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Abstract

Continuous passive sensing of daily behavior from mobile devices has the potential to identify behavioral patterns associated
with different aspects of human characteristics. This paper presents novel analytic approaches to extract and understand these
behavioral patterns and their impact on predicting adaptive and maladaptive personality traits. Our machine learning analysis
extends previous research by showing that both adaptive and maladaptive traits can be predicted from passively sensed behavior
providing initial evidence for the utility of this type of data to study personality and its pathology. The analysis also provides
insights into the underlying behavior patterns that link adaptive and maladaptive variants consistent with contemporary models of

personality pathology.
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1. Introduction

Personality refers to an individual’s typical patterns of mo-
tivations, thoughts, feelings, and behavior that serve the func-
tional roles of adaptively navigating the environment [18, 71].
As such, personality pathology (i.e., personality disorder) refers
to typical patterns of motivations, thoughts, feelings, and be-
havior that are persistently and pervasively maladaptive, such
that they result in dysfunctional patterns of day-to-day behav-
ior [49]. These maladaptive patterns of behavior are thought
to account for associations between personality pathology and
poor psychosocial and physical health outcomes [20, 47, 69].
Clinical psychology and psychiatry are undergoing a paradigm
shift from classifying personality pathology using a finite set
of discrete categorical diagnoses to continuously distributed di-
mensional traits, and growing evidence suggests traits are more
valid, reliable, and clinically useful [31]. Despite these recent
advances, little is known about the specific, everyday, behav-
ioral expressions of pathological traits that may contribute to
poor psychosocial functioning and outcomes.

Most research on dimensional models has relied on cross-
sectional, global self-report data, which are not well-suited to
measure the dynamic moment-to-moment processes underlying
personality and its pathology [26, 70]. Although the use of eco-
logical momentary assessment (EMA) and intensive longitudi-
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nal studies to collect data from people in their naturalistic set-
tings has remedied some of these issues, heavy reliance on self
reports, which can be prone to bias and lack of engagement, can
affect the quality and validity of the collected data [61]. Passive
sensing via a participant’s smartphone or wearable devices has
the potential to address these concerns through continuous and
contextualized measures of behavior [42]). Smartphone sens-
ing combined with machine learning has been used to predict
personality traits from smartphone devices [29]. However, to
our knowledge, no existing research has investigated the fea-
sibility of passive sensing to predict adaptive and maladaptive
personality traits and to extract the shared and unique behav-
ioral patterns associated with each of them.

The current study therefore proposes to leverage a combina-
tion of passive sensing, machine learning, and data mining al-
gorithms to identify patterns of behavior across the main spec-
tra of adaptive and maladaptive personality traits. By filling
in the methodological gaps of previous work, and introducing
novel analytic approaches, we aim to generate new hypotheses
about the everyday behavior patterns that maintain (or prevent)
problems, as well as demonstrate the opportunities and value of
these methods to enrich existing empirical models of personal-
ity pathology.
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2. Background and Related Work

2.1. Adaptive vs. Maladaptive Personality Traits

Traditional psychiatric classifications, as reflected in the Amer-

ican Psychiatric Associations’ Diagnostic and Statistical Man-
ual for Mental Disorders [2] and the World Health Organiza-
tion’s International Classification of Disease (ICD), have con-
ceptualized personality pathology categorically, under diagnoses
such as borderline personality disorder, schizoid personality dis-
order, and narcissistic personality disorder. Each diagnosis de-
scribes a “type” that is based on meeting a certain number of
criteria from a checklist of symptoms. However, categorical
personality disorder diagnoses have critical weaknesses, includ-
ing poor validity, low reliability, and limited clinical utility [60,
68]. Such issues have prompted a shift towards dimensional
trait models of personality pathology that outperform categori-
cal models psychometrically and may have greater clinical util-
ity [36].

The dimensional approach is further supported by empir-
ical and conceptual parallels between these maladaptive traits
and the trait dimensions that have emerged from over a century
of studying adaptive personality structure [40, 72]. Indeed, for
each of the big five traits, personality’s most prominent model,
maladaptive traits have been identified that can be understood
to cover the same behavioral content, albeit often keyed to-
wards the opposite direction. See Figure 1 for elaboration of
these traits and their descriptions. For example, whereas adap-
tive personality research finds Extraversion, which manifests
in sociability, assertiveness, positive emotions, and energy, the
maladaptive variant is Detachment which manifests in social
withdrawal, passivity, lack of positive emotions, and lethargy.
Correspondence between these sets of traits suggest that instead
of maladaptive personality having discrete principles and prop-
erties that differentiate it from normal range personality (i.e.,
being a separate category), the two operate along shared un-
derlying dimensions or spectra. In other words, while there is a
continuum of functioning from adaptive to maladaptive, the two
share the same fundamental traits. In recent years, variations on
trait-based models of personality disorder classification and di-
agnosis have been included in the DSM-5 (provisionally, as an
alternative approach in need of more study [67]) and the ICD-
11 (officially [45]). In fact, it has been argued that maladaptive
trait models can serve as useful structures for organizing all of
psychopathology [35].

2.2. Assessing Personality Traits from Self Reports

What is thought to link an individual’s personality to their
level of psychosocial functioning and health are the dynamic
and contextualized patterns of behavior they engage in. For ex-
ample, a person who scores high on trait Detachment may be
less motivated to socialize, so they may contact fewer people or
go out in public less during the day than most people, which in
turn contributes to poor relationships and low mood. Yet, most
research on dimensional models has relied on cross-sectional,
global self-report data, which are not well-suited to measure
the dynamic moment-to-moment processes underlying person-
ality and its pathology [26, 70]. Cross-sectional data is unable
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Figure 1: Descriptions of corresponding adaptive and maladaptive traits.

to capture the temporal aspect of maladaptive behaviors that
unfold from moment-to-moment. To a large extent, issues with
cross-sectional data can be remedied with intensive longitudi-
nal study designs, such as ecological momentary assessment
(EMA). EMA (sometimes referred to as experience sampling
methodology or ambulatory assessment) can be used to assess
people intensively and repeatedly in their naturalistic settings,
thereby increasing ecological validity, reducing biases of ret-
rospection, and capturing multiple points along an unfolding
dynamic process. Each of these address the limitations of tradi-
tional global self-report scales. However, EMA typically uses
self-report data which relies on the person being conscious of
the behaviour and willing to report it-but many of the maladap-
tive patterns people engage in may be outside of awareness [11].

2.3. Assessing Personality Traits from Passively Sensed Behav-
ior

Because self-report EMA study designs require participants
to fill out multiple surveys per day or week, the burden to par-
ticipants’ in terms of time and effort limits the number of data
points that can feasibly be collected throughout the day [61].
Passive sensing, or automatic data collection via a participant’s
smartphone or other device, is a methodological approach that
has the potential to address these concerns [39]. It can pro-
vide continuous, contextualized, temporally sensitive, and di-
rect measures of behavior (not reliant on participant report).
Such an approach collects personality relevant information like
frequency of texting and phone calls, average time spent in each
location, and number of bluetooth devices scanned, which can
be aggregated into higher order variables related to psycholog-
ical constructs [22, 42, 66]. These nearly unbroken streams of
high-resolution data on what people actually do during the day
(not just what they are aware of) have the potential to offer new
insights into maladaptive patterns linked to personality pathol-
ogy.

One challenge associated with passive sensing, is that the
type of data it produces, characterized by large numbers of vari-
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ables, often overlapping, with unknown associations with be-
havioral outcomes, is not well suited to the statistical models
traditionally applied in psychology research (i.e., mostly based
on the general linear model). Such models often have a core
assumption of relatively modest associations, can practically
only handle a few variables, and assume a linear relationship
between traits and behaviors that is often not met statistically or
expected theoretically. In contrast machine learning has a num-
ber of tools available that can address these concerns. Decision-
tree based regression algorithms such as XGBoost and random
forest overcome the limitations of traditional analyses [9, 13].
Passive-sensing results in potentially dozens of highly corre-
lated features. Because decision tree models do not make the
same assumptions of independence, they are better suited to this
type of question [9, 41]. Additionally the quantity of features
derived from passive sensing cannot reasonably be included in
traditional statistical analyses, especially since the number of
features can often exceed the number of observations [57]. De-
cision trees can account for correlations among vast quantities
of variables to identify predictive behaviors, and are also re-
ported to be more stable than a typical step-wise approach used
for variable selection in traditional analyses [41, 57]. Finally
random forests are non-parametric and can be used to detect
complex, non-linear associations [9, 41]. Machine learning can
also be used to explore certain combinations of passive sensor
features that are particularly predictive of certain trait levels.
Characteristic combinations of daily behaviors are undetectable
with covariance-based models in psychology or typical “black
box” classification algorithms, but these combinations may re-
veal more nuanced patterns that contribute to a person’s health
and well-being.

Prior research provides initial evidence that passive sens-
ing can provide meaningful information about individual dif-
ferences in adaptive and maladaptive functioning. Studies have
shown that attributes and events related to categorical DSM di-
agnoses (e.g., depression, psychotic episodes [6, 10, 48], and
adaptive personality traits [1, 5, 15, 28, 29, 43, 56, 52] can
be predicted from smartphone sensor, although these associa-
tions have been modest in size. Some machine learning meth-
ods have been used in previous research to predict personal-
ity including support vector classifiers, regularized regression
models, and decision tree algorithms, but our study is the first
to our knowledge to apply association mining to identify fea-
ture combinations linked to personality traits. A few studies
have investigated associations between heart rate measured by
wearable devices and aspects of personality like emotional re-
sponses [23, 46, 17], but none have examined how personal-
ity traits relate to ambulatory heart rate. Given the transition
towards conceptualizing personality pathology as dimensional
variants of adaptive personality traits, linking smartphone sen-
sor features to empirically-derived adaptive and maladaptive
trait models has the potential to deepen our understanding of
how personality shapes psychosocial functioning and important
outcomes.

3. Methods

To explore the potential of passive sensing to reveal the dy-
namics of personality pathology, we designed and employed a
series of analytical methods, including prediction, correlation,
and association rule mining. These methods allow us to 1) iden-
tify and rank behavioral features related to each personality di-
mension and 2) measure the intensity of the behavioral features
associated with those dimensions. The following sections first
provide an overview of our data processing pipeline followed
by a description of the analysis methods.

3.1. Data Processing

3.1.1. Feature Extraction

To extract behavioral features from raw sensor data, we first
divided each data stream into daily intervals. We aggregated
the raw data and extracted different statistical measures such
as minimum, maximum, mean, standard deviation as well as
more complex behavioral features such as movement patterns
and type, and duration of activities. We used RAPIDS, an open-
source framework for extracting behavioral features from mo-
bile and wearable devices [64]. Details of the extracted features
are documented in [21].

3.1.2. Handling missing values

Datasets gathered from mobile sensor devices often suffer
from a significant fraction of missing data due to issues such
as poor communication, power depletion, and hardware failure.
The missing rate across all features in the dataset we collected
is 58.2%. To handle the missing data, we took a two-step ap-
proach. First, if all sensor data from a participant on a certain
day was missing, we deleted the participant’s data for that day.
Then, we deleted all participants with less than one week of
data. We then removed features with more than 60% missing
values. This percentage was chosen based on the average pro-
portion of missing values among all feature columns. We used
the Multiple Imputation by Chained Equations (MICE) to im-
pute the rest of the missing values. MICE creates multiple im-
putations, as opposed to single imputations, thus accounting for
the statistical uncertainty in the missing values. This reduces
the imputation bias associated with large blocks of missing val-
ues [50]. In addition, the flexibility of the chained equations
approach allows for handling multiple types of variables (e.g.,
continuous, binary, unordered, and ordered categorical data) si-
multaneously [53]. MICE can only work under the assumption
that the data are missing at random (MAR) or the more strin-
gent missing completely at random (MCAR). We believe that
the MCAR assumption fits our data because sensor readings
can fail randomly due to many different and non-systematic
factors, including network error, sensor faulty, phone battery,
etc [7]. We imputed the missing data multiple times using sin-
gle imputation technologies, which resulted in multiple com-
pleted datasets. We then applied machine learning analysis on
each completed dataset and pooled the final results by averag-
ing the estimates of each model, computing the total variance
over the repeated analyses and estimating the average error.
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Figure 2: The leave-one-person-out cross-validation process to build machine learning models and select and rank features.

3.2. Analysis Pipeline

To investigate passive sensing capabilities in predicting adap-
tive and maladaptive traits, we developed an analysis pipeline
including machine learning, feature ranking, and association
rule mining.

3.2.1. Machine learning

We used adaptive and maladaptive trait measures from the
self-reports as ground truth for performance analysis of the ma-
chine learning algorithms. We used the Random Forest (RF)
and XGBoost (XGB) meta-algorithms because they are capable
of handling the continuous personality trait values. Both meth-
ods use regression trees as base learners, but they have different
strategies to prevent overfitting and performance improvement.
Random Forest uses the Bagging (Bootstrap Aggregation) to re-
duce performance variance by first creating subsamples of the
training set and then averaging the model performance resulted
from each subsample [8, 54]. RF has a certain degree of ran-
domness, which helps avoid overfitting and improves general-
izability relative to a single tree model. XGboost, on the other
hand, uses an iterative learning strategy called Boosting that
weighs the samples based on the prediction results of the pre-
vious iteration [13]. The error is reduced in each iteration by
correcting the misclassified samples from previous iterations.
If the data set is small, over-fitting is prone to occur with XG-
Boost. We used these two complementary models to reduce
prediction errors and to build models that support a stable hy-
pothesis generation process for further analysis. Both meth-
ods output feature importance as part of the model building
process. In a nested cross-validation process, we selected the
highly ranked features in each iteration and used them to iden-
tify the final set of behavioral features that distinguish person-
ality traits.

3.2.2. Feature selection

The large number of extracted features compared to the rel-
atively small number of participants in our dataset required di-
mensionality reduction through feature selection. Qur feature

selection proceeded in two steps. First, we identified redundant
features by calculating the Pearson correlation between all fea-
ture pairs. If there is a high correlation between two features,
the two features are more likely to be linearly dependent, and
they will have nearly the same effect on the dependent variable.
Because of this, in the second step, we kept the feature that
correlated more strongly with the dependent variable (adaptive
and maladaptive traits) and dropped the feature with the lower
correlation.

3.2.3. Validation

We used leave-one-person-out cross-validation (LOOCY)
on our dataset to evaluate the power of sensor features to pre-
dict personality traits [65]. LOOCYV is a specific type of k-fold
cross-validation, where the number of folds is equal to the num-
ber of participants on our dataset. In each iteration, data from n-
1 participants is used for training, and the model is tested on the
nth participant. LOOCYV is a robust way to test the generaliz-
ability of a model that contains participant-level data. However,
LOOQOCV is also the most computationally expensive, especially
given that the data imputation and feature selection process is

within the cycle of LOOCV [34].

3.2.4. Performance Measures

To measure the performance of the models, we used the
mean squared error (MSE) and the mean absolute percentage
error (MAPE), both of which calculate the average distance be-
tween the predicted and observed values in the data [62]. MSE
is the average of the squared difference between the predicted
value and the observed value, MAPE is the average of the ab-
solute percentage between the predicted value and the observed
value. However, MSE is scale-dependent, and MAPE is scale-
independent. Although personality traits were rated on a scale
from O to 4, the observed distribution of trait levels was not uni-
form across traits as shown in Figure 5. We, therefore, used
both measures to give a more accurate picture of the prediction
performance. While MSE represents the overall variance in the
estimator’s measures, MAPE shows the relative variance of the
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estimator measures compared to data samples. To calculate the
overall performance, we averaged the MSE and MAPE results
from the LOOCYV process.

3.2.5. Feature Ranking

Each iteration in the LOOCYV process assigns an importance
value to each feature in the training process. A higher impor-
tance value for a feature indicates a larger contribution to the
prediction process. We logged these values during training and
aggregated the overall ranks of each feature at the end of the
process. Sensor features were ranked according to their fre-
quency of being selected as well as their averaged importance
across rounds in the LOOCV. For each training algorithm (RF
or XGB), we considered features with frequency and impor-
tance greater than the median to be high ranked features se-
lected by that algorithm. We then selected the features that
are common across both algorithms. Those features were then
ranked according to the following formulas:

Flmp;) = {1 Y Impi>0; (1

0 otherwise.

&\(Imprr, SN fdmpre)+Impxcp XY fUmpxcs,))
RS =Z
i=1 N
(2)
where Imp is the importance value of the sensor feature,
and N is the number of iteration in the LOOCYV, which equals

the number of participants.

3.2.6. Association Rules Mining

To take another approach to identify behavioral patterns as-
sociated with personality traits, we applied the Apriori, a well-
known frequency-based method for analyzing transactional data
and producing association rules that explain the frequency (sup-
port) and significance (confidence) of the observed patterns [30,
32]. In the association rules analysis, a collection of one or
more items is called an itemset. If an itemset contains k items,
it is called a k-itemset. Our analysis used the dataset contain-
ing participant’s data and the frequently selected features in an
iterative process to extract the 1 to k-itemsets. Since Apriori
requires discrete data, we categorized the features and person-
ality trait values into three ranges of low, moderate, and high.
The sensor features were normalized into the 0 and 1 range and
discretized into low (0 ~ 0.25), moderate (0.25 ~ 0.75), and
high (0.75 ~ 1). Personality traits ranged from 0 to 4 and were
discretized into low (0 ~ 1), moderate (1 ~ 3), and high (3 ~
4). The distribution of participants in each group is shown in
Figure 4. Each feature with its corresponding levels was then
entered as items into the frequent item-set mining step of the
Apriori algorithm. This step generates itemsets, including com-
binations of features and the relative frequency they occur to-
gether on the same day. For example, a 2-itemset can contain
low location entropy and high frequent outgoing calls features
that appear together 15 times (i.e., days) in the entire dataset. In
the next step, Apriori generated a set of association rules from
those frequent itemsets. An association between X and Y (X —

Y) exists if items in X and Y frequently appear together. Sup-
port is the proportion of data samples that contain both X and
Y, while confidence is the proportion of samples containing X
that also contain Y [27]. A rule must achieve a minimum level
of support and confidence to be considered significant. Figure 3
shows our approach in using Apriori to extract frequent behav-
ior patterns from highly ranked features.

4. Data collection

4.1. Participants and Procedures

Community members were recruited through posted flyers
for a study of personality, daily stress, and social interactions.
For inclusion, participants had to be between the ages of 18 and
40 and were not currently receiving treatment for psychosis or a
psychotic disorder. Preliminary screening was used to recruit a
gender-balanced sample and to ensure adequate representation
of a range of personality pathology and interpersonal problems.
The sample was also selected to balance individuals who had
received recent mental health treatment within the past year
with those who had not. Individuals were pre-screened using
items from the Inventory of Interpersonal Problems - Personal-
ity Disorder Scales [44] and were recruited in an approximately
1-1-1 representation of low, moderate, and high levels of in-
terpersonal difficulties within gender, treatment status, and the
overall sample. For this study, we only analyzed a subset of
participants that had smartphone sensor data.

The total sample size for our analyses was 128. Partici-
pants were mostly white (78%; 9% Asian; 9% Black/African-
American), roughly balanced on gender (54% female), with an
average age of 27.7 (SD = 6.6). Most participants had received
mental health treatment in the past (23%) or were currently re-
ceiving treatment (37%).

Participation involved completing a battery of baseline as-
sessments in an initial laboratory session followed by a 14-day
ambulatory assessment (AA) protocol including self-reports and
passive sensor data collection. Participants received $50 for
the baseline session. Those who answered 90% or greater of
the surveys during the AA protocol earned an additional $160.
This amount was prorated by week for those who completed
less than 90% of the surveys overall. Participation was also
incentivized with random drawings for prizes, with chance of
winning proportionally tied to rate of participation.

4.2. Self-Report Measures

Self-report measures of adaptive and maladaptive traits were
completed during the initial laboratory session. During this
session, participants were also provided instruction from a re-
search assistant regarding the AA procedures and the required
smartphone applications were installed on their personal An-
droid or 10S smartphone. Smartphone sensor data was col-
lected using an application called AWARE described in the next
section. Because the focus of this study is on predicting adap-
tive traits from passive sensing, self-report AA surveys were
not used in the current study.
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Figure 5: Density plot displays the distribution of the adaptive and maladaptive
values of all participants. Each adaptive and maladaptive trait ranges from 0 to
4.

4.2.1. Personality traits

Personality traits were assessed using the self-report Inter-
national Personality Item Pool - NEO-120 [33], which is a 120-
item inventory designed to map onto the widely used NEO-
Personality Inventory-Revised [16] traits in an abbreviated and
open-source format. For each item, participants rated the extent
to which a characteristic applies to them (e.g., “I am someone
who is outgoing”’) on a Likert scale from “Very Inaccurate” (0)
to “Very Accurate” (4). The IPIP-NEO-120 was scored to pro-
vide a score of the five trait domains of Extraversion, Agree-

ableness, Conscientiousness, Emotional Stability, and Open-
ness. Reliability for the trait scales in was high (mean McDon-
ald’s Omega = .88; range = .84 ~ .91).

4.2.2. Maladaptive traits

Maladaptive traits were assessed using the Comprehensive
Assessment of Traits Relevant to Personality Disorder (CAT-
PD; [55]). The CAT-PD is a 216-item self-report inventory,
which asks participants to describe themselves how they be-
have in general compared to others (e.g., “I get angry easily”).
Items are rated on a Likert scale (0) “Very Untrue of Me” to
(4) “Very True of Me.” The CAT-PD can be used to calcu-
late the five higher-order maladaptive trait domains that map
on to the big-five traits [72]). Specifically, these are Antago-
nism (maladaptive low Agreeableness), Detachment (maladap-
tive low Extraversion), Disinhibition (maladaptive low Consci-
entiousness), Negative Affectivity (maladaptive low Emotional
Stability), and Psychoticism (maladaptive Openness). We cal-
culated these higher-order domains by averaging lower-order
facet scales associated with each domain. Reliability for the
trait scales was good (mean McDonald’s Omega = .92; range =
90 ~ 95).

4.3. Descriptive Statistics

Density distributions of self-reported personality trait lev-
els are shown in Figure 5. Overall, participants reported levels
of adaptive traits above the midpoint of the scale (M = 2.63)
and levels of maladaptive traits below the midpoint (M = 1.25).
These distributions show that there was considerable variance
between people representing a wide range of functioning.

Consistent with the broader literature showing the corre-
spondence between adaptive and maladaptive traits, the strongest
bivariate correlations were between the expected constructs (Fig-
ure 6). Agreeableness, Extraversion, Conscientiousness, and
Emotional Stability were strongly negatively correlated with

|




|




their maladaptive counterparts of Antagonism, Detachment, Dis-
inhibition, and Negative Affectivity respectively. Psychoticism
and Openness were positively correlated in line with previous
research suggesting these traits are not opposite poles on a con-
tinuum, but instead can be thought of as adaptive and maladap-
tive variants of the same pole [19, 58, 72].
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Figure 6: Bivariate correlations between maladaptive and adaptive traits. Val-
ues on the diagonal are correlations between corresponding adaptive and mal-
adaptive variants of the same trait.

4.4. Passive Sensing

Data from participant’s smartphone sensors was collected
via the AWARE application [24]. AWARE runs in the back-
ground on both i0S and Android platforms and continuously
collects data from phone channels. For this study, we used bat-
tery data, phone call logs, GPS, microphone sensors, and phone
screen lock/unlock data. Collection of battery, call logs, and
screen status sensors were event-based, such that a data sample
or observation is created in the database when a change (event)
is detected (e.g., a phone call is made). GPS and microphone
sensors were sampled at regular intervals. Specifically, GPS
sensors were sampled every 180 seconds and the microphone
sensors recorded audio for one minute with three minutes of
pause in between samplings. Participants were also provided
with a Fitbit Blaze smartwatch to collect physiological mea-
sures related to heart rate, steps, and sleep via AWARE. Heart
rate and movement data were sampled in one minute intervals.
Sleep features were estimated from a combination of movement
and heart-rate patterns. Seventy-three participants used an 10S
equipped smartphone and 55 used an Android smartphone. On
average,12 days of sensor data were collected from every par-
ticipant (SD = 1.5).

5. Results

5.1. adaptive and Maladaptive Trait Prediction

As shown in Figure 7, the error range of RF and XGB
were very close when predicting each trait, with RF perform-
ing slightly better. Agreeableness had the lowest average pre-
diction error, while Emotional Stability and Openness had the
highest average error. We also found that the pairs of corre-
sponding maladaptive and adaptive traits tended to have com-
parable prediction errors. For example, the values of MSE for
both Psychoticism and Openness are relatively high, and the
values of MSE for both Conscientiousness and Disinhibition
are relatively low. A potential hypothesis is that the more dis-
tinct behavioral features are between the adaptive and maladap-
tive pairs, the lower the prediction error will be.

RF XGB

—a— M50
-
"

(a) (b)

Figure 7: The radar plots visualize the MSE and MAPE of machine learning
models when predicting each adaptive and maladaptive trait.

Sensor Sensor feature code and description

HR1: The median of the heart rate in one day
HR2: The number of minutes the heart rate fell within the fat burn zone in one day
HR3: The mean of the resting heart rate in one day

Heart Rate

SL1: The average length of the segment the participant was asleep in one day
Sleep SL2: The sum of time the participant stayed in bed after waking up for nap in one day
SL3: The sum of time the participant was awake but still in bed in one day

ST1: The number of active segments in one day

Step ST2: The number of sedentary segments in one day

Activity ACT1: The total duration of on foot, running, and on bicycle activities

Batl: The total duration of all discharging segments

Battery Bat2: The total duration of all charging segments

Call Calll: The estimate of Shannon entropy for the duration of all incoming calls in one day

Call2: The estimate of Sl entropy for the duration of all outgoing calls in one day

Audl: The standard deviation of the level of noise m one day
Aud2: The ratio between noise and whole conversation (silence, noise, voice, unknown)
Aund3: The minimum of the level of voice in one day

Audio

Locl: The maximum distance from home in meters.

Loc2: The number of significant locations visited in one day.

Loc3: The standard deviation of the length of all movements

Loc4: The estimate of Shannon entropy for the significant locations visited in one day.
Loc5: The shortest time the user staying at a significant location

Loct: The ratio between the time of moving status and static status

Location

SR1: The number of all unlock segments
SR2: The hours since midnight of the first unlock in one day
SR3: The length of the shortest unlock segment

Screen

Table 1: List of highly ranked sensor features selected by the machine models..

5.2. Frequently selected behavioral features and their relation-
ship to adaptive and maladaptive traits

The machine learning and feature selection as part of the
LOOCV approach provided a list of 25 features (out of 177,
14%) with highest ranking scores calculated using Formula 2
(see Table 1). Recall that the high ranking scores indicates that
the behavioral feature had both a high overall feature impor-
tance and was frequently selected during the iterative training
process. Table 1 provides a description for each sensor fea-
ture. For presentation clarity, we use abbreviations to represent
each feature, which will be used throughout the section. We re-
port feature ranking scores and correlations between each sen-
sor feature and personality traits in Figure 3. The x-axis lists the
important and frequently selected features in pairs with ranking
score followed by the correlation of that feature.

We organized the features roughly into those related to phys-
iology (e.g., heart rate, sleep) and context-independent phys-
ical activities (e.g., battery use, level of activity) on the left
side of Figure 8 and features related to social interactions (e.g.,
calls) and contextualized activities (e.g., time spent in particu-
lar locations) on the right side. Although the line is not clear
cut, the figure shows that maladaptive traits were generally bet-
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Figure 8: The heatmap shows high ranked features and their correlation with adaptive and maladaptive traits.
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Table 2: Common high ranked features shared by the pair of adaptive and maladaptive traits. The table also shows the results of correlation between sensor features
and traits, how often each sensor feature is selected and the average importance of each sensor feature across leave one participant out cross-validation.

ter predicted by physiological and context-independent features
whereas adaptive traits were better predicted by social and con-
textualized features. For example, the total time spent in bed af-
ter waking up (SL3) predicted all five maladaptive traits, shorter
amounts of time staying in at significant locations (e.g., home
or work; LOCS5) and less screen unlocks (SR1) predicted higher
levels of most adaptive traits. Out of 14 social contextual fea-
tures, seven collectively predicted at least three of the adaptive
traits (50%) whereas this number was 9% (1 out of 11) for the
physiological/context-independent features.

Some features were strongly predictive of specific traits.
For example, average resting heart rate (HR3) showed the high-
est ranking score (1) for predicting Negative Affectivity. Rest-
ing heart rate is the number of heart beats per minute while the
person is at rest. Lower resting heart rate has been shown to as-
sociate with better heart function, whereas higher rate may indi-
cate stress and anxiety [12, 4]. Consistent with this interpreta-
tion of heart rate, people who scored higher on Negative Affec-
tivity tended to have a higher resting heart rate and people who
scored higher on Emotional Stability (the adaptive counterpart
of Negative Affectivity) tended to have a lower heart rate. For
Detachment, median heart rate (HR1), variation in movement
patterns (LOC3), and the unlock patterns of the phone (SR2)
were highly ranked and positively correlated with the trait. Ex-
traversion (the adaptive trait counterpart of Detachment) was
negatively correlated with those same features, in line with the
idea that reflects opposite behavioral tendencies. As expected,
social and contextualized activity features were also predictive
of Extraversion, particularly location (LOC1 and LOC4) and
phone usage (SR1). The positive correlation with these fea-
tures indicated more movement and more frequent phone usage
predicted higher Extraversion.

High Agreeableness was predicted by low variation in the

duration of incoming and outgoing calls (CAL1, CAL2) and
low daily activity level (ACT1). Although feature rankings
for Psychoticism (maladaptive) and Openness (adaptive) traits
were relatively low compared to other traits, we found that Psy-
choticism was largely predicted by physiological and context-
independent features while Openness was predicted by social
and contextualized activity features.

Unlike the other traits, Conscientiousness was predicted by
a more balanced mix of physiological, social, and contextual-
ized activity features. In particular, the average length of sleep
(SL1), the number of active segments in one day (ST1), and the
number of minutes the heart rate fell within the fat burn zone
in one day (HR2) were most predictive of Conscientiousness.
The positive correlation of SL1 and ST1 with Conscientious-
ness may suggest that people who score high Conscientious-
ness can better regulate their sleep at night and keep active dur-
ing the day. While heart rate features predicted the majority
of maladaptive traits, HR2 seems to be predictive of both adap-
tive and maladaptive traits. Among features related to heart rate
zones, i.e., Fat Burn Zone (114 to 134 bpm), Cardio Zone (135
to 159 bpm), and Peak Zone (160+ bpm), only the fat burn zone
feature (HR2) was selected highly ranked by the machine learn-
ing process [25]. We found that maladaptive traits tended to
be correlated with more time per day in the Fat Burn Zone and
adaptive traits were correlated with less time. Table 2 shows the
common highly ranked sensor features shared by each pair of
adaptive and maladaptive traits. For many cases shown in the
table, the same sensor feature had opposite associations with
the adaptive and maladaptive variants. These results suggest
that these traits manifest in opposite extremes of behavior in
everyday life.
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Figure 9: The figure visualizes the associations between behavioral features and traits.

5.3. Mining collective behavioral patterns associated with adap-
tive and maladaptive traits

While the machine learning analysis and feature ranking
showed the predictive power of different features, mining asso-
ciation rules described associations between traits and charac-
teristic combinations of sensor features that tended to co-occur
within a day. The feature combinations shown in Figures 9
and 10 are consistent with the results of machine learning and
correlation analysis described in the previous section, i.e., the
itemsets with the highest confidence for a specific trait tended to
include highly ranked features identified by the machine learn-
ing models. For example, HR3 had the highest ranking score
in models predicting Negative Affectivity, and the association
rule of the moderate level of HR3 and Negative Affectivity had
the highest confidence among all single sensor feature rules re-
lated to the trait. However, unlike the machine learning mod-
els, the mined patterns (Figure 9) show associations between
distinct levels of features and traits, which offers unique in-
formation about how personality is expressed in everyday life
that is undetectable with decision-tree analyses. For example,
while Figure 8 showed few social and contextualized activity
features predicted Openness, Figure 9 reveals that low to mod-
erate levels of those features are highly associated with a mod-
erate level of Openness (average support = 67.5% and average
confidence = 82%). A similar pattern was observed for Antag-
onism, where high levels of HR1 and SL1 are associated with a
low level of Antagonism (average support = 76% and average
confidence = 78.5%). Among the most pronounced patterns
with highest support and confidence were high level of heart
rate in fat burn zone (HR2), low movement variation (LOC3),
and moderate frequency of phone usage (SR3) being associated

with moderate levels Detachment; and low ambient noise vari-
ation (AUD1), high HR2, moderate variation in places visited
(LOC4), and low frequency of phone usage (SR1) being col-
lectively associated with moderate Extraversion (the adaptive
trait counterpart of Detachment). The alignment between cor-
responding traits in terms of combined behavioral patterns is
depicted in Figure 10.
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Figure 10: The figure shows the association rules between the combination of
multiple sensor features and personality traits. Each sensor feature and trait
have been discretized into three categories: low (L), moderate (M), and high
(H). The combination with the highest confidence is shown in the figure for
each level of adaptive and maladaptive trait. For some categories of traits, the
values of supports are all very low, so the names of sensor features are not listed.
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6. Discussion

There is growing evidence for conceptualizing personality
pathology using dimensional traits in a unified model with adap-
tive personality, but there is a need to better understand the ev-
eryday manifestations of these traits that contribute to function-
ing and dysfunction. Towards this end, we applied multiple
machine learning methods to sensor data collected from mo-
bile and wearable devices and found that (1) maladaptive traits
can be predicted from smartphone sensor data and (2) there are
behavior patterns that link adaptive and maladaptive variants
consistent with contemporary models of personality pathology.

This study adds to the literature showing smartphone sensor
data captures personality-relevant patterns of behavior. We ex-
tended previous research by showing maladaptive traits can also
be predicted from this type of data, providing initial evidence
for the utility of passive sensing to study pathological personal-
ity. In addition to using correlational and decision tree models
applied in previous work, we used association mining methods
to show that specific combinations of features are associated
with personality traits. We offer tentative interpretations of our
results for hypothesis generating purposes, but emphasize that
more work is needed to test these hypotheses.

6.1. Traits vary in how well they can be predicted from sensors

Our results indicate that some features are generally more
(or less) predictive of personality—only 13% of the 177 fea-
tures we extracted met our selection criteria. All features from
certain sensors, such as WiFi and Bluetooth detection, had neg-
ligible correlations with traits and were omitted from analyses
suggesting they may be less useful for studying personality.
Heart rate, sleep, and location-based metrics, on the other hand,
tended to be important for predicting adaptive and maladaptive
personality across the different machine learning models. In
particular, maladaptive traits were generally predicted by phys-
iological features whereas adaptive traits were predicted most
by social and contextualized activity features. Nearly all mal-
adaptive traits were associated with higher heart rate throughout
the day, amount of time spent awake in bed, and the consistency
of time spent at different locations. Adaptive traits, on the other
hand, were associated with frequency of screen unlocks, con-
sistency of call lengths, and time spent at regularly-visited loca-
tions. Taken together, the feature selection results and specific
associations between features and traits suggest typical physi-
ological responses may be an especially important indicator of
maladaptive functioning and engagement with other people and
the environment may be especially related to adaptive function-
ing.

However, the direction of these feature’s correlations with
(mal)adaptiveness was not consistent, indicating that their role
in functioning is not straight-forward. For example, some mal-
adaptive traits were associated with more time awake in bed and
others with less. People who scored higher on Detachment or
Negative Affectivity tended to stay in bed while awake longer,
which may reflect social withdrawal, low mood, passive rumi-
nation, and lack of energy that is common to these traits. In
contrast, people scoring high on Disinhibition, Antagonism, or
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Psychoticism tended to stay awake in bed less, perhaps because
these trait’s shared aspects of behavioral and/or cognitive acti-
vation prevent people from relaxing or remaining sedentary in
bed.

We also showed that some traits are generally more (or less)
predictable from passively sensed behavior. In the machine
learning models, the most predictable trait pairs were Detach-
ment / Extraversion, Disinhibition / Conscientiousness, and An-
tagonism / Agreeableness. One reason certain traits were bet-
ter predicted is the nature of what can be detected by smart-
phone and FitBit sensors; namely, social behavior and move-
ment. Because Detachment and Extraversion reflect individ-
ual differences in sociability and energy, it makes sense that
these traits would be more easily predicted from this data. Pre-
vious research using passive sensing has also found that Ex-
traversion is the most predictable adaptive trait (e.g., [43, 66]),
but our study demonstrates further that its maladaptive variant,
Detachment, is similarly predictable. Disinhibition and Con-
scientiousness reflect individual differences in impulse control
and goal-directedness, which may be tracked well with features
indexing behavioral (in)consistency (e.g., entropy/variability of
calls or movement) and indicators of distractibility (e.g., phone
unlocks). The predictability of Antagonism and Agreeableness
was less expected because these traits are generally defined by
social intentions that are internally experienced rather than ob-
servable, detectable behaviors. Our results suggest that there
may be behavioral manifestations of the tendency to be at odds
with others (Antagonism) or to cooperate (Agreeableness) that
may not have been considered in prior theorizing and research.

6.2. Evidence for behavioral indicators that span adaptive and
maladaptive trait dimensions

Our results bring a new perspective to the continuity be-
tween adaptive and pathological personality by identifying be-
havioral content that characterizes the full range of functioning
in different trait dimensions. The corresponding adaptive and
maladaptive traits were strongly correlated with one another as
expected, and the machine learning models selected several im-
portant features in common for most trait pairs. Overlap be-
tween features extracted across adaptive and maladaptive mod-
els suggest these behaviors are especially strong indicators of
the underlying trait. These indicators, in turn, can help us un-
derstand what people do in everyday life that accounts for the
link between personality and life outcomes.

For example, Negative Affectivity is a robust risk factor
for cardiovascular disease (and Emotional Stability a protec-
tive factor), but it is unclear how exactly these traits influence
cardiovascular health [37, 51, 59]. Because this trait dimen-
sion reflects how easily stressed and emotionally reactive a per-
son tends to be, one hypothesis is that people who score high
on Negative Affectivity overuse their stress response system,
which over time takes a toll on cardiovascular health [3, 38].
There has been mixed support for this hypothesis, and most
research investigating the association between stress responses
and Negative Affectivity/Emotional Stability has been conducted
in laboratory settings [14, 63]. Instead of sampling heart rate in
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a few experiments, we sampled heart rate continuously in ev-
eryday life, which may give a more representative picture of
people’s typical stress response patterns. QOur results are con-
sistent with the stress response hypothesis as we found both
poles of this trait were strongly associated with heart rate, but
in opposite directions: people who scored high on Negative Af-
fectivity had a higher resting heart rate and people who scored
high on Emotional Stability had a lower resting heart rate.

To take another example, several features were important
indicators of the trait continuum from Disinhibition to Consci-
entiousness. These traits encompass individual differences in
the motivation and ability to maintain focus on long-term goals
and are strongly associated with academic and work success.
It is thought that people who score high on Disinhibition do
poorly in school and work because they struggle to complete
tasks and tend to act impulsively whereas people who score
high on Conscientiousness generally have better outcomes be-
cause they are able to focus on tasks and control their impulses.
We found that people who scored high on Disinhibition tended
to spend less time awake in bed, have shorter periods of be-
ing sedentary, and make calls of inconsistent durations, which
may reflect difficulty staying still and engaging in more erratic
social behavior. In contrast, people scoring high on Conscien-
tious showed the opposite patterns, in line with more controlled
and routine behavior. These results suggest that passive sens-
ing may be used to detect consequential behavior patterns that
potentially explain how this trait dimension helps (or hinders)
functioning.

In addition to the machine learning models, we used Apri-
ori association mining models to explore what configurations of
behaviors on a given day are characteristic of traits. Supporting
the potential of this method for studying personality, we found
that some levels of every trait could be predicted from feature
combinations. Because the same behavior can relate to multiple
traits for different reasons (e.g., longer sedentary durations may
reflect the ability to focus for long periods of time or it may
represent lack of energy and low mood), this method has the
potential to disambiguate associations between traits and pas-
sive sensor features. For instance, people with high scores on
Conscientiousness had more days with consistent call lengths,
moderate sleep durations, and high levels of physical activity
whereas people who scored high on Agreeableness also had
more days with consistent call lengths but in combination with
moderate levels of activity. Thus, although Agreeableness and
Conscientiousness are both traits associated with more adaptive
functioning, and both relate to consistent social behavior, they
can be differentiated by co-occurring behaviors. Both behavior
sets seem to reflect balanced activity patterns, but perhaps being
achievement-striving and disciplined is tied to well-regulated
sleep and exercising more, whereas being more agreeable is pri-
marily related to routine social interactions.

6.3. Limitations and future directions

The major advantage of using passive sensing and machine
learning to study personality pathology is that they allow us to
assess aspects of behavior that cannot be measured with any
other methods and with potentially much greater precision. At
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the same time, because passive sensing is a relatively new tech-
nology, the psychometrics of the method have not been compre-
hensively evaluated yet. Before passive sensing research can
be translated into theory or clinical applications, more work
is needed to establish the reliability and validity of features
and feature combinations. In terms of construct validity, some
sensor features are human-interpretable (e.g., more phone calls
usually indicate more social activity), but others are more am-
biguous and less readily interpreted. By examining associa-
tions with personality traits that have well-established psycho-
metrics, our study provides some insight into how to interpret
passive sensor features. Future research can build on this foun-
dation by examining associations with contemporaneous par-
ticipant reports; for example, to determine whether days with
longer durations of being sedentary typically reflect high moti-
vation and concentrated studying or lack of motivation and low
mood, the passive sensor data could be correlated with partici-
pant reports of the activity they are engaging in.

Related to the unknown psychometrics of passive sensing
methods, the technology is still in early stages of development
and potentially prone to errors throughout the data collection
process. There are currently no empirical criteria for determin-
ing valid data captured by sensor streams, meaning investiga-
tors have to apply ad hoc heuristics for assessing validity. Be-
cause of the exploratory nature of our study, we only removed
observations with values outside of plausible ranges (e.g., neg-
ative value for distance travelled in a day). This liberal ap-
proach allowed us to maximize the amount of data analyzed,
but it is possible that some of the data included errors (e.g., dis-
tance travelled that was calculated from inaccurately encoded
raw GPS data). Alongside continued refinement of data col-
lection technologies, it will be important to establish empirical
criteria for determining valid data with more focused research
efforts moving forward.

Another limitation of our study is that we were unable to
identify combinations of features correlated with very high lev-
els of personality pathology using the Apriori method. Because
this approach is based on the frequency with which certain trait
values appear in a dataset, there was less confidence and support
for feature combinations related to high levels of maladaptive
traits (or low levels of adaptive traits) that were less common
in our sample. To maximize association mining methods to
understand maladaptive personality, future research will need
to collect data from samples selected for very high pathology
(e.g., psychiatric patients with specific diagnoses).

7. Conclusion

As clinical psychology and psychiatry increasingly adopt
dimensional models of classifying personality pathology, un-
derstanding what the specific patterns of behavior people en-
gage in are that connect personality to poor psychosocial and
physical health outcomes are key remaining questions. Our
study highlights the opportunities and challenges of using ma-
chine learning and passive sensor data to address these ques-
tions. We showed that maladaptive traits are predictable from
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passive sensor features and feature combinations, and the re-
sults provoke new hypotheses about day-to-day processes un-
derlying personality traits and open fresh directions of inquiry.

8. Acknowledgements

Support for this research was provided by the National Insti-

tutes of Health (NIH) (RO1 AA026879; L.30 MH101760), the
National Science Foundation (NSF-1IS-1816687), the Univer-
sity of Pittsburgh’s Clinical and Translational Science Institute,
which is funded by the NIH Clinical and Translational Science
Award (CTSA) program (UL1 TR0O01857), and grants from the
University of Pittsburgh Central Research Development Fund
and a Steven D. Manners Faculty Development Award from the
University of Pittsburgh University Center for Social and Urban
Research.

References

(1]

[2]
[31

[4]

[51

[6]

[7]
[8]

(9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

Al P, Liu, Y., Zhao, X., 2019. Big five personality traits predict daily spa-
tial behavior: Evidence from smartphone data. Personality and Individual
Differences 147, 285-291.

American Psychiatric Association, A., Association, AP, etal., 2013. Di-
agnostic and statistical manual of mental disorders: Dsm-5.

Barlow, D.H., Ellard, K.K., Sauer-Zavala, S., Bullis, J.R., Carl, J.R.,
2014. The origins of neuroticism. Perspectives on Psychological Science
9, 481-496.

Batselé, E., Stefaniak, N., Fantini-Hauwel, C., 2019. Resting heart rate
variability moderates the relationship between trait emotional competen-
cies and depression. Personality and Individual Differences 138, 69-74.
Beierle, F., Probst, T., Allemand, M., Zimmermann, J., Pryss, R., Neff,
P., Schlee, W., Stieger, S., Budimir, S., 2020. Frequency and duration of
daily smartphone usage in relation to personality traits. Digital Psychol-
ogy 1, 20-28.

Ben-Zeev, D., Brian, R., Wang, R., Wang, W., Campbell, A.T., Aung,
M.S., Merrill, M., Tseng, V.W., Choudhury, T., Hauser, M., et al., 2017.
Crosscheck: Integrating self-report, behavioral sensing, and smartphone
use to identify digital indicators of psychotic relapse. Psychiatric rehabil-
itation journal 40, 266.

Bennett, D.A., 2001. How can i deal with missing data in my study?
Australian and New Zealand journal of public health 25, 464-469.

Biau, G., Scomet, E., 2016. A random forest guided tour. Test 25, 197-
227.

Breiman, L., 2001. Random forests. Machine learning 45, 5-32.
Canzian, L., Musolesi, M., 2015. Trajectories of depression: unobtrusive
monitoring of depressive states by means of smartphone mobility traces
analysis, in: Proceedings of the 2015 ACM international joint conference
on pervasive and ubiquitous computing, pp. 1293-1304.

Carlson, E.N., Vazire, S., Oltmanns, T.F,, 2013. Self-other knowledge
asymmetries in personality pathology. Journal of Personality 81, 155-
170.

Carnevali, L., Sgoifo, A., 2014. Vagal modulation of resting heart rate
in rats: the role of stress, psychosocial factors, and physical exercise.
Frontiers in physiology 5, 118.

Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., et al.,
2015. Xgboost: extreme gradient boosting. R package version 0.4-2 1.
Chida, Y., Hamer, M., 2008. Chronic psychosocial factors and acute phys-
iological responses to laboratory-induced stress in healthy populations: a
quantitative review of 30 years of investigations. Psychological bulletin
134, 829.

Chittaranjan, G., Blom, J., Gatica-Perez, D., 2013. Mining large-scale
smartphone data for personality studies. Personal and Ubiguitous Com-
puting 17, 433-450.

Costa, P.T., McCrae, R.R., 1992. Normal personality assessment in clini-
cal practice: The neo personality inventory. Psychological assessment 4,
5.

12

[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

(28]

29

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Daly, M., Delaney, L., Doran, PP, Harmon, C., MacLachlan, M., 2010.
Naturalistic monitoring of the affect-heart rate relationship: a day recon-
struction study. Health Psychology 29, 186.

DeYoung, C.G., 2015. Cybernetic big five theory. Journal of research in
personality 56, 33-58.

DeYoung, C.G., Grazioplene, R.G., Peterson, J.B., 2012. From madness
to genius: The openness/intellect trait domain as a paradoxical simplex.
Journal of Research in Personality 46, 63-78.

Dixon-Gordon, K.L., Whalen, D.J., Layden, B.K., Chapman, A.L., 2015.
A systematic review of personality disorders and health outcomes. Cana-
dian Psychology/Psychologie Canadienne 56, 168.

Doryab, A., Chikarsel, P, Liu, X, Dey, A K., 2018. Extraction of be-
havioral features from smartphone and wearable data. arXiv preprint
arXiv:1812.10394 .

Doryab, A., Villalba, D.K., Chikersal, P., Dutcher, J.M., Tumminia, M.,
Liu, X., Cohen, S., Creswell, K., MankofT, J., Creswell, J.D., et al., 2019.
Identifying behavioral phenotypes of loneliness and social isolation with
passive sensing: statistical analysis, data mining and machine learning of
smartphone and fitbit data. JMIR mHealth and uHealth 7, e13209.
Ebner-Priemer, UW., Kuo, J., Schlotz, W., Kleindienst, N., Rosenthal,
M.Z., Detterer, L., Linehan, M.M., Bohus, M., 2008. Distress and af-
fective dysregulation in patients with borderline personality disorder: A
psychophysiological ambulatory monitoring study. The Journal of ner-
vous and mental disease 196, 314-320.

Ferreira, D., Kostakos, V., Dey, AK., 2015. Aware: mobile context in-
strumentation framework. Frontiers in ICT 2, 6.

Fitbit, 2021. How do i track heart rate with my fitbit device? URL:

https://help.fitbit.com/articles/en US/Help_article/1665.html.

Hamaker, E.L., Wichers, M., 2017. No time like the present: Discovering
the hidden dynamics in intensive longitudinal data. Current Directions in
Psychological Science 26, 10-15.

Han, J., Kamber, M., Pei, I., 2011. Data mining concepts and techniques
third edition. The Morgan Kaufmann Series in Data Management Sys-
tems 5, 83-124.

Harari, G.M., Miiller, S.R., Stachl, C., Wang, R., Wang, W., Biihner, M.,
Rentfrow, PJ., Campbell, A.T., Gosling, §.D., 2019. Sensing sociability:
Individual differences in young adults’ conversation, calling, texting, and
app use behaviors in daily life. Journal of personality and social psychol-
ogy .

Harari, G.M., Vaid, §.5., Miiller, 8.R., Stachl, C., Marrero, Z., Schoedel,
R., Biihner, M., Gosling, S§.D., 2020. Personality sensing for theory devel-
opment and assessment in the digital age. European Journal of Personality
34, 649-669.

Hegland, M., 2007. The apriori algorithm—a tutorial. Mathematics and
computation in imaging science and information processing , 209-262.
Hengartner, M.P., Zimmermann, J., Wright, A.G., 2018. Personality
pathology. .

Hayaraja, M., Meyyappan, T., 2013. Mining medical data to identify fre-
quent diseases using apriori algorithm, in: 2013 International Conference
on Pattern Recognition, Informatics and Mobile Engineering, IEEE. pp.
194-199.

Johnson, J.A., 2014. Measuring thirty facets of the five factor model with
a 120-item public domain inventory: Development of the ipip-neo-120.
Journal of Research in Personality 51, 78-89.

Kearns, M., Ron, D., 1999. Algorithmic stability and sanity-check bounds
for leave-one-out cross-validation. Neural computation 11, 1427-1453.
Kotov, R., Krueger, R.E., Watson, D., Cicero, D.C., Conway, C.C., De¥Y-
oung, C.G., Eaton, N.R., Forbes, M.K., Hallquist, M.N., Latzman, R.D.,
et al., 2021. The hierarchical taxonomy of psychopathology (hitop): A
quantitative nosology based on consensus of evidence. Annual review of
clinical psychology 17.

Krueger, R.E, Eaton, N.R., 2010. Personality traits and the classification
of mental disorders: Toward a more complete integration in dsm-5 and
an empirical model of psychopathology. Personality Disorders: Theory,
Research, and Treatment 1, 97.

Kubzansky, L.D., Kawachi, L., 2000. Going to the heart of the matter: do
negative emotions cause coronary heart disease? Journal of psychoso-
matic research 48, 323-337.

Lahey, B.B., 2009. Public health significance of neuroticism. American
Psychologist 64, 241.

Lane, N.D., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., Campbell,

|




|




[40]

[41]

[42]

[43]

[44]
[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

AT, 2010. A survey of mobile phone sensing. IEEE Communications
magazine 48, 140-150.

Markon, K.E., Krueger, R.E., Watson, D., 2005. Delineating the structure
of normal and abnormal personality: an integrative hierarchical approach.
Journal of personality and social psychology 88, 139,

Matsuki, K., Kuperman, V., Van Dyke, J.A., 2016. The random forests
statistical technique: An examination of its value for the study of reading.
Scientific Studies of Reading 20, 20-33.

Mohr, D.C., Zhang, M., Schueller, S.M., 2017. Personal sensing: under-
standing mental health using ubiquitous sensors and machine learning.
Annual review of clinical psychology 13, 23-47.

Mgnsted, B., Mollgaard, A., Mathiesen, J., 2018. Phone-based metric as
a predictor for basic personality traits. Journal of Research in Personality
74, 16-22.

Morse, J.Q., Pilkonis, P.A., 2007. Screening for personality disorders.
Journal of personality disorders 21, 179-198.

Organization, W.H., et al., 2018. International classification of diseases
for mortality and morbidity statistics (11th revision).

Pieper, S., Brosschot, 1.E., van der Leeden, R., Thayer, I.E, 2007. Car-
diac effects of momentary assessed worry episodes and stressful events.
Psychosomatic medicine 69, 901-909.

Powers, A.D., Oltmanns, T.F,, 2013. Borderline personality pathology
and chronic health problems in later adulthood: The mediating role of
obesity. Personality Disorders: Theory, Research, and Treatment 4, 152.
Renn, B.N., Pratap, A., Atkins, D.C., Mooney, 5.D., Aredn, P.A., 2018.
Smartphone-based passive assessment of mobility in depression: Chal-
lenges and opportunities. Mental health and physical activity 14, 136-
139.

Ringwald, W.R., Woods, W.C., Edershile, E.A., Sharpe, B.M., Wright,
A.G., 2021. Psychopathology and personality functioning, in: The Hand-
book of Personality Dynamics and Processes. Elsevier, pp. 273-293.
Royston, P., White, LR., et al., 2011. Multiple imputation by chained
equations (mice): implementation in stata. J Stat Softw 45, 1-20.
Rugulies, R., 2002. Depression as a predictor for coronary heart disease:
areview and meta-analysis. American journal of preventive medicine 23,
51-61.

Schoedel, R., Pargent, F., Au, Q., Vélkel, 5.T., Schuwerk, T., Biihner, M.,
Stachl, C., 2020. To challenge the morning lark and the night owl: Us-
ing smartphone sensing data to investigate day—night behaviour patterns.
European Journal of Personality 34, 733-752.

Shah, A.D., Bartlett, I.W., Carpenter, J., Nicholas, O., Hemingway, H.,
2014. Comparison of random forest and parametric imputation models
for imputing missing data using mice: a caliber study. American journal
of epidemiology 179, 764-774.

Shi, T., Horvath, S., 2006. Unsupervised learning with random forest
predictors. Journal of Computational and Graphical Statistics 15, 118—
138.

Simms, L.I., Goldberg, L.R., Roberts, I.LE., Watson, D., Welte, I., Rotter-
man, J.LH., 2011. Computerized adaptive assessment of personality disor-
der: Introducing the cat—pd project. Journal of personality assessment 93,
380-389.

Stachl, C., Au, Q., Schoedel, R., Gosling, 5.D., Harari, G.M., Buschek,
D., Vilkel, 8.T., Schuwerk, T., Oldemeier, M., Ullmann, T., et al., 2020.
Predicting personality from patterns of behavior collected with smart-
phones. Proceedings of the National Academy of Sciences 117, 17680-
17687.

Strobl, C., Malley, J., Tutz, G., 2009. An introduction to recursive par-
titioning: rationale, application, and characteristics of classification and
regression trees, bagging, and random forests. Psychological methods 14,
323.

Thomas, K.M., Yalch, M.M., Krueger, R.E., Wright, A.G., Markon, K.E.,
Hopwood, C.J., 2013. The convergent structure of dsm-5 personality trait
facets and five-factor model trait domains. Assessment 20, 308-311.
Thurston, R.C., Rewak, M., Kubzansky, L.D., 2013. An anxious heart:
anxiety and the onset of cardiovascular diseases. Progress in cardiovas-
cular diseases 55, 524-537.

Trull, T.J., Durrett, C.A., 2005. Categorical and dimensional models of
personality disorder. Annu. Rev. Clin. Psychol. 1, 355-380.

Trull, T.J., Ebner-Priemer, U., 2013. Ambulatory assessment. Annual
review of clinical psychology 9, 151-176.

Tuli, S., Tuli, S., Tuli, R., Gill, S.5., 2020. Predicting the growth and

13

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

trend of covid-19 pandemic using machine learning and cloud computing.
Internet of Things 11, 100222.

Turner, AL, Smyth, N., Hall, 8.1., Torres, §.J., Hussein, M., Jayasinghe,
S.U.,, Ball, K., Clow, A.J., 2020. Psychological stress reactivity and fu-
ture health and disease outcomes: A systematic review of prospective
evidence. Psychoneuroendocrinology 114, 104599.

Vega, 1. 2021. Rapids  (reproducible  anal-
ysis pipeline for data) streams. URL:
https://rapidspitt.readthedocs.io/en/latest/index.htm.
Vehtari, A., Gelman, A., Gabry, 1., 2017. Practical bayesian model eval-
uation using leave-one-out cross-validation and waic. Statistics and com-
puting 27, 1413-1432.

Wang, W., Harari, G.M., Wang, R., Miiller, S.R., Mirjafari, S., Masaba,
K., Campbell, A.T., 2018. Sensing behavioral change over time: Using
within-person variability features from mobile sensing to predict person-
ality traits. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies 2, 1-21.

Waugh, M.H., Hopwood, C.1., Krueger, R.E.,, Morey, L.C., Pincus, A.L.,
Wright, A.G., 2017. Psychological assessment with the dsm-5 alternative
model for personality disorders: Tradition and innovation. Professional
Psychology: Research and Practice 48, 79.

Widiger, T.A., Samuel, D.B., 2005. Diagnostic categories or dimensions?
a question for the diagnostic and statistical manual of mental disorders—.
Journal of abnormal psychology 114, 494.

Wright, A.G., Calabrese, W.R., Rudick, M.M., Yam, W.H., Zelazny, K.,
Williams, T.FE., Rotterman, J.H., Simms, L.J., 2015. Stability of the dsm-5
section iii pathological personality traits and their longitudinal associa-
tions with psychosocial functioning in personality disordered individuals.
Journal of Abnormal Psychology 124, 199.

Wright, A.G., Hopwood, C.I., 2016, Advancing the assessment of dy-
namic psychological processes. Assessment 23, 399-403.

Wright, A.G., Pincus, A., Hopwood, C., 2020. Contemporary integrative
interpersonal theory: Integrating structure, dynamics, temporal scale, and
levels of analysis .

Wright, A.G., Simms, L.J., 2014. On the structure of personality disorder
traits: conjoint analyses of the cat-pd, pid-5, and neo-pi-3 trait models.
Personality Disorders: Theory, Research, and Treatment 5, 43.

|




|




