0956796818000151

18. Kassios IT (2006) Dynamic frames: support for framing, dependencies and sharing without restrictions.
In: Misra J, Nipkow T, Sekerinski E (eds) FM 2006: Formal methods, 14th international symposium on
formal methods, Hamilton, Canada, August 21–27, 2006, Proceedings, volume 4085 of Lecture Notes in
Computer Science. Springer, pp 268–283

19. Kirchner F, Kosmatov N, Prevosto V, Signoles J, Yakobowski B (2015) Frama-C: a software analysis
perspective. Formal Asp Comput 27(3):573–609

20. Kleymann T (1999) Hoare logic and auxiliary variables. Formal Asp Comput 11(5):541–566
21. Koh N., Li Y., Li Y., Xia L-y, Beringer L, Honoré W, Mansky W, Pierce BC, Zdancewic S (2019) From

C to interaction trees: specifying, verifying, and testing a networked server. In: Proceedings of the 8th
ACM SIGPLAN international conference on certified programs and proofs. ACM, pp 234–248

22. LeavensGT,NaumannDA(2015)Behavioral subtyping, specification inheritance, andmodular reasoning.
ACM Trans Program Lang Syst 37(4):13:1–13:88

23. Rustan K, Leino M (2010) Dafny: an automatic program verifier for functional correctness. In: Clarke
EM, Voronkov A (eds) Logic for programming, artificial intelligence, and reasoning—16th international
conference, LPAR-16, Dakar, Senegal, April 25–May 1, 2010, Revised Selected Papers, volume 6355 of
Lecture Notes in Computer Science. Springer, pp 348–370

24. Leroy X (2009) Formal verification of a realistic compiler. Commun ACM 52(7):107–115
25. Liskov B,Wing JM (1994) A behavioral notion of subtyping. ACMTrans ProgramLang Syst 16(6):1811–

1841
26. Mansky W, Appel AW, Nogin A (2017) A verified messaging system. In: Proceedings of the 2017 ACM

international conference on object oriented programming systems languages & applications, OOPSLA
’17. ACM

27. Mitchell JC, Plotkin GD (1988) Abstract types have existential type. ACM Trans Program Lang Syst
10(3):470–502

28. Naumann DA (1999) Deriving sharp rules of adaptation for Hoare logics. Technical Report 9906, Depart-
ment of Computer Science, Stevens Institute of Technology

29. Nipkow T (2002) Hoare logics for recursive procedures and unbounded nondeterminism. In: Bradfield
JC (ed) Computer science logic, 16th international workshop, CSL 2002, 11th annual conference of the
EACSL, proceedings, volume 2471 of Lecture Notes in Computer Science. Springer, pp 103–119

30. Parkinson MJ, Bierman GM (2005) Separation logic and abstraction. In: 32nd ACM SIGPLAN-SIGACT
symposium on principles of programming languages (POPL 2005), pp 247–258

31. Pierce BC (2002) Types and programming languages. MIT Press, Cambridge

123

https://github.com/fraunhoferfokus/acsl-by-example
https://doi.org/10.1017S0956796818000151
https://doi.org/10.1017S0956796818000151


Formal Methods in System Design

32. Pierik C, de Boer FS (2005) A proof outline logic for object-oriented programming. Theor Comput Sci
343(3):413–442

33. Schmitt PH, Ulbrich M, Weiß B (2010) Dynamic frames in java dynamic logic. In: Beckert B, Marché C
(eds) formal verification of object-oriented software—international conference, FoVeOOS 2010, Paris,
France, June 28–30, 2010, Revised Selected Papers, volume 6528 of Lecture Notes in Computer Science.
Springer, pp 138–152

34. Schmitt PH, UlbrichM,Weiß B (2010) Dynamic frames in java dynamic logic—formalization and proofs.
Technical Report 2010–2011, KIT—Karlsruher Institut für Tchnologie

35. Wang S, Cao Q, Mohan A, Hobor A (2019) Certifying graph-manipulating C programs via localizations
within data structures. PACMPL 3(OOPSLA):17:11–17:130

36. Xia L, Zakowski Y, He P, Hur C-K, Malecha G, Pierce BC, Zdancewic S (2020) Interaction trees:
representing recursive and impure programs in coq. PACMPL 4(POPL):51:1–51:32

37. YeKQ,GreenM,SanguansinN,BeringerL, PetcherA,AppelAW(2017)Verified correctness and security
of mbedTLS HMAC-DRBG. In: Proceedings of the 2017 ACM SIGSAC conference on computer and
communications security (CCS’17). ACM

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Abstraction and subsumption in modular verification of C programs
	Abstract
	1 Introduction
	2 Motivating example: managing piles
	3 Parameter-nameless function specifications
	4 Subsumption of function specifications
	5 Definitions of funspec subtyping
	6 The subsumption rules
	7 Intersection specifications
	8 Related work
	9 Conclusion
	Acknowledgements
	Appendix: Fully general funspec_sub
	References




