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Abstract. Modeling biological rhythms helps understand the complex princi-
ples behind the physical and psychological abnormalities of human bodies, to
plan life schedules, and avoid persisting fatigue and mood and sleep alterations
due to the desynchronization of those rhythms. The first step in modeling biolog-
ical rhythms is to identify their characteristics, such as cyclic periods, phase, and
amplitude. However, human rhythms are susceptible to external events, which
cause irregular fluctuations in waveforms and affect the characterization of each
rhythm. In this paper, we present our exploratory work towards developing a com-
putational framework for automated discovery and modeling of human rhythms.
We first identify cyclic periods in time series data using three different methods
and test their performance on both synthetic data and real fine-grained biolog-
ical data. We observe consistent periods are detected by all three methods. We
then model inner cycles within each period through identifying change points to
observe fluctuations in biological data that may inform the impact of external
events on human rhythms. The results provide initial insights into the design of a
computational framework for discovering and modeling human rhythms.
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1 Introduction

Biological rhythms created through periodic changes in the physiological functions and
living habits of many organisms are managed by biological clocks [1]. Similar to other
creatures, there is evident periodicity in various physiological and psychological ac-
tivities of human bodies, such as heartbeat, electroencephalogram (EEG), and female
menstruation [2,3]. Biological rhythms, however, are affected by external events such as
social obligations and work schedules. Persistent disruption of these cycles may result
in physical and mental health problems such as cardiovascular disease [4] and depres-
sion [5].

Understanding and modeling human rhythms can have profound impacts on the
health and well-being of individuals. The advancements of technology allow for lon-
gitudinal tracking of physiological and behavioral data using consumer-level devices
outside of the laboratory. As such, computational systems that are aware of human
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rhythms can help people in planning their life around their rhythms to achieve better
health and wellness.

The first step in understanding and modeling biological rhythms is to identify their
characteristics, such as cyclic periods, phases, and amplitude. However, so far, most
studies in modeling rhythms have focused on circadian rhythms that were introduced
by Halberg in the 1950s to denote the 24 hours of sleep-wake cycle [6]. Since then, nu-
merous procedures for the numerical analysis of circadian rhythms have been proposed
(See, e.g., Refinetti et al. for a summary [7]). Zielinski et al. (2014) developed an online
system that incorporated six algorithms to make an accurate estimate of the underlying
period of circadian data [8]. In the medical field, modeling of disruption in biobehav-
ioral rhythms in cancer patients was used to predict readmission risk after pancreatic
surgery [9]. In all of these studies, the assumption has been that an underlying 24-hour
cycle in data exists.

In this paper, we aim to advance the computational modeling of human rhythms
by 1) automatically discovering all possible periods of a human time series data and
2) building a hierarchical model to further identify the inner cycles of each period and
thereby observe possible fluctuations and disruptions in biological rhythms resulted
from external stimulus. We will first apply three well-known but fundamentally differ-
ent methods, namely Fast Fourier Transform (FFT), Chi-squared based periodogram,
and Cyclic Hidden Markov Models (CyHMMs) to detect periods in three datasets. The
first dataset is created artificially with known periods to test how well those three meth-
ods can detect periods in the data. The methods are then tested on a real-world dataset
containing heart rate and temperature data over 70 days as well as a dataset with data
collected from the E4 wearable device that consists of 16 days of fine-grained heart
rate (HR), heart rate variability (BVP), skin temperature, and galvanic skin response
(EDA). In the next step, we explore the inner variability of physiological data in each
cycle via adopting the Automatic Non-stationary Oscillatory Modelling (AutoNOM)
method that can model non-stationary time series to identify change points and achieve
piecewise fitting simultaneously [10]. Our framework can identify the known periods in
the synthetic dataset with small errors. In the two real-world datasets, HR, skin temper-
ature, BVP, and EDA are found to have a 24-hour circadian cycle and detected changing
points gathered around 6:40 am and 8:00 pm. Compared with current approaches, our
framework can model rhythms using different methods to provide insights into com-
monality and differences between those models. It can also inspect the signal series for
fluctuations and changes that are essential to human health and wellbeing. Overall, our
research makes the following contributions:

– We explore the feasibility of developing a computational framework for discovering
and modeling human rhythms from multiple sensor data streams. We investigate
the requrements of such framework to model the overall rhythms and to detect the
instantaneous changes in the rhythmic data.

– We evaluate different periodicity detection algorithms on one synthetic dataset and
two real-world physiological datasets and describe the application of changing
point detection technology to rhythm modeling.

In the following sections, we describe our approach and discuss the experimental
results.
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2 Related Work

Several studies have shown the impact of biological and behavioral rhythms on health
and wellbeing [11, 12]. Abdullah et al. demonstrated the circadian rhythm regularity
in bipolar disorder using data collected from smartphones [13]. Murnane et al. built
the connection between circadian rhythm models and phone usage and pointed out
overloaded phone usage in the late evening as a cause of low-quality sleep [14]. The
aforementioned studies have assumed the regularity of circadian rhythms and tried to
show the impact of people’s behavior (e.g., phone usage) on the sleep-wake cycle. Our
research goes beyond assuming known periodicity in data and uses computational mod-
eling to discover possible cycles (more or less than 24 hours).

Among the periodicity detection methods, Fast Fourier Transform (FFT) is the most
commonly used approach. FFT converts a time function into a frequency function. The
dominant frequency in the frequency function is selected as the period of rhythm [15].
Lomb-Scargle periodogram is another algorithm for cycle discovery based on Fourier
analysis and is mainly used for unequal distance data [16]. Saner et al. assessed blood
pressure and heart rate with Fourier analysis and found that cardiovascular rhythmicity
is related to obesity in children [17]. Chi-square periodogram uses Chi-square statis-
tics, has been applied to model the period of lobsters’ circadian rhythms to enhance
fishing efficiency [18]. Chi-square periodogram calculates the variance between-period
and within-period, and use �2 distribution to evaluate the significant level. Vukolic et
al. applied Chi-squared to model the circadian rhythms of blood pressure and heart rate
of mice carrying the muted gene Per2, and found the circadian clock gene Per2 control
cardiovascular rhythms [19]. Cyclic Hidden Markov Model (CyHMM) has also been
used for modeling cyclic time series data. CyHMM outputs the period’s length by in-
ferring the cyclic latent states of input time series [3]. Pierson et al. applied the cyHMM
to sleep time, steps, and calories burned and found that these features showed a weekly
cycle. All these statistical models could output the general periods of time series, but
they all lose the detailed information within each period at the same time and do not
capture the variation in the shape of sequence in each cycle [3].

Once the period is known, cyclic functions can be applied to the time series data
to model the rhythmicity. Cosinor is a standard method to model the amplitude and
phase of rhythms when the period is used as input. It uses a linear combination of co-
sine curves to fit time series data using least squares regression [20]. Doryab et al. used
Cosinor to extract rhythm features from cancer patients and to predict the readmission
probability using these features [9]. However, cosinor cannot fit the non-stationary time
series well. Changing point detection (CPD) helps model the time series within one
period; it can split the non-stationary time series into several stationary series pieces.
It can also identify the location of detected changing points. CPD has been used in
monitoring medical conditions. For example, applying CPD to heart rate (HR), elec-
trocardiogram (ECG), and electroencephalogram (EEG) has helped better diagnosis of
heart disease and understand brain activity [10, 21–24]. CPD has also been applied to
human activity recognition using data from smart home and mobile devices. The chang-
ing points in this context represent the transition of human activity [25–27]. Selection
criteria differ among CPD methods, and some methods are sensitive to the changes of
amplitude in the mean, variance, correlation, and spectral density. The cumulative sum
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(CUSUM) is the most familiar CPD algorithm. CUSUM tracks the shift of local mean,
and if the decrease or increase of the mean exceeds the threshold, one change will be
identified [28].

For modeling the variations in physiological data during each cycle, we adopt the
Automatic Non-stationary Oscillatory Modelling (AutoNOM) to model non-stationary
time series with a known period. AutoNOM identifies change points in each cycle and
achieves piecewise fitting [10] using sinusoidal regression models simultaneously. We
prefer the CPD technology used in the AutoNOM because it is more sensitive to the
change of frequencies of time series, and the AutoNOM can find the best sinusoidal
equations to fit the data in each segment [10]. The following section describes these
methods in detail.

3 Methods

The analysis procedure of physiological data in this paper can be divided into three
steps, shown in Figure 1. In the first step, the raw data is processed, cleaned, and miss-
ing values are imputed. In the second step, the period detection methods are applied to
each time series dataset to infer possible significant periods (p < 0.01). We choose three
different algorithms, including the FFT [15] based on the Fourier Transformation, the
Chi-squared periodogram [29] based on the chi-square statistic, and the CyHMMs [3]
based on the state transition. From this step, we choose common periods selected by
all three methods to be used for the final step in which the data in each period is mod-
eled via the AutoNOM method for detecting inner cycles and estimating their rhythmic
characteristics. Once a dataset is determined to exhibit rhythmicity, we can further ex-
tract the characteristics of the rhythm, including MESOR (the average value around the
variable oscillation), amplitude (half the difference between the peak and trough of the
wave), and phase (the time at which the peak of rhythm occurs). These features are
shown in Figure 2.

Fig. 1: Analysis pipeline for the physiological data

3.1 Periodicity Detection

Fast Fourier Transform (FFT) Fast Fourier transform is an algorithm that converts
a signal from the time domain to the frequency domain [15]. In this way, a periodic
time series can be expressed by the sum of its frequency components. The Fourier
periodogram obtained by the FFT encodes the spectral energy at a given frequency,
and the dominant frequency is the component with maximal frequency. The dominant
period is the reverse of the dominant frequency.
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Fig. 2: Rhythmic parameters to depict a periodic series [30]

Chi-squared Periodogram The Chi-squared Periodogram was developed from the
Enright Periodogram [31]. The Enright periodogram is based on the principle that the
variances of different segments of the time series are arranged in periodic order sequen-
tially. This process repeatedly divides the long data stream into different periods and
calculates a variability index for each period. For the significance test of each hypoth-
esis period, the Enright periodogram uses the F statistic to compare the between-class
and within-class variabilities, to test the null hypothesis of the equal class mean. The
Chi-square periodogram uses the �2 distribution instead of F distribution. Sokolove and
Bushell [32] proposed the index QP to calculate the significance of different frequen-
cies in time-series data. The stronger is the rhythmicity in a data set, the higher is the
value of QP . For a dataset with N values (i.e., Xi for i = 1 to N ), which can be broken
down into K sections of period P , the formula of QP could be defined as follows [33]:

QP =
KN

PP
h=1(Mh �M)2

PN
i=1(Xi �M)2

(1)

where Mh is the mean of P values under each time unit of the period length, and M is
the mean of all N values.

Cyclic Hidden Markov Models Cyclic Hidden Markov Models (CyHMMs) are a spe-
cial kind of Hidden Markov Models (HMMs) [34] for detecting and modeling cyclic
patterns. The input time series will be treated as the observation sequence, and a set of
cyclic latent states will be inferred for the observation sequence. The period of latent
states will be returned as the period of input time series. Although having the same
primary structure as the standard HMMs, CyHMMs differ from HMMs as they do not
allow the random transition between hidden states. They require that the transition be-
tween hidden states follows a specific order, and the next state of the final state is the
starting state, thus forming a closed-loop link to reflect the periodicity. In the CyHMMs,
the time spent at a particular stage follows the Poisson distribution, while the standard
HMMs have a Geometric distribution [3].
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3.2 Changing Point Detection in Cycles

As mentioned previously, once periodicity is detected in the time series data, we want to
explore the variation within each period to understand the potential impact of external
factors or fluctuations in each cycle. To choose a method for analyzing each time series,
we explore stationary and non-stationary time series methods. The theory and methods
for analyzing the stationary time series are relatively well-developed. For example, the
cosinor approach [20] fits data by a combination of cosine curves with or without poly-
nomial terms using the least-squares method. However, the cosinor does not apply to
non-stationary data, and when the waveform approximates squares, the working perfor-
mance is not excellent. Since most physiological signals are non-stationary, we need to
consider methods suitable for non-stationary time series [35].

As mentioned in the Related Work section, we use AutoNOM to identify change
points in each cycle using sinusoidal regression models. The model can be divided into
two sub-models: the segment model and the change point model. The rhythm time se-
ries y is segmented by k unknown change points by analyzing the frequency change
over time. If the frequency on both sides of a time point has a sudden change in the fre-
quency domain, this time point will be regarded as a substation. In each time segment,
AutoNOM measures the frequency !, amplitude �, and phase of the segment �. !, �,
and � are multidimensional vectors, and their dimension numbers are unknown. Before
using AutoNOM, we need to set the maximum number of change-points kmax and the
maximum number of frequencies on each segment mmax. These threshold setting will
transform the problem of modeling rhythm series into a finite state problem. The Au-
toNOM method will then select an optimal model from the model state space, which is
composed of models with a different number of change points and frequencies. The op-
timal model is the model with the maximum posterior probability, which is calculated
as follows [10]:

⇡(k,mk, sk, ✓k|y) =⇡(k|y)⇡(mk|k, y)⇡(sk|mk, k, y)

⇡(✓k|sk, k,mk, y),
(2)

where k is the number of unknown change-points, mk is the number of frequency com-
ponents in each time series segment, sk is the location of change-points, and ✓k is a
three-dimensional vector combined by the frequency !, amplitude � and phase � of
each segment.

To estimate the parameters k, mk, sk and ✓k, a reversible-jump MCMC (Markov
chain Monte Carlo) algorithm [36] is applied. The reversible-jump MCMC is an ex-
tended version of standard MCMC that provides a simulation of the posterior distribu-
tion listed above on spaces of varying dimensions [36]. Thus, the simulation is possible
even if the number of parameters in the model is unknown. This algorithm iterates be-
tween the segment model move and the change point model move according to its basic
structure.

Before applying the AutoNOM, the maximal number of change points k needs to
be determined. Although the fitting results will be better as the value of k increases, we
want to avoid setting the k too large, because when the value of k is large, minor irreg-
ular fluctuations in the time series can falsely identify the existence of change points.
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We use the mean average percentage error (MAPE) as a measure index to select the
AutoNOM model with different input k values. MAPE is a method used to calculate
the accuracy of curve fitting and is calculated as follows:

MAPE =
1

n

nX

i=1

|pi � ai|
ai

⇥ 100%, (3)

where ai is the actual value, pi is the estimated value on minute i and n is the number
of minutes for which the data is used.

4 Experiment

We use three different datasets in our experiment and process them in the following
way:

– Dataset 1 - A synthetic dataset with known periods of 24, 36, and 48 hours (Fig-
ure 3). The sequences are comprised of different sinusoidal signals with a prede-
fined frequency. We also add 3dB white noise to the dataset to simulate real condi-
tions.

– Dataset 2 - A real-world open-source dataset [37] containing 70 consecutive days of
heart rate and skin temperature collected in the one-minute interval as visualized in
Figure 4. The values assumed to be missing at random (MAR) account for 7.63% of
the whole dataset. We use the simple moving average (SMA) to impute the missing
values [38]. SMA replaces the missing values by averaging the non-missing values
within a rolling window without weights.

– Dataset 3 - A real-world dataset collected from Empatica E4 wristband, a medical-
grade physiological monitoring device [39], for over two weeks. The E4 device
monitors the blood volume pulse (BVP), the electrodermal activity (EDA), the heart
rate, and skin temperature in real-time with a sampling rate of 64Hz, 4Hz, 1Hz, and
4Hz respectively. We apply the same imputation method for processing data as in
the second dataset.

4.1 Periodicity Detection

As shown in Table 1, all three methods can detect the periods of the synthetic dataset
accurately with an error range between 0.09 and 0.36 hours. Among the three meth-
ods, the average error of FFT is the smallest, but the difference between FFT and the
other two methods is small. These results verify the reliability of the three periodicity
detection algorithms.

For the second dataset with a 70-day heart rate and temperature, the periodograms
outputted by FFT and Chi-square are shown in Figures 5 and 6. In the Fourier peri-
odogram, the period according to the dominant frequencies are around 24 and 12 hours.
As for the Chi-square periodogram, the most significant periods for heart rate and skin
temperature are 167.80 hours and 72.04 h, respectively. However, 168 h and 72 h are
both multiples of 12 and 24 h, and the Chi-square periodogram also shows significant
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Fig. 3: Visual inspection of the synthetic dataset

Fig. 4: Visual inspection of the open-source dataset with heart rate and skin temperature
data over 70 days

Synthetic Period Algorithm Estimated Error

24
FFT 23.91 0.09
Chi 23.89 0.11
CyHMMs 23.64 0.36

36
FFT 35.72 0.28
Chi 35.81 0.19
CyHMMs 35.69 0.31

48
FFT 47.84 0.16
Chi 47.79 0.21
CyHMMs 47.87 0.13

Table 1: The performance of three period estimation algorithms on a synthetic dataset.
The results from the synthetic dataset verify the reliability of the three periodicity de-
tection algorithms.

oscillations with a period of 24 hours. CyHMMs only infer a period of almost 24 hours
for both time series (23.94 h and 24.01 h). Therefore, we can confirm that both heart
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rate and skin temperature have 24 h rhythms, which is consistent with the circadian
cycle. Table 2 summarizes the detected results by the three methods.

Fig. 5: Fourier peridogram derived from heart rate, and skin temperature for the second
dataset. The dashed line indicates the 0.05 level of significance for the periodogram.
Dominant frequency correspond to 24 and 12 h for both heart rate and skin temperature.

Fig. 6: Chi-square periodograms derived from heart rate, and skin temperature for the
second dataset. Red straight lines indicate the significance level of p = 0.01. Both heart
rate and skin temperature in Chi-square periodogram exhibits a 24 h oscillation.

Compared to dataset 2, the E4 dataset contains new types of data, namely BVP
and EDA, and the data is more fine-grained and clean. In terms of heart rate and skin
temperature, FFT and Chi-square periodogram can display a period of 24 h, but the
detected period is less significant than dataset 2, which may be a result of shorter time
series (about 2 weeks only) and fine-grained high-frequency sampling rates that result
in more fluctuations in the data.

In contrast to heart rate and skin temperature, the BVP and EDA show less signif-
icant periodic patterns. In Fig 7, BVP has a 24 h period, and EDA is detected to have
a 25.6 h period more significant than the 24 h. In Fig 8, the Chi-square periodogram
recognizes that the period of BVP is 23.95 h, which is close to the result derived from
the FFT. The rhythm period of EDA is 50.12 h, but in the Chi-square periodogram of
EDA, there also exists a peak QP value above the significant level at around 25 hours,
and this value corresponds to the 25.6 h in the FFT periodogram. The detected period
of EDA by the CyHMMs is also 24.85 hours. As shown in Table 3, the results from the
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Physiological Data Algorithm Detected Periods

Heart Rate
FFT 23.98, 11.99, 279.83, 27.98
Chi 167.80, 24.00, 12.00
CyHMMs 23.94

Skin Temperature
FFT 23.98, 11.99, 1679, 419.75
Chi 72.04, 24.00, 12.00
CyHMMs 24.01

Table 2: Periods of heart rate and skin temperature detected by FFT, Chi-square peri-
odogram, and CyHMMs. Heart rate and skin temperature have obvious cycle character-
istics of 24 h and 12 h.

three methods reflect that EDA has a more extended period (around 25 hours) than the
other three physiological signals. Besides 24 hours, from Fig 7, the period of 12 h is
also significant in the Chi-square periodogram of EDA, heart rate and skin temperature,
and the FFT periodogram of heart rate.

Fig. 7: Fourier periodogram derived from Empatica E4 wristbant dataset. The dashed
line indicates the 0.05 level of significance for the periodogram. Dominant frequency
in BVP, heart rate and skin temperature corresponds to 24 h, or the integral multiple of
24 h. Period corresponding to main frequency in EDA is 25.6 h instead of 24 h. (384 is
the total length of the dataset)
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Fig. 8: Chi-square periodograms derived from Empatica E4 wristbant dataset. Red
straight lines indicate the significance level of p = 0.01. Detected period in BVP is
23.95 h. Detected period in EDA is 50.12, and there is a a peak in the periodogram
at around 25h. For heart rate and skin temperature, the periodograms display a 24 h
oscillation.

Physiological Data Algorithm Detected Periods

BVP
FFT 192.00, 384.00, 128.00, 24.00
Chi 23.95
CyHMMs 23.97

EDA
FFT 384.00, 25.60, 24.00, 16.69
Chi 50.12, 12.00, 24.00
CyHMMs 24.85

Heart Rate
FFT 24.00, 12.00, 38.40, 11.63
Chi 23.97, 12.00
CyHMMs 24.00

Skin Temperature
FFT 384.00, 24.00, 192.00, 128.00
Chi 23.59, 12.00
CyHMM 23.83

Table 3: Periods of BVP, EDA, heart rate, and skin temperature detected by FFT, Chi-
square periodogram, and CyHMMs. BVP, heart rate, and skin temperature own 24 h
cycle, but the periodicity is not as evident as that of heart rate and skin temperature.
The EDA detected by the three algorithms is about one hour longer than that of BVP,
heart, and skin temperature.

4.2 Changing Point Detection in Cycles

As shown in previous sections, the FFT, chi-square periodogram, and CyHMMs have
been validated in dataset 1 (synthetic data), and they are all able to identify a 24-hour
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rhythm period for heart rate and skin temperature in datasets 2 and 3. We continue our
experiment on all three datasets to further detect the inner cycle and change points with
the AutoNOM method within each period.

Dataset 1 is generated using the combination of constant frequencies and noise,
and the AutoNOM identify changing points by perceiving changes in frequency, so it is
reasonable that no change points have been detected in Fig 9. From another perspective,
the AutoNOM has a strong anti-noise ability when searching for change points.

Fig. 9: The analysis of dataset 1 using the AutoNOM. The blue lines are the real data,
and the red lines depict the estimated values from the AutoNOM. No changing points
have been detected by the AutoNOM, which is expected as there are no abrupt fre-
quency changes in the synthetic dataset.

To demonstrate the performance of AutoNOM in detecting changing points in dataset
2, We choose one day from all 70 days in the dataset and use the AutoNOM to fit the
one day’s data. We choose k equal to 4 as the optimal value based on an empirical obser-
vation: as shown in Table 4, when the value of k changes from 3 to 4, the MAPE value
drops significantly, and when the value of k changes from 4 to 5, the change is minor.
Figure 10 demonstrates similar distributions of the heart rate and the skin temperature
change points where the two most frequent change points are located at around the
400th minute (6:40 am) and 1200th minute (8:00 pm) for both distributions. Illustrated
in Figure 11, the skin temperature remains high at the start and end of each day, and it
has a trough in the middle. As for the heart rate, it keeps low at the beginning of each day
and goes through two combinations of up and down in turn and returns to a lower value
at the end of the day. Between the two most frequent change points, the amplitudes and
frequencies of the oscillation increases. Based on previous research, the body tempera-
ture of the circadian rhythm is under the control of the suprachiasmatic nucleus (SCN),
which receives the input from photosensitive cells and synchronize body temperature
and day and night alternation [40]. The temperature will reach its peak in the late after-
noon and drop to its trough at the end of sleep [41]. In Figure 11, an abrupt decrease
in skin temperature at the second changing point (about 7:00 am) and a stable increase
between the second (about 7:00 am) and third changing point (about 5:00 pm) can be
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observed, which is consistent with previous studies. However, the difference is that the
peak of skin temperature occurs in the late evening. Compared with body temperature,
heart rate is less susceptible to the influence of the external environment [42, 43]. The
heart rate is more dependent on physical activity, and the heart rate during sleep is lower
than during the wake time [44]. This view can explain why the heart rate in Figure 11
is lower on both sides of the day. The increase in heart rate in the two segments may be
related to physical activity.

k=3 k=4 k=5

Heart Rate 4.54 3.29 3.14
Skin Temp 3.10 1.92 1.73

Table 4: The MAPE values of the AutoNOM method with different maximal number
of change points k.

(a) Heart Rate (b) Skin Temperature
Fig. 10: The distribution of change points in heart rate per day for 70 days. The x-axis
represents the time of day in minutes. The change points are concentrated in the 400Th
and 1200Th minutes of each day. Compared with the heart rate, the temperature has a
more obvious tendency of the concentrated distribution. This change in heart rate and
skin temperature is similar to the pattern of rest activity alternating between daytime
activity and night rest.

We repeated the same process for dataset 3 and did the same analysis process on
one random day in the data. The grey vertical lines in Figure 12 illustrates the changing
points detected by the AutoNOM for heart rate, skin temperature, EDA, and BVP on
the chosen day. The two common changing points for all four signals occur between the
400th minute (6:40 am) and 600th minute (10:00 am) and at around 1200th minute (8:00
pm), which are similar to the observation from dataset 2. In each segmentation between
two changing points, the estimated curve output from the AutoNOM could fit the raw
data well except for BVP. BVP reflects the relative change in blood volume caused
by the heart contracting, so there will be many instantaneous and massive changes in
BVP signals, which cause the AutoNOM not to work well. The daily trend of heart
rate and skin temperature shown in Figure 11 and 12 are different, which could be
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caused by individual differences (e.g., lifestyle, daily schedule, and personality traits),
climate, and even accuracy of wearable devices. We observe a seasonal effect in the
skin temperature between the two datasets. The skin temperature in Figure 12 shows
an apparent decrease between the second and third changing points, whereas the skin
temperature in Figure 11 shows an increase at the same time. Checking the timing of
data collection for these datasets, we found that dataset 2 was collected during spring,
whereas dataset 3 was collected during the early winter. One interesting observation
from dataset 3 is that there is one peak for heart rate during the first and second changing
point, which is inconsistent with what we mentioned above. Peters et al. have found
that the accelerated heart rate during sleep may be caused by uncomfortable sleeping
posture [45]. When in an uncomfortable posture, the volume of intake oxygen will
decrease, so the heart will increase the beat rate to demand oxygen supply, which is
similar to what happens during strenuous exercise [46].

Fig. 11: The analysis of heart rate and skin temperature in dataset 2 for one day using
the AutoNOM. The blue lines are the real data, and the red lines depict the estimated
values. The gray vertical lines show the estimated location of the change points. Three
changing points occur at around 400th, 1000th, and 1200th in both heart rate and skin
temperature. The heart rate increases in the second and fourth segments, while the re-
maining three segments keep low. The skin temperature maintains a high value at the
beginning and end of the day, and there are a significant decrease and rebound in the
middle.

Empatica E4 used in the dataset 3 is a medical-grade device that can collect accurate
physiological data, but E4 can only work up to 40 hours and needs to be charged again.
E4 cannot work when charging, and this process introduces missing values, which will
cause unnecessary changing points. For example, the time points when E4 stops and
starts working will be recognized as changing points. Due to the above uncontrollable
factor, we do not provide a figure similar to Figure 10 for dataset 3.
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Fig. 12: The analysis of heart rate, skin temperature, EDA, and BVP in dataset 3 for
one day using the AutoNOM. The blue lines are the real data, and the red lines depict
the estimated values from the AutoNOM.The gray vertical lines show the estimated
location of the change points. The changing point between 400th and 600th minute
is pretty close in the four signals. Heart rate, skin temperature, and EDA all have a
changing point approximately at the 1200th minute. The heart rate fluctuates greatly at
both ends, and the peak occurs at the beginning of the day. Similar to Figure 11, the
trough of skin temperature appears in the middle. Except at the end of the day, EDA
has little fluctuation. BVP declines in the second segment and has many instantaneous
changes.

5 Implications and Conclusion

Our work explored the feasibility of designing a computational framework for auto-
mated discovery and modeling of human rhythms using data collected from consumer
devices in the wild. We used three periodicity detection algorithms to examine their
commonality in detecting periods in time series data without ground truth. The fact that
those different methodologies identified the same periodic patterns in data implies the
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feasibility of incorporating those methods for periodicity detection in the framework to
discover significant periods. FFT and Chi-Square periodograms output several signif-
icant periods compared to CyHMMs that output only the most significant one. Those
periods indicate the existence of additional cycles in the same time series that are es-
sential to discover and use in a rhythm-aware system for, e.g., planning. For the rhythm
detection algorithms, the p-values of detected periods must exceed at a given signifi-
cance level (e.g., the horizontal dash line in Figure 5 and 7, and the red line in Figure 6
and 8). If not, the input series will be assumed to have no periodicity. The periodicity
detection methods on our three datasets identified multiple significant cycles in the bio-
logical data, including the presumed circadian 24 h cycle which confirms the existence
of cyclic biobehaviors in humans.

We further explored the estimation of the change points in each period and observed
the possibility of detecting inner cycles and fluctuations caused by external stimulus.
This feature is dependent on the known period. As such, if the period detection algo-
rithms cannot reach a consensus, our framework will be in a dilemma. Another short-
coming is that the maximum number of changing points k needs to be tuned manually,
which may mean a repetition of the process as the dataset is updated with new data.

While our exploratory study provides enough grounds for the development of a
computational framework for modeling human rhythms from consumer-level wearable
devices, we are curious to test these methods on behavioral data alone and in combina-
tion with physiological data. The modeling may reveal the causal relationship between
behavioral and biological rhythms and whether they reflect people’s mental and physi-
cal states. If so, we may be able to integrate our framework into health and well-being
applications to provide interventions in the daily life of individuals according to their
biological rhythms.
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2. JÃ¼rgen ASCHOFF, Ursula GERECKE, and RÃ¼tger WEVER. Desynchronization of
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