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Modeling Biobehavioral Rhythms from Mobile and Wearable Data Streams: A
Computational Framework

This paper presents the first computational framework for modeling biobehavioral rhythms - the repeating cycles of physiological,
psychological, social, and environmental events - from mobile and wearable data streams. The framework incorporates four main
components: mobile data processing, rhythm discovery, rhythm modeling, and machine learning. We evaluate the framework with
two case studies using datasets of smartphone, Fitbit, and OURA smart ring to evaluate the framework’s ability to 1) detect cyclic
biobehavior, 2) model commonality and differences in rhythms of human participants in the sample datasets, and 3) predict their
health and readiness status using models of biobehavioral rhythms. Our evaluation demonstrates the framework’s ability to generate
new knowledge and findings through rigorous micro- and macro-level modeling of human rhythms from mobile and wearable data
streams collected in the wild and using them to assess and predict different life and health outcomes.

CCS Concepts: • Computer systems organization → Embedded systems; Redundancy; Robotics; • Networks → Network relia-
bility.

Additional Key Words and Phrases: computational modeling, machine learning, biobehavioral rhythms, mental health, human behavior

modeling

ACM Reference Format:
. 2018. Modeling Biobehavioral Rhythms from Mobile and Wearable Data Streams: A Computational Framework. 1, 1 (September 2018),
25 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

The term biobehavioral rhythms introduced in [18], refers to the repeating cycles of physiological (e.g., heart rate and
body temperature), psychological (e.g., mood), social (e.g., work events), and environmental (e.g., weather) that affect
human body and life. Rooted in Chronobiology, "the scientific discipline that quantifies and explores the mechanisms of
biological time structure and their relationship to the rhythmic manifestations in living matter" [14], biobehavioral
rhythms aim at studying cyclic events observed in human data collected from personal and consumer level mobile and
wearable devices [18]. Such devices provide the capability of continuous tracking of biobehavioral signals of individuals
in their daily life and outside of controlled lab settings which has been the standard method for studying biological
rhythms.

Numerous research studies have shown the impact of understanding rhythms and their effect on human life and
wellbeing. For example studies in [18, 27, 29] demonstrate the association between long-term disruption in biological
rhythms and health outcomes such as cancer, diabetes, and depression. Other studies have shown the impact of shift
work on quality of life in shift workers such as nurses and doctors [32, 36]. These studies, however, have often been
limited to controlled settings to observe certain behaviors and effects. With passive sensing of physiological and
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2

behavioral signals from mobile and wearable devices, it is now possible to study human rhythms more broadly and
holistically in the wild through collection of biobehavioral data from different sources. This opportunity, however,
introduces new challenges. First, the longitudinal timeseries data collected from personal devices is massive, noisy, and
incomplete requiring careful processing to extract and preserve useful fine-grained knowledge from data in various
temporal granularity levels to be used for further modeling. Second, the fact that each data source (e.g., smartphone
sensors) can capture different aspects of human rhythms (biological, behavioral or both) requires exploration and
incorporation of each signal to identify biological and behavioral indicators on the micro and macro level that may
reveal a cyclic behavior. This process can be exhaustive and needs automation. Moreover, although the modeled
rhythms by themselves can provide useful insights into human health and life, the exhaustive number of rhythm
models generated by each source makes it difficult for manual interpretation of the models by researchers or experts.
A further computational step should incorporate those models to provide further insights into different health and
lifestyle outcomes both physical and mental.

We propose a computational framework to address the aforementioned challenges through a series of data processing
and modeling steps. The framework first processes the raw sensor data collected from mobile and wearable devices
to extract high level features from those data streams. It then models biobehavioral rhythms for each sensor feature
alone and in combination with other features to discover rhythmicity and other characteristics of cyclic behavior in the
data. The biobehavioral rhythm models provide a series of characteristic features which are further used for measuring
stability in biobehavioral rhythms and to predict different outcomes such as health status through a machine learning
component. We evaluate the framework with two case studies. The first study uses mobile and Fitbit data collected from
138 college students over a semester to test the framework’s ability to detect rhythmicity in students’ data in different
time frames over the course of the semester and to measure the stability and variation of rhythms among students with
different mental health status. We then use the models of the rhtyhms to classify the mental health status of students at
the end of the semester. The second study uses physio-behavioral data from 11 volunteers who wore OURA smart ring
for 30 to 323 days. We test the framework’s ability to detect longterm cycles in participants’ biobehavioral data and to
extract commonality and differences in those cycles. We then use each person’s significant cyclic periods in modeling
individual rhythms and further predicting average daily readiness. Our research makes the following contributions:

(1) We introduce the first computational framework for modeling biobehavioral rhythms to the mobile and ubiquitous
computing community that provides the ability to

(a) flexibly process massive sensor data in different time granularity thus providing the ability to model and
observe short- and long-term rhythmic behavior.

(b) identify variation and stability in individual and groups of time series data.
(c) help observe the impact of cyclic biobehavioral parameters in revealing and predicting different outcomes

(e.g., health).
(2) We demonstrate the framework’s ability to generate new knowledge and findings via rigorous micro- and

macro-level modeling of human rhythms from mobile and wearable data streams collected in the wild and using
them to assess and predict different life and health outcomes. In particular, we are the first to explore and model
biobehavioral rhythms in college students and to highlight differences in rhythms among students with different
mental health status. We are also the first to explore discovering of longterm personal cycles in individuals
biobehavioral data collected from consumer devices in the wild.
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A Framework for Modeling Biobehavioral Rhythms 3

In the following sections, we describe related work in the domain of mobile health and behavior modeling and discuss
the motivation for modeling cyclic human behavior and its potential role in revealing health status. We then present
our computational framework followed by case studies in modeling biobehavioral rhythms and exploring the role of
those models in predicting mental health and readiness. We discuss the feasibility and flexibility of the framework in
incorporating different analytic approaches and providing insights for building rhythm-aware technology.

2 BACKGROUND AND RELATEDWORK

2.1 Biological rhythms

The assessment of rhythmic phenomena in living organisms reveals the existence of events and behavior that repeat
themselves in certain cycles and can be modeled with periodic functions [14, 52]. Each periodic function is specified by
its average level, oscillation degree, and time of oscillation optimal. Biological rhythms, including patterns of activity
and rest or circadian rhythms have been extensively studied in Chronobiology and medicine [18, 27, 29] mostly in
controlled environmental settings.

The advancements in activity trackers has made it possible to study these phenomena outside of the labs and has
demonstrated the reliability of such devices in capturing circadian disruptions including sleep and physical and mental
health conditions. For example, studies using research grade actigraphy devices have shown differences in circadian
rhythms among patients with bipolar disorder, ADHD, and schizophrenia [48]. Other studies have used the same type
of data to explore circadian disruption in cancer patients undergoing chemotherapy [48]. Commercial devices such as
Fitbits are now able to infer sleep duration and quality reasonably accurately. Two brief studies with healthy young
adults have used activity data from Fitbit devices to quantify rest-activity rhythms and found that rhythm measurement
compared well relative to research-grade actigraphy [5, 37]. Studies in [62] and [41] have also explored the capability of
personal tracking devices to measure sleep compared to gold standards such as polysomnography.

2.2 Behavior Modeling in the Wild via Mobile Sensing

The study of biobehavioral rhythms also relates to research in understanding human behavior from passive sensing data
collected via smartphones and wearable devices. Only few studies have actually used mobile data for understanding
the circadian behavior of different chronotypes (e.g., [1–3]). Abdullah et al. [1] analyzed patterns of phone usage to
demonstrate differences in the sleep behavior of early and late chronotypes. In a similar study using the same type of
data, they showed the capability of using mobile data to explore daily cognition and alertness [2, 3] and found that
body clock, sleep duration, and coffee intake impact alertness cycles.

Data from smartphones and wearable devices has extensively been used for modeling daily behavior patterns such
as movement [16], sleep [44], and physical and social activities [46] to understand their associations with health and
wellbeing. For example, Medan et al. [40] found that decreases in call, SMS messaging, Bluetooth-detected contacts, and
location entropy (a measure of popularity of various places) were associated with greater depression. Wang et al. [61]
monitored 48 students’ behavior data for one semester and demonstrated significant correlations between data from
smartphones and students’ mental health and educational performance. In addition, Saeb at al [54] extracted features
from GPS location and phone usage data and applied a correlation analysis to capture relationships between features and
level of depression. They find that circadian movement (regularity of the 24h cycle of GPS change), normalized entropy
(mobility between favorite locations), location variance (GPS mobility independent of location), phone usage features,
usage duration, and usage frequency were highly correlated with the depression score. Doryab et al. [19] studied
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loneliness detection through data mining and machine learning modeling of students’ behavior from smartphone and
Fitbit data and showed different patterns of behavior related to loneliness including less time spent off campus and in
different academic facilities as well as less socialization during evening hours on weekdays among students with high
level of loneliness.

Recent tools such as Rhythomic [28] and ARGUS [30] use visualization to analyze human behavior. Rhythomic is an
open source R framework tool for general modeling of human behavior including circadian rhythms. ARGUS, on the
other hand, focuses on visual modeling of deviations in circadian rhythms and measures their degree of irregularity.
Through multiple visualization panes, the tool facilitates understanding of behavioral rhythms. This work is related to
our computational framework for modeling human rhythms. However, in addition to the underlying assumption of,
and a focus on, circadian rhythms only, these tools primarily enable understanding of rhythms through visualization
whereas in our framework, we provide means for processing different data sources, extracting information from them
and discovering and modeling rhythms for each biobehavioral signal with different periods other than 24 hours. To our
knowledge this is the first computational framework to extract and incorporate the parameters obtained from rhythm
models in a machine learning pipeline to predict different outcomes.

3 COMPUTATIONAL FRAMEWORK FOR MODELING BIOBEHAVIORAL RHYTHMS

Our proposed framework (Figure 1) incorporates data streams from mobile and wearable devices including behavioral
signals such as movement, audio, bluetooth, wifi, and GPS and logs of phone usage and communication (calls and
messages); and biosignals such as heart rate, skin temperature, and galvanic skin response. These signals are processed
and granular features that characterize biobehavioral patterns such as activity, sleep, social communication, work, and
movements are extracted. The data streams of biobehavioral sensor features are segmented into different time windows
of interest and sent to a rhythm discovery component that applies periodic functions on each windowed stream of
the sensor feature to detect their periodicity. The detected periods are then used to model the rhythmic function that
represents the time series data stream for that sensor feature. The parameters generated by the rhythmic function are
used in two ways. First they are aggregated and further processed to characterize the stability or variation in rhythms
over a certain time segment. Second, they are used as features in a machine learning pipeline to predict an outcome of
interest (e.g., health status). The following sections provide details on the methods used in different components of the
framework.

3.1 Time Series Segmentation

Windowing is one of the most frequently used processing methods for streams of data. A time series of length 𝐿 is
split into 𝑁 segments based on certain criteria such as time. Our framework allows different ways to segment the time
series, including the widely used tumbling windows, which are a series of fixed-sized, non-overlapping and contiguous
time intervals. We call each segment a time window (𝑡𝑤 ) which is a time series of length 𝑙 , where 𝑙 = 𝐿/𝑁 .

We also add a second segmentation layer to the time series where at each round 𝑘 and starting point 𝑠 (𝑠 = 1...𝑁 ), we
allow to combine a sequence of 𝑘 consecutive time windows (𝑘 = 1...𝑁 ) starting from time window 𝑠 (𝑡𝑤𝑠 ) to generate
time series of length 𝑘 . We call these segments time chunks (𝑡𝑐). For example, in round 𝑘 = 1, the 𝑡𝑐11 is a time chunk
of length one and starting point of 𝑡𝑤1 and 𝑡𝑐12 is a time chunk of length one and starting point 𝑡𝑤2 whereas for 𝑘 = 3,
the 𝑡𝑐32 is a time chunk of length three and starting point of 𝑡𝑤2. Time chunks allow flexible modeling of rhythms in
different time periods over the length of the time series. Figure 2 illustrates the time segmentation process.
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A Framework for Modeling Biobehavioral Rhythms 5

Fig. 1. Computational framework for modeling rhythms from mobile and wearable data streams and using the rhythm parameters
for prediction of an outcome (e.g., health)

Fig. 2. The segmentation of time series with time windows (𝑡𝑤) and time chunks (𝑡𝑐)

3.2 Detection of Rhythmicity

One of the first steps in modeling biobehavioral rhythms is identifying rhythmicity in time series data. We use two
main methods for detecting and observing cyclic behavior, namely Autocorrelation and Periodogram.

3.2.1 Autocorrelation. Autocorrelation is a reliable analytical method for recognizing periodicities [20]. It calculates
the correlation coefficient between a time series and its lagged version to measure the similarity between them over
consecutive time intervals. Formally, the autocorrelation function (ACF) between two values 𝑦𝑡 , 𝑦𝑡−𝑘 in a time series 𝑦𝑡
is defined as

𝐶𝑜𝑟𝑟 (𝑦𝑡 , 𝑦𝑡−𝑘 ), 𝑘 = 1, 2, ..., (1)

where 𝑘 is the time gap and is called the lag [45]. In each iteration, the two time series are shifted by 𝑘 points until one
third of data is parsed. If the time series is rhythmic, the coefficient values increase and decrease in regular intervals
and significant correlations indicate strong periodicity in data. The autocorrelation sequence of a periodic signal has
the same cyclic characteristics as the signal itself. Thus, autocorrelation can help verify the presence of cycles and
determine the periods. It has been empirically applied on various types of time series data from different fields and was
shown to be dependable and exact in the tested situations [47, 55].

3.2.2 Periodogram. A key step in the rhythm discovery process is estimation of the length of period for each rhythm.
Many different techniques and algorithms for determining the period of a cycle have been developed including the
Fourier-transform based methods such as Fast Fourier Transform [6], Non-Linear Least Squares [58] and Spectrum
Resampling [13]. Other frequently used methods are Enright and Lomb-Scargle periodograms [23, 39], mFourfit [22],
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6

Maximum Entropy Spectral Analysis [11], and Chi-Square periodograms [57]. All of these methods come with different
assumptions and with different levels of complexity [51]. For example, Spectrum Sampling has outperformed the usual
Fourier approximation methods and has shown more robustness towards non-sinusoidal and noisy cycles [64]. It has
also been used to detect changes in period length, which allows for estimation of variance in different periods, as
frequently observed in practice. These functionalities, however, have made the algorithm slow and computationally
expensive [64].

Arthur Schuster used Fourier analysis to evaluate periodicity in meteorological phenomena and introduced the
term ’periodogram’ [56]. The method was first applied to the study of circadian rhythms in the early 1950s to quantify
free-running rhythms of mice after blinding[34]. Periodograms provide a measure of strength and regularity of the
underlying rhythm through estimation of the spectral density of a signal. For a time series 𝑦𝑡 , 𝑡 = 1, 2, ...,𝑇 , the spectral
energy 𝑃𝑘 of frequency 𝑘 can be calculated as [50]:

𝑃𝑘 = ( 2
𝑇

𝑇∑
𝑡=1

𝑦𝑡𝑐𝑜𝑠 (
2𝜋𝑘𝑡
𝑇

))2 + ( 2
𝑇

𝑇∑
𝑡=1

𝑦𝑡𝑠𝑖𝑛(
2𝜋𝑘𝑡
𝑇

))2 (2)

The periodogram uses a Fourier Transform to convert a signal from the time domain to the frequency domain. A
Fourier analysis is a method for expressing a function as a sum of periodic components, and for recovering the time
series from those components. The dominant frequency corresponds to the periodicity in the pattern.

Fig. 3. Rhythm parameters [12]

3.3 Modeling Rhythms

The next step in our framework is modeling the rhythmic behavior of a time series data which is done via a periodic
function. Each periodic function is among others specified by its period, average level (MESOR), oscillation degree
(Amplitude), and time of oscillation optimal (Phase) [33]. The following rhythm parameters can be extracted from the
model generated by the periodic function (Figure 3) [12, 24, 38]:

• Fundamental period: Periodic sequences are usually made up of multiple periodic components. The fundamental
period measures the time during an overall cycle.

• MESOR is the midline of the oscillatory function. When the sampling interval is equal, the MESOR is equal to the
mean value of all cyclic data points.
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A Framework for Modeling Biobehavioral Rhythms 7

• Amplitude (Amp) refers to the maximum value a single periodic component can reach. The amplitude of a
symmetrical wave is half of its range of up and down oscillation.

• Magnitude refers to the difference between the maximum value and the minimum value within a fundamental
period. If a periodic sequence only contains one periodic component, amplitude equals half of the magnitude.

• Acrophase (PHI) refers to the time distance between the defined reference time point and the first time point in a
cycle where the peak occurs with a period of a single periodic component.

• Orthophase refers to the time distance between the defined reference time point and the first time point in a
cycle where the peak occurs with a fundamental period. When the time sequence only contains one periodic
compoent, orthophase equals to acrophase.

• Bathyphase refers to the time distance between the defined reference time point and the first time point in a
cycle where the trough occurs with a fundamental period.

• P-value (P) indicates the overall significance of the model fitted by a single period and comes from the F-test
comparing the built model with the zero-amplitude model.

• Percent rhythm (PR) is the equivalent to the coefficient of determination (denoted by 𝑅2) representing the
proportion of overall variance accounted for by the fitted model.

• Integrated p-value (IP) represents the significance of the model fitted by the entire periods.
• Integrated percent rhythm (IPR) is the 𝑅2 of the model fitted by the entire periods.
• The longest cycle of the model (LCM) equals to the least common multiple of all single periods.

The most fundamental method for modeling rhythms with known periods is Cosinor, a periodic regression function
first developed by Halberg et al [31] that uses the least squares method to fit one or several cosine curves with or
without polynomial terms to a single time series. It uses the following cosine function to model the time series [24]:

𝑦𝑖 = 𝑀 +
𝐶∑
𝑐=1

𝐴𝑐𝑐𝑜𝑠 (𝜔𝑐𝑡𝑖 + 𝜙𝑐 ) + 𝑒𝑖 , (3)

where 𝑦𝑖 is the observed value at time 𝑡𝑖 ;𝑀 presents the MESOR; 𝑡𝑖 is the sampling time; 𝐶 is the set of all periodic
compoents; 𝐴𝑐 , 𝜔𝑐 , 𝜙𝑐 respectively presents the amplitude, frequency, and acrophase of each periodic components; and
𝑒𝑖 is the error term. In addition to the parameters described above, Cosinor outputs the standard error (SE) for MESOR,
amplitude, and acrophase respectively.

The Cosinor models can be generated for one time series (single Cosinor - individual model) or for a group of time
series (population-mean Cosinor - population model) through aggregation of rhythm parameters obtained from single
Cosinors. Cosinor models have been used to characterize circadian rhythms and to compute relevant parameters with
their confidence limits. The model outputs the significance of the period and it is proved that if 𝑃 ≤ 0.05, the assumed
period actually exists. Our Co framework allows for different periodic functions to be applied to the time series data
using the detected periods from the previous step. We then use the rhythmic parameters measured by the Cosinor
model in our machine learning pipeline as described in the next section.

3.4 Machine Learning Method

The machine learning component of the framework uses the parameters obtained from modeling the rhythm of each
sensor feature to generate datasets for training and testing of an outcome of interest, e.g., health. The pipeline processes
and handles missing values both in sensor and rhythm features across different time windows, selects important rhythm
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features as part of the training process and builds machine learning models for prediction of the outcome. The following
sections describe the details of each step.

3.4.1 Handling Missing Values. Given the streams of data from multiple sources, the framework handles missing data
for each sensor stream and each time window. We remove any sensor feature if the percent of its missing data is greater
than a threshold (e.g., 30%). For remaining sensor features, we perform nearest-neighbor linear interpolation [8] to
fill in missing values. For example, if there are 3 missing data points between 10 and 50, then the 3 missing points are
filled with 20, 30 and 40 respectively. Given that the first and last data points cannot be imputed using this method , we
remove the sensor feature if the first or the last data point in the time window is missing.

We apply the same process for handling missing rhythmic features in consecutive time windows. For each rhythmic
feature, we fill the value of the missing time window with nearest-neighbor linear interpolation. Let 𝑣𝑖 be the value of
feature in time window 𝑡𝑤𝑖 . If 𝑣1 and 𝑣5, the values of features in time windows 𝑡𝑤1 and 𝑡𝑤5 are present and 𝑣2, 𝑣3, and
𝑣4, the feature values of 𝑡𝑤2, 𝑡𝑤3 and 𝑡𝑤4 are missing, then 𝑑𝑖 𝑓 𝑓 =

𝑣5−𝑣1
5−1 , and 𝑣2 = 𝑣1 + 𝑑𝑖 𝑓 𝑓 , 𝑣3 = 𝑣1 + 𝑑𝑖 𝑓 𝑓 ∗ 2, and

𝑣4 = 𝑣1 + 𝑑𝑖 𝑓 𝑓 ∗ 3. For each missing time window, if none of the time windows before it has value, or none of the time
windows after it has value, then this time window is not filled. After imputation, we remove any rhythmic feature with
missing values more than a threshold (e.g., 30%). Algorithm 1 describes the process in more details.

Algorithm 1:Missing value imputation
Data: Input dataset 𝐷
Find the indexes list of the existing values 𝐼𝑛
Missing value counter: 𝑐 = 𝐼𝑛[0]
for 𝑖 = 1 to len(𝐼𝑛) do

𝑖𝑛𝑑𝑒𝑥_𝑑𝑖 𝑓 𝑓 = 𝐼𝑛[𝑖] − 𝐼𝑛[𝑖 − 1]
if 𝑖𝑛𝑑𝑒𝑥_𝑑𝑖 𝑓 𝑓 > 1 then

𝑣𝑎𝑙𝑢𝑒_𝑑𝑖 𝑓 𝑓 = 𝐷 [𝐼𝑛[𝑖]] − 𝐷 [𝐼𝑛[𝑖 − 1]]
𝑐 = 𝑐 + 𝑖𝑛𝑑𝑒𝑥_𝑑𝑖 𝑓 𝑓
for 𝐼𝑛[𝑖 − 1] < 𝑗 < 𝐼𝑛[𝑖] do

𝐷 [ 𝑗] = 𝑣𝑎𝑙𝑢𝑒_𝑑𝑖 𝑓 𝑓
𝑖𝑛𝑑𝑒𝑥_𝑑𝑖 𝑓 𝑓 · ( 𝑗 − 𝐼𝑛[𝑖])

end
end

end
Missing rate threshold = 𝜃

Number of data points in 𝐷 = 𝑁

if 𝑐
𝑁

> 𝜃 then
Delete 𝐷

else
return the imputed dataset

end

3.4.2 Feature Selection. As mentioned in previous sections, for each type of sensor feature, a single period or a multi-
frequency Cosinor model is generated which outputs a list of rhythm parameters. These parameters are entered the
training process for building machine learning models.

Let 𝑀 be the number of sensors (𝑠1 ...𝑠𝑚), 𝐹𝑁𝑖 be the number of features for sensor 𝑖 and 𝑅𝑁 𝑗 the corresponding
number of rhythmic features for feature 𝑗 in sensor 𝑖 . The resulting feature space will be of𝑀 ∗ 𝐹𝑁 ∗ 𝑅𝑁 which is high
dimensional compared to the relatively few data samples for training. As such, a reduction in the number of features
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A Framework for Modeling Biobehavioral Rhythms 9

is prevalent. The framework allows for integration of different feature selection methods such as Lasso, Randomized
Logistic Regression (RLR), and Information Gain(IG) in the machine learning component.

Lasso is a linear regression model penalized with the L1 norm to fit the coefficients [10]. The Lasso regression prefers
solutions with fewer non-zero coefficients and effectively reduces the number of features that are independent of the
target variable. Through cross-validation, the lasso regression can output the importance level for each feature in the
training dataset. We use a threshold value of 1e-5 to select features with Lasso, which is the default threshold in Sklearn
library. Features with importance greater or equal to the threshold are kept and the rest are discarded.

Randomized Logistic Regression is developed for stability selection of features. The basic idea behind stability selection
is to use a base feature selection algorithm like logistic regression to find out which features are important in bootstrap
samples of the original dataset [42]. The results on each bootstrap sample are then aggregated to compute a stability
score for each feature in the data. Features with a higher stability score than a threshold are selected. We use 0.25, the
default threshold value in Sklearn library.

Information Gain (also referred to as Mutual Information in feature selection) measures the dependence between the
features and the dependent variable (predicted outcome) [35]. Mutual information is always larger than or equal to
zero, where the larger the value, the greater the relationship between the two variables. If the calculated result is zero,
then the variables are independent. We set our algorithm to select 10 (the default value in Sklearn library) features with
highest information gain.

3.4.3 Model Building and Validation. The step for building machine learning models using rhythm features of 𝑘
consecutive time windows and for a population of 𝐷 data samples is flexible in the framework and can incorporate
different supervised and unsupervised machine learning methods such as regression, classification, and clustering.
In the current version of the framework, we implement three classification methods including Logistic Regression

(LR), Random Forest (RF), and Gradient Boosting (GB). The choice of algorithms is simply based on our empirical
evidence of their performance on this type of data. Logistic regression [43] uses the logistic function to build a classifier.
Random forest and Gradient Boosting are two branches of ensemble learning [15] which use the idea of bagging and
boosting [9] respectively. Their common feature is to use the decision tree as the basic classifier and to get a robust
model by combining multiple weak models. Bagging is short for boost strapped aggregation. Boost strapping is a
repeated sampling method with replacement and random sampling [26]. In boosting, the training set of each iteration
is unchanged but the weight of samples is changed. At each iteration, the training samples with high error rates are
given higher weights, so they get more attention in the next round training.

To better understand the role of each sensor in prediction, we build models with features from single sensors alone
and features from multiple sensors. We use a baseline of the majority class to measure the performance of the classifiers
in prediction of the outcome. Again, the flexibility of the framework allows for incorporation of different baseline
measures. Both feature selection process and building machine learning models are done in a cross-validation setting,
e.g., leave one sample out [63]. The machine learning component can measure basic performance measures of accuracy,
precision, recall, F1, and MCC scores to evaluate the algorithms performance. From those measures, we choose the
results above baseline for each combination of feature selection and learning algorithm to further explore the prediction
outcomes and to gain insights.
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4 EVALUATION

To demonstrate the capability of our framework in building rhythm models from micro- and macro-level sensor features
and utilizing them in prediction tasks, we present two different cases. The first case, utilizes data from smartphone and
Fitbit to explore the relationship between biobehavioral rhtyhms and mental health status. The second case, investigates
long-term biobehavioral rhythms of data from OURA smart ring and their ability to predict readiness. We choose
different analysis approaches to showcase the flexibility of the framework in handling different types of data and
measuring various outcomes.

4.1 Case 1: Classification of Mental Health via Rhythm Models Using Data from Smartphone and Fitbit

We utilized a dataset of smartphone, Fitbit, and survey data collected from 138 first-year undergraduate students at an
American university who were recruited for a health and well-being research study. The dataset was previously used
in [19] to detect loneliness among college students. Smartphone data was collected through the AWARE framework [25]
and included calls, messages, screen usage, Bluetooth, Wi-Fi, audio, and location. A Fitbit Flex2 wearable fitness tracker
tracked steps, distances, calories burned, and sleep; and survey questions gathered information about physical and
mental health including loneliness and depression. The survey data was collected at the beginning and at the end of the
semester.

Our analysis was performed in two steps: First, we explored the potential of modeling and detecting rhythmicity in
passively collected data from students’ mobile and wearable data streams. Then we used the built rhythm models to
extract features that were fed into machine learning models to explore the relationship between students’ biobehavioral
rhythms and their mental health. We aimed to answer the following questions:

(1) Can we observe rhythmicity in students’ biobehavioral data over the course of the semester? If so, are those
rhythms consistent throughout the semester or do they change during different periods?

(2) Do we observe any difference in biobehavioral rhythms among students with different health status? If so, do
healthy students have more stable rhythms?

(3) How accurately can models of biobehavioral rhythms predict mental health status?
(4) What are the most important characteristics and rhythmic features that reveal change in health status?

Note that our framework provides the ability to generate a large number of observations on the micro- (sensor
feature) and macro-level (sensor), but in this paper, we only focus on observations related to our analysis questions.

Fig. 4. The size of a time window is 2 weeks which segments the semester into roughly 8 time windows.

4.1.1 Sensor Data Processing. The dataset collected from smartphones and Fitbits consisted of time series data from
multiple sensors including Bluetooth, calls, SMS, Wi-Fi, location, phone usage, steps, and sleep. We grouped this time
series data into hourly bins and processed it following the approach in [17] to extract features related to mobility and
Manuscript submitted to ACM
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A Framework for Modeling Biobehavioral Rhythms 11

activity patterns, communication and social interaction, and sleep. Examples of such features include travel distance,
sleep efficiency, and movement intensity. We then split the semester data into tumbling cyclic time windows of 14
days or two weeks based on empirical evaluation of different lengths of time windows. The university semester in the
studied population was roughly 16 weeks long which could by divided into 8 time windows of two weeks except the
last time window that contained only 10 days of data (Figure 4). We built a model of rhythm for each student and for
each time window.

We handled missing sensor data on a per-participant per-time window basis. For each participant and each time
window, we removed sensor features with more than 30% missing data. For remaining sensor features, we performed
nearest-neighbor linear interpolation as described previously to fill in missing values.

4.1.2 Ground Truth Measures for Loneliness and Depression. In our evaluation, we focused on two mental health
outcomes namely depression and loneliness. These two measures were chosen because of their longitudinal aspect, i.e.,
lasting for at least a few weeks to enable the investigation of 1) how biobehavioral rhythms of students with mental
health conditions would differ from other students and 2) how accurately the state of those mental health conditions
could be predicted from extracted rhythms.

Loneliness data was collected using the UCLA Loneliness Scale, a well-validated and commonly used measure of
general feelings of loneliness [53]. The questionnaire contains 20 questions about feeling lonely and isolated using a
scale of 1 (never) to 4 (always). The total loneliness scores range from 20 to 80 with higher scores indicating higher levels
of loneliness. As there is no standard cutoff for loneliness scores in the literature, we followed the same approach in [19]
to divide the UCLA scores into two categories where the scores of 40 and below were categorized as ’low loneliness’ and
the scores above 40 were categorized as ’high loneliness’.

Depression was assessed using the Beck Depression Inventory-II (BDI-II) [4, 21], a widely used psychometric test for
measuring the severity of depressive symptoms that has been validated for college students [21]. The BDI-II contains
21 questions, with each answer being scored on a scale of 0-3 where higher scores indicate more severe depressive
symptoms. For college students, the cut-offs on this scale are 0-13 (no or minimal depression), 14-19 (mild depression),
20-28 (moderate depression) and 29-63 (severe depression) [21]. For simplicity and to be consistent with the loneliness
categorization, we divided these scores into two categories where the BDI-II scores < 14 were labeled as ’not having
depression’ and all BDI-II scores >= 14 were labeled as ’having depression’.

These loneliness and depression categories were used as ground truth labels in our machine learning pipeline to
classify students’ depression and loneliness levels using rhythmic features. Each student filled out the surveys both at
the beginning (Pre) and the end of the semester (Post). To capture relationships between biobehavioral rhythms and
changes in the mental health of students, we categorized students into five groups according to the survey measures for
depression and loneliness. For simplicity of representation, we further label low loneliness and no depression categories
as 1, and high loneliness and high depression as 2. The five mental health categories are as follows:

• All students
• Pre1_ Post1: not having a mental health condition in both pre-semester and post-semester surveys
• Pre1_ Post2: not having a mental health condition in the pre-semester survey, but having it in the post-semester
survey

• Pre2_ Post2: having a mental health condition in both surveys
• Pre2_ Post1: having a mental health condition in the pre-semester survey, but not in the post-semester survey
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The following sections describe our observations and findings. To distinguish the mental health groups in the two
conditions, we add an 𝐿 and 𝐷 to the mental health group for loneliness (e.g., L_Pre1_Post2) and depression (e.g.,
D_Pre1_Post2) respectively.

TW1 TW2 TW3 TW4 TW5 TW6 TW7 TW8
Group N P1 (%) P2 (%) N P1 (%) P2 (%) N P1 (%) P2 (%) N P1 (%) P2 (%) N P1 (%) P2 (%) N P1 (%) P2 (%) N P1 (%) P2 (%) N P1 (%) P2 (%)
All 125 24 (98) 12 (70) 120 24 (98) 12 (75) 118 24 (95) 12 (71) 115 24 (88) 12 (51) 104 24 (88) 12 (52) 103 24 (88) 12 (65) 101 24 (89) 12 (53) 97 24 (94) 12 (69)
D_Pre1_Post1 72 24 (97) 12 (69) 68 24 (99) 12 (72) 66 24 (98) 12 (74) 67 24 (85) 12 (46) 60 24 (87) 12 (52) 58 24 (90) 12 (66) 57 24 (88) 12 (51) 58 24 (98) 12 (72)
D_Pre1_Post2 35 24 (100) 12 (89) 34 24 (97) 12 (88) 35 24 (91) 12 (80) 33 24 (91) 12 (64) 33 24 (97) 12 (58) 33 24 (94) 12 (64) 33 24 (91) 12 (61) 28 24 (93) 12 (79)
D_Pre2_Post1 2 24 (100) 12 (100) 2 24 (100) 12 (100) 2 24 (100) 12 (50) 2 24 (100) 12 (100) 1 24 (100) 31.2 (100) 1 24 (100) 12 (100) 1 24 (100) 12 (100) 2 24 (100) 12 (50)
D_Pre2_Post2 16 24 (94) 156 (38) 16 24 (94) 12 (56) 15 24 (87) 12 (40) 13 24 (92) 12 (38) 10 24 (70) 12 (40) 11 24 (64) 12 (64) 10 24 (90) 12 (40) 9 24 (67) 54 (33)

Table 1. Top two dominant periods of sleep duration feature for depression groups. N is the number of students in the group. P1 is
the most dominant period (i.e., the percentage of students that have the period is highest among all periods). The percentage in
parenthesis is the percentage of students with that period. P2 is the second dominant period.

4.1.3 Detection of rhythmicity and regularity in student data. To investigate whether we can observe rhythmicity in
data collected from students’ smartphones and Fitbits (Question 1) and whether students’ rhythms remains stable
throughout the semester (Question 2), we used Autocorrelation and Periodogram to model students’ rhythms in each
time window for each sensor feature. Figure 5 shows the correlogram of the number of restless sleep bouts in two
students from different groups, one with low loneliness throughout the semester and the other with high loneliness
at the end of the semester. The figure visually depicts differences in the rhythms of these two students where the
correlogram belonging to student with high loneliness projects a less stable rhythm towards the end of time series. To
further quantify such differences in cyclic rhythms of students, we apply Periodogram to 1) detect dominant periods in
students’ data and 2) measure variability in those periods among students with different health status.

(a) (b)

Fig. 5. Correlograms of feature num_restless_bout (number of restless periods in sleep) in time window 4 for two students (left: a
student in L_Pre1_Post1, right: a student in L_Pre1_Post2).

Our results shows that the most dominant cyclic periods in each time window are 24- and 12-hours for all sensor
features. For example, for sleep duration feature in depression category, this trend is consistent in all students regardless
of the mental health condition where on average 97.6% and 69.6% of students have 24- and 12-hours as dominant
periods in their data across time windows ( Tables 1 and 2). The percentages, however, have a declining trend starting
from TW4 (around midterms) towards the end of the semester. This trend can be expected because of the increase in
students’ workload that cause irregularity in sleep duration. The lowest percentages across all time windows (46.3%
on average) are observed in the 12-hour period of students in group D_Pre2_Post2, i.e., students who were depressed
throughout the semester. In particular, there is no 12-hour period observed for this group in TW1 (the first two weeks)
Manuscript submitted to ACM
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A Framework for Modeling Biobehavioral Rhythms 13

and TW8 (the last two weeks). The 12-hour or half-day period relates to diurnal/nocturnal activities and this trend
may be indicative of higher irregularity in sleep behavior among students with depression throughout the semester
especially at the beginning and towards the end of the semester. Our observations are consistent with other studies.
[49] observed that older adults with depression have lower sleep regularity index in a study of 138 participants. [60]
observed that irregular sleepers showed more negative moods, including depression, in a study of male college students.

Pre1_Post2
Loneliness Depression

Time Window N P1 (%) P2 (%) P3 (%) N P1 (%) P2 (%) P3 (%)
TW1 17 24 (100) 12 (71) 312 (35) 35 24 (100) 12 (89) 312 (34)
TW2 15 24 (93) 12 (87) 312 (40) 34 24 (97) 12 (88) 312 (38)
TW3 16 24 (100) 12 (88) 156 (31) 35 24 (91) 12 (80) 156 (31)
TW4 15 24 (73) 12 (53) 312 (33) 33 24 (91) 12 (64) 78 (40)
TW5 14 24 (100) 12 (64) 156 (29) 33 24 (97) 12 (58) 312 (36)
TW6 12 24 (92) 12 (67) 78 (33) 33 24 (94) 12 (64) 78 (45)
TW7 13 24 (85) 12 (54) 156 (31) 33 24 (91) 12 (61) 156 (40)
TW8 11 24 (91) 12 (55) 72 (45) 28 24 (93) 12 (78) 72 (32)

Table 2. Top three dominant periods of sleep duration (minutes asleep) feature for Pre1_Post2 groups. N is the number of students in
the group. P1 is the most dominant period (i.e., the percentage of students that have this period is highest among all periods). The
percentage in parenthesis is the percentage of students that have the period. P2 and P3 are the second and third dominant periods.

We further analyzed changes in periodicity of sleep duration in students who started the semester with normal
health status but developed depression or loneliness towards the end (D_Pre1_Post2 or L_Pre1_Post2). Table 2 shows
that the dominant periods of 24- and 12-hours are preserved for the sleep duration feature in all time windows for
both loneliness and depression groups. While the same declining trend towards the end of the semester exists for both
loneliness and depression groups, a sharper slope is observed for the 12-hour period. The lowest percentage of students
in this group with 24- and 12-hour periods are in time windows 4 and 5 with 73% in loneliness category (24-hour), 91%
in depression category (24-hour), 53% in loneliness category (12-hour), and 57% in depression category (12-hour). Given
that time windows 4 and 5 intersect with midterm and spring break, these observations points to changes in sleep
patterns among students whose mental health worsens over the semester.

The third dominant periods for sleep duration across all time windows include 312-hour (13 days), 156-hour (6.5
days), and 78-hour (3.25 days). This is an interesting observation as these numbers are multiplies of the 78-hour period.
In other words, it seems sleep duration of roughly one third of the population in these groups follow a weekly pattern
that may be imposed by class schedules.

% of Participants with 24-hour period
Audio Battery Bluetooth Calorie Location Location Map Call&Messages Screen Sleep Steps Wifi
62 13 42 92 41 17 18 36 69 95 83

Table 3. Percentage of participants with 24-hour period across all sensor features

Overall and across all sensor features, we observe the 24-hour as the dominant period for over 52% of the student
population with highest percentages belonging to steps (95%), calories (92%), wifi (83%), and sleep (68%). Table 3 presents
the overall percentages for each sensor. Calories and steps relate to physical activity. The high percentage of students
with 24-hour cycles in these two sensor categories is indicative of regular daily exercise and movement. While there is
a low percentage of students with regularity in their cyclic location patterns and visited places (Location Map features),
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it seems a large number of students have regular daily patterns of using Wifi. This pattern could be expected given that
the first-year students live in dorms and are mostly on campus. Interestingly, a low percentage of students seem to have
regular cyclic patterns of phone usage (Screen, 36%; Call&Messages, 18%; Battery 13%). While phone use especially
battery charging patterns are expected to be cyclic, (e.g., charging the phone at night), these observations present the
possibility of different phone use behavior among students.

Following these observations, we further look at the percentage of participants in each mental health group that
had 24-hours as one of their dominant rhythms for each time chunk. This would help observe the extent to which
students preserved their normal circadian rhythm over the semester. Recall that time chunks consist of 𝑘 consecutive
time windows, there were 36 different time chunks in total for 8 time windows of length 2 in the dataset. In each time
chunk, a participant had 24-hour as a dominant rhythm if and only if this participant had 24-hour as a dominant rhythm
in all time windows in that time chunk. Figure 6 shows the percentage of participants with 24-hour as the dominant
rhythm (y-axis) in each mental health group for each time chunk of length 3 (x-axis). We chose one representative
feature from each sensor stream, i.e., bluetooth (abbreviated as blue in the figure), location (loc), sleep (slp), calories
(calor), screen, and steps for further analysis.

(a) (b)

Fig. 6. The plots show the percentage of participants with 24-hour as the dominant rhythm (y-axis) in each mental health group
(left: loneliness, right: depression) for each time chunk of length 3 (x-axis). The data point at 𝑥 = 𝑖 corresponds to the time chunk of
length 3 starting at 𝑡𝑤𝑖 (i.e., 𝑡𝑐3𝑖 ). It represents the percentage of participants with 24-hour as the dominant rhythm in all the 3 time
windows 𝑡𝑤𝑖 , 𝑡𝑤𝑖+1, 𝑡𝑤𝑖+2.

For loneliness, the group with low loneliness at the beginning and high loneliness at the end of the semester
(L_Pre1_Post2) shows an overall higher percentage of 24-hour rhythms for features of sleep, location, and bluetooth
across time windows. The opposite group with high loneliness at the beginning and low loneliness at the end of the
semester (L_Pre2_Post1) shows lower percentage of 24-hour rhythms for features of calories and steps but higher
percentages for screen features. The bluetooth feature in the top left of Figure 6 (a) which represents the cyclic patterns
of the scanned devices belonging to the person is a proxy of social isolation, i.e., the person not being around other
people (and their devices) and being mostly by themselves. Starting from TW3 (week 3, 4 and 5), the percentage of
students with regular daily cycle for this features in L_Pre1_Post2 and L_Pre2_Post1 groups sharply increase and
decrease respectively. In other words, while more students with low loneliness at the beginning and high loneliness at
Manuscript submitted to ACM
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A Framework for Modeling Biobehavioral Rhythms 15

the end of the semester start having a regular social isolation patterns on a daily basis towards the end of the semester,
fewer students in the opposite group with high loneliness at the beginning and low loneliness at the end of the semester
experience this trend. A very similar pattern is observed for another socially relevant feature namely the length of stay
in significant locations. The trend is relatively stable and slightly decreasing in students with no loneliness which reflects
stability of behavior in this group. For sleep, steps and calorie burn, we observe an almost counter intuitive opposite
cyclic behavior among L_Pre1_Post2 and L_Pre2_Post1 groups. It seems more students with loneliness toward the end
of semester engage in regular physical activities as projected by calories and steps features and have more regular
sleep duration cycles. A relatively similar behavior is observed for the burned calories feature in depression groups
(Figure 6 top right). While regularity in physical activities slightly increases in students with depression (D_Pre2_Post2),
it appears to decrease in students with no depression (D_Pre1_Post1) across time windows. While existing studies,
e.g., [7, 19, 59] point to negative associations of physical activities and mental health, we believe increase in regular
physical activities towards the end of the semester may be a coping attempt by students with mental health problems.

But trends generally look different for depression groups in Figure 6 (b). All groups except D_Pre2_Post1 had similar
percentage of regular 24- and 12-hour periods for bluetooth, location and screen across time windows. Since there is
only one participant in group D_Pre2_Post1, we exclude it from further discussion. While the group with no depression
at the beginning and with depression at the end of the semester (D_Pre1_Post2) shows highest percentage of normal
24-hour rhythms for features of calories and steps across all time windows, the group that was depressed throughout
the semester (D_Pre2_Post2) shows lowest percentages for steps, sleep and calories. In particular, regularity of sleep
in these students seems to decline drastically across time windows. Although expected, this sharp trend is a valuable
observation for further exploration of relationships between change in sleep cycles and depression status. Previous
study in [49] also observed that sleep irregularity is indicative of depression, but no existing study has analyzed the
relationship between change in sleep cycles and change in depression status. Our observations provide new findings
and insights that call for further and more rigorous investigations.

4.1.4 Prediction of Mental Health Status with Rhythmic Features. The third and fourth questions in our analysis relate
to the feasibility of using parameters of biobehavioral rhythms to predict mental health status in students. In our
framework, we utilize dominant periods detected from the previous step using Periodogram to build Cosinor models of
biobehavioral data. This process generates rhythmic features that are fed into the machine learning process to classify
post-semester loneliness and depression categories (low loneliness vs. high loneliness and no depression vs. with
depression) of the students. We build two types of datasets one with single sensors only and one with multiple sensors.

For Single Sensor datasets, we use the rhythmic features of each sensor feature separately, i.e., for each sensor feature
and each time chunk (with time windows of two weeks), we take the rhythmic features of this sensor feature and time
chunk to form the input dataset. We remove datasets with more than 30% missing instances (80 training instances)
as we consider it too small to generate a reliable and generalizable model. For Multiple Sensors datasets, we select the
sensor features that provide accuracy above baseline in models built with single sensors. For both approaches, we use
the majority class ratio i.e., the category that has the highest percentage of labels for that category as the comparison
baseline. We then repeat the same process we followed for signle sensor datasets but this time for the combination of
sensor features, i.e., for each time chunk and each combination of sensors, we take the rhythmic features of the selected
sensor features of those sensors and time chunk to form the input dataset. Other than the difference in input dataset,
the machine learning pipeline is the same for the two types of datasets.
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Given the imbalanced datasets for both health conditions i.e., different number of samples in the two classes (e.g., 59%
of samples in category 1 vs. 41% in category 2 of depression), using the accuracy will not be adequate for performance
evaluation and needs to be accompanied by other measures such as F1. For every combination of time window and
sensor, the F1 score is used to select the model with the best performance. We build models with single sensor and
multiple sensors datasets for both mental health conditions. The results of all combinations are shown in Figures 7
and 8. The heatmaps use the depth of color to represent the F1 score. Given the large number of features, we only
report results with accuracy above the baseline (majority class percentage). Through the single sensor modeling, we
can judge which type of sensor is most effective in predicting mental health. Overall, we find that the models with
multiple sensors improve the prediction performance. A summarization of the results are listed in Table 4.

Single Sensor Modeling. The F1 scores of machine learning models with single sensor features are shown in Figure 7.
Rhythm parameters obtained from Cosinor models built for features related to bluetooth, calories, location, sleep, and
steps perform better in predicting both loneliness and depression levels. Overall, the models for loneliness prediction
obtain higher accuracy (F1) scores than depression models (Table 4) which may be due to more sparsity in depression
datasets. Although the best model to classify post-semester loneliness is built using Gradient Boosting on rhythm
parameters of calorie data from 𝑡𝑤1 to 𝑡𝑤3 with an F1 score of 0.76, more models built on rhythms of location and
locationMap provide high performance. The best model for post-semester depression with an F1 score of 0.7 is also
built using Gradient Boosting but on the locationMap data from 𝑡𝑤3 to 𝑡𝑤5. Compared to other sensors, models using
rhythmic parameters from locationMap features show better performance for predicting post-semester depression (six
out of ten models with the highest F1 score use locationMap features). Although the F1 scores of models with a single
time window are generally lower than models with multiple time windows, there are some exceptions in the heatmaps
of both loneliness and depression. For example, the loneliness model using sleep features in 𝑡𝑤1 achieves an F1 score
of 0.75, and the F1 score of the depression model using sleep features in 𝑡𝑤5 equals 0.68. Interestingly and somewhat
counter-intuitively, across all sensors, the majority of models (avg. 57.5% for single sensors and 53.5% for multiple
sensors) using early semester time windows (𝑡𝑤1 to 𝑡𝑤4) appear to have higher F1 scores for post-semester loneliness
and depression prediction than late semester time windows. We believe this observation provides initial evidence for
the possibility of early detection of mental health status via monitoring of changes in biobehavioral rhythms.

(a) Loneliness (b) Depression

Fig. 7. The heatmap displays the largest F1 score in the loneliness and depression prediction model trained by a combination of
different single sensor features and time windows.

Multiple Sensor Modeling. We do the same analysis for the combination of sensor features. From Figure 8, we
observe that the combination of multiple sensor features contributes to the improvement of F1 score. For example, the
Manuscript submitted to ACM
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combinations related to steps, sleep, location, calorie, and Bluetooth end with better results. For predicting loneliness,
the best model is built with Logistic Regression, which uses the Bluetooth and steps data from 𝑡𝑤5 to 𝑡𝑤8 and obtains
an F1 score of 0.91. For predicting depression, the best model is obtained from Logistic Regression using the rhythm
parameters from Bluetooth, calorie, location, screen, and steps features. The model only uses 𝑡𝑤6 to predict depression
with an F1 score of 0.89. The best model predicting depression has a lower F1 score than the best model predicting
loneliness, which is the same as the single sensor model and may be due to sparsity in sensor data.

(a) Loneliness (b) Depression

Fig. 8. The heatmap displays the largest F1 score in the loneliness prediction model trained by a combination of different multiple
sensor features and time windows.

Table 4 summarizes the mean and max of F1 scores for models built with each combination of the feature selection
and machine learning methods. In single sensor modeling, the combinations of Logistic Regression with Lasso and
Randomized Logistic Regression) perform best for predicting loneliness with the mean and max F1 score of 0.7 and 0.76
respectively. The combination of Gradient Boosting and Information Gain provides the highest F1 score for prediction
of depression. For the multiple sensor modeling, we observe that the maximum F1 scores of predicting loneliness and
depression are 0.91 and 0.89, which are obtained from the combination of Logistic Regression and Lasso. Overall, for the
majority of approaches, the combination of Gradient Boosting and Information Gain provides the best performance. This
combination should be further evaluated with other similar datasets to replicate and confirm their superior performance
over other algorithm combinations.

Dominant rhythm parameters that predict mental health. Although we used three feature selection methods in
our evaluation, we observed that the Information Gain method provided more reliable and complete list of features

Manuscript submitted to ACM
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Single Sensor Multiple sensors
Loneliness mean(max) Depression mean(max) Loneliness mean(max) Depression mean(max)
GB LR RF GB LR RF GB LR RF GB LR RF

IG 0.69 (0.76) 0.69 (0.76) 0.66 (0.72) 0.58 (0.70) 0.60 (0.61) 0.56 (0.63) 0.73 (0.83) 0.72 (0.78) 0.69 (0.81) 0.63 (0.83) 0.60 (0.66) 0.63 (0.76)
Lasso 0.68 (0.72) 0.70 (0.76) 0.74 (0.74) 0.57 (0.68) 0.57 (0.64) 0.55 (0.59) 0.72 (0.78) 0.75 (0.91) 0.59 (0.66) 0.67 (0.89) 0.54 (0.54)
RLR 0.70 (0.76) 0.68 (0.73) 0.58 (0.65) 0.56 (0.65) 0.57 (0.60) 0.75 (0.81) 0.73 (0.82) 0.76 (0.84) 0.65 (0.78) 0.65 (0.79) 0.65 (0.79)

Table 4. Summary of the mean and maximal values of F1 scorse for each combination of feature selection and machine learning
methods shown in the heatmaps 7, 8. The bold values are either the biggest mean value of F1 scores, or the biggest maximal values of
F1 scores

TW1 TW2 TW3 TW4 TW5 TW6 TW7 TW8 HDominant

Audio Amp SE Mesor SE Amp SE IPR Magnitude Amp SE Bathyphase P Amp SE
Battery IPR PR Mesor SE Mesor SE Orthophase Magnitude Orthophase Bathyphase Mesor SE
Bluetooth Magnitude Bathyphase Amp P IPR Orthophase Mesor SE Orthophase Orthophase
Call IPR PHI IPR IPR Amp SE Bathyphase Orthophase Magnitude IPR
Calorie Mesor Magnitude Magnitude Bathyphase Orthophase Orthophase IPR Magnitude Magnitude
Location PHI SE Magnitude Mesor PR IPR Mesor Amp SE IPR Mesor
Location Map Orthophase Magnitude Mesor Orthophase PHI Bathyphase Orthophase Bathyphase Orthophase
Messages Orthophase Magnitude LCM PR Mesor SE Bathyphase PHI SE Magnitude Magnitude
Screen Amp P Orthophase Orthophase PR Orthophase IP Amp SE Orthophase
Sleep Bathyphase PHI SE Mesor Orthophase PHI SE IP Amp SE Bathyphase Bathyphase
Steps P Orthophase Magnitude Bathyphase PR IPR IPR Magnitude Magnitude
Wifi Amp Mesor SE Mesor Orthophase Magnitude IPR IP Amp SE Magnitude

VDominant Amp Magnitude Mesor Orthophase Orthophase Bathyphase Orthophase Magnitude Orthophase

Table 5. The most frequently selected rhythm features by Information Gain during depression prediction.

during the training. Table 5 shows the rhythm features that are selected most frequently by Information Gain during
depression prediction for each sensor feature in each time window. The vertical dominant feature (VDominant) is the
most commonly selected feature for most of the sensors at a given time window, and the horizontal dominant feature
(HDominant) is the most commonly selected feature in most time windows for a given sensor. The overall dominant
feature (the feature at the bottom right corner in bold font) is the most commonly selected feature for all sensors and
time windows. If two features are the most commonly selected features for the same number of sensors/time windows,
we break the tie by taking the feature with higher frequency. Overall, Orthophase is selected most frequently for all
sensors and time windows. Magnitude comes the second. Given that Phase and Magnitude reflect duration and intensity
of biobehavioral features, frequent selection of these parameters suggest an important relationship with mental health
status.

In addition to main rhythmic features, i.e., Mesor, Amplitude/Magnitude, and Ortho/Bathyphase, we observe frequent
selection of features related to the fit of Cosinor models including the significance level of the fit (P), Standard Errors
(SE) and Percent Rhythm (PR and IPR), i.e. the proportion of the overall variance accounted for by the fitted model.
Higher levels of these parameters reflect higher variation in data, and therefore, frequent selection of these parameters
indicates the power of regularity/irregularity of biobehavioral rhythms in predicting mental health status.

4.1.5 Comparison with Models Built without Rhythm Parameters. To better understand the capability of our framework
in utilizing rhythmic features to predict an outcome, we compare the prediction performance of the models with rhythm
modeling against the models without rhythm modeling. Specifically, we select the best performing sensor feature in
each time window, run exactly the same machine learning pipeline on the raw feature data without rhythm modeling,
Manuscript submitted to ACM
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Time Window Feature Rhythm-F1 Raw-F1
1 shortest period spent at Halls 0.66 0.54
2 longest awake period length 0.64 0.49
3 number of awakes 0.63 0.47
4 maximum calories increase between 5-min periods 0.66 0.60
5 shortest asleep period length 0.70 0.69
6 total distance traveled 0.65 0.50
7 maximum calories decrease between 5-min periods 0.67 0.59
8 minutes spent at Halls 0.65 0.62

Time Window Feature Rhythm-F1 Raw-F1
1 shortest period spent at Halls 0.69 0.55
2 longest awake period length 0.67 0.47
3 total asleep time 0.67 0.49
4 number of awakes 0.62 0.56
5 percentage of time spent moving 0.72 0.52
6 longest period spent at athletic areas 0.68 0.43
7 total change of calories 0.68 0.53
8 variance of moving speed 0.67 0.48

Table 6. F1 of machine learning models with rhythmmodeling (rhythm) and without rhythmmodeling (raw features). Left: Loneliness;
Right: Depression.

and compute the F1 score. Table 6 shows that the pipeline with rhythm modeling outperforms the one without by a
large margin on most of the features. This observation is consistent for both loneliness and depression predictions.

4.2 Case 2: Biobehavioral Rhythm Modeling for Readiness Prediction Using Data from OURA Ring

We chose a second dataset to evaluate the framework’s flexibility in modeling various types of data and applying
different analysis approaches. For this case, we used data from 11 volunteers who continuously wore Oura ring, a smart
and convenient health tracker for several months. As shown in the last plot of Figure 10, the length of data collection
varies per participant and ranges from 31 to 323 days. The long-term data makes it possible to detect and observe
rhythms with larger cyclic periods than a day, e.g. weeks or months. As such, we design our analysis to answer the
following:

(1) Are there common cycles in participants’ data per sensor and across sensors, and can we identify similarities
and differences in cyclic periods among participants despite differences in the length of their data?

(2) How accurately can individual rhythm models per sensor feature and per participant predict average readiness?

4.2.1 Physiological Data Processing. OURA collects sleep, heart rate, skin temperature, calories, steps, and activity.
Sleep, heart rate, and skin temperature samples are collected every five minutes during night hours; and activity, calories,
and steps are sampled every 5 minutes during the day. The data is summarized and stored on the OURA cloud platform.
As our goal is to detect cycles with multiple-day lengths, we aggregate the features into daily intervals (as opposed to
the previous case that used hours). In total, we use 31 features such as total duration of sleep, lowest/average heart rate,
average metabolism level, total amount of calories burned, and total number of steps during the day. To be able to detect
longest periods in participants’ data, we refrain from segmenting data into common time windows and use the entire
time series data for the analysis. The convenience of wearing the ring and its long battery life leads to good quality data
with low missing rates (Max 15.6% in our data). We use the moving average method to handle the missing values.

4.2.2 Readiness Score as Ground Truth. Besides the physiological features, Oura provides a readiness score, i.e. an
evaluation of body’s overall recovery rate after waking up in the morning. The readiness score ranges from 0 to 100
with scores over 85 indicating high readiness for challenging tasks and scores below 70 indicating poor body state
and need for recovery. In our dataset, participants’ readiness scores range from 24 to 99 with an average score of 74,
and standard deviation of 11.4. Figure 10 and 9 shows the distribution and variation of daily readiness score for each
participant. We calculate the average daily readiness score for each participant and use it as ground truth to explore
how well we can use the rhythms to predict the readiness score.

4.2.3 Detection of cycles in OURA-Ring Data. Our first analysis questions relate to detection of common cycles in
participants’ data and in the physiological sensors. To detect significant periods, we apply Periodogram on the time
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Fig. 9. The 1 to 11 boxplots display the minimum, median, maximum, and quartile of the daily readiness scores for each participant.
Most daily readiness scores are clustered in the range from 70 to 85.

Fig. 10. The histograms from 1 to 11 display the distribution of the daily readiness scores for each participant, and the last bar plot
shows the duration of each participant’s data collection.

series data of each sensor feature per participant. In Table 7 and 8, we list the most frequently detected periods of sensor
features and summarize them by sensor type and participants. The number 7 and its multiple 14 as well as its close
preceding and following numbers of 6 and 8 appear most frequently in both tables suggesting near-weekly biobehavioral
patterns. In particular, periods of Activity, Sleep, and Heart rate project near-weekly cycles across all participants.
For example, Activity cycles of 6, 7, and 8 days are observed in 45%, 55%, and 36% of participants respectively. These
cycles are also observed in sensor data of seven participants (63%). Calorie and Steps share periods of 2, 10, and 11 days
with similar percentages. Although the percentages of participants with these cycles are low likely due to different
movement patterns among participants, the common periods of these two sensors may be indicative of exercise cycles
in those participants.

Sensor Detected Period (% of Participants)
Activity 7 (55), 2 (45), 6 (45), 8 (36), 4 (36)
Calorie 2 (18), 11 (18), 10 (18), 4 (9), 81 (9), 20 (9)
Heart Rate 7 (36), 27 (27), 8 (27), 14 (18), 18 (18)
Sleep 8 (55), 3 (55), 7 (45), 6 (45), 11 (36)
Steps 11 (27), 10 (27), 2 (18), 54 (18), 7 (18)
Skin Temperature 12 (36), 14 (36), 15 (27), 27 (27), 34 (18)

Table 7. Dominant frequent periods for each sensor. The percentage in parenthesis is the percentage of participants with the significant
period.
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Participant Detected Period (% of Sensor Features)
1 7 (29), 34 (26), 2 (23), 3 (16), 39 (10)
2 80 (42), 81 (39), 40 (35), 11 (29), 32 (26)
3 77 (32), 10 (29), 24 (23), 7 (23), 26 (16)
4 7 (52), 202 (39), 101 (35), 67 (19), 201 (16)
5 66 (39), 65 (35),130 (26), 8 (26), 26 (23)
6 6 (35), 56 (29), 14 (23), 28 (13), 19 (10)
7 31 (26), 11 (23), 190 (23), 95 (23), 38 (19)
8 94 (42), 188 (29), 63 (29), 7 (23), 189 (23)
9 68 (45), 102 (35), 29 (29), 204 (26), 41 (16)
10 54 (45), 108 (39), 43 (35), 27 (23), 217 (32)
11 126 (35), 42 (26), 28 (23), 5 (16), 7 (16)

Table 8. Most frequent periods of all sensor features for each participant. The percentage in parenthesis is the percentage of sensor
features with that period.

4.2.4 Prediction of Readiness with Rhythmic Features. For each participant, we use the three most significant periods
identified by the Periodogram as input to the Cosinor method to build rhythm models per sensor feature. The rhtyhmic
features are then entered in the machine learning process to predict average readiness per participant. Since the
readiness score is a continuous variable, we build regression models to make predictions. Our choice of machine
learning algorithms include Random Forest and Gradient Boosting with Information Gain and Lasso as feature selection
methods. Similar to case 1 in mental health, we build models with single and multiple sensor combinations in a
leave-one-participant-out cross validation, but instead of accuracy, we use the Root Mean Square Error (RMSE) as
performance measure.

Table 9 lists the best RMSE achieved by single sensor models along with the most frequently selected features.
Among single sensor models, the model built with rhythmic feature of sleep data with an RMSE of 4.08 is a stronger
predictor of readiness than others. In comparison, the combination of sleep, calories, and steps obtain an RMSE of 3.54,
the lowest RMSE among all multiple sensor models, as shown in Table 10. This combination takes into account both
the activity of the human body during the day (calories) and the sleep quality at night (sleep). These observations are
expected and confirm the impact of both sleep and physical activity on daily functioning of the body. Interestingly but
not surprisingly, the frequently selected features across all sensors are standard errors of the rhythm parameters (i.e,
PHI SE, MESOR SE, and Amp SE) as well as percent rhythm (PR) all of which are indicative of variation in the actual
data. MESOR SE is the most dominant feature among both single and multiple sensor models. These results suggest that
the level of variability and potentially irregularity in biobehavior may be most predictive of fluctuations in readiness.

Table 9 and 10 also summarize the RMSE for models using each combination of feature selection and machine
learning methods. The Gradient Boosting model with Lasso regression achieves the best performance for both single
sensor and multiple sensor modeling, with an RMSE of 3.54. Using the same prediction model, the Information Gain
performs better in single sensor modeling, and the results are reversed in multiple sensor modeling.

Sensor Activity Calorie HR Sleep Step Skin Temperature
Feature Selection IG Lasso IG Lasso IG Lasso IG Lasso IG Lasso IG Lasso
RMSE (GB) 5.04 8.42 4.79 5.18 4.54 5.50 4.08 5.54 4.71 6.77 5.34 6.77
RMSE (RF) 5.25 8.52 4.38 4.51 4.65 6.20 4.20 5.68 4.81 7.30 5.48 7.30
Frequent Rhythmic Features PR PHI Mesor SE, Amp SE PHI PR PHI, PHI SE, P PR P Mesor SE, Amp SE Mesor, P Mesor SE, Amp SE, P PHI

Table 9. Lowest RMSE of single sensor features and frequent rhythmic features selected by IG and Lasso
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Feature Selection IG Lasso
Sensor sleep, calorie, step sleep, calorie, step
RMSE (GB) 3.73 3.54
RMSE (RF) 3.80 3.68
Frequent Rhtyhmic Features MESOR SE MESOR

Table 10. RMSE of multiple sensor models and frequent rhythmic features selected by those models.

5 DISCUSSION

In the Introduction section, we identified several challenges in processing and modeling biobehavioral time series
data from mobile and wearable devices that motivated the development of our novel computational framework. These
challenges include 1) automated handling and processing of massive multimodal sensor data, 2) granular and fine-
grained exploration of all signals to extract knowledge about biobehavioral cycles, and 3) computational steps for
modeling, discovering, and quantification of common patterns.

We presented two case studies using different datasets, sensors, populations, and prediction tasks to demonstrate
capabilities of our proposed computational framework in addressing the aforementioned challenges. Both cases
demonstrated the ability of the framework to automatically process longitudinal multimodal sensor mobile data; extract
fine-grained and granular features; detect periodicity in the data and use it to study rhythm stability and variation over
time; build micro-rhythm models for each biobehavioral feature; and use those models in incorporate different analytic
approaches to predict various health outcomes. We were able to build massive prediction models for both single sensors
and different combination of sensors and to compare the results. We observed that the combination of multiple sensor
features contributed to the improvement of prediction results. We also showed that the models built with rhythmic
features outperform models build with the raw sensor features further demonstrating the feasibility of biobehavioral
rhythms in prediction tasks.

Although our primary goal was to showcase capabilities and flexibility of the framework, our analyses provided
interesting and novel observations some of which can be used as initial evidence for further investigation. For example,
although we used different datasets and population groups in case 1 and 2, we observed near-weekly sleep cycles
in both populations. We also observed drastic decline in sleep duration cycles of depressed students throughout the
semester. Even though existing research has repeatedly shown relationships between sleep and mental health, we
believe our observation is unique in identifying relationships between change in cyclic patterns of sleep and mental
health status. Our micro machine learning models of sensor features provided evidence that changes in biobehavioral
rhythms in early weeks of the semester were predictive of post-semester depression and loneliness. This finding suggests
monitoring biobehavioral rhythms may serve as useful tool for early prediction of change in mental health status. We
also observed that rhythmic parameters of Phase and Magnitude that reflect duration and intensity of biobehavioral
features as well as parameters related to variability in the cyclic time series models (e.g., SEs and PR) were frequently
selected in the machine learning process indicating the power of the intensity, duration, and regularity/irregularity
of biobehavioral rhythms in the prediction of health outcomes. Since there is no comparable study in biobehavioral
rhythms for prediction of health and wellness, we only compared our observations with closest studies of loneliness
and depression. We hope our initial findings opens up for more studies using our framework to replicate the results.

The central theme of this paper was introducing the computational framework and its main functionality. How-
ever, the framework is generalizable and can be adapted and extended to include more functionalities and features.
The advancements include 1) adding more data sources such as weather, environment, work schedules, and social
Manuscript submitted to ACM
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engagements to draw a more holistic picture of biobehavioral rhythms in individuals and groups of people, 2) adding a
conclusive set of periodic functions and methods with diverse characteristics that provide the possibility of uncovering
different cyclic aspects in data, 3) developing novel methods for measuring stability of rhythms, and 4) advancing the
machine learning component to incorporate a comprehensive selection of analytic methods that further enhances the
capabilities of the framework to be used for predictive modeling of cyclic biobehavior.

For the current implementation, we limited our periodic functions to Autocorrelation, Periodogram, and Cosinor.
In future work, we hope to build an ensemble system incorporating different types of rhythm detection algorithms,
and design a voting algorithm to aggregate the outputs of period detection algorithms. For example, the most frequent
detected period by various detection algorithms will be treated as the dominant period. We also plan to extend the
framework by adding and evaluating novel methods to quantify collective stability of individual and group rhythms.

6 CONCLUSION

We designed and presented a computational framework for modeling biobehavioral rhythms from mobile and wearable
data streams that rigorously processes sensor streams, detects periodicity in data, models rhythms from that data and
uses the cyclic model parameters to predict an outcome. Our evaluation of the framework using two different case
studies showed that in addition to detection of rhythmicity, the framework can reliably discover various periods of
different length in data, extract cyclic biobehavioral characteristics through exhaustive modeling of rhythms for each
sensor feature; and provide the ability to use different combination of sensors and data features to predict an outcome.
The machine learning analyses for predicting mental health and readiness demonstrated the ability of our framework
to process massive number of data streams to build and analyze micro-rhythmic models for each sensor feature and
combinations of features and highlighted dominant rhythmic features for prediction of the outcome of interest. The
case studies also provided novel findings that were not observed in similar studies. These results show the feasibility
of our computational modeling framework for studying different outcomes and extracting new knowledge through
modeling biobehavioral rhythms.
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